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Abstract 
 

Feeding behaviour and energy balance is regulated by the central nervous system, through 

a concerted endeavour of different brain areas. The hippocampus, historically regarded 

as a substrate for learning and memory processes, has also been implicated in such energy 

regulation. In recent years, researchers have established that hippocampal neurones form 

a memory of a meal and act to delay meal initiation during the postprandial period. 

However, more experiments are needed to identify the processes involved in such control. 

The present thesis starts to fill this gap, by identifying possible neuronal mechanisms by 

which the hippocampus processes satiety and meal termination. By assessing the 

functioning of ion currents/channels and the lipid composition and organization of the 

plasma membrane throughout the feeding cycle, this study furnishes a global perspective 

of the effect of post-prandial and fasting conditions upon intrinsic neuronal plasma 

membrane (PM) properties. 

The involvement of ion channels of rat hippocampal CA1 neurones in a feeding cycle 

context has already been studied. Indeed, the feeding cycle was found to impact the 

excitability of these neurones by modulating the activity of voltage-gated potassium 

currents. This finding has urged further investigation to evaluate the broadness of the 

effect of feeding cycle on the activity of other ion channels. Hence, it was critical to 

address the involvement of a) voltage-gated sodium (Na+) currents/channels, given their 

importance in the initiation and propagation of action potentials, and b) voltage-gated 

calcium (Ca2+) currents/channels, as they mediate the influx of this ubiquitous second 

messenger, with wide-ranging physiological roles, into the interior of the neurones.  

The influence of feeding cycle on the biophysics of Na+ and Ca2+ channels was 

undertaken in neurones acutely isolated from the CA1 subfield of the rat hippocampus. 

Two classes of neurones were used: those obtained from animals that fasted overnight 

(‘fasted neurones’) and those from animals that, after such period, were fed (‘fed 

neurones’). 

Voltage-gated Na+ currents were recorded by applying electrophysiological voltage 

clamp techniques - namely whole-cell (WC) and excised inside-out patches. Fed 

neurones, in comparison to fasted neurones, showed increased mean maximum 

macroscopic Na+ current density (1.5 ± 0.12mA.cm-2 vs. 1±0.10mA.cm-2) and a greater 
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single-channel conductance (16.7 ± 0.76pS vs. 12.6 ± 1.30pS). Furthermore, the larger 

amplitude of the ‘window current’ obtained in fed neurones, derived from hyperpolarized 

activation curves and depolarized steady-state of inactivation curves (h∞), indicates a 

greater Na+ channel availability to respond to activation. Such variation is supported by 

a higher concentration of Nav1.2 isoform at the plasma membrane-enriched fractions of 

hippocampus of fed animals. Overall, the results indicate a variation in the biophysics and 

expression of voltage gated Na+ channels of rat hippocampal CA1 neurones, pointing out 

that feeding cycle changes the neuronal excitability. 

Voltage-gated Ca2+ currents were analysed with whole-cell recordings. It was observed 

heterogeneity in whole-cell Ca2+ currents, here sorted into three categories – ‘A’, ‘B’, and 

‘C’ currents. The differential distribution of these currents between fed and fasted 

neurones determined significant alterations on the inactivation properties of Ca2+ 

currents. The increased values of the time-constant of inactivation - τh -, observed upon 

feeding, can be ascribed to a conspicuous slowly-inactivating current mainly assigned to 

fed neurones (current ‘A’), as oppose to the fastest kinetics of inactivation, solely seen in 

fasted neurones (current ‘C’). Furthermore, in fed neurones, a depolarizing shift of the 

most depolarized component (Vh2) of the voltage-dependence of h∞ was observed, which 

indicates that fasted neurones inactivate at more negative membrane potentials. 

Altogether, these observations point to a facilitated entry of Ca2+ into the soma of fed 

neurones, which, ultimately, potentiates the Ca2+-dependent intracellular events.  

The observed influence of feeding cycle on the biophysical and molecular expression of 

voltage-gated Na+ and Ca2+ channels did not have repercussions on the lipid environment 

of the PM. The plasma membrane-enriched fractions of rat hippocampus were labeled 

with molecular probes: 1,6-diphenyl-1,3,5-hexatriene (DPH) and trans-parinaric acid (t-

PnA). By assessing the fluorescence properties of these probes, it was possible to study 

the molecular organization and lateral heterogeneity (in the membrane plane) of the lipid 

domains. Specifically, two types of fluorescence spectroscopy measurements were used, 

either in steady-state (anisotropy measurements) and time-resolved domains 

(fluorescence intensity decay). The molecular biophysics analysis indicated that the order 

and rigidity of the acyl chains of the phospholipids constituents of the PM is not altered 

during the feeding cycle. Furthermore, the proportion of the different lipid domains at the 

surface of the neuronal PM is identical between conditions, which clearly indicates that 

the lateral heterogeneity of such domains is similar throughout the feeding cycle. This 
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observation must be interpreted at a hydrophobic core level, where the t-Pna and DPH 

preferentially locate within the PM.  

The lipid content of the plasma membrane of rat hippocampus also did not endure any 

variation during the feeding cycle. The ratios calculated for the total lipid, phospholipid 

and cholesterol content were identical between the membranes of fed and fasted animals.  

The results concerning the molecular biophysics and biochemical characterization of the 

lipids imbedded in the neuronal plasma membrane indicate that neurones must have a 

shield mechanism to preserve their functional viability, regardless of the peripheral 

metabolic state. 

In summary, the greater levels of neuronal excitability and the promotion of Ca2+ entry 

into the neurones upon feeding may imply a subsequent increase on neuronal synaptic 

performance. A positive relationship between feeding and higher levels of synaptic 

plasticity-related phenomena (formation and consolidation of memories) is suggested, 

which could help to explain the role of hippocampus on the regulation of energy intake, 

mainly due to its role on meal-related episodic memories. This work gives new insights 

into the function of hippocampus on energy homeostasis, by adding new elements to the 

equation, namely, voltage-gated Na+ and Ca2+ channels.  

 

Keywords: 

Feeding cycle; CA1 neurones; hippocampus; voltage-gated ion channels; Plasma 

membrane 
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Resumo 
 

A regulação do comportamento alimentar e do balanço energético, isto é, a relação entre 

a energia consumida e despendida, por parte do sistema nervoso central tem por base uma 

acção concertada de diferentes áreas do cérebro. O hipocampo, classicamente 

considerado um substrato para os processos de aprendizagem e memória, tem vindo a ser 

implicado em fenómenos de homeostasia energética. O crescente interesse da 

comunidade científica em aprofundar o conhecimento acerca dos processos celulares 

subjacentes a esta nova função do hipocampo reflecte a importância do tema. Nos últimos 

anos, vários investigadores têm estudado a influência dos neurónios do hipocampo na 

formação de memórias relacionadas com a ingestão de alimentos. Os resultados apontam 

para uma relação directa entre a consciencialização da ingestão de alimentos durante uma 

refeição e o prolongamento do subsequente período pós-prandial, retardando o início da 

refeição seguinte. No entanto, mais investigação é necessária para identificar os processos 

envolvidos neste mecanismo. A presente tese contribui no sentido de começar a preencher 

esta lacuna, identificando possíveis mecanismos pelos quais os neurónios do hipocampo 

processam a saciedade após uma refeição. Os estudos do funcionamento dos canais 

iónicos dependentes da voltagem, e da composição e organização lipídica da membrana 

plasmática, fornecem uma perspectiva global do efeito do ciclo alimentar (períodos pós-

prandal/jejum) nas propriedades biofísicas da membrana plasmática dos neurónios. 

O envolvimento de canais iónicos num contexto de ciclo alimentar foi previamente 

estudado na região CA1 dos neurónios do hipocampo de rato. Na sequência deste estudo, 

descobriu-se que o ciclo alimentar tem impacto na excitabilidade dos neurónios, através 

da modulação da actividade das correntes de potássio dependentes da voltagem. Surgiu 

então a necessidade de avaliar a amplitude do efeito do ciclo alimentar sobre o 

funcionamento de outros canais iónicos, nomeadamente canais/correntes de sódio (Na+) 

dependentes da voltagem e canais/correntes de cálcio (Ca2+) dependentes da voltagem. 

Os primeiros, dada a sua importância no início e propagação dos potenciais de ação, e os 

segundos, uma vez que medeiam o fluxo do mensageiro intracelular, Ca2+, com amplas 

funções fisiológicas, para o interior dos neurónios. 

A influência do ciclo alimentar nas propriedades biofísicas das correntes de Na+ e Ca2+ 

foi abordada em neurónios isolados da região CA1 do hipocampo de ratos. Duas classes 
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de neurónios foram utilizadas: os obtidos a partir de animais que jejuaram durante a noite 

(‘neurónios em jejum’) e os provenientes de animais que, após esse período, foram 

alimentados ('neurónios alimentados"). 

As correntes de sódio dependentes da voltagem foram medidas com recurso a técnicas de 

electrofisiologia de voltagem controlada. Duas configurações foram utilizadas: whole-

cell voltage clamp e inside-out patch. Os neurónios alimentados mostraram, 

relativamente aos neurónios em jejum, um aumento na densidade de corrente máxima 

(1.5 ± 0.12mA.cm-2 versus 1±0.10 mA.cm-2) e uma maior condutância de cada canal 

iónico single channel (16.7 ± 0.76pS vs 12.6 ± 1.30pS). Além disso, a maior amplitude 

da window current dos neurónios alimentados, resultante de uma hiperpolarização das 

curvas de activação e de uma despolarização das curvas de inactivação em estado 

estacionário (h∞), indica uma maior disponibilidade de canais para responder ao processo 

de activação. Essa variação é corroborada por uma maior concentração da isoforma 

Nav1.2 ao nível da membrana plasmática de hipocampo de animais alimentados. 

Genericamente, os resultados indicam uma variação nas propriedades biofísicas e na 

expressão molecular das correntes/canais de Na+ da região CA1 dos neurónios do 

hipocampo de rato, apontando para a existência de consequências do ciclo alimentar ao 

nível da excitabilidade neuronal. 

As correntes de Ca2+ dependentes da voltagem foram analisadas através da técnica whole-

cell voltage clamp. Observou-se heterogeneidade ao nível das correntes, aqui 

classificadas em três categorias - 'A', 'B' e 'C. A distribuição diferencial destas correntes 

entre os neurónios alimentados e em jejum determinou alterações significativas sobre as 

respectivas propriedades de inactivação. Os valores mais elevados da constante de tempo 

de inativação - τh -, observada em neurónios alimentados, podem ser fundamentalmente 

atribuídos à expressão de uma componente de inactivação lenta, principalmente detectada 

nos neurónios alimentados (corrente "A"). Por oposição, a ocorrência de uma componente 

com uma cinética de inactivação rápida cingiu-se a observações em neurónios em jejum 

(corrente 'C'), contribuindo largamente para valores de constante de tempo de inactivação 

mais reduzidos. Além disso, as curvas de inactivação em estado estacionário dos 

neurónios alimentados apresentam um desvio despolarizante da segunda componente 

(Vh2), o que indica que os neurónios em jejum inactivam a potenciais de membrana mais 

negativos. Em conjunto, estas observações apontam para uma promoção da entrada de 
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Ca2+ no corpo celular dos neurónios alimentados, o que, inevitavelmente, potencia os 

eventos bioquímicos intracelulares dependentes de Ca2+. 

A influência do ciclo alimentar sobre a expressão molecular e biofísica dos canais de Na+ 

e Ca2+ não mostraram ter repercussões sobre o ambiente lipídico da membrana 

plasmática. As fracções de hipocampo de rato enriquecidas com membrana plasmática 

foram marcadas com sondas moleculares: 1,6-difenil-hexatriene-1,3,5 (DPH) e ácido 

trans-parinárico (t-Pna). Através da análise das propriedades de fluorescência destas 

sondas, foi possível estudar a organização molecular e heterogeneidade lateral (no plano 

da membrana) dos domínios lipídicos da membrana plasmática. Especificamente, dois 

tipos de medidas de espectroscopia de fluorescência foram utilizados, quer em estado 

estacionário (medições de anisotropia), quer resolvidas no tempo (medições de 

decaimento de intensidade de fluorescência). A análise da biofísica molecular indicou 

que a ordem e a rigidez das cadeias acilo dos fosfolípidos componentes da membrana 

plasmática não são alteradas durante o ciclo alimentar. Além disso, a proporção dos 

diferentes domínios lipídicos na superfície da membrana plasmática dos neurónios é 

idêntica entre as condições pós-prandial e jejum, o que indica claramente que a 

heterogeneidade lateral de tais domínios é semelhante durante todo o ciclo alimentar. Esta 

observação deve ter em conta a localização das sondas utilizadas no interior das 

membranas, isto é, na região hidrofóbica da bicamada lipídica. Portanto, os resultados 

aqui apresentados não permitem qualquer tipo de considerações acerca da influência do 

ciclo alimentar a um nível mais superficial da membrana.  

O teor de lípidos da membrana plasmática do hipocampo de rato também não sofreu 

qualquer variação durante o ciclo alimentar. Os índices calculados para os lipídios totais, 

teor de colesterol e fosfolípidos foram idênticos entre as membranas de animais 

alimentados e animais em jejum. 

Os resultados referentes à caracterização bioquímica e biofísica molecular dos lípidos 

constituintes da membrana plasmática indicam que os neurónios do hipocampo devem 

possuir um mecanismo de protecção para preservarem a sua viabilidade funcional, 

independentemente do estado metabólico periférico. 

Em conclusão, os maiores níveis de excitabilidade neuronal e a promoção da entrada de 

Ca2+ nos neurónios após a ingestão de alimentos pode implicar um melhor desempenho 

das sinapses neuronais. É, portanto, sugerida uma relação positiva entre a alimentação e 
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níveis mais elevados de plasticidade sináptica (fenómenos relacionados a formação e 

consolidação de memórias), o que poderia ajudar a explicar o papel do hipocampo na 

regulação do comportamento alimentar, principalmente devido ao seu papel no processo 

de formação de memórias das refeições ingeridas. Este trabalho fornece novos dados 

acerca sobre a função do hipocampo na homeostase energética, adicionando novos 

elementos à equação, no caso, canais de Na+ e Ca2+ dependentes da voltagem. 

Os resultados ilustrados nesta tese ganham uma relevância translacional quando inseridos 

num contexto de doenças epidémicas relacionadas com distúrbios alimentares, tais como 

obesidade e diabetes. Estas condições patológicas são fruto de hábitos alimentares pouco 

saudáveis, associados a um estilo de vida sedentário. Numa sociedade altamente 

susceptível a desenvolver este tipo de doenças impõe-se o a identificação e estudo de 

determinantes moleculares que possam ajudar a inverter esta tendência.     

 

Palavras-chave: 

Comportamento alimentar; neurónios da região CA1; hipocampo; canais iónicos 

dependentes da voltagem; membrana plasmática 
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1 General Introduction  

1.1 Brain and energy homeostasis: crosstalk brain vs. 
peripheral organs (brain-gut axis)  

The act of eating is an everyday part of the human experience and represents an obvious 

component of energy homeostasis, whose modulation and balance are ensured by energy 

intake and energy expenditure. The tight regulation of these processes is of the utmost 

importance given that it enables us to keep body weight stable over the adult life, 

preventing diseases like obesity and diabetes that are becoming epidemic with 

contemporary life habits.  

The brain acts as the main orchestrator of this homeostatic process, as the constant 

bidirectional communication between the brain and peripheral organs, such as the 

gastrointestinal (GI) tract and other relevant tissues (i.e., adipose tissue, pancreas, and 

liver), ensures that the brain constantly perceives and responds accordingly to the energy 

status/needs of the body (Faulconbridge & Hayes, 2011; Rui, 2013).  

The involvement of the brain as key player in the homeostatic regulation of feeding 

behavior was initially established by a series of degeneration studies performed in 

different regions of the hypothalamus. The destruction of the ventromedial hypothalamic 

nuclei (known as ‘satiety’ centres) induces hyperphagia, resulting in obesity, decreased 

activity, and neuroendocrine abnormalities (Hetherington & Ranson, 1940, 1942; 

Brobeck, 1946; Anand & Brobeck, 1951), whereas lesions in the lateral hypothalamus 

(known as ‘feeding’ centres) reduce food intake and eventually lead to starvation and 

death (Anand & Brobeck, 1951). 

These studies established the anatomical basis for modern research of energy regulation 

and set the start of an era in which the hypothalamus has been regarded as the headquarters 

of the central nervous system homeostatic mechanism of feeding behaviour. Indeed, the 

discovery of a complex intrahypothalamic neuronal network and the interplay with 

peripheral organs endows the hypothalamus the energy balance regulation (Williams et 

al., 2000; Leibowitz & Wortley, 2004; Stanley et al., 2005; Morton et al., 2006; Lutter & 

Nestler, 2009; Pang & Han, 2012; Coll & Yeo, 2013; Dietrich & Horvath, 2013).  

The action of neuropeptides together with circulating hormones and nutrients upon 

different subsets of hypothalamic neurones contributes to the process of energy 
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homeostasis (see Figure 1.1). Briefly, the entry of nutrients in the small intestine 

stimulates the release of peptides (e.g., cholecystokinin (CCK)) which act as negative 

feedback signals (“satiety” signals) to reduce meal size and terminate feeding. The 

effectiveness of these signals is thought to be modulated by circulating adiposity 

hormones (e.g., leptin and insulin), which relay information about long-term peripheral 

energy levels to the brain. Thus, in a post-prandial/absorptive state, leptin suppresses food 

intake and stimulates metabolic processes to dissipate excessive energy stores (Williams 

et al., 2000, 2001, 2004; Leibowitz & Wortley, 2004; Stanley et al., 2005). In addition, 

ghrelin has been identified as a gastric peptide that functions as a physiological meal 

initiation or “hunger” cue. Hence, during fasting, in response to negative energy balance, 

ghrelin stimulates food intake and, subsequently, promotes energy storage (Berthoud, 

2002; Stanley et al., 2005; Lutter & Nestler, 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1- Hypothalamic control of food intake. The role of hormones and neuropeptides during 

feeding and fasting periods. During and after regular feeding, there is a reduction in the production 

of ghrelin by the stomach. In contrast, production of Peptide YY (PYY), Glucagon Like Peptide-

1(GLP-1) and CCK from the gut is increased, and serum leptin levels also rise. These changes are 

detected by the hypothalamus, resulting in modulation of gene expression of orexigenic (Agouti-

related protein (AGRP) and neuropeptide Y (NPY)) and anorexigenic (pro-opiomelanocortin 

(POMC)) proteins, which result in decreased appetite and a feeling of satiety such that caloric intake 

is stopped. During fasting, decreased food intake suppresses the release of PYY, GLP-1 and CCK 

from the gut while stimulating the secretion of ghrelin by the stomach. Fasting also decreases serum 

leptin levels. These changes are detected by the hypothalamus, resulting in upregulation of orexigenic 

and downregulation of anorexigenic gene expression within the hypothalamus, leading to hunger. 

Taken from (Larder & O’Rahilly, 2012). 
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Currently, it is established that extrahypothalamic central nervous system structures may 

play a previously unappreciated role in the control of ingestive behaviour, highlighting 

the broad reach of the hypothalamus in regulating energy balance. The hypothalamic 

‘center’ hypothesis has dominated research on food intake during much of the last half 

century. However, with the advent of neuronal tracing, it became clear that the 

hypothalamus is well connected to most other areas of the brain and does not work in 

isolation (Berthoud, 2003). In addition, increasing evidence has shown that mammalian 

organisms rely on a much broader diversity and distribution of neuronal network, to 

regulate both energy intake and expenditure (Shin et al., 2009; Grill & Hayes, 2012; 

Waterson & Horvath, 2015). Hence, it has become clear that the responsibility for 

controlling energy homeostasis is shared between several brain regions, spanning the 

range of ‘higher’ and ‘lower’ centres (from cortex to brainstem). Among them, the 

hippocampus, a forebrain structure historically conceived as an important substrate for 

memory storage and retrieval, has gained relevance as a hub of energy balance. A search 

in the literature reveals that hippocampus is neuroanatomically linked to hypothalamic 

nuclei and other brain circuits thought to underlie energy regulation (Atasoy et al., 2012; 

Kanoski, 2012; Zeltser et al., 2012; Davidson et al., 2013; Sweeney & Yang, 2015, 2017; 

Berthoud et al., 2017; Kanoski & Grill, 2017). Furthermore, hippocampal neurones 

integrate previous learned experience (episodic memories) with the external sensory 

context (visuospatial, olfactory, gustatory cues) and the internal context (interoceptive 

energy status cues – hunger, satiety, thirst) to influence decisions about when, where, 

what, and how much to eat (Davidson & Jarrard, 1993; Tracy et al., 2001; Higgs, 2008; 

Davidson et al., 2013; Parent et al., 2014; Higgs, 2015). 

 

1.2 Hippocampus and energy balance 

The first glimpse of hippocampus as a possible regulator of food intake occurred in the 

early 1950s when neurosurgeons removed the hippocampus and other parts of the medial 

temporal region on both sides of the brain of an epileptic patient, known as H.M. (Henry 

Molaison) (Scoville & Milner, 1957). This experimental operation constitutes one of the 

most extensively studied human cases of the effects of hippocampal lesions. Accordingly, 

although the procedure brought H.M.’s seizures under control, it also produced a near 

complete loss of his ability to form new memories (Scoville & Milner, 1957). This was a 

major breakthrough in neuroscience as it helped to acknowledge the importance of the 
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hippocampus in brain activity, namely its role in memory and learning processes. 

Surprisingly, in addition to this memory impairment, it was noted by researchers (Hebben 

et al., 1985) that H.M. rarely made any references to interoceptive states, such as hunger 

and thirst. This was the first time that hippocampus was thought to be interrelated with 

appetite. Since then, several reports were undertaken in patients with clinical cases 

disclosing hippocampal-dependent episodic memory deficits, like those of patient H.M. 

Likewise, they had difficulties determining whether they were sated, did not remember 

eating, and ate an additional meal when presented with food, even if they have just eaten 

to satiety (Hebben et al., 1985; Higgs et al., 2008; Francis & Stevenson, 2011; Parent et 

al., 2014). 

The cognitive regulation of food intake has gained momentum with the patient H.M. 

During the past 25 years, the scientific community has deepened the knowledge of the 

involvement of hippocampus in energy balance. In this context, one has to consider a 

number of evidence pinpointing the hippocampus as a structure responsible for energy 

regulation: a) throughout the hippocampus there is a multitude of receptors for 

preprandial and postprandial signals, such as leptin, insulin, ghrelin, glucose, 

cholecystokinin and feeding neuropeptides (Lathe, 2001; Beck & Pourié, 2013; Hsu et 

al., 2015; Kanoski & Grill, 2017); b) It is known that hippocampal leptin negatively 

regulates feeding behaviour, ghrelin increases appetite (Volkow et al., 2011; Beck & 

Pourié, 2013; Higgs, 2015; Kanoski & Grill, 2017), and both exert a direct action on 

hippocampal plasticity, contributing to learning and memory consolidation (Diano et al., 

2006; Beck & Pourié, 2013; Parent et al., 2014); c) Accordingly, rats with selective 

lesions of the hippocampus exhibit reduced ability to use energy state cues (stomach 

distention, changes in circulating nutrient and hormone concentrations, etc.) as inhibitory 

signals (Davidson & Jarrard, 1993; Davidson et al., 2005), resulting in increased 

appetitive response for food and weight gain (Davidson & Jarrard, 1993; Schmelzeis & 

Mittleman, 1996; Clifton et al., 1998); d) hippocampal neurones are anatomically poised 

to monitor energy status and influence energy intake, as hippocampus integrates a 

neuronal circuitry that involves several regions of the brain (e.g., hypothalamus) 

responsible for ingestive and appetitive behaviours. For example, the ventral 

hippocampus (vHPC), a medial temporal lobe structure with a prominent role in cognitive 

and emotional behaviours (Moser & Moser, 1998; Fanselow & Dong, 2010), is directly 

linked to hypothalamus (Cenquizca & Swanson, 2006); e) Human and rodent imaging 

studies show that the hippocampus is activated following food consumption (DelParigi et 
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al., 2004, 2005) and by experimental manipulations that mimic aspects of nutrient intake, 

including gastric distention and gastric electrical stimulation of the vagus nerve, the 

primary sensory channel of information communicated from the gastrointestinal tract to 

the brain (Wang et al., 2006; Min et al., 2011; Kanoski, 2012); f) hippocampal neurones 

may inhibit meal onset by extending the postprandial intermeal interval (ppIMI) 

(Henderson et al., 2013; Parent et al., 2014; Parent, 2016a; Hannapel et al., 2017). This 

hypothesis is supported by the finding that increasing memory encoding during eating 

(brought by attention and awareness on eating) has a bigger effect on intake at the next 

eating episode than on current food intake (Higgs, 2002, 2008, 2015), and by the finding 

that episodic memory of the size of a previous meal, rather than the actual amount 

ingested, predicts hunger hours after the end of a meal (Parent, 2016b).  

As a whole, these observations account for an influence of hippocampus in the adaptation 

of feeding behaviour to external (food-related stimuli) and internal (interoceptive signals) 

cues. Hence, in addition to its role in learning and memory, the hippocampus also 

performs multiple functions involved with the regulatory control of food intake. In this 

context, memory serves as a powerful mechanism for influencing eating behavior. In 

support of this idea, there is evidence that overweight and obesity are associated with 

learning and memory problems (Kanoski, 2012; Coppin et al., 2014; Higgs, 2015; 

Prickett et al., 2015). Concomitantly, understanding how cognitive processes, such as 

memory, control intake is vital important in nowadays society because it will provide a 

more complete explanation of how the brain controls eating and will likely provide 

insights regarding the brain mechanisms that contribute to eating disorders and diet-

induced obesity.  

In summary, the act of eating is directly influenced by the brain. The hippocampus is now 

viewed as a major player in this context. The opposite, i.e., the influence of feeding on 

hippocampal activity is equally important, as it is known that the hippocampal-dependent 

modulatory control of feeding behavior is compromised by consumption of foods 

common to ‘Western diets’ (WD), including saturated fats and simple carbohydrates. 

Accordingly, the effects of nutrition upon hippocampal function is an emerging research 

area in the field of food-related diseases that affect several million people around the 

world (World Health Organization, 2018). Malfunctioning of hippocampus is linked to 

devastating consequences in energy intake, which, ultimately, contributes to 

complications in body weight regulation (Kanoski et al., 2010; Kanoski & Davidson, 

2011; Jacka et al., 2015). 
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Hence, due to its fundamental importance, a historical perspective of the hippocampus, 

along with a description of the hippocampal circuitry and a characterization of the 

pyramidal neurones, can be found at the end of this thesis (Annex I). 

 

1.3 Effect of nutrition on cognition 

Diet, exercise and other aspects of our daily interaction with the environment have the 

potential to alter our brain health and mental function. Brain networks that are associated 

with the control of feeding are intimately associated with those that are involved in 

processing emotions, reward and cognition. In this respect, given its exquisite plasticity 

in response to multiple lifestyle factors or events, the hippocampus is a pivotal target to 

show effects of nutritional intervention (Monti et al., 2014). 

Several dietary components have been identified as having effects on cognitive abilities. 

Dietary factors can affect multiple brain processes by regulating neurotransmitter 

pathways, synaptic transmission, membrane fluidity and signal-transduction pathways 

(Gómez-pinilla, 2008). For example, Omega‑3 polyunsaturated fatty acids, seminal 

constituents of cell membranes and essential for normal brain function, are involved in 

improvement and maintenance of mental health. A deficiency of omega‑3 fatty acids 

results in impaired learning and memory (Gómez-pinilla, 2008; Stangl & Thuret, 2009; 

Francis & Stevenson, 2011; Kanoski & Davidson, 2011; Martin & Davidson, 2014; Monti 

et al., 2014), and in humans has been associated with increased risk of several mental 

disorders, including attention-deficit disorder, dyslexia, dementia, depression, bipolar 

disorder and schizophrenia (Freeman et al., 2006; Gómez-pinilla, 2008; Matsuoka et al., 

2017). On the other hand, dietary supplementation of omega-3 fatty acids has been found 

to elevate levels of hippocampal brain-derived neurotrophic factor (BDNF) (Wu et al., 

2004; Stangl & Thuret, 2009; Peters, 2011; Yeomans, 2017), a protein that serves to 

promote neurogenesis, synaptic transmission and memory performance.   

In contrast to the health-promoting effects of diets rich in omega‑3 fatty acids, 

epidemiological studies indicate that diets with high contents of saturated fats – ‘western 

diet’ (WD) - adversely affect cognition. This type of diet, common in societies with high 

obesity rates, is associated with the so-called “junk food” and its consumption can induce 

cognitive deficits and perturb hippocampal function (Kanoski et al., 2010). The extended 

maintenance on a WD leads to neuroinflammation (Kanoski & Davidson, 2011; Hargrave 
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et al., 2016), reduced hippocampal and hypothalamic levels of BDNF, and smaller 

hippocampal volume (Jacka et al., 2015). Overall, the pernicious effects of WD upon 

brain lead, directly or indirectly, to a hippocampal malfunction, which contributes to the 

commence or development of a vicious circle of hippocampal dysfunction and impaired 

inhibitory cognitive control of responding to environmental food cues, resulting in excess 

intake, obesity, and further hippocampal dysfunction (Figure 1.2) (Hargrave et al., 2016; 

Berthoud et al., 2017).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The caloric intake, per se, also exerts a vital influence on cognition. Excess calories can 

increase the vulnerability of cells to damage (Mattson, 2005a) by causing free-radical 

formation, that decreases BDNF-mediated synaptic plasticity and cognitive function (Wu 

et al., 2004). Moderate caloric restriction could thus protect the brain by reducing 

oxidative damage to cellular proteins, lipids and nucleic acids (Mattson, 2008). The 

number of calories seems to be a crucial factor for the physiological effects on human 

mental health, such that there are several nutritional studies that point a variety of low-

calorie diets (e.g., fasting diets) as therapeutic applications to treat several neurological 

disorders, like Alzheimer´s disease and epilepsy (Mattson, 2005a; Bough & Rho, 2007; 

McNally & Hartman, 2012; Fond et al., 2013; Longo & Mattson, 2014). Consequently, 

Figure 1.2- Vicious circle of overeating and hippocampal-based memory declined, induced by 

WD. Taken from (Hargrave et al., 2016) 
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the excessive food intake in wealthy nations seems to be almost as harmful as the lack of 

it in poor countries. It is intriguing that several countries with limited resources, such as 

India, have a reduced prevalence of neurological disorders that have been associated with 

diet, such as Alzheimer’s disease (Gómez-pinilla, 2008).  

The challenge now is to ameliorate our knowledge of the molecular mechanisms by which 

peripheral signals can modulate mental processes. Specifically, understanding the 

molecular basis of the effects of feeding on hippocampal neurones will help us to 

determine its consequence on cognition and subsequently on appetite.  

 

1.4 Feeding cycle on hippocampal neurones - 
excitability and plasma membrane lipid 
composition and organization   

Changes in metabolism – variations in glycogen content, as well as in levels of glycerol, 

free fatty acids and acetoacetate - will affect internal cellular biochemistry and one should 

therefore expect differences in the effects of preparations on isolated cells, tissues or 

organs removed from animals that have, or have not, been fasted (Smith, 2009). By all 

accounts, feeding cycle – postprandial and fasting periods - is characterized by tidal 

variations of biochemical processes, either in peripheral organs and in the brain, mainly 

due to glucose repletion or scarcity. For instance, the effect of fasting on brain metabolism 

and function is well described, namely its role in treating and preventing disease: the 

increased levels of glycerol and free fatty acids account for improvements in mood and 

cognition (Cunnane et al., 2002; Fond et al., 2013; Bazinet & Layé, 2014) and higher 

concentration of ketone bodies are thought to be involved in neuroprotection, as in 

mitigating the frequency of epilepsy seizures (Likhodii et al., 2003; Bough & Rho, 2007; 

McNally & Hartman, 2012; Rho, 2017). In the hippocampus, fasting positively affects 

the production of BDNF, which itself promotes neurogenesis and consolidation of 

memory (Longo & Mattson, 2014). 

To date, the extent of the effect of feeding cycle at a neuronal level is barely understood, 

especially in the hippocampus. A thorough literature search within this scope led to a 

study undertaken in rat dorsal hippocampal CA1 neurones, indicating that Arc expression, 

a marker of synaptic plasticity necessary for memory consolidation, was significantly 

higher in animals that consumed sucrose, than in control rats that had been given 
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comparable handling and transportation (Henderson et al., 2016). This result suggests that 

consuming a meal should change the induction of synaptic plasticity in the dorsal 

hippocampal neurones responsible for the memory formation of a meal. 

Synaptic plasticity is linked to intrinsic neuronal excitability, whose regulation is 

mediated by molecules present at the plasma membrane of neurones – the voltage-gated 

ion channels. For example, certain potassium (K+) channels can change the induction 

thresholds and maintenance of Long-Term Potentiation (LTP) phenomena (Narasimhan, 

2005; Kim & Hoffman, 2008). Thus, it is reasonable to expect that feeding may influence 

the behavior of the ion channels present at the surface of hippocampal CA1 neurones. 

Accordingly, there is a study showing that feeding cycle influences excitability in rat 

hippocampal CA1 neurones, by an indirect modulation of K+ currents (Lima et al., 2008). 

The effect of insulin on these ion channels is only detectable in fed animals, contrasting 

with the lack of response in fasted ones (Lima et al., 2012). This clearly suggests a marked 

impact of feeding cycle periods over the activity of central nervous system neurones, 

particularly in protein ion channels involved in excitability (Figure 1.3). 

 

The excitability of the neurones also relies on the composition and organization of the 

lipid domains present in the plasma membrane. The ion channels, embedded in the 

phospholipid bilayer (Figure 1.4A), are mainly located in lipid microdomains known as 

‘lipid rafts’, essentially constituted by cholesterol and sphingolipids. These lipid species 

Figure 1.3 - Influence of feeding upon excitability of rat hippocampal CA1 neurones by mediating 

the effect of insulin over K+ currents. Adapted from (Lima et al., 2012). 
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exert effects on channel activity either through direct protein–lipid interactions or by 

influencing the physical properties of the bilayer (Dart, 2010; Levitan et al., 2010). 

Indeed, the regulation of the ion channels by the host bilayer lipid composition has been 

a subject of intense research. Currently, it is widely accepted that the ion channel function 

is most likely regulated by the bilayer elasticity, since the transition between the closed 

and the open states of an ion channel are accompanied by a deformation of the lipid 

bilayer in the vicinity of the membrane (Figure 1.4B) (Lundbæk et al., 1996, 2004; 

Andersen & Koeppe, 2007; Lundbaek et al., 2010). 

 

 

 

 

 

The effects of peripheral metabolism and physiological feeding cycles upon the 

membrane-lipid dynamics are poorly understood, though. There is evidence that point to 

an influence of diet on the rigidity and organization of cellular membranes: dietary lipids, 

as cholesterol and Ω-3 polyunsaturated fatty acids, mediate variations on membrane 

fluidity, mainly by their effects over the lipid rafts (Mattson, 2005; Gómez-pinilla, 2008; 

Yaqoob, 2009).    

Understanding the involvement of ion channels and membrane lipids composition and 

organization within the impact of feeding over the neuronal plasma membrane of 

hippocampus will 1) disclose new molecular clues into the involvement of hippocampus 

in the regulation of food intake and 2) leverage the state-of-the-art currently available 

A B

Figure 1.4- Interactions between ion channels and lipid composition of the plasma membrane. A) 

Functioning of a voltage-gated potassium channel within the lipid bilayer, showing the transition 

between open and closed states. Taken from (Lee, 2006). B) The hydrophobic coupling between an ion 

channel and the surrounding bilayer means that a protein conformational change will be associated 

with a deformation of the surrounding bilayer. Adapted from (Lundbæk et al., 2004). 
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regarding the treatment and prevention of the food-related neurological diseases with 

marked impact on cognition. The present dissertation aims to contribute to this matter. 
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2 Objectives 

The involvement of hippocampal neurones on the regulation of food intake has received 

close attention as evidence has been emerging for a key role of the hippocampus apart 

from the traditional function of supporting memory and learning processes. However, the 

molecular mechanisms by which hippocampal neurones play this new role is unclear. 

This thesis aimed at providing evidence on this regard, by studying the influence of 

feeding cycle over the neuronal activity. The lipid and protein alterations were established 

as benchmarks for the influence of peripheral metabolism in the hippocampal neurones. 

For such, rat hippocampal CA1 neurones and plasma membrane-enriched fractions of rat 

hippocampus were obtained from animals during fasting or during the post-prandial 

period.  

Specifically, it was intended to: 

1. Address the impact of feeding cycle on neuronal excitability, by recording the 

sodium (Na+) and calcium (Ca2+) currents mediated by voltage-gated Na+ and 

Ca2+ channels at the plasma membrane of rat hippocampal CA1 neurones. Whole-

cell voltage clamp and inside-out excised patch-clamp were used to study the 

behaviour of the ion channels. By investigating important biophysical properties, 

such as voltage-dependence of activation and inactivation, time-constant of 

inactivation and single-channel conductance, it was possible to report the 

influence of feeding cycle upon the activity of pyramidal CA1 neurones. 

2. Identify whether feeding cycle influences the ion channel expression levels (Na+ 

and/or Ca2+ channels) at the neuronal plasma membrane through western blotting 

experiments. The molecular expression of currents with significantly different 

whole-cell current density between fed and fasted neurones prioritized the choice 

of channel isoform studied in this task.    

3. Establish differences in lipid composition of brain neuronal-membranes in the 

different conditioned rats (lipidomic studies). This allowed determining lipid level 

modifications in fed and fasting conditions. 

4. Evaluate the implications of lipid alterations on the biophysical properties of the 

neuronal membrane, particularly in the amount and organization of lipid rafts.  
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2.1 Outline of the thesis 

 

The following flowchart aims at guiding the readers throughout the thesis to facilitate the 

comprehension of the objectives outlined above. One can find a visual resume of the 

experimental design used as well as the organization of the results within the structure of 

the thesis.  
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3 Feeding cycle on Ion channels 

Feeding cycle was found to modulate the functioning of protein ion channels present at 

the surface of rat hippocampal CA1 neurones. This chapter discloses a thorough 

biophysical analysis of voltage-gated sodium (Na+) and calcium (Ca2+) currents. For a 

fully comprehension of the results depicted here, one may find, at the end of this thesis, 

an annex with the fundamentals of the electrophysiology techniques used (Annex II). The 

general methods applied to study the Na+ and Ca2+ currents are firstly presented.  

 

3.1 Material and Methods 

3.1.1 Animal monitorization 

Twenty-one- to twenty-nine-day old female Wistar rats (P21-29), purchased from Charles 

River Laboratories, were used according to Afonso and co-workers (Afonso et al., 2012). 

Briefly, animals were maintained under a 12:12 h light ⁄dark cycle with free access to 

food and water. On the day before the experiment, animals were subjected to an overnight 

fasting period, period in which the effect of food deprivation is greatest (Palou et al., 

1981), with the free access to water maintained. At the day of the experiment, animals 

were either fed during a period of 1 hour to ensure that they had eaten by the time the 

experiment started (here termed fed animals or ‘fed neurones’) or not fed (here termed 

fasted animals or ‘fasted neurones’).  

The establishment of different metabolic conditions were ensured upon the measurement 

of glycaemia levels (mg/dL) using a glucose meter (Freestyle Lite, Blood Glucose Test, 

Abbot®), as follows: 121.17 ± 5.73 and 44.091 ± 2.46, for fed and fasted animals, 

respectively.  

 

3.1.2 Dissection of hippocampus and preparation of 
CA1 hippocampal sub-slices 

The animals were sacrificed by cervical dislocation. The brain was rapidly removed as 

follows: the dorsal skin of the head was cut and pulled back to expose the skull surface. 
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The skull overlying the brain was removed by cutting longitudinally along the sutures 

from the occipital bone until above the olfactory lobes and cutting transversely at the 

frontal suture. Care was taken to cut the dura mater. The exposed brain was lifted from 

the skull after sectioning out the olfactory bulb and the underlying cranial nerves and 

placed in chilled artificial cerebrospinal fluid (ACSF) containing (in mM): 125 NaCl, 25 

NaHCO3, 1.25 KCl, 1.25 KH2PO4, 1 CaCl2, 1.5 MgCl2 and 16 D-glucose, saturated with 

95% O2 and 5% CO2 (pH 7.4). Throughout the dissection, the brain tissue was maintained 

wet in the cold bicarbonate solution to minimise the damage from anoxia and improve 

the texture of the tissue for slicing (Schwartzkroin, 1981; Sakmann & Stuart, 1995). 

Subsequently, the brain was placed over a cold damp surface and bisected along the 

longitudinal fissure to separate the hemispheres (Figure 3.1A). Each hemisphere was held 

down on its lateral convex side, and the thalamus and surrounding tissue overlying the 

hippocampus dissected aside (Figure 3.1B and 3.1C). The hippocampus was exposed and 

isolated (Figure 3.1D). From this point forward, two procedures were applied: 

dissociation of CA1 neurones (section 3.1.3) or fractionation of hippocampus tissue to 

obtain plasma membrane-enriched fractions (section 3.1.7). 
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3.1.3 Enzymatic and mechanical dissociation of CA1 
neurones 

The dissected hippocampi were placed on a soft rubber, on a drop of cold ACSF with the 

lateral face comprising the CA1 area upwards. The hippocampi were cut perpendicular to 

their longitudinal axis in the middle third region to obtain transverse slices, 300µM thick 

(Figure 3.2A). The slices were transferred with a brush to a petri dish with cold 

oxygenated ACSF. Sub-slices from the CA1 area were obtained by carefully making 3 

incisions around the CA1 subfield. The cutting lines are indicated by dashes in Figure 

Figure 3.1- Dissection of the hippocampus. (A) The cerebellum/brain stem is cut off and discarded. 

The cerebrum is bisected along the midline, separating the two hemispheres. (B) The left hemisphere is 

illustrated with the medial surface facing up. The neocortex is peeled off toward the caudal surface, and 

the midbrain is pulled ventrally by pulling in opposite directions at the location marked by the arrows 

using small Teflon-coated weighing spatulas. (C) The dentate surface of the hippocampus is revealed. 

Care should be taken not to touch the hippocampus with the spatulas. The fornix is cut by pushing the 

point of the spatula into the brain at the point indicated by the dotted line. Next, one spatula is inserted 

gently under the fimbria and further under the hippocampus (area of insertion indicated by the large 

arrows). This works best if the spatula is inserted starting at the caudal (temporal) end of the 

hippocampus and worked toward the septal end. (D) The hippocampus is flipped out of the brain by 

lifting and pushing on the spatula, and then rotating the spatula tip around the long axis of the 

hippocampus. Once the hippocampus is flipped out, it is trimmed at the line indicated by the two arrows, 

and the rest of the brain is pulled away from the isolated hippocampus. Taken from (Madison & Edson, 

2001) 



Influence of feeding cycle on ion channels/currents 

26 
PhD thesis - Bastos, AEP (2018) 

3.2B. The viability of cells is highly dependent on the rapidity and accuracy of the 

dissection procedure.   

 

 

 

 

 

 

 

 

Sub-slices of the CA1 region were incubated at 32 °C in an oxygen saturated solution 

under moderate stirring; the composition of the incubating solution was as follows (in 

mM): NaCl 120, KCl 5, CaCl2 1, MgCl2 1, 1,4-Piperazinediethanesulfonic acid (PIPES) 

20, D-Glucose 25, adjusted to pH 7 with 1 mM NaOH. Trypsin (Sigma Type XI, 0.9 

mg/ml) was added to this solution shortly after the preparation of the sub-slices; 

incubation period was 30–50 min, depending on rat's age. Figure 3.3 shows a schematic 

diagram of the enzyme incubation system used.  

 

 

 

 

Figure 3.3- Schematic diagram of the 

enzyme incubation system. The 

incubation beaker (1) contains the 

hippocampal tissue in a trypsin-

dissociation solution. A circulating hot 

water heat-exchanger (2) keeps the 

temperature at 32ºC. The tissue is 

constantly agitated using a magnetic 

stirrer (3) and oxygenated through a 

tube blowing air to the surface of the 

solution. Taken from (Fernandes, 

2002). 

Figure 3.2- Preparation of rat hippocampal CA1 neurones. A) The hippocampus lying with the CA1 area 

upwards is cut perpendicular to its long axis to yield transverse slices. Taken from (Chad et al., 1991). B) 

Transversal axis of the rat hippocampus exposing the somata and proximal processes of the major cell 

body layers. The cutting lines performed around the CA1 subfield are highlighted. Taken from(Fisher et 

al., 1990). 

A B 
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The sub-slices were placed in an incubation beaker containing the dissociation solution 

and trypsin. They were agitated with a magnetic stirrer and oxygenated by blowing O2 

(medicinal grade) through a fine catheter tubing, adjusted above the liquid surface to 

avoid air bubbles. Temperature was maintained at 32ºC by a circulating hot water bath, 

heat-exchanging system. After digestion, sub-slices were transferred to an oxygen 

saturated enzyme-free solution after a brief wash with this solution and kept at room 

temperature at moderate stirring. The preparation remained viable for about 5–6 h.  

Enzyme activity was particularly critical for patch activity: too little enzyme activity often 

lead to the production of very few isolated neurones (clumping), whilst too many tended 

to produce many rounded, damaged neurones. 

The mechanical dissociation involved gentle trituration of the enzyme-treated sub-slices 

using 4 flame-polished Pasteur pipettes, with gradual narrower tips (i.e., tissue repeatedly 

washed back and forth through the pipette tip). The first trituration with a wider tip pipette 

achieved splitting of the tissue into two. Further trituration with narrower tips produced 

dispersion of individual neurones. The technique of mechanical dissociation involved 

some skill; too vigorous trituration often resulted in very few intact neurones or neurones 

with short dendrites. Freshly dissociated neurones were experimentally viable for up to 

two hours in the recording chamber at room temperature. In subsequent experiments 

further away from the digestion, the dissociated neurones were viable for a shorter time. 

The 35mm plastic Petri dishes were used as recording chambers for acutely isolated 

neurones. The recording chamber was placed on a metal platform set on the stage of an 

inverted microscope. The microscope was standing on an anti-vibration table and 

enclosed by a Faraday cage. 

 

3.1.4 Selection of neurones/criteria of exclusion 

Patch pipettes were positioned over the soma of cells, whose selection was based on their 

shape and appearance: pyramidal or fusiform cell shapes (cell body length about 20-

40microns) attached to the floor of the petri dish with shinny smooth surfaces and no 

visible nucleus under ordinary inverted microscope optics (Olympus CK2 microscope) 

were preferred, the latter conditions being an indication of viability (Kay & Wong, 1986). 

Criteria to accept a well voltage-clamped cell were based on the pattern of current arousal 

(Sah et al., 1988; Costa et al., 1994): on applying depolarizing series of command pulses 
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to the membrane, currents were evoked progressively; current records showed no delay 

in respect to the beginning of the command pulse and rose smoothly; current breakthrough 

or discontinuities were not apparent in the current to voltage (I-V) curves. Cells that did 

not comply with the above criteria were discarded. 

 

3.1.5 Whole-cell recordings  

Cells were superfused (2-3 mL/min) with an extracellular solution adequate for the 

recording of whole-cell inward currents. The composition of external and internal 

solutions used to record sodium and calcium currents are disclosed in Table 3.1, along 

with notes explaining the rationale behind the use of some constituents.  
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Currents were recorded with an Axopatch1D electrometer (Axon Instruments) and a 

pCLAMP 6.0 software (Axon Instruments). Signal was digitized using a DigiData 1200 

interface and a 20 µs sampling interval. The holding potential was -70mV. Series 

resistance (Rs) was compensated to about 80%-90%. Rs values bellow 1MΩ enabled me 

to reduce the errors associated with the voltage drop introduced by series resistance. The 

currents were sampled with a low-pass 4-pole Bessel filter at a frequency of 5 kHz. 

Electrode and cell membrane capacitances were compensated, and membrane surface 

area was estimated from the reading of the cell capacitance compensation dial, assuming 

a specific membrane capacitance of 1 µF.cm-2. Leak subtraction was digitally applied to 

raw data using a P/4 protocol (Bezanilla & Armstrong, 1977). Holding current (Ip) was 

used as an indirect measure of leakage current. Patches with Ip values more negative than 

-60pA were not considered for analysis.   

Recordings were allowed to stabilize for 5 min before current recording started, remaining 

stable for at least 30min. After attaining whole cell configuration, cells were lifted from 

the bottom of the chamber, brought near the surface and remained under continuous bath 

perfusion. Experiments were carried out at room temperature (about 20 °C). Data in the 

present report were not corrected for the junction potential. 

 

3.1.6 Inside-out excised patch clamp recordings 

Unitary Na+ channel current traces were recorded using an inside-out excised patch 

configuration (Hamill et al., 1981). Composition of filling and bath solutions is showed 

in table 3.2. 
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The signal-to-noise output was a major concern, for the currents were recorded in the pA 

range. Thus, in order to null the stray currents (capacitive currents, leak currents), several 

technical requisites were considered: 1) the usage of small patch pipettes (~3cm length), 

designed for low-noise single channel recordings, with an outside/inside diameter of 

1.5mm/0.86mm and coated with a hydrophobic agent in the shank (ex: sylgard) to reduce 

pipette capacitance and background noise; 2) routine cleaning of the pipette holder (also 

of small dimensions), electrode wires and pipette itself (the glass of the pipette was 

cleaned by boiling in diluted HCl acid for 5min, washed and oven-dried); 3) the tip of the 

pipette had reduced dimensions and was fire-polished to further reduce the tip diameter 

to a final resistance of 15 to 25 MΩ. All the background procedure aimed at reaching an 

adequate seal in a tiny area of the membrane (‘patch’). In the present study, seals 

resistance ranged from 20 to 100 GΩ, being often greater than 50 GΩ. The electronics 

was also adequate for the exigency of this technique. The amplifier used in the 

experiments provided a 4) high input resistance to permit recordings of subpicoampere 

input currents (for further details, see annex II, Figure 7.2). Additionally, prior to a patch 

recording, 5) a pipette was filled with pipette solution up to the shank, and back-filled 

with liquid paraffin. During the recordings, 6) the location of the pipette (tip near the 

surface of the bath) was also found critical for relatively low noise (Fernandes et al., 

Composition of solutions used in inside-out patch clamp recordings 

INa

External (filling 

solution)
mM

Internal (bath 

solution)
mM

NaCl 150 NaCl 1

KCl 5 CsF 145

HEPES 10 HEPES 10

CaCl2 1,8 EGTA 5

MgCl2 0,9 CsCl 20

pH 7.4 (CsOH) 7.2 (CsOH)

mOsm/Kg 305 320

Junction 

potential (mV)k 8.7

Notes Composition of solutions according to Fernandes, J. et al. (2001)

Table 3.2- Composition of bath and filling solutions used to record single-Na+ channel currents 
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2001). These requisites, enabled to reach noise levels as low as 0.15 pA r.m.s. Unstable 

and noisy (>0.40pA) patches were discarded. 

Single-channel currents were recorded at 20ºC with an Axopatch-200B electrometer and 

pClamp 6.0 software (Axon Instruments). The acquisition was made through an interface 

TL-1 DMA (Axon Instruments) with a sampling interval of 25 µs and analog filtering of 

filter fa= 5 kHz (-3 dB, 4 pole Bessel). Holding potential was -70mV. Currents were 

evoked with 40ms depolarizing command pulses ranging from -60 to +20 mV (in 10 mV 

steps), preceded by pre-pulses to-110mV. Typically, patches were stable for about 30 

min, occasionally for 1 h. Capacitance transients were averaged from blank traces and 

subtracted to sweeps with channel openings. 

The signal processing was carried out under the operator´s constant surveillance, to 

reduce the introduction of artifacts and to allow for event detection interpretation. Unitary 

Na+ current amplitude measurements were performed using the 50% crossing method 

(Ogden, 1994). The rise time (tr) is described as the time taken for the signal to rise from 

10% to 90% of its final amplitude: 

𝑡𝑟 =  
0.3321

𝑓𝑐
                   (Equation 3.1), 

Where 𝑓𝑐 is the cut-off frequency (Hz), here only characterized by the analog filter of the 

recording system, 5 kHz, as no digital filtering has been used. To assure the detection of 

fully resolved openings, an open time resolution, which is thought as the shortest time 

interval that can be measured, was imposed prior to histogram binning. To obtain reliable 

amplitude measurements, the imposed time resolution was 2 tr. Thus, the maximum time 

resolution used in the present study was 132.8µs.   

All-point amplitude histograms were constructed. The peak current of the openings was 

determined from Gaussian fits to the distributions (Sakmann & Neher, 1995). Channel 

conductance was estimated by averaging the slope of the regression line of the current to 

voltage (I-V) plots obtained for each patch, either in fed and fasted animals.  
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3.1.7 Plasma membrane-enriched fractions 
preparation 

Hippocampal plasma membrane fractions were prepared as described previously (Sun et 

al., 1988) with some modifications. Hippocampi from fed and fasted rats were 

homogenized in ice-cold homogenization buffer - 0.32M sucrose, 50mM Tris HCl 

(pH7.4), 1mM EDTA, 2mM EGTA, 1x protease inhibitor cocktail from Roche® 

Diagnostics -, using a glass tissue homogenizer pestle, and centrifuged for 10min at 500g 

to sediment nucleus and cell debris. The supernatant was centrifuged at 18800g, for 

20min, to obtain a crude mitochondrial pellet. The post-mitochondrial supernatant was 

centrifuged at 43500g for 30min, which resulted in the sedimentation of a white-colored 

pellet. This pellet, constituted by the crude plasma membranes, was resuspended in lysis 

buffer – 150mM NaCl, 1mM EGTA, 50mM Tris HCl (pH7.4), 1% (w/v) sodium 

deoxycholate (D.O.C), 1% (w/v) nonidet P (NP-40), 0.1% (w/v) sodium dodecyl sulphate 

(SDS), 1x protease inhibitor cocktail– and placed on ice for 30min. The protein 

concentration was determined by the bicinchoninic acid (BCA) protein assay kit (Micro 

BCA Pierce Thermo®) using BSA as a standard. Plasma membrane-enriched fractions 

were then used immediately or stored at -80ºC until use. All steps were performed on ice 

and centrifugations at 4ºC. 

 

3.1.8 Western blotting 

20 µg proteins were denaturated in Laemmli sample buffer containing (in %w/v): 

dithiothreitol (DTT) 0.77, bromophenol blue 0.01, glycerol 5, SDS 1.5 and Tris-HCl 

0.5M (pH6.8); applied in a 7% SDS-Polyacrylamide gel electrophoresis and wet 

transferred to a Polyvinylidene difluoride (PVDF) membrane. Blots were blocked for 2 

hours at room temperature in 5% skimmed milk in Tris-buffered saline (TBS) with 0.1% 

of Tween 20 detergent (TBS-T 0.1%) prior to the incubation with primary antibody 

overnight at 4ºC. The antibodies used were polyclonal anti-Nav1.2 (1:1000, Alomone labs 

®, ASC-002) and as a loading control, the polyclonal anti N-cadherin (1:1000, Alomone 

labs ®, ANR-082). Blots were washed several times in TBS-T 0.1% and incubated with 

the secondary antibody polyclonal goat anti-rabbit IgG (H&L) peroxidase conjugated 

(1:3000, Rockland®, 611-1302) for 120min at room temperature. Membranes were 

washed in TBS-T 0.1% and incubated with enhanced luminol chemiluminescence 
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reagents (Clarity ECL Bio-rad®) according to the manufacturer instructions. The density 

of the signals was detected in a Chemidoc Molecular Imager (Chemidoc, Biorad®) and 

densitometry was performed using the ImageLab software (Biorad®). 

 

3.1.9 Statistical analysis 

Statistical analyses were performed using SigmaStat 4.0 (Systat Software, Inc., San Jose, 

CA, USA). The significance of the differences between the data of the two groups studied 

– fed and fasted animals – was calculated as follows: Samples size n≥10 were subjected 

to a two-tailed unpaired t-student test; samples in which n<10 or that failed normality test, 

the non-parametric Mann-Whitney U-test was used for statistical procedures. Values 

given in the text are means ± S.E.M, unless otherwise stated. Differences for experimental 

data were considered statistically significant for P < 0.05. Exact P-values are presented 

in the tables along the thesis. 

Off-line analysis of electrophysiological data was carried out using Clampfit 10 

(Molecular Devices, USA), Origin 8.0 (Originlab, USA) and Microsoft Excel® 

(Microsoft, USA).  
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3.2 Voltage-gated Na+ channels 

Physiologists have many reasons to admire the Na+ channel (Marban et al., 1998). 

3.2.1 Brief introduction on behaviour and functioning 

Voltage-gated sodium (Na+) channels (hereafter termed VGSCs or Nav) are major key 

players in initiation and propagation of action potentials in excitable cells. They were 

firstly introduced to the scientific community by Hodgkin and Huxley in the 50´s of last 

century with their voltage clamp experiments in the giant squid axon (Hodgkin & Huxley, 

1952a). They have noticed that when the membrane potential is suddenly reduced 

(depolarization), the initial pulse of current through the capacity of the membrane is 

followed by large currents carried by ions (chiefly sodium and potassium), moving down 

their own electrochemical gradients. The current carried by sodium ions rises rapidly to 

a peak and then decays to a low value. 

In a series of five papers (Hodgkin & Huxley, 1952a, 1952b, 1952c; Hodgkin & Huxley 

A.F., 1952; Hodgkin et al., 1952), they have developed a thorough biophysical and 

mathematical description of Na+ currents, with two distinct and independent processes; a 

first, rising phase, which they called activation, and a second, decaying phase, developed 

with an exponential time course – inactivation. Furthermore, they show that activation is 

related to the existence of 3 charge particles present in the structure of the channel – m 

particles – and that inactivation results from the movement of another particle – h particle. 

The product of these particles (m3h) illustrated the better description of the Na+ 

conductance through VGSCs. The Hodgkin and Huxley (H-H) model, in which they have 

assumed a diphasic model with a first order reaction (two states in equilibrium, open and 

closed), enabled them to derive the mathematical equations and functions (rate constants, 

time constants) that furnished a reliable description of the VGSCs functioning.    

Later work, revealed that H-H model is no longer the most adequate to describe the 

behaviour of such channels (Bezanilla, 1977; Horn & Vandenberg, 1984; Aldrich & 

Stevens, 1987; Patlak, 1991; Vandenberg & Bezanilla, 1991). These authors 

demonstrated inactivation as coupled to activation (the coupling model), for the 

inactivation to occur it is necessary that the mechanism of activation must have happened 

at least at some extent (Bezanilla & Armstrong, 1977; Goldman, 1995; Armstrong, 2006). 

Currently, it is known that inactivation can occur from open and closed states (Figure 
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3.4), as long as the latter contains some degree of activation (gating mechanisms related 

to voltage sensor).  

 

 

 

 

 

 

 

 

3.2.2 VGSCs subunits in mammalian brain - structure 
and background biophysics  

The discovery of the channel protein structure (Catterall et al., 1979; Hartshorne & 

Catterall, 1984; Noda et al., 1984, 1986) was a breakthrough towards the comprehension 

of functioning of these channels. The sodium channel α-subunit is 260kDa and consists 

of four domains, each with six membrane-spanning regions (S1-S6) which give fully 

functional expression (Figure 3.5). Nine genes encode VGSC α subunits in mammals 

(NaV1.1 toNaV1.9), and four are expressed primarily in the Central Nervous System 

(CNS) (NaV1.1, NaV1.2, NaV1.3, and NaV1.6). Other structures, β-subunits (β1-β4, 33–

36 kDa), provide support to the α-subunit of channels, being required for the normal 

kinetics and voltage dependence of channel gating (Isom, 2001). For instance, β1 and β2 

subunits potentiate the fast kinetics properties of Nav1.2 (Nguyen & Goldin, 2010), the 

major α-subunit in brain (Gordon et al., 1987; Westenbroek et al., 1989). Furthermore, 

Figure 3.4- Scheme of three potential states of voltage gated ion channels such as those for sodium ions. 

The resting closed channel state (upper left panel) is activated by membrane depolarisation which causes a 

fast transition to the open state (upper right). Owing to an intrinsic inactivation, the channel closes (lower 

panel) and reopens very rarely. Repolarisation of the membrane leads to recovery from the inactivated 

(refractory) state back to the resting state (upper left) from which activation is again possible. There are 

probably more than one open and at least two inactivated (fast and slow) states (not shown). Note that 

transition from the resting to the inactivated state is also possible without channel opening, particularly 

during slow depolarisation (so called accommodation). Note also that the amphipathic voltage sensor helices 

(here depicted with positive charges) move within the lipid bilayer when the membrane polarity changes. 

Taken from (Lehmann-Horn & Jurkat-Rott, 2003). 
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they are also involved in channel localization and interaction with cell adhesion 

molecules, extracellular matrix, and intracellular cytoskeleton (Isom, 2001). 

 

 

The unveiling of the primary structure preceded a wide range of site-directed mutagenesis 

experiments (Stühmer et al., 1989; O’Leary et al., 1995; Hirschberg et al., 1995; Kontis 

& Goldin, 1997; Vedantham & Cannon, 1998; Kühn & Greeff, 1999; Goldin, 2003a; 

Ulbricht, 2005). The introduction of mutations into mammalian Na+ channels and analysis 

of their functional effects by electrophysiological recordings have yielded a remarkably 

detailed view of the components of the Na+ channel that are required for its physiological 

activity. The era of structure-function analysis has begun. It brought important insights 

into the understanding of the molecular determinants of Na+ channels, with special 

attention given to the α-pore forming subunit (Figure 3.6).  

 

Figure 3.5- Subunit composition and subcellular localization of Nav channel principal and auxiliary 

subunits in mammalian central neurones. Schematic representation of a single Navα subunit that forms 

macromolecular complexes with auxiliary Nav β subunits. Bottom left box: classification, genetic 

nomenclature, and subcellular localization of mammalian brain Nav channel principal α subunits. Bottom 

right box: classification of Nav β auxiliary subunits expressed in mammalian central neurones and their 

functional effects on coexpressed Nav α subunits. Taken from  (Vacher et al., 2008) 
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The positively charged amino acid residues, usually arginine, embedded within the S4 

segments, presumably convey the channel´s characteristic sensitivity to membrane 

potential. The movements of such charged groups, prompted by changes in 

transmembrane potential, constitute the fundamental mechanisms of gating – voltage 

sensing processes (Armstrong & Bezanilla, 1977a; Bezanilla & Armstrong, 1977; 

Almers, 1978; Patlak & Horn, 1982). Another important region of the channel is the 

existing extracellular loop between S5 and S6 (S5-S6 linkers in each domain) indicating 

the selective pore region of the channel (Catterall, 1992). Besides this, there is another 

intracellular loop between domains III and IV where one can find a hydrophobic motif – 

IFM (Ile-Phe-Met) – that blocks the channel pore like a hinged lid, holding the gate closed 

– ball and chain mechanism, proposed by Armstrong and Bezanilla (Bezanilla & 

Armstrong, 1977). This structure is the molecular basis of fast inactivation. In addition to 

fast inactivation, during periods of prolonged membrane depolarization channels can also 

enter into longer non-conducting states collectively termed ‘slow inactivation’ (Webb, 

2007). This mechanism is not fully understood, however many lines of evidence point the 

collapse of the outer pore of the channel as the underpinning phenomenon, by all means 

Figure 3.6- Molecular determinants of α-subunit of VGSC. S4 segments (in blue) are voltage sensors and 

IFM motif in intracellular loop between DIII and DIV act as inactivation gate. P-loops of all four domains 

and S6 segments forms extracellular and intracellular ends of the pore. Taken from (Chong & Ruben, 2008) 
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similar to the ‘C-type’ inactivation of K+ channels (Vedantham & Cannon, 1998; Vilin & 

Ruben, 2001; Goldin, 2003a; Ulbricht, 2005; Webb, 2007).   

 

3.2.3 VGSCs distribution in rat hippocampal CA1 
neurones 

Biochemical and immunocytochemical studies indicate that Nav1.2 is the predominant 

Na+ channel subtype in most regions of the rat brain including the forebrain, midbrain, 

dentate, cerebellum, and hippocampus (Gordon et al., 1987; Westenbroek et al., 1989). 

Specifically, Gordon and co-workers showed that the predominance of Nav1.2 subtype 

goes as follows: whole brain (81%), cerebral cortex (79%), cerebellum (84%), midbrain 

(56%) and hippocampus (97%). 

In rat hippocampal CA1 neurones, the subcellular distributions of all neuronal subtypes 

of voltage-gated Na+ channels (Nav1.1, 1.2, 1.3 and 1.6) have been investigated by using 

physiological approaches, as well as antibody binding, in some cases combined with 

electron microscopy. Physiological studies fall into two categories: direct measurement 

of ion channel function using cell-attached or cell-excised patches from the soma, axon, 

and dendrites and indirect assessment of ion channel distribution using whole-cell 

recording in combination with ion-channel pharmacology (Andersen et al., 2007).  

Direct recordings of Na+ channel activity in patches up to about 300 µm from the soma 

on the primary apical dendrite in CA1 neurones (see Annex I for a visual comprehension 

of this region) have revealed that Na+ channels are distributed at an approximately 

constant density along this region of the dendrite (Magee & Johnston, 1995a). The 

presence of these channels confers very active properties to the dendrites, by allowing for 

the propagation of Na+-dependent action potentials into the dendrites from their initiation 

site in the axon, a mechanism known as ‘back-propagation’ (Figure 3.7). This activation 

mechanism also limits the attenuation of the action potential as it propagates distally 

(Spruston, 2008).  

Despite the relatively uniform channel density, the properties of the channels change with 

distance from the soma. For example, patches obtained at increasing distances from the 

soma exhibited more prolonged inactivation (Mickus et al., 1999a). Such variation in the 

biophysical output found along the length of the neurones may rely either on a modal 

gating of a specific channel subtype (Alzheimer et al., 1993; Taylor, 1993; Fernandes et 
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al., 2001) (the same channel reveals different degrees of inactivation, ranging from a short 

single opening to periods of long-lasting openings and re-openings), and/or on a distinct 

distribution of channel subtypes. Regarding the second consideration, it has been 

established that Nav1.1 and Nav1.2 have a complementary distribution in rat CA1 

pyramidal cells: Nav1.1 (and Nav1.3, in immature neurones) are preferentially localized 

in the cell bodies and proximal dendrites, where they control neuronal excitability through 

integration of synaptic impulses (Gordon et al., 1987; Westenbroek et al., 1989; Gong et 

al., 1999). In contrast, Nav1.2 is predominantly expressed in unmyelinated fibers in the 

mossy fiber pathway and in the other fiber layers of the hippocampus with a high density 

of axons (Gordon et al., 1987; Gong et al., 1999). In the CA1 neurones, Nav1.2 can be 

encountered in the proximal part of the initial segment of axons (AIS) (Vacher et al., 

2008; Hu et al., 2009; Qiao et al., 2013; Wang et al., 2017), whereas the distal AIS is 

mostly populated by Nav1.6 channels (Hu et al., 2009; Grubb et al., 2011; Qiao et al., 

2013) (Figure 3.7).  

This segregation of Na+ channel subtypes at the AIS sets a biophysical model, in which 

the low-threshold Nav1.6 channels are responsible for the initiation and propagation of 

action potentials along axon and the high-threshold Nav1.2 channels support action 

potential backpropagation to the soma and dendrites (Hu et al., 2009; Grubb et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7- Function and modulation of AIS ion 

channels. A, Schematic detailing roles of Na+ 

channel subtypes in AP initiation and 

backpropagation in pyramidal neurones. 

Accumulation of the low-threshold Nav1.6 

channels at the distal AIS determines the lowest 

threshold for AP initiation, whereas 

accumulation of the high-threshold Nav1.2 

channels at the proximal AIS promotes AP 

backpropagation to the soma and dendrites. The 

neuronal location of Nav1.1 is also illustrated. 

Adapted from (Grubb et al., 2011) 

Nav1.1 
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3.2.4 Influence of Feeding cycle on neuronal Na+ 
currents 

The influence of feeding cycle upon the biophysics and expression of voltage gated Na+ 

currents (INa) is addressed in this section. The results here illustrated provide information 

regarding the effects of feeding cycle on the excitability of rat hippocampal CA1 

neurones. 

 

3.2.4.1 Whole-cell voltage clamp recordings 

Voltage dependence of activation 

Recordings from CA1 hippocampal neurones showed the common behaviour of Na+ 

currents (Figure 3.8), with a fast activation and a spontaneously rapid decay (Sah et al., 

1988; Costa, 1996; Vreugdenhil et al., 1998; Ketelaars et al., 2001b; Bruehl & Witte, 

2003), reaching a peak within 0.6ms at -10mV. Na+ currents were evoked with a step of 

depolarized voltages from -60mV up to +30mV, following a conditioning pulse of -

110mV, with a duration of 25ms, to remove inactivation. Holding potential was set at -

70mV.  

The effect of feeding on sodium currents is depicted in Figure 3.8. Upon feeding, the 

amplitude of Na+ current increased: mean peak current amplitude was -14.2 ± 0.76 nA 

(n=18), as opposed to - 8.7 ± 0.74nA (n=28) in neurones from fasted animals. The nature 

of the currents was confirmed by the blockade of the macroscopic currents upon the 

application of 1 µM TTX (see inset in figure 3.8). The blocking of TTX was not complete, 

which indicates the presence of TTX-resistant voltage gated Na+ channels.  
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The conspicuous difference in the amplitude is also depicted in the current to voltage (I-

V) relationship, whose data comprises the mean peak Na current values obtained in the 

voltage range studied (-60mV to +30mV) (Figure 3.9). Peak current values, I (pA), were 

normalized to cell capacitance (pA/pF) (Figure 3.9A).  

 

 

 

 

 

Figure 3.8- Effect of feeding cycle over the Na+ currents of acutely isolated rat CA1 hippocampal 

neurones. Whole-cell voltage clamp Na+ currents, recorded in neurones from fed (A) and fasted (B) 

animals, were evoked in series of depolarization command pulses (25ms in duration), in steps of 10mV, 

from -60mV to +30mV, following a hyperpolarizing conditioning pulse at -110mV (25ms in duration). 

Holding potential was set at -70mV. Traces depict increased Na+ current amplitudes in fed animals. The 

inset confirms the nature of the currents, as trace 1 (control current) was blocked by 1µM TTX application 

(trace 2); currents evoked with a command potential to 0mV from a -110mV prepulse, with a holding 

potential of -70mV. 
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One might estimate that the average maximum current density (assuming 1µF 

corresponds to 1cm-2, Hodgkin and Huxley) for fed and fasted neurones, at -10mV, are 

1.5mA.cm-2±0.12 and 1.0mA.cm-2±0.10, respectively. The difference is statistically 

significant (P < 0.001). Furthermore, the reversal potential measured by linear 

extrapolation (see Figure3.9A) was close to the theoretical equilibrium potential for Na+ 

ions of +57.6 mV, predicted by the ionic conditions. This result, together with the 

blockade of Na+ currents by TTX, accounts for the involvement of Na+ currents towards 

the influence of feeding cycle on rat hippocampal CA1 neurones activity.  

The voltage dependence of Na+ currents activation was studied in both conditions. 

Current peak values were converted to conductance, G(nS) (Figure 3.9B), as follows:  

𝐺 = 𝐼 (𝑉𝑚 − 𝐸𝑁𝑎+)⁄                  (Equation 3.2), 

where I is the current amplitude, Vm is the step command potential and ENa+ is the 

estimated equilibrium potential for Na+. 

Fed neurones present higher values of conductance nearly in all studied voltage range, 

with a mean maximum conductance values, at 40mV, of 255.9 ± 13.95nS, compared to 

165.2 ± 11.98nS calculated for fasted neurones. The results are statistically significant (P 

< 0.001). Taken together, figures 3.9A and 3.9B show that fed neurones exhibit larger 

whole-cell conductance, which is associated with higher Na+ current density.   

The voltage dependence of activation was studied normalizing G (nS) for its maximal 

value (G/Gmax) and plotting the mean values against step command potential (Figure 

3.9C). The analysis of the fraction of open channels was carried out by fitting a Boltzmann 
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Figure 3.9- Influence of feeding cycle on the voltage dependence of activation of Na+ currents. Activation 

curves relate to Na+ currents like those depicted in figure 3.8. A) I-V curves related to mean Na+ peak 

current normalized to cell capacitance (pA/pF); B) Mean conductance (G(nS)) of Na+ peak currents and 

C) mean conductance normalized to the maximum value (G/Gmax), obtained from freshly isolated rat 

hippocampal CA1 neurones of fed (filled squares; n=18) and fasted (open squares; n=28) animals. Dashed 

lines in are the solution of Equation 3.3 (in C, Vh= -19.2mV and Vs= 7.1mV/e-fold, for fed neurones; Vh= 

-15.5mV and Vs= 7.5mV/e-fold, for fasted neurones). Error bars are ±S.E.M. values. 
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distribution to the resulting data, whose parameters quantify the influence of feeding cycle 

in the activation of Na+ channels: 

𝐺 𝐺𝑚𝑎𝑥 = 1 {1 + 𝑒𝑥𝑝[(𝑉ℎ − 𝑉𝑚)/𝑉𝑠]}⁄⁄                                                         (Equation 3.3), 

Where Vh is the half-activation potential (mV), Vs is a slope factor (mV/e-fold) and Vm is 

the step command potential (mV). 

The average fitting parameters values of activation curves – Vh and Vs - are presented in 

table1. Vh values were as follows: -15.2 ± 0.89mV and -19.1 ± 0.87mV, for fed and fasted 

neurones, respectively. This result is statistically significant (0.001 < P < 0.01), 

supporting the shift towards hyperpolarizing potentials (roughly 4mV) of the activation 

of Na+ currents, observed in fed neurones (Figure 3.9C). Vs values were similar in both 

conditions: 6.7 ± 0.35 mV/e-fold and 6.8 ± 0.25 mV/e-fold, for fed and fasted neurones, 

respectively.  

Steady-state inactivation (h∞) 

The steady state of inactivation was studied with a conditioning double-pulse protocol 

(Hodgkin & Huxley, 1952b), by which Na+ currents were evoked with pre-pulses ranging 

from - 120 mV to 0 mV, 40ms in duration, from a holding potential of -70mV, in 

conjunction with a depolarizing command step to a fixed voltage (0mV, 30ms). Currents 

evoked with such voltage-clamp protocol are depicted in Figures 3.10A and 3.10B. 
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Peak current values were normalized to the maximal response (I/Imax) and plotted against 

pre-pulse potential to obtain steady-state inactivation curves (Figure 3.10C). Data points 

were fitted with a Boltzmann distribution (equation 3.3) and the results can be directly 

compared with the h∞ curve obtained by Hodgkin and Huxley (Hodgkin & Huxley, 

1952b), giving us information about the steady state availability of sodium channels to 

respond to activation. 

Here, we can also quantify the effect of feeding cycle over the steady state properties of 

inactivation (see Table 3.3). The average fitting parameters were as follows: Vh = -51.2 

± 1.50mV, Vs = -9.8 ± 0.45 mV/e-fold in fed neurones (n=24) and Vh = -58.4 ± 1.81 mV, 

Vs = -10.9 ± 0.35 mV/e-fold in fasted neurones (n=27). The results demonstrate that Na+ 

currents in CA1 neurones showed a significant voltage shift during the feeding cycle 

(0.001 < P < 0.01). As presented in Figure 3C, from -90mV to -40mV, the Na+ currents 

of fed animals display comparatively higher I/Imax values due to a shift towards 

depolarized potentials by 7mV. Thus, the voltage profile observed in inactivation curves 

of fed neurones showed a significant depolarization in comparison with that obtained in 

fasted neurones. This demonstrates that Na+ currents in fasted neurones begin to 

inactivate at more negative potentials. Once again, the voltage dependence, given by the 

steepness of the h∞ curves, was similar in both feeding conditions. 

Figure 3.10- Influence of feeding cycle on steady-state inactivation (h∞) of Na+ currents. Whole-cell 

voltage clamp Na+ currents were evoked by a command step to 0 mV (30ms) following a set of pre-pulses 

(40ms) ranging from −120 mV to 0 mV in steps of 10 mV; holding potential of −70 mV (inset). Records 

were obtained from a neuron of a fed (A) and (B) fasted animal. C) Mean peak Na+ current obtained in the 

test pulse normalized to the maximum value (I/Imax) as a function of pre-pulse potentials, from neurones of 

fed (filled squares; n=24) and fasted (open squares; n=27) animals. The steady-state inactivation curves 

(h∞) were fitted with equation 3.3 (Vh= -50.7mV and Vs= 10.7mV/e-fold, for fed neurones; Vh= -57.8mV 

and Vs= 12.4mV/e-fold, for fasted neurones). Error bars are ±S.E.M. values. 
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Na+ channel availability  

To a better visualization of the effect of feeding cycle on the steady state properties of 

activation and inactivation, we have addressed the fraction of permanently activated 

channels. Overlapping the activation and inactivation of Na+ channels, it is possible to 

define a range of voltages (i.e., ‘window’) where the channels are partially activated but 

not fully inactivated (Figure 3.11).  

 

The probability of being within this ‘window’, highlighted in Figure 3.11A as a grey area, 

was calculated from the product of the activation and steady-state inactivation curves 

(Huang et al., 2011). The feeding enlarged the window, shifted the peak toward negative 

potentials and produced a twofold increase in amplitude (3%, Figure 3.11B). The 

sustained ‘window’ current presented here is, thus, the result of an increase in the 

  

Voltage dependence of activation 
(mV) 

Voltage dependence of inactivation 
(mV) 

Vh Vs n Vh Vs n 

Fed -19.1 ± 0.87 6.7 ± 0.35 18 -51.2 ± 1.50 9.8 ± 0.45 24 

Fasted -15.2 ± 0.89 6.8 ± 0.25 28 -58.4 ± 1.81 10.9 ± 0.35 27 

P-value 0.005 n.s. - 0.004 n.s. - 

 

Table 3.3- Activation and steady-state inactivation (h∞) fitting parameters Vh (mV) and Vs (mV/e-fold) (Eq. 

3.3) for neurones of fed and fasted animals. Statistical analysis performed with a t-test; 0.001<P-

value<0.01 

Figure 3.11- Window current of voltage gated Na+ currents obtained from neurones of fed and fasted 

animals. A) Voltage dependence of activation and steady-state inactivation curves as depicted in Figures 

3.9C and 3.10C. The area highlighted by a grey area relates to a voltage range (´window´) in which Na+ 

currents are partially activated although not fully inactivated. B) The product of the activation and h∞ 

curves give the probability of channels being present in this region (Huang et al., 2011). Na+ channels in 

fed animals (black area) depict a larger availability when compared to the Na+ channels in fasted animals 

(grey area).  
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“window current” of fed neurones caused by a positive shift of the steady-state 

inactivation and a negative shift of the activation curve (Figure 3.11A). 

Time-constant of inactivation (τh) 

The decay phase of the Na+ currents, obtained with activation protocols (Figure 3.8), was 

described with an exponential time course, using an equation of the form  

𝐼 =  𝑎𝑓𝑒−𝑡 𝜏ℎ𝑓⁄ +  𝑎𝑠𝑒−𝑡 𝜏ℎ𝑠⁄ + 𝐶                 (Equation 3.4), 

where 𝜏ℎ𝑓 and 𝜏ℎ𝑠 are the time-constants of the fast and slow inactivating components, 

respectively; 𝑎𝑓 and 𝑎𝑠 are the amplitude coefficients and 𝐶 is a constant. 

Figure 3.12A illustrates exponential fits to the decay phase of currents evoked in 

command steps to -30, -25 and -20 mV from -70 mV holding potential. At -30 mV, the 

current decayed monoexponentially with a time constant of 8.1 ms; at -25 and -20 mV, 

Figure 3.12- Effect of feeding cycle on the kinetics of inactivation of Na+ channels. A) Fitting of the decay 

phase of Na+ currents evoked by an activation protocol. The inactivation could be described by a single (-

30mV command pulse) or a by double exponential (-25mV and -20mV command pulses), equation 3.4. B) 

Voltage-dependence of the time-constant of inactivation (τh(ms)) measured in activation protocols, in which 

Na+ currents were evoked in series of depolarization command pulses, in steps of 5mV, from -45mV to 

+30mV; slow (squares) and fast (triangles) inactivation components in neurones of fed (filled symbols; 

n=18) and fasted (open symbols; n=28) animals. C) Voltage-dependence of the fast/slow ratio of the two 

exponential components of inactivation in fed (filled squares, n= 18) and fasted (open squares, n= 28) 

neurones. Error bars are ±S.E.M. 
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the inactivating phase was best described by two exponentials, with time constants of 7.6; 

3.8 ms and 6.8; 2.5 ms, respectively. Figure 3.12B shows the mean inactivation time 

constants values measured in activation protocols. At a hyperpolarized Vm range (from -

45mV to -30mV), we could only determine a single exponential with slow kinetics 

(τhslow); at -40mV, we have obtained τhslow 18.6 ± 2.81ms and τhslow 11.7 ± 0.83ms for fed 

and fasted neurones, respectively. Results are statistically significant (0.001 < P < 0.01). 

For voltage command steps more depolarized than -25mV, two exponentials were 

ascribed to the time course of inactivation, revealing the existence of two inactivating 

components, with slow (τhslow) and fast kinetics (τhfast). In command steps to -20mV, the 

mean inactivation time constants measured in fed neurones were as follows: τhslow 8.5 ± 

0.95ms and τhfast 2.2 ± 0.24ms. In fasted neurones, the mean inactivation time constants 

were: τhslow 6.6 ± 0.52ms and τhfast 2.4 ± 0.39ms. Overall, the effect of feeding cycle over 

the voltage dependence of the time-constant of inactivation is evident at more 

hyperpolarized potentials, between -45mV and -20mV.  

Furthermore, as previously observed by P. F. Costa (Costa, 1996), the proportion of fast 

and slow inactivating components -  afast and aslow - changed with depolarization. The 

faster inactivating component dominated at values less negative than -20mV, attaining 

∼92% of total current amplitude at large depolarizations up to +30 mV, in fed neurones. 

Figure 3.12C depicts the voltage-dependence of the ratios calculated from the coefficients 

in Equation 3.4 (𝑎𝑓/𝑎𝑠). At 30mV, the mean ratio values were: 10.3 ± 2.26 and 8.7 ± 3.25 

for fed (n=18) and fasted (n=28) neurones, respectively. Ratio values obtained from fed 

and fasted neurones, in the voltage range between 10mV and 30mV, were statistically 

significant (0.01 < P < 0.05). The higher contribution of fast components in fed neurones 

suggests a difference in protein expression levels at the surface of neuronal plasma 

membrane between animals subjected to fed and fasting conditions.   
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3.2.4.2 Single-channel analysis – inside-out excised patch 
configuration 

The macroscopic Na+ currents showed distinct characteristics whether the animals were 

fed or kept in fasting conditions. To further understand the underlying mechanisms of 

such outcome, it was critical to address the effect of feeding cycle on the Na+ channel 

functioning at a microscopic level.  

The information obtained with single-channel experiments is mostly valuable. Here, the 

equilibrium considerations, exclusive of macroscopic currents obtained in WC 

experiments, give place to microscopic transitions between states/conformations of the 

Na+ channels. The scope of my PhD urged me to study the amplitude of the currents to 

establish a current-to-voltage (I-V) relationship, and thus, obtain the unitary conductance 

of single- Na+ channels. 

Unitary Na+ channel currents 

Figure 3.13 illustrates single Na+ channel records in several patches of fed and fasted 

neurones, using an excised inside-out patch configuration.  
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Fed neurones comprised patches with higher current amplitudes. In the patches illustrated 

in Figure 3.13 it is shown that the observed delta in current amplitude between feeding 

conditions was obvious at hyperpolarized Vm values, becoming negligible as the 

command potential steps are depolarized; at -60mV, we could observe a clear difference 

in current amplitude, which was not observed at -10mV.  

Amplitude measurements 

The analysis of the single channel records followed the 50% threshold method (Sakmann 

& Neher, 1995). All point histograms were constructed from the detected events. Figure 

3.14 depicts all-point amplitude histograms obtained in patches from fed and fasted 

neurones, at a pulse command step of -60mV.  

Figure 3.13- Influence of the feeding cycle on single Na+ channel currents of acutely isolated rat 

hippocampal CA1 neurones. Single-channel current traces, obtained in inside-out excised configuration, 

in different patches from neurones of fed and fasted animals, at voltage command steps shown on the left 

of each record and from a holding potential of -110mV. Arrows (↓) indicate the onset and the end of the 

voltage command pulses. The horizontal dashed lines represent the closed (C) and open (O) states of 

channels in preparations from either fasted or fed rats.  
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Each amplitude histogram was best described by two Gaussian distributions 

corresponding to the baseline current (around 0pA, closed states) and the open-channel 

current, and fitted with a sum of two gaussian curves (presented as dashed lines in Figure 

3.14A and lines in Figure 3.14B):   

𝑓(𝐼) =  ∑ 𝐴𝑖
𝑒

−(𝑥−𝜇𝑖)2∕(2𝜎𝑖
2)

𝜎𝑖√2𝜋

𝑛
𝑖=1 + 𝐶                                                                 (Equation 3.5), 

Where 𝜇𝑖 is the mean value, 𝜎𝑖is the standard deviation (SD), and 𝐴𝑖 is the amplitude of 

the corresponding curves.   

The mean amplitude (µ ± SD) of patches represented in figure 3.14A were estimated as -

1.4 ± 0.20pA for a fasted neuron, and -2.0 ± 0.23pA for a fed neuron. In this example, the 

observed current amplitude in fasted condition was remarkably reduced. Figure 3.14B 

shows the Gaussian fitting curves related to the average of all-point histograms at -60mV. 

At this Vm, the unitary Na+ current amplitudes (± S.E.M.) were -1.9 ± 0.03pA and -1.7 ± 

0.09pA for fed (n=8) and fasted (n=8) neurones, respectively. This result is statistically 

significant (0.01 < P < 0.05) suggesting an influence of feeding cycle over the unitary 

conductance (see Figure 3.15A). 

Following this rationale for all patches, we managed to analyze the amplitude of fully 

resolved openings obtained in voltage steps ranging from -60mV to +20mV. Figure 3.15A 

depicts Na+ channel unitary current as a function of step command voltage (I-V plots) in 

Figure 3.14- All-point amplitude histograms (APAH) of unitary Na+ currents and corresponding 

Gaussian fits in patches from fed and fasted animals, at -60mV. Single Na+ channel events obtained by 

the 50% threshold method (details in materials and methods). (A) APAH of two different experiments in 

patches from fed (black traces) and fasted (grey traces) animals. The dashed lines were obtained by fitting 

Equation 3.5 (Gaussian distribution). The humps corresponding to open events are located at peak values 

of 1.35pA (fasted condition) and at 2.02pA (fed condition). B) Fitting Gaussian curves of pooled data from 

patches of fed (black line, n=8) and fasted (grey line, n=8) animals. The difference between the two peaks 

is indicated (~0.3pA; 0.01 < P < 0.05).  
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patches from fed and fasted neurones. Points in the plots are mean values and concern 

measurements obtained in a total of 18 patches, 9 in fed and 9 in fasted conditions. 

 

 

 

 

 

The unitary Na+ channel conductance was estimated from the slope of the regression lines 

calculated in all patches studied.  To obtain reliable slope results, we only used patches 

where at least 4 voltage commands were applied. The bars represented in Figure 3.15B 

are mean values. The calculated slope conductance for fed neurones determined between 

−60mV and +20 mV was 16.1 ± 0.76pS (n=8). Fasted neurones disclosed a smaller mean 

slope conductance of 12.6 ± 1.30pS (n=8). These conductance results are statistically 

significant (0.01 < P < 0.05), confirming that each Na+ channel present in the surface of 

CA1 neurones of fed animals conduct more Na+ ions, than every single Na+ channel 

located in neurones of fasted animals.   

0

5

10

15

20

25

Fed Fasted

γ
(p

S
)

-2,0

-1,5

-1,0

-0,5

0,0
-60 -40 -20 0 20 40

Fed
Fasted

Vm (mV)

I(
p
A

)

Figure 3.15- Single Na+ channel current as a function of voltage command step (I–V plots). A) Mean 

single channel current amplitude was accessed in fully resolved openings and determined by fitting all-

points histograms (see figure 3.14) in patches from fed (n=9 patches) and fasted (n=9 patches) neurones, 

in voltage command steps from -60 to +20 mV. Dashed lines are linear regression of the average data. B) 

The mean single-channel conductance, γ(pS), was determined by means of the average of the slope 

conductance calculated for each I-V plot of patches from fed (∼16.7 ±0.76pS, n=8) and fasted (~12.6 

±1.30pS, n=8) conditions. Error bars are ±S.E.M (t-student analysis *0.01<P<0.05).  
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Ensemble averages 

In order to establish a comparison between the single channel and whole-cell recordings, 

ensemble averages were obtained by averaging all the current traces with channel 

openings, produced at a single voltage step, at each time point. The time constant of 

inactivation for the mean currents was determined by fitting one or two exponentials 

(Equation 3.4; whole-cell currents section) to the decaying phase of the ensemble signal 

(Figure 3.16).  

The activity pattern of the sweeps observed in Figure 3.16A is representative of the 

current traces observed at each membrane potential indicated. At -10mV, brief openings 

(‘non-burst’ activity) were mainly obtained, where fast inactivation is prominent (see 

ensemble averages, Figure 3.16B), and, thus, the possibility of obtaining long lasting or 

late openings and reopenings is diminished. Such ‘burst’ activity was rather found at -

40mV, where the fast inactivation is less predominant, which increases the likelihood of 

channel to transit between open and closed states before completion of inactivation. At -

50mV, voltage at which the open probability of the sodium channels is generally reduced, 

non-burst activity was also observed.  

Figure 3.16B depicts illustrative ensemble averages obtained from sweeps of different 

patches in command steps to -50mV, -40mV and -10mV. The decaying phase of the more 

Figure 3.16- Illustrative examples of ensemble averages. A) Representative sweeps of Na+ channel 

activity recorded at -50 mV, -40mV and -10 mV from inside-out patches excised from different neurones, 

both with one apparently active channel. Arrows indicate the onset and end of patch depolarization from 

-110 mV to the indicated voltage. B) Ensemble averages obtained from each patch depicted in A), from a 

total of 151 sweeps (-50 mV), 234 sweeps (-40 mV) and 152 sweeps (-10 mV). In -10mV, exponential fits 

to the decaying phase of the signal were best described by two exponentials (τhf and τhs). 
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hyperpolarized patches (-50mV and -40mV) was better described by a single exponential 

fit (τhsingle = 5.63ms, at -50mV and 4.88ms, at -40mV). At -10mV, the decay phase of the 

ensemble traces was best described by two exponentials, with hfast = 1.36ms and hslow = 

3.77ms. Such current decays resemble those obtained with the whole-cell approach. 

There was variability on the fits applied to all the patches and a tendency emerged when 

comparing the recordings from fasted neurones to those recorded from fed neurones.  In 

fasted neurones, the fraction of patches in which one single exponential was required in 

ensemble averages was as follows: 5/5 (-60mV), 4/4 (-50mV), 8/8 (-40mV), 4/4 (-30mV), 

3/8 (-20mV), 5/9 (-10mV), 5/7 (0mV), 4/5 (10mV), 3/4 (20mV). On the other hand, in 

fed neurones, the relative number of patches best fit with just one exponential was 

reduced: 7/11 (-60mV), 5/8 (-50mV), 4/8 (-40mV), 3/5 (-30mV), 4/6 (-20mV), 5/5 (-

10mV), 3/8 (0mV), 7/7 (10mV), 5/6 (20mV). For a better comprehension of these ratios, 

Figure 3.17 presents the relative contribution of single (τhsingle) and double exponential 

(τhfast and τhslow) fits in the patches, at each voltage membrane studied, for fed and fasted 

neurones. 

 

The stack bars on Figure 3.17 show that in fed neurones two components of inactivation 

were practically found in all voltage range studied, except for -10mV and 10mV. At 

potential values between -60 and -30 mV, in fed neurones, there were considerable 

percentage of patches requiring two exponentials, a tendency that contrast with what was 

observed in fasted neurones: at the same hyperpolarized potentials (between -60mV and 

-30mV), all the ensemble averages require only one exponential. Indeed, in fasted 

neurones, a second component was only seen at potentials more positive than -20mV 

(including). Overall, these results indicate that the feeding cycle influenced the fraction 

Figure 3.17- Fraction of patches (%) with the decay phase of ensemble traces best described by a single 

(grey bars) or double (green bars) exponential fits, in fed and fasted neurones. 
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of patches with two distinguishable components – τhfast and τhslow, an effect more 

pronounced at more hyperpolarized voltage range (-60mV to -30mV) In other words, a 

single component is more often found in fasted neurones. 

The voltage dependence of the time constant of inactivation, as estimated from ensemble 

averages, is summarized in Figure 3.18. This analysis allowed to assess the contribution 

of each component of inactivation in both neurones. 

The values depicted in Figure 3.18A, corresponding to the ensembles that required the fit 

of a single exponential, resemble the ones verified in the curves of the time-constant of 

inactivation of whole-cell Na+ currents. Similar voltage dependence was found which 

further indicates that the single-channel recordings refer to Na+ channel openings. 

Furthermore, despite some apparent discrepancies in some voltages (e.g. -50 mV), the 

Figure 3.18- Effect of the feeding cycle on the voltage dependence of the time constant of inactivation as 

measured in ensemble averages such as those in Figure 3.16. A) Mean values of the single exponential 

(τhsingle) calculated for ensemble average traces best described by one exponential (see Equation 3.4). B) 

Mean values of fast (τhfast) and C) slow (τhslow) components of the decay phase of the signals best fit with two 

exponentials, as given by Equation 3.4, from fed (filled squares) and fasted (open squares) neurones. Error 

bars are ±S.E.M. and where no error bars are shown, sample was less than three. The grey box in B) draws 

attention for the range of voltage steps at which only fed neurones presented data points correspondent to 

the faster component of inactivation, τhfast. Indeed, one should note that, at the voltage range between -

60mV and -30mV, the mean values of τhsingle in fasted neurones is practically superimposed with the mean 

values of τhslow of fed neurones, pointing for the exclusiveness of τhfast in fed neurones at that voltage range. 

This is consistent with higher channel density in fed neurones, most likely due to the presence of additional 

channel isoforms with rather fast kinetics of inactivation. 
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data from fed and fasted neurones presents no significant differences in the voltage range 

studied (P > 0.05).  

For the patches that showed two components in the time course of the current decay, the 

voltage dependence of the τhfast and τhslow is presented in figures 3.18B and 3.18C, 

respectively. As previously observed on whole-cell currents (figure 3.12), τhslow depicts a 

greater voltage dependence, in relation to τhfast.  Both graphs show a steady decrease of 

mean values along the voltage range studied, even considering the observed ‘hump’ at 

0mV. Overall, the graphs in Figure 3.18 point to a lack of influence of the feeding cycle 

on the kinetics of inactivation of the ensemble currents obtained from patches of fed and 

fasted neurones. However, at hyperpolarized potentials (between -60mV and -30mV), 

two observations must be highlighted: a) the curves of τhsingle vs. voltage in the fasted 

neurones and τhslow vs. voltage in the fed neurones are superimposed and b) the presence 

of τhfast is exclusive in fed neurones (Figure3.18B). Altogether, these observations 

indicate a variation in the channel density throughout the feeding cycle, suggesting that 

fed neurones have more functional channels when compared to fasted neurones, as 

indicated by the results obtained from the whole-cell currents.   

Qualitatively, the major differences in the decaying phase of the ensemble traces between 

fed and fasted neurones are presented in the Figure 3.19. The mean pooled response from 

the same raw data of figure 3.18 was normalized to peak current value, for each of the 

membrane potentials indicated. 
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 In the range from -60mV to -30mV, there was a dominant faster component in fed 

neurones (more prominent between -40mV and -30mV), which accounts for the sharper 

drop in the decaying phase observed in the fed neurones. At potentials more depolarized 

than -20mV the decaying phase of both neurones is essentially overlapped. This result 

demonstrates that the fast decay observed in fed neurones is dominant over the fast decay 

of fasted neurones, precisely in the voltage range at which fasted neurones disclose a 

single exponential. Once again, the exclusive presence of τhf at hyperpolarized potentials 

in fed neurones may be accountable for the differences illustrated in Figure 3.19. This is 

consistent with a greater density of Na+ channel isoforms with faster kinetics of 

inactivation in CA1 neurones of fed animals.   

Figure 3.19- Pooled ensemble averages (mean values) normalized to peak current values in patches 

from fasted (thinner grey trace) and fed (thicker black trace) neurones, obtained in command steps 

from -60 to 10 mV. For each voltage, the results for fed and fasted neurones were superimposed for 

comparison. 
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3.2.4.3 Na+ channel expression analysis – western blotting 

The likely differential expression of Na+ channel isoforms in the surface of rat 

hippocampal neurones was addressed, as a further explanation to the different 

electrophysiological properties of Na+ channels.  

Plasma membrane-enriched fractions were isolated from hippocampal neurones dissected 

from fed and fasted animals (see material and methods) and used in western blotting 

experiments. These samples contained all the neuronal membrane structures, including 

the plasma membrane where the voltage gated Na+ channels are functionally located. To 

detect the presence of Nav1.2, the most common sodium channel isoforms in rat brain 

(Gordon et al., 1987), PVDF membranes were marked with an antibody raised against the 

α-subunit (1:2000 dilution) and as a loading control we have used an antibody that 

recognizes a plasma membrane marker, N-cadherin (1:1000 dilution).   

 

 

 

Figure 3.20A illustrates the effect of feeding cycle on the protein population of rat 

hippocampal neuronal membranes. The bands located near the 250KDa molecular weight 

relate to the expression levels of Nav1.2. The first three lanes, on the left, contain the 

protein extracts of fed rats, suggesting an increased concentration of this isoform in the 

surface of rat hippocampal plasma membrane when the animals were fed. The 

quantification of protein expression is shown in Figure 3.20B, confirming the higher 

levels of Nav1.2 in fed rats. Results are statistically significant (0.01 < P < 0.05, n=3).  
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Figure 3.20- Expression of rat brain Na+ channel subtype Nav1.2 in plasma membrane-enriched 

fractions of hippocampal neurones, from fed and fasted rats. A) Western blotting PVDF membrane 

marked with antibody raised against Nav1.2 (1:2000) and N-cadherin (1:1000), as a loading control. 

The first three lanes, on the left,  correspond to fed samples and the last three, on the right, to fasted 

samples. B) Densitometry results obtained by dividing the blot areas measured in ImageLab software 

(Biorad®). The results are statistically significant (t-student test *0.05<P<0.01, n=3). Error bars are 

±S.E.M. 
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3.2.4.4 Discussion 

The present study aimed at providing data concerning the effect of feeding cycle on 

sodium (Na+) currents (INa) in acutely isolated rat hippocampal CA1 neurones. For such, 

we developed an integrated analysis of the biophysical and biochemical properties of INa 

in neurones of fed and fasted animals. 

The significant differences between fed and fasted neurones can be summarized as 

follows: in fed neurones, the whole-cell currents showed 1) a 1.5-fold increase in average 

maximum current density values; 2) a hyperpolarizing shift in the voltage dependence of 

activation curves and a depolarizing shift in the voltage dependence of both 3) steady-

state inactivation (h∞) curve and 4) time-constant of the slow inactivating component 

(τhslow). Also, in fed neurones, the single-channel current records displayed 5) higher Na+ 

channel unitary current amplitudes and larger conductance mediated through single 

channels. Finally, western blotting results disclosed 6) an increase in the concentration of 

a specific Na+ channel α-subunit, Nav1.2, in plasma membrane-enriched fractions of 

hippocampus from fed animals.  

Considering the voltage dependence of activation curves of Na+ currents obtained from 

both conditioned neurones, mean Vh values were significantly different, with fed 

neurones depicting a hyperpolarizing shift (about 4mV) in comparison to fasted neurones 

(see Table 3.1).  This result indicates an influence of feeding cycle on the conductance of 

the Na+ channel population of rat hippocampal CA1 neurones, suggesting a facilitation 

of the activation process in fed neurones. More specifically, upon feeding, there must be 

more Na+ channels opened at more negative membrane voltages, at which the driving 

force is greater, thus contributing to the higher current density observed in fed neurones. 

In addition, a more hyperpolarized activation curve lowers the spike voltage threshold, 

increasing the excitability in hippocampal CA1 neurones of fed animals.  

The feeding cycle also influenced the voltage dependence of inactivation of INa. The Vh 

parameter of h∞ in fed neurones showed a significant depolarizing shift by 7mV, in 

comparison to fasted neurones (see Table 3.1), reflecting an increase of the fraction of 

activatable channels. Such variation in the voltage dependence of h∞ is accompanied by 

a depolarizing shift in the voltage dependence of τhslow in fed neurones, with slower values 

obtained at a hyperpolarized voltage range between -45mV and -20mV (see figure 
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3.12B). In other words, INa displayed relatively less and slower inactivation in fed 

neurones in a wide range of potentials, which indicates a greater neuronal excitability 

after feeding. 

By overlapping the activation and inactivation curves, we obtained a voltage range at 

which the activation occurs when the current is not completely inactivated – ‘window 

current’ (French et al., 1990; Ketelaars et al., 2001a; Huang et al., 2011). From this 

analysis, one can estimate that, upon feeding, there are more Na+ channels available for 

activation. Again, the larger window current amplitude plus the negative shift observed 

in its voltage dependence emphasise the thesis of higher state of excitability in fed 

neurones.  

Despite the already mentioned biophysical modifications observed in whole-cell currents, 

we suggest that the feeding cycle does not play any role over the structure of the voltage-

gated Na+ channels. Such reasoning arises from the analysis of Vs parameter of activation 

curves, whose output is sensitive to variations in the structure responsible for the gating 

of the channels - the voltage sensor (Stühmer et al., 1989; Chen et al., 1996). This 

structure is mainly confined to the positive charged amino acids – arginine residues -  

embedded in the S4 segments of the channels (Robert Guy & Conti, 1990; Patlak, 1991; 

Catterall et al., 2005; Bezanilla, 2005). Here, the similarity observed in Vs values between 

conditions (6.7 ± 0.35 mV/e-fold and 6.8 ± 0.25 mV/e-fold, for fed and fasted neurones, 

respectively) is an indirect indication that the voltage sensor of the channels might not 

endure any alteration during the physiological feeding cycle. Accordingly, the number of 

charges required for the outward movement of the voltage sensor (Armstrong & 

Bezanilla, 1973; Armstrong & Bezanilla, 1977; Almers, 1978; Yang et al., 1996; 

Bezanilla, 2000) is expected to be the same in both conditions.  

Additional evidence that further suggests the lack of influence of feeding cycle on Na+ 

channel structure is brought by the analysis of the voltage dependence of time constant 

of the fast inactivating component (τhfast). Fast inactivation is linked to a hinged-lid 

structure (IFM motif) tethered in the cytoplasmic part of the channel - “ball and chain” 

model (Bezanilla & Armstrong, 1977; Armstrong, 1981). Here, we clearly showed that 

τhfast values of fed and fasted neurones are essentially overlapped (see figure 3.12B), 

suggesting that the tethered cytoplasmic structures of the Na+ channels take essentially 
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the same time to block the pore and completing the fast inactivating mechanism, either in 

fed and fasted animals. 

On the other hand, the already mentioned variations obtained from τhslow point out to a 

possible conformational rearrangement of Na+ channels throughout feeding cycle. 

Although the slow inactivation is not a fully understood mechanism (Vilin & Ruben, 

2001b; Goldin, 2003b), it is thought to be correlated with conformational alterations at 

the extracellular pore of the channel (O’Leary et al., 1995; Mickus et al., 1999; Goldin, 

2003b; Ulbricht, 2005; Silva, 2014). Despite the biophysical interpretation of this 

outcome is not clear, one may consider alterations in the interaction lipid-protein between 

the neuronal plasma membrane and the extracellular pore of the channels. Indeed, 

modifications in the organization and lipid composition of the plasma membrane result 

in alterations of the fluidity properties of neuronal plasma membrane, which, ultimately 

might regulate channel functioning (Lee, 2006; Schmidt et al., 2006; Schmidt & 

MacKinnon, 2008; Dart, 2010; Jiang & Gonen, 2012; Kasimova et al., 2014; Poveda et 

al., 2014, 2017).  

We have sought for possible underlying mechanisms that could account for the 

biophysical differences described here for the whole-cell currents of fed and fasted 

neurones. In this regard, we have exploited two possibilities: alterations on Na+ single-

channel activity and in channel density throughout the feeding cycle. These two 

approaches would be most valuable to provide further mechanistic insights on how 

feeding led to changes observed in whole-cell currents.  

Accordingly, single-channel recordings were performed using the excised inside-out 

patch configuration. Unitary current amplitudes were measured by fitting all-points 

amplitude histograms with Gaussian curves. Fed neurones contained patches with higher 

current amplitude, suggesting an influence of feeding cycle over the unitary conductance. 

The calculated slope conductance for fed neurones was 16.7 pS, being consistent with the 

16.6 pS value obtained in a previous study in rat hippocampal CA1 cells (Fernandes et 

al., 2001). The lower average single-channel conductance obtained for fasted neurones 

(12.6 pS) indicates an impact of feeding on the single-channel conductance: each Na+ 

channel present at the surface of rat hippocampal CA1 neurones conducts more Na+ ions 

through its pore during the post-prandial period, corroborating the results observed in the 

activation curves of whole-cell currents. There was indeed positive correlation between 
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the ensemble traces obtained from sweeps with single-channel openings and the whole-

cell currents, confirming the nature of such openings as being Na+ channel events.  

Furthermore, the observed distinct behaviour of macroscopic currents may also be 

explained by variation in the number of functional Na+ channel isoforms at the plasma 

throughout the feeding cycle. In the light of this argument, the analyses regarding the 

whole-cell current density and window current can be interpreted as a result of augmented 

expression levels of Na+ channels in fed neurones. Moreover, the ratio of the components 

of time constant of inactivation (𝑎𝑓 𝑎𝑠⁄ ) reflects a dominance of fast component 

proportion in both conditions, which, ultimately, highlights the presence of channels with 

rather faster kinetics, typically found in brain cells (Westenbroek et al., 1989; Vacher et 

al., 2008; Leterrier et al., 2010). In this regard, Nav1.2, a fast inactivating channel, seemed 

like a reliable candidate to address this question, as it comprises approximately 70% of 

the total rat brain Nav α-subunit pool (Gordon et al., 1987). Thus, any alteration in the 

surface expression of Na+ channel populations determined by the feeding cycle, would 

most likely involve the Nav1.2 isoform.  

Indeed, the western blotting experiments, run in plasma membrane-enriched fractions of 

rat hippocampus, validated this hypothesis, pointing to a higher concentration of Nav1.2 

at the surface of hippocampal neurones of fed animals. Hence, the Nav1.2 isoform 

underwent a differential surface expression whether animals have eaten or not. Although 

the survey of Nav1.2 isoform has been conducted on the entire tissue of rat hippocampus, 

one may assume that these results are representative of what happens in the neurones of 

CA1 subfield, where the electrophysiological experiments were carried out.  

The backdrop outlined here of increased neuronal excitability upon feeding is reinforced 

with higher Nav1.2 density at the plasma membrane. The cellular localization of Nav1.2 

channels in the central nervous system neurones – proximal Axon Initial Segment (AIS) 

–, as well as their physiological function at ensuring action potential backpropagation, 

make them major players in the modulation of the threshold for the generation of 

somatodendritic potentials (Westenbroek et al., 1989; Ahn et al., 2007; Hu et al., 2009). 

Hence, it is plausible to consider that a greater channel density may result in a reduction 

of action potential threshold in fed neurones, which, per se, promotes hyperexcitability.  

The possibility of other channel isoforms being overexpressed after feeding should be 

also considered. For example, the Nav1.1 isoform might be involved in this tidal 
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regulation of channel expression, as the single-channel conductance value of fed neurones 

resembles the one obtained for SCN1A expressed in HEK-293 cells (17pS; Vanoye et al., 

2006). Hence, one can predict a larger number of Nav1.1 channels at the surface of the 

soma of hippocampal neurones from fed animals. Indeed, considering the mean pooled 

ensemble-average currents obtained in the voltage range from -60mV to -30mV (figure 

3.19), major differences were found in the decaying phase of the signal in fasted and fed 

neurones. The higher proportion of τhfast in fed neurones (sharper drop in the decaying 

phase) can be attributed to the major contribution of Nav1.1 isoform, which is known for 

its fast-kinetic properties (Goldin, 1999; Catterall et al., 2005a; Eijkelkamp et al., 2012).  

In summary, the present study provides evidence for the impact of the feeding cycle on 

the functioning of Na+ currents/channels of central pyramidal neurones, mainly confined 

to the CA1 region of rat hippocampus. By correlating information obtained from 

electrophysiology with those obtained with molecular biology methods, we conclude that 

there is a rapid and reversible adjustment of the biophysical and molecular characteristics 

of INa to variations of metabolism brought up by the feeding cycle. The differentiated 

response under fed vs. fasted conditions suggest an increase in intrinsic neuronal 

excitability upon feeding. Such increase of excitability is likely to involve a consequent 

enhancement of calcium dynamics in CA1 neurones upon feeding. Our results are 

consistent with changes in the Na+ channel density of rat hippocampal neurones, which, 

at some extent, can explain the voltage shifts observed in activation and inactivation 

curves (both, h∞ and τhslow) in fed neurones. Furthermore, the greater current density 

observed in fed neurones can be justified by the combination of a greater channel density 

with a higher single-Na+ channel conductance, leading to a signal amplification of the 

whole-cell current output. Additionally, the results concerning the Vs parameter and τhfast 

suggest that feeding cycle does not determine any structural effect upon the regions 

responsible for the voltage sensor and fast inactivation of the channels, respectively, 

whereas changes in τhslow may indicate conformational alterations in the outer pore of the 

Na+ channels.  

The results disclosed a new perspective of the interplay between feeding and the 

hippocampus. The biophysical and biochemical modifications brought by the feeding 

cycle may elect voltage-gated Na+ channels as molecular references in the role of 

hippocampus as a processor of satiety information (Hebben et al., 1985; Higgs, 2002; 

Davidson et al., 2005, 2009, Henderson et al., 2013, 2016; Parent et al., 2014; Hsu et al., 
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2015; Jacka et al., 2015; Parent, 2016b; Hannapel et al., 2017; Kanoski & Grill, 2017). 

Thus, when to eat, or how much to eat in any one meal are decisions that may rely on the 

functioning of Na+ channels present at the surface of the hippocampus. Speculating, one 

might regard Na+ channels as new players in the context of food ingestion-related 

conditions - overweight and obesity – and metabolic disorder, such as diabetes.  
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3.3 Voltage-gated Ca2+ channels 

3.3.1 Calcium signaling in the brain 

Calcium (Ca2+) is the widely known universal second messenger that regulates the most 

important activities of all eukaryotic cells. Ca2+ ions are key players in enabling excitable 

cells to translate their electric excitation into other forms of physiological activity. In 

neurones, by influencing membrane depolarization (thereby activating other voltage-

gated ion channels), regulating gene expression and controlling the release of 

neurotransmitters from the presynaptic terminals, Ca2+ has been shown to influence both 

long-term potentiation (LTP) and long-term depression (LTD) (Eccles, 1983; Voronin, 

1983; Grover & Teyler, 1990; Bliss & Collingridge, 1993; Stanton, 1996; Kawamoto et 

al., 2012; Brini et al., 2014; Simms & Zamponi, 2014; Zamponi, 2015). Neurones have 

thus developed extensive and intricate Ca2+ signaling pathways to couple the Ca2+ signal 

to their biochemical machinery (Figure 3.21). Given the evidence, Ca2+ plays pivotal roles 

in controlling neuronal excitability, not only within individual neurones, but also among 

large populations of neurones that comprise neuronal networks (Gleichmann & Mattson, 

2011).  
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While Ca2+ regulation is essential to any cell, it is obvious that in neuronal cells the 

connection between electrochemical ion gradients and biochemical regulatory pathways 

is of special importance. For such, there must be a tight regulation of intracellular Ca2+ 

concentration ([Ca2+]i), which is accomplished, among other homeostatic mechanisms, 

by ion channels and ATP-dependent exchangers and pumps (Figure 3.21). Indeed, it has 

been suggested that once cells opted to use high-energy phosphate compounds as 

metabolic currency, they faced great evolutionary pressure to maintain an unusually low 

[Ca2+]i (< 100 nM) (Tsien & Barret, 2013). Otherwise, salts of calcium and phosphate 

would precipitate, turning the cytosol into a bone-like solid (Williams, 1970). The 10,000-

fold concentration gradient (extracellular [Ca2+] ~1.2mM) makes Ca2+ special when 

compared with the more abundant cations Na+ and K+, as it leads to a significant locally 

increase in [Ca2+]i with only a small Ca2+ flux across the cell membrane (Clapham, 2007), 

whereas influx of Na+ and efflux of K+ significantly affect the membrane potential, but 

cause only relatively minor changes in cytosolic ion concentration (Brini et al., 2014). 

The [Ca2+]i increase is the call to action. A good rule of thumb is that Ca2+ acts locally, in 

the vicinity of the channels that delivery it (Hille, 2001).  

As a broad generalization, excitable cells translate their electricity into action by Ca2+ 

fluxes modulated by voltage-sensitive, Ca2+-permeable channels. Combining the ideas of 

Ca2+ as a chemical messenger and change in membrane as an initiator of Ca2+ influx 

brings us to the essence of the advantages offered by voltage-gated Ca2+ channels (Tsien 

& Barret, 2013). Ca2+ channels in the plasma membrane have an added advantage relative 

to channels in intracellular membranes, in that they have access to the plasma membrane's 

voltage potential, a global indicator of cellular activity. A rapid, voltage-dependent 

Figure 3.21- Neuronal calcium (Ca2+) signaling toolkit. The Ca2+ transport proteins, the receptors of the 

plasma membrane (PM), and the intracellular organelles, including mitochondria, endoplasmic reticulum 

(ER), Golgi apparatus, and acidic organelles, are indicated. The mitochondrial Ca2+ handling systems 

(proteins) are shown in greater detail in the bottom right inset. The top right inset shows a schematic view 

of the pre-synaptic bouton and the post-synaptic termination. The legend on the bottom left indicates the 

Ca2+ transporter proteins. VOC Voltage-gated Ca2+ channel, ROC receptor-operated Ca2+ channel, ORAI 

the pore-forming subunit of store-operated Ca2+ entry channel (SOC), STIM the Ca2+ sensor, TPC two-pore 

channel, ARC arachidonic acid-regulated Ca2+ channel, TRP transient receptor potential channel, PMCA 

plasma membrane Ca2+ ATPase, V-ATPase vacuolar H+ ATPase, InsP3R inositol 1,4,5 tris–phosphate 

receptors, RyR ryanodine receptor, NCX plasma membrane Na+/Ca2+ exchanger, SERCA sarco-

/endoplasmic reticulum Ca2+ ATPase, MCU mitochondrial Ca2+ uniporter, MICU mitochondrial Ca2+ 
uniporter regulator, NCLX mitochondrial Na+/Ca2+ exchanger, VDAC voltage-dependent anion channels, 

MPTP mitochondrial permeability transition pore, AMPAR 2-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor, NMDAR N-methyl-d-aspartate receptor (Brini et al., 2014) 
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closing of the channel allows for dissipation of the message by diffusion and strong, rapid 

local buffering, thereby achieving spatio-temporally precise signaling (Tsien & Barret, 

2013). Furthermore, signal transduction in different cell types involves different 

molecular subtypes of voltage-gated Ca2+ channels (VGCC), which mediate voltage-

gated Ca2+ currents with different physiological, pharmacological, and regulatory 

properties. 

 

3.3.2 Voltage-gated Ca2+ channel - Diversity and 
classification schemes 

 Without Ca channels our nervous system would have no outputs (Hille, 2001). 

VGCCs were first identified in the 1950s (Fatt & Katz, 1953). Since then, multiple types 

of VGCCs have been measured directly in a variety of cell types from vertebrate and 

invertebrate organisms. Their classification and nomenclature has been made according 

to various schemes, based on electrophysiological, pharmacological and 

biochemical/molecular observations.  

Firstly, they were distinguished by their potential of activation, which enabled VGCC in 

falling into two major categories: high voltage-activated (HVA) channels that open in 

response to large membrane depolarizations (with a threshold positive to approximately 

−30mV) and low voltage-activated (LVA) channels that only need a small depolarization 

to be activated (threshold activation at a membrane voltage positive to −70 mV) 

(Hagiwara et al., 1975; Llinas & Yarom, 1981; Carbone & Lux, 1984; Armstrong & 

Matteson, 1985; Yaari et al., 1987).  

Following the establishment of advanced technology, such as patch-clamp techniques, 

the next stage of the classification resulted from the combination of phenomenological 

parameters including biophysical and pharmacological properties. In what concerns the 

investigation upon vertebrate neurones, the LVA channels were further classified as T 

channels and the HVA channels were subdivided into two classes – L and N channels. 

This common classification of neuronal Ca2+ channels was named by Tsien and 

colleagues (Tsien et al., 1988), following their study on DRG neurones (see table 3.4).  
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T channels are described as having fast current decays, with a small amplitude of single 

channel conductance during a sustained depolarization (‘T’ stands for tiny conductance 

and transient current). Due to their low threshold of activation, they are not seen when a 

cell is maintained at depolarized holding potentials. L channels, the first HVA subtype 

being biochemically purified and cloned (Curtis & Catterall, 1984), show large-single 

channel conductance amplitude and slow kinetics of current decay during a sustained 

depolarization (‘L’ stands for large and long-lasting). They can be recorded in isolation 

from T-type currents by starting from depolarized holding potentials (Hille, 2001). 

Pharmacologically, L-type channels are defined by their sensitivity to 1,4-

dihydropyridine (DHP) drugs, a wide class of drugs with either inhibitor (nifedipine, 

nisoldipine, isradipine) or activator (Bay K 8644) action on the channel (Lipscombe, 

2002; Helton, 2005). Novel calcium channels, insensitive to DHPs and with single-

channel conductance between those of T-type and L-type channels, were revealed in 

experiments with neuronal cells (Nowycky et al., 1985; Carbone & Lux, 1987; Fox et al., 

1987a, 1987b). These channels were named N-type Ca2+ channels (N for neuronal). The 

availability of blocking agents that target L- and N-type channels revealed other HVA 

Table 3.4- types of voltage-gated Ca2+ channels in vertebrates. Electrophysiological and 

pharmacological characteristics. Taken from (Hille, 2001) 
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currents. It was shown that neuronal non-L-type channels could be further classified into 

subtypes according to their sensitivity to peptide toxins isolated from cone snails and 

spiders. The channel sensitive to ω-conotoxin GVIA, kept the name N-type channel, 

whereas the channel sensitive to ω-Aga IVA toxin was named P/Q-type calcium channel 

(P for Purkinje cells, where this channel was characterized (Llinas et al., 1989)). The 

channels resistant to these toxins were named R-type calcium channel (R for resistant) 

(Lacinová, n.d.).  Except for their pharmacology, N-, P/Q-, and R-types of Ca2+ channels 

seem functionally similar, disclosing variable degrees of inactivation (Fox et al., 1987a, 

1987b) and modulation by G-protein-coupled receptors (Hille, 2001). 

The original classification system of Ca2+ channels, which was expanded from the simple 

LVA/ HVA dichotomy to encompass T-, L-, N-, P-/Q-, R-channels, was subsequently 

found to be too restrictive to adequately describe all types of Ca2+ channels. The 

nomenclature currently used for calcium channels terminology was proposed based on 

molecular biological approaches, and specifically, on the amino acid and gene sequence 

of the pore-forming α1 subunit (Cavα1) (Ertel et al., 2000) (Figure 3.22).  

The pharmacological and electrophysiological diversity of calcium channels arises 

primarily from the existence of multiple α1 subunits (Hofmann et al., 1994), encoded by 

at least 10 distinct genes (Table 3.4 and Figure 3.22B), organized into three distinct 

subtypes of VGCCs in animals- Cav1, Cav2, and Cav3 (Catterall et al., 2005b).   

The Cav1 channel family encodes three different neuronal L-type channels (termed 

Cav1.2, Cav1.3, and Cav1.4) plus a skeletal muscle-specific isoform, Cav1.1 (Simms & 

Zamponi, 2014). In the mammalian brain, Cav1.2 and Cav1.3 are the predominant forms 

of L-type Ca2+ channels. They are localized in the cell bodies and proximal dendrites, 

both at presynaptic as well as postsynaptic locations (Lipscombe & Andrade, 2015). 

Hippocampal function appears to depend more on Cav1.2, which, by promoting large 

influx of Ca2+, initiates downstream protein kinase pathways that promote gene 

transcription required for long-term synaptic plasticity (long-term potentiation) 

(Westenbroek et al., 1990; Thibault & Landfield, 1996; Bowden et al., 2001; Striessnig 

et al., 2015; Zamponi et al., 2015). 

The Cav2 channel family includes three members (Cav2.1, Cav2.2, and Cav2.3) localized 

at presynaptic terminals, dendrites and cell bodies (Westenbroek et al., 1992), mainly 

responsible for the release of neurotransmitters, like glutamate, γ- aminobutyric acid 
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(GABA), and acetylcholine. Through alternative splicing and assembly with specific 

ancillary subunits, Cav2.1 gives rise to P- and Q-type channels. Cav2.2 encodes N-type 

channels and Cav2.3 corresponds to R-type channels (Simms & Zamponi, 2014).   

The Cav3 channels are represented by three subtypes (Cav3.1, Cav3.2, and Cav3.3), all T-

type calcium channels (Perez-reyes, 2003). They have been detected both on and near the 

soma and at more distal dendritic sites of neurones throughout all brain regions, including 

hippocampus. Cav3 families are mainly involved in triggering low-threshold spikes, 

which in turn generates a burst of repetitive firing of action potentials mediated by Na+ 

channels (Perez-reyes, 2003).  

 

3.3.3 Subunits of VGCCs - Structure  

Studies based on biochemical and molecular analyses (Curtis & Catterall, 1984) provide 

structural differences between HVA and LVA channels (Figure 3.22A). HVA channels 

are hetero-multimeric protein complexes that are formed through the co-assembly of a 

functional pore-forming Cavα1 subunit, plus ancillary Cavβ, Cavα2δ and Cavγ subunits, 

whereas LVA channels appear to lack these ancillary subunits (Catterall, 2011). The 

associated α2, β, γ, δ subunits have auxiliary functions, including the control of channel 

expression and the modulation of current kinetics. The β subunits greatly enhance cell-

surface expression of the α1 subunits and shift their kinetics and voltage dependence 

(Catterall, 2000b; Brini et al., 2014). 

 

 

A B
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Figure 3.22- A) Subunit Composition and Transmembrane Topology of Voltage-Gated Calcium Channel 

Subunits. HVA channels are heteromultimers comprised of a pore-forming Cavα1 subunit that co-

assembles with ancillary Cavβ, Cavα2δ, and possibly Cavγ subunits, plus calmodulin (CaM); LVA channels 

on the other hand function as Cavα1 subunit monomers. The Cavα1 subunit is comprised of four major 

transmembrane domains (I–IV) that are connected by cytoplasmic linkers. Each of these domains contains 

six membrane-spanning helices, plus a re-entrant pore loop (shown in green). The fourth transmembrane 

segment in each domain contains positively charged amino acids in every third position and forms the 

voltage sensor. Key protein interaction sites with the Cavα1 subunits are indicated by numbers. Adapted 

from (Simms & Zamponi, 2014). B) Evolutionary tree of all known VGCCs, considering just the amino acid 

sequences of α1 subunits. An early evolutionary event separated the α1 subunits into LVA and HVA 

channels, with less than 30% of sequence homology. A later evolutionary event divided HVA channels into 

two subfamilies: L-type and neuronal types, with about 50% sequence homology. Individual members of 

both subfamilies share more than 80% of sequence homology. Adapted from (Lacinová, n.d.). 

 

The α1 subunit is a 190- to 250-kDa transmembrane protein composed by four repeat 

domains (I–IV), each containing six transmembrane α helices (S1–S6), homologous to 

those found in voltage-gated Na+ channels (Catterall, 2000a). The S4 segments of each 

domain comprise some positively charged residues, serving as the voltage sensors for 

activation, moving outward and rotating under the influence of the electric field and 

initiating a conformational change that opens the pore. A re-entrant P loop motif between 

S5 and S6 forms the pore lining of the VGCCs. Each of the P loop regions contains highly 

conserved negatively charged amino acid residues (in the case of HVA channels, glutamic 

acids) that cooperate to form a pore that is highly selective for permeant cations such as 

calcium, barium, and strontium (Simms & Zamponi, 2014). The cytoplasmic linker 

regions of the α1subunit contain sites that are substrates for phosphorylation and 

interaction with regulatory proteins, and the intracellular carboxyl (C)-terminal region 

contains a binding site for calmodulin (CaM), which mediates Ca2+-triggered inactivation 

of the channel upon prolonged membrane depolarization (Hering et al., 2005; Dolphin, 

2009; Catterall, 2011). All Ca2+ channels share these general structural features. 

 

3.3.4 VGCC distribution in rat hippocampal CA1 
neurones 

Many of the properties of the Ca2+ channels recorded from hippocampal CA1 neurones – 

single-channel conductance and pharmacological response - are reminiscent of those 

reported for the multiple types of channels described first in peripheral neurones (Kay & 

Wong, 1987; Ozawa et al., 1989; Takahashi et al., 1989; Fisher et al., 1990; Toselli & 
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Taglietti, 1990; Kay, 1991; O´Dell & Alger, 1991; Thompson & Wong, 1991; Wong & 

Stewart, 1992).  

To date, at least 5 types of Ca2+ channels have been described in rat hippocampal CA1 

neurones – T-, L-, N-, P-/Q- and R- channels (Takahashi et al., 1989; Toselli & Taglietti, 

1990; Magee & Johnston, 1995a; Igelmund et al., 1996; Porter et al., 1997). The 

subcellular distribution of these channels is one of the main factors that determines their 

effectiveness in supporting different neuronal functions. The extensive dendritic 

arborizations of CA1 pyramidal neurones results in tens of thousands of widely 

distributed synaptic inputs, most of which are both physically and electrotonically distant 

from the soma (Andersen et al., 2007). The integration of these synaptic inputs depends 

to a considerable extent on the expression of voltage‐gated channels in different regions 

of the neuronal membrane.    

In rat hippocampal CA1 pyramidal neurones, the density of both low- and high-threshold 

Ca2+ channels throughout the extent of longitudinal somatodendritic axis may be constant 

(Magee & Johnston, 1995a, 1995b). However, substantial differences in the type of 

channels can be found within the somatic and dendritic regions of these neurones, with a 

trend for more HVA channels to be encountered in the soma and proximal dendrites and 

more LVA channels to be detected in more distal dendrites (Figure 3.23).  

L- and N-type channels are mainly found in the soma of CA1 neurones, which is 

consistent with somatic patch-clamp recordings taken from CA1 neurones (Ozawa et al., 

1989; Takahashi et al., 1989; Fisher et al., 1990; Thompson & Wong, 1991) and with 

antibody-binding imaging studies for L- and N-type Ca2+ channels, which indicated the 

highest density of these channels in the somatodendritic compartment (Westenbroek et 

al., 1990; Pravettoni et al., 2000; Bowden et al., 2001; Leitch et al., 2009). Nevertheless, 

a lower expression level of L- and N- type channels is likely to be found at the distal 

Figure 3.23- Schematic representation of the Ca2+ channel distribution in the soma and apical dendrites 

of hippocampal CA1 neurones. Relative densities of different channel types are represented by font size. 

Taken from Magee & Johnston (1995).  
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regions of the apical dendrites. Although no data are available regarding the subtypes of 

Ca2+ channels in CA1 axons, pharmacological studies of synaptic transmission and 

presynaptic Ca2+ entry indicate that N-, P-, Q-, and R-type Ca2+ channels are most 

abundant in other axon terminals of the hippocampus (Andersen et al., 2007). 

On the other hand, T-type channels are primarily localized in the apical dendrites. At this 

point, it is relevant to highlight that the expression of T-type channels in rat hippocampal 

CA1 neurones undergoes changes during the developmental stages of the animals. In fact, 

it has been established that T-type channels are mostly found on neurones isolated from 

neonatal animals (O´Dell & Alger, 1991; Thompson & Wong, 1991; Campbell et al., 

1996; Kortekaas & Wadman, 1997; Porter et al., 1997; Ribeiro & Costa, 2000). One 

possible explanation might be enclosed in a displacement of the expression of T-type 

channels within the neuron, in the course of maturation. In CA1 pyramidal neurones of 

very young animals, T-type channels might be distributed throughout the neuron and, as 

the animal matures, these channels may become primarily localized to the dendritic 

arborizations (Magee & Johnston, 1995a) 
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3.3.5 Influence of feeding cycle on neuronal Ca2+ 
currents 

Given the pivotal importance of voltage-gated Ca2+ channels outlined in the introductory 

sections, the present section gains relevance as it focuses on the oscillations of the activity 

of such channels throughout the feeding cycle. 

3.3.5.1 Whole-cell voltage clamp recordings 

Features of the currents 

The present section comprises data concerning the influence of feeding cycle in the 

characteristics of whole-cell voltage clamp Ca2+ currents of rat hippocampal CA1 

neurones. Ca2+ currents were evoked with a step of depolarized voltages from -60mV up 

to +30mV (increments of 10mV), following a conditioning pulse of -120mV to remove 

inactivation. Holding potential was set at -70mV (Figure 3.24). With these protocol, both 

high-voltage activated (HVA) and low-voltage activated (LVA) currents could be 

recorded (Vreugdenhil & Wadman, 1992; Kortekaas & Wadman, 1997; Ribeiro & Costa, 

2000). 
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The records depicted in Figure 3.24 illustrate 3 types of currents, here termed currents 

‘A’, ‘B’ and ‘C’ (or, alternatively, ‘A-, B-, C-type currents’) with distinct properties in 

terms of kinetics of inactivation and a differential distribution between fed and fasted 

neurones. Current ‘A’ was characterized by its slow kinetics, with a minimal contribution 

of the transient component, and with a prominent slow-inactivating component (here 

termed ‘sustained current’) at the end of the 600ms command pulse. Current ‘B’ had faster 

kinetics, with the current decay better described by two components – fast and slow – and 

a sustained current with smaller amplitude. Current ‘C’ had the fastest kinetics, with a 

sharper decay of inactivation and a sustained current barely detected, envisaging a greater 

proportion of the fast component in relation to the slow component. The sorting of these 

currents was a result of visual examination, based on the characteristics described above. 

In order to avoid biased results, any currents with ambiguous inactivation profiles were 

labelled as being ‘B’-type currents.  

The expression of these currents was found to be different between fed and fasted 

neurones. Current A was present in both conditions, however more often in fed neurones: 

10/20 recordings from fed neurones, as oppose to only 3/24 for fasted neurones. Current 

B was evenly observed between the two conditions: 10/20 recordings assigned to fed 

neurones and 14/24 assigned to fasted neurones. Finally, current C was only found in 

fasted neurones, with 7 recordings registered (7/24).  

Voltage dependence of activation 

The existence of a sustained current, more prominent in the A-type current, prompted an 

analysis of the voltage-dependence of both, the peak current and at the end of the 600ms 

pulse, as a measure of the sustained current (Figure 3.25A).  

Figure 3.24- Effect of feeding cycle over the calcium currents of acutely isolated rat CA1 hippocampal 

neurones. Whole-cell voltage clamp Ca2+ currents, recorded in neurones from fed and fasted animals, 

were evoked in series of depolarization command pulses (600ms in duration), in steps of 10mV, from -

60mV to +30mV, following a hyperpolarizing conditioning pulse at -120mV (300ms in duration). Holding 

potential was set at -70mV (see inset). Traces are representative recordings of the 3 types of Ca2+ current 

traces observed in fed (n=20) and fasted (n=24) neurones, here termed ‘A’, ‘B’ and ‘C’ (see description 

in the text). The quantitative distribution of each type of current trace within both conditions is indicated. 
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Figure 3.25B depicts the current to voltage (I-V) relationship, whose data comprises the 

mean values of peak (Ipeak) and sustained (Isustained) Ca2+ current amplitudes (pA), 

normalized to the cell capacitance (pA/pF), as a measure of current density, obtained in 

the voltage range studied (-60mV to +30mV). From the data points concerning Ipeak, one 

can ascertain a common feature upon the heterogeneity of Ca2+ currents illustrated in 

Figure 3.24, i.e., there is a dominant high-voltage activated (HVA) component, since peak 

Figure 3.25- Influence of the feeding cycle on the amplitude of Ca2+ currents taken at the peak of the 

traces (peak current) and at the end of the 600ms pulse (sustained current). A) Illustrative trace 

indicating where the analysis was undertaken. Dashed line represents zero current. B) I-V curves of mean 

Ca2+ peak (squares) and sustained (circles) currents normalized to cell capacitance (pA/pF), obtained 

from freshly isolated rat hippocampal CA1 neurones of fed (filled symbols; n=20) and fasted (open 

symbols; n=24) animals. I-V curves relate to Ca2+ currents like those depicted in figure 3.24. The dashed 

lines are trend lines for a better comprehension of the data. The inset depicts the mean conductance 

normalized to the maximum value (G/Gmax) of Ca2+ peak currents. There is no shift in the voltage-

dependence of activation curves, as Vh values are similar in both conditions (-2.1 ± 0.82 and -2.9 ± 0.60, 

for fed and fasted neurones, respectively). Dashed lines are the solution of Equation 3.3. C) Relative 

contribution of Ca2+ sustained current to the overall Ca2+ current is shown by plotting the mean amplitude 

of the sustained current as a percentage of the mean peak current, obtained in the voltage range between 

-20mV and 20mV. Error bars are ±S.E.M. values (t-student analysis *0.01<P<0.05). 
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Ca2+ currents were activated with a threshold higher than -30 mV, with a mean maximum 

amplitude attained around 10 mV, either for fed and fasted neurones.  

The mean current density, taken at the peak of the traces, shows no differences between 

fed and fasted neurones (-155.0 ± 18.27 pA/pF, n = 20, and -152.1 ± 17.53 pA/pF, n = 

24, respectively). Peak current values were converted to conductance via the relationship 

𝐺 = 𝐼 (𝑉𝑚 − 𝐸𝐶𝑎2+)⁄  where 𝑉𝑚 is the step command voltage and 𝐸𝐶𝑎2+  the reversal 

potential estimated from the extrapolation of the rising phase of the I-V curves. The 

voltage dependence of activation of peak current was studied normalizing G for its 

maximal value (G/Gmax) and plotting the mean values against step command potential 

(see inset Figure 2B). Data were fitted with equation 3.3 (Boltzmann distribution).  

The average fitting parameters values of activation curves – Vh and Vs - are presented in 

table 3.5. Vh values were as follows: -2.1 ± 0.82mV and -2.9 ± 0.60mV, for fed and fasted 

neurones, respectively. Vs values were also similar in both conditions: 5.9 ± 0.17 mV/e-

fold and 6.3 ± 0.17 mV/e-fold, for fed and fasted neurones, respectively. The differences 

registered are not significant (P > 0.05). These results support that feeding cycle does not 

exert any influence on the voltage-dependence of activation of whole-cell Ca2+ currents. 

Indeed, no shift and/or apparent deviation in the slope of the activation curves were 

observed (inset of Figure 3.25B). 

On the other hand, Isustained, also with an activation threshold around -30mV in both 

conditions, depicted higher mean current density values in neurones from fed animals. 

The maximum values, registered at 0mV, were -18.7 ± 2.92 pA/pF and -11.5 ± 1.50 

pA/pF, for fed and fasted neurones, respectively. Differences are significant in the voltage 

range from -10mV to 10mV (0.05 > P > 0.01). The relative contribution of sustained 

current is illustrated by plotting the average of Isustained as a percentage of Ipeak, obtained in 

the voltage range between -20mV and 20mV (figure 3.25C). Fed neurones showed 

significantly larger values in the voltage range between -10mV and 20mV (0.05 > P > 

0.01). At 0mV, the values were as follows: 17.5 ± 2.81% and 11.1 ± 1.57%, for fed and 

fasted neurones, respectively. This is consistent with the higher abundance of current ‘A’ 

upon feeding. 
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Voltage dependence of steady-state of inactivation (h∞) 

The steady-state inactivation of the whole-cell current was measured using 1.5s 

conditioning pulses to voltages between -120 and 0 mV with 10 mV increments, from a 

holding potential of -70mV. The patch was then subjected to a 1s depolarising step to 0 

mV to record the remaining current (Figure 3.26A).  

 

 

 

 

 

 

 

 

 

 

 

 

Peak current values were normalized to the maximal response (I/Imax) and plotted against 

conditioning pulses to obtain steady-state inactivation curves (Figure 3.26B). The results 

showed a complex biphasic curve, well described by a sum of two sigmoids: 

𝐼 𝐼𝑚𝑎𝑥 =  [𝑎 {1 + 𝑒[(𝑉ℎ1−𝑉𝑚/𝑉𝑠1)]}⁄ ]⁄ +  [(1 − 𝑎)/{1 + 𝑒[(𝑉ℎ2−𝑉𝑚)/𝑉𝑠2]}]  (Equation 3.6),  

Figure 3.26- Influence of feeding cycle on steady-state inactivation (h∞) of Ca2+ currents. Whole-cell 

voltage clamp Ca2+ currents were evoked by a command step to 0 mV (1s) following a set of pre-pulses 

(1.5s) ranging from −120 mV to 0 mV in steps of 10 mV; holding potential of −70 mV (inset). A) Records 

were obtained in the command pulse from a neuron of a fed and fasted animal. B) Mean peak Ca2+ current 

normalized to the maximum value (I/Imax) as a function of pre-pulse potentials, from neurones of fed (filled 

squares; n=13) and fasted (open squares; n=16) animals. The steady-state inactivation curves (h∞) were 

best fitted by a sum of sigmoids (equation 2) and the significant shift of the second component is expressed 

in the Vh2 values: -36.9 ± 2.02mV and –42.99 ± 2.55mV, for fed and fasted neurones, respectively (t-student 

analysis; 0,01<P<0,05). Error bars are ±S.E.M. values. 
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where 𝑎 and (1 − 𝑎) are the weighing coefficients of the first and second components of 

the steady-state of inactivation curves, 𝑉𝑚 is the step command potential, 𝑉ℎ1and 𝑉ℎ2 are 

the voltage at which half-maximal inactivation is reached within each component, and 

𝑉𝑠1 and 𝑉𝑠2 the corresponding slope factors. The average fitting parameters are 

summarized in table 3.5.  

 

 

The parameters of the first, most hyperpolarized, component – Vh1 and Vs1 – was not 

altered with feeding cycle: Vh1 = -99.4 ± 1.37mV, Vs1 = -8.3 ± 0.48 mV/e-fold in fed 

neurones (n=13, P > 0.05) and Vh1 = -100.5 ± 2.12 and Vs1 = -7.5 ± 0.91 mV/e-fold in 

fasted neurones (n=16, P > 0.05). The first component (V1) accounted for 33% and 39% 

of the total current, in fed and fasted neurones, respectively. Such difference is not 

significant (P > 0.05). However, we observed that Vh2 parameter statistically differed in 

fed and fasted neurones: -36.9 ± 2.02mV and -43.0 ± 2.55mV, respectively (0.05 > P > 

0.01).  This result indicates that the Ca2+ currents accountable for the second component 

of h∞ underwent a significant depolarizing shift by 6mV in fed neurones. This 

demonstrates that Ca2+ currents in fasted neurones begin to inactivate at more negative 

potentials, thus pointing to a reduction in the levels of excitability in fasting conditions.  

Time-constant of inactivation (τh(ms))  

 The decay phase of the Ca2+ currents, obtained with activation protocols (Figure 3.24), 

was described with an exponential time course, given by Equation 3.4. 

In the present study, we could only detect the presence of two components of inactivation 

at more depolarized voltage potentials (less negative than -20mV, including). Figure 

3.27A illustrates exponential fits to the decay phase of currents evoked in command steps 

                  

  

Voltage dependence of 
activation (mV) 

Voltage dependence of inactivation (mV) 

Vh Vs n Vh1 Vs1 a Vh2 Vs2 n 

Fed -2.1 ± 0.82 5.9 ± 0.17 20 -99.4 ± 1.37 -8.3 ± 0.48 0.33 ± 0.035 -36.9 ± 2.02 -16.1 ± 1.43 13 

Fasted -2.9 ± 0.60 6.3 ± 0.17 24 -100.5 ± 2.12 -7.5 ± 0.91 0.39 ± 0.053 -43.0 ± 2.55  -16.9 ± 1.55 16 

P-value n.s. - n.s. 0.033 n.s. - 

 

Table 3.5- Activation and steady-state inactivation (h∞) fitting parameters Vh (mV) and Vs (mV/e-fold) 

(Equations 3.3 and 3.6, respectively) for neurones of fed and fasted animals. Statistical analysis performed 

with a t-test; 0.01<P-value<0.05. Values are mean ± S.E.M. 



Influence of feeding cycle on ion channels/currents 

80 
PhD thesis - Bastos, AEP (2018) 

to -30, and -20 mV from -70 mV holding potential. At -30 mV, the current decayed 

monoexponentially with a time constant of 153 ms; at -20 mV, the inactivating phase was 

best described by two exponentials, with time constants of 42ms and 266ms. 

 

The effect of feeding cycle over the voltage dependence of τh(ms) was addressed. The 

mean values of 𝜏ℎ𝑓 and 𝜏ℎ𝑠, measured in activation protocols, are depicted in figures 

3.27B and 3.27C, respectively.  

The plot concerning the fast component (Figure 3.27B) demonstrates that 𝜏ℎ𝑓 was voltage 

dependent in both fed and fasted neurones. Fed neurones showed slower values of 𝜏ℎ𝑓  

nearly in all voltage range studied. At 0mV, we have obtained 46.6 ± 5.86ms (fed 

neurones) and 32.3 ± 2.29ms (fasted neurones). The difference is significant at 0mV, 

20mV and 30mV (0.05 > P > 0.01). 𝜏ℎ𝑠 (Figure 3.27C) shows that fed and fasted neurones 

inactivated in a complex way, suggesting a combination of inactivation mechanisms 

(Ribeiro & Costa, 2000). For voltage command steps more depolarized (from 0mV to 

Figure 3.27- Effect of feeding cycle on the time-constant of inactivation (τh(ms)) of Ca2+ currents. A) 

Illustration of fitting of the decay phase of Ca2+ currents evoked by an activation protocol. The 

inactivation could be described by a single (-30mV command pulse) or a by double exponential (-20mV 

command pulse), equation 3.4. B) and C) Voltage-dependence of the B) fast and C) slow components of 

time-constant of inactivation (τhfast (ms) and τhslow (ms), respectively) measured in activation protocols, of 

fed (filled squares) and fasted (open squares) animals. Error bars are ±S.E.M. (* t-test; 0.05 > P > 0.01). 
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30mV), fed neurones showed significant larger 𝜏ℎ𝑠values (0.05 > P > 0.01). In command 

steps to 0mV, the mean values were as follows: 239.7 ± 17.78ms and 189.9 ± 12.21ms, 

for fed and fasted neurones, respectively. Overall, fed neurones inactivated slower than 

fasted neurones, which suggests a long-lasting entry of Ca2+ ions into the soma of CA1 

hippocampal neurones of fed animals.  

To assess the contribution of each current type presently described in this report (Figure 

3.24) to the overall time-constant of inactivation, the mean values of 𝜏ℎ𝑓 and 𝜏ℎ𝑠 of 

currents ‘A’, ‘B’ and ‘C’ were discriminated. The comparison of these values allowed to 

evaluate whether the results observed on the kinetics of inactivation from the pooled data 

were due to: a) the differential distribution of the currents between fed and fasted 

neurones (related to the intrinsic characteristics of each current type) or; b) differences 

obtained within the same current type between both conditions (a given type current, say 

A-type, could be faster in fasted neurones when compared to fed neurones), or both. The 

results were obtained at a command potential of 0mV and are showed in Table 3.6.  

 

In what concerns the current ‘A’, fed neurones disclosed augmented 𝜏ℎ𝑓values, however 

the difference is not significant (P > 0.05), given the reduced number of patches with this 

type of current found in fasted neurones (n=3). 𝜏ℎ𝑠 does not differ between conditions. 

Current ‘B’ showed similar values of 𝜏ℎ𝑓and 𝜏ℎ𝑠, whether the animals were or not fed, 

thus not contributing to the observed variation in the overall time constant of inactivation 

between conditions. One can conclude that the faster inactivation observed in the pooled 

data from fasted neurones is supported by the exclusive expression of ‘C’ current. 

 

          

At 0mV 

Types of current 

A' B' C' 

τhfast (ms) τhslow (ms) n τhfast (ms) τhslow (ms) n τhfast (ms) τhslow (ms) n 

Fed 65.5 ± 7.99 289.3 ± 26.48 10 29.8 ± 2.21 190.1 ± 9.31 10 - - - 

Fasted 50.1 ± 4.82 282.7 ± 17.30 3 32.0 ± 2.18 192.2 ± 14.85 14 24.7 ± 1.37 148.4 ± 5.26 7 

P-value n.s. - 

Table 3.6- Average values of time-constants (ms) of the fast and slow inactivating components - τhfast and 

τhslow, addressed for each type of current outlined in this study, at 0mV. Values are mean ± S.E.M.   
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The differences observed in Ca2+ currents decay in both conditions can also be quantified 

by the analysis of the coefficients of fast and slow inactivating components -  afast and 

aslow. Figure 3.28A depicts the voltage-dependence of the ratios calculated from the 

coefficients in Equation 3.4 (𝑎𝑓/𝑎𝑠).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the voltage range used, the fast component prevails over the slow component (ratio 

greater than 1). In fasted neurones, 𝑎𝑓/𝑎𝑠 increased with depolarization, as a straight 

Figure 3.28- Effect of feeding cycle on the coefficients of the inactivating components, afast and aslow.A) 

Analysis of the voltage-dependence of the ratio af/as in fed (filled squares) and fasted (open squares) 

neurones. Error bars are ±S.E.M. (* t-test; 0.05 > P > 0.01). B) Illustration of the influence of feeding 

cycle on the inactivating components of Ca2+ currents. Typical examples of B-type current traces 

recorded in fed and fasted neurones, obtained at 0mV. Currents were normalized to peak current values 

for a better comprehension of the data. In the upper traces, the fitting was taken within the slow 

component of the inactivation of Ca2+ current. The fast component (bottom traces) is obtained by 

subtracting the slow traces to the overall current. In fasted neurones, a faster decay and a greater 

amplitude of the fast component is observed.  



Influence of feeding cycle on ion channels/currents 

83 
PhD thesis - Bastos, AEP (2018) 

consequence of the major contribution of the fast component (Figure 3.28B). In fed 

neurones, we observed a decrease in the ratio values, reaching a plateau level close to 

unitary value between 0mV and 30mV, which can be explained by convergence of the 

values registered for the coefficients of fast and slow components in such voltage range 

(data not shown). At potentials more positive than 10 mV, the ratio 𝑎𝑓/𝑎𝑠 clearly differed 

in fed and fasted neurones. At 10mV, the mean ratio values were: 1.1 ± 0.10 (fed 

neurones) and 1.6 ± 0.18 (fasted neurones). The difference is statistically significant at 

10mV and 30mV (0.05 > P > 0.01). 

Figure 3.28B sets a graphical explanation of the effect of feeding cycle over the time-

constants and respective coefficients of inactivation. The traces revealed a sharper decay 

and a greater amplitude of the fast component in the illustrated fasted neuron, as oppose 

to a greater amplitude of the slow component in the fed neuron. This is consistent with 

an overall faster inactivation obtained for neurones of fasting animals.  
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3.3.5.2 Discussion 

The present report addresses the influence of feeding cycle on the whole-cell Ca2+ 

currents of rat hippocampal CA1 neurones. Three types of high threshold voltage 

activated (HVA) currents with different current decay properties were recorded. Fed 

neurones expressed more prominently a slowly-inactivating (here defined as ‘sustained’) 

current at the end of the 600ms pulse, whereas currents with the fastest kinetics were 

mostly attributed to fasted neurones. This effect of feeding cycle upon the expression of 

Ca2+ currents resulted in increased mean values of time-constants of inactivation (τh) upon 

feeding. Additionally, a depolarizing shift in the second component of the steady-state 

inactivation (h∞) curve was observed in fed neurones.  

The distinct whole-cell currents were termed, for simplicity, ‘A’, ‘B’ and ‘C’. Current ‘B’ 

was found in both conditions, with a similar patch distribution in fed and fasted neurones: 

50% and 58%, respectively. The main differences reported here were related to the 

differential distribution of the remaining currents. Current ‘A’, characterized by the 

presence of a conspicuous sustained current, was observed more often in neurones from 

fed animals. This explains the significantly higher amplitude of the sustained current in 

fed neurones (see figure 3.25B). In turn, current ‘C’, with the fastest current decay 

kinetics, was only observed in fasted neurones.  

The heterogeneity of Ca2+ currents observed here must be indicative of distinct molecular 

identities at the surface of neuronal plasma membrane. Accordingly, the respective I-V 

curves invariably disclosed an activation threshold at -30mV, which means that the 

variation on the channel´s phenotype fits within the range of HVA channels (Tsien et al., 

1988; Bean, 1989; Snutch & Reiner, 1992; Catterall, 2000, 2011; Brini et al., 2014). The 

absence of a low-threshold activated (LVA) current indicates we could not detect T-type 

Ca2+ currents, which is in accordance with several reports on the effect of maturation over 

the expression of Ca2+ currents (Fisher et al., 1990; Thompson & Wong, 1991; Campbell 

et al., 1996; Thibault & Landfield, 1996; Kortekaas & Wadman, 1997; Porter et al., 1997; 

Ribeiro & Costa, 2000). At the age of the animals used in this study (P21-P29), 

hippocampal neurones consistently express Ca2+ currents with electrophysiological 

properties similar to those in older animals (Lukyanetz et al., 2002), i.e., mostly HVA 

and seldom LVA currents. It is established that rat hippocampal CA1 neurones express 

all known types of HVA Ca2+ channels (L, N, P, Q and R; Ishibashi et al., 1998; Lenz et 
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al., 1998), being the N- and L- type Ca2+ channels the most predominant categories, 

mainly contributing to total HVA calcium current in CA1 hippocampal neurones (Fisher 

et al., 1990; Westenbroek et al., 1990; Vreugdenhil & Wadman, 1992; Magee & 

Johnston, 1995; Pravettoni et al., 2000; Bowden et al., 2001; Lukyanetz et al., 2002; 

Leitch et al., 2009). In the present report, we did not pursuit a pharmacological approach, 

nor presented additional single-channel data to distinguish between HVA Ca2+ currents. 

However, we provide indications that infer about the phenotype of the Ca2+ channel 

currents present in the plasma membrane of fed and fasted neurones, as being either N- 

or L-type Ca2+ currents. The slowly-inactivating sustained currents, characteristic of the 

‘A’-type currents outlined in this study, are typically described as being L-type current 

(Nowycky et al., 1985; Takahashi et al., 1989; Catterall, 2000; Lipscombe, 2002; Helton, 

2005), whereas the faster inactivating currents - ‘B’ and ‘C’ types - are likely to be linked 

to the expression of mainly N-type channels (Nowycky et al., 1985; Tsien et al., 1988; 

Plummer et al., 1989; Plummer & Peter, 1991; McNaughton & Randall, 1997).  

In what the voltage dependence of inactivation is concerned, the experimental data points 

of h∞ further supports a heterogeneous and differential distribution of Ca2+ channels in rat 

hippocampal CA1 neurones during feeding cycle. Both h∞ curves were well fitted by 

double Boltzmann functions, suggesting either that at least two distinct types of Ca2+ 

channels are recruited in the inactivation or that a single population of channels undergoes 

multiple inactivation processes (Ribeiro & Costa, 2000; Lukyanetz et al., 2002). As we 

recorded Ca2+ currents from the whole surface of the neurones, the results here depicted 

must comply with the first hypothesis. Moreover, in fed neurones, Vh2 is significantly 

shifted towards depolarized potentials, which is indicative of an increased involvement 

of Ca2+ channels that inactivate with stronger depolarizations, another 

electrophysiological feature of the L-type channels (Ozawa et al., 1989; Yasuda et al., 

2004; Catterall et al., 2005; Spafford et al., 2006). This result suggests a greater steady-

state availability of this type of channels in fed neurones, which is aligned with the major 

fraction of patches recorded with current ‘A’ in neurones from fed animals (50%, 10 out 

of 20 patches), in comparison to neurones of fasted animals (12.5%, 3 out of 24 patches). 

The distinct profiles of the whole-cell currents can be quantified by the analysis of the 

coefficients of fast and slow components of the time-constant of inactivation – afast and 

aslow. The ratio afast/aslow showed significant higher values in fasted neurones, mostly due 

to a larger contribution of afast, when compared to fed neurones. Our results also depicted 
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an increased prevalence of aslow in fed neurones in relation to fasted neurones, which is 

closely related to the presence of the Ca2+ sustained current. The illustration of the 

proportions between afast and aslow in figure 3.28B helps to explain the slower mean values 

of τhf and τhs observed in fed neurones (see figures 3.27B and 3.27C).  

Given the gathered evidence, one can point out that the major contribution of the slowly-

inactivating, resembling L-type currents, will enable the entry of Ca2+ for a longer period 

into the soma of fed neurones. On the other hand, the expression of a ‘C-type’ current has 

the major contribution to the overall fastest kinetics of inactivation observed in fasted 

neurones (see table 3.6 and figure 3.27).   

In conclusion, the array of expression of Ca2+ currents in fed and fasted neurones might 

be related to a variation in the Ca2+ channels´ phenotype, in the course of feeding cycle. 

The predominant ‘A’-type current in fed neurones, in relation to fasted neurones, 

anticipates larger entry of Ca2+ ions into the soma during membrane depolarizations, 

which may determine significantly different physiological outputs during the feeding 

cycle. Indeed, the greater intracellular Ca2+ dynamics envisaged in fed neurones may 

reinforce the neuronal synaptic performance, given the vital role of Ca2+ on the signal 

transduction processes directly involved on synaptic-dependent memory phenomena, like 

Long-Term Potentiation (LTP) (Eccles, 1983; Voronin, 1983; Volianskis & Jensen, 2003; 

Zamponi et al., 2015).  

Thus, the indication of a larger Ca2+ influx through voltage-gated channels, brought up 

by 1) an abundance of a Ca2+-sustained current and 2) the depolarizing shift of Vh2 

observed in the h∞ curves, might concur to higher rate of synaptic plasticity events in fed 

neurones. Such outcome would endorse the role of hippocampus in inhibiting meal onset 

during the post-prandial period, due to the formation of episodic-meal related memories, 

as established by other authors (Higgs, 2002, 2008; Parent, 2016). The dynamics of 

voltage gated Ca2+ channels observed during the feeding cycle must be related with 

molecular mechanisms by which hippocampus integrates information to ensure energy 

homeostasis.    
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4 Feeding cycle on neuronal Plasma 
membrane 

The previous chapter of this thesis unveiled groundbreaking insights towards the effect 

of feeding cycle upon the biophysics and molecular expression of proteins imbedded in 

the phospholipid bilayer of the neuronal plasma membrane (PM). Those findings 

demanded a research upon the possible influence of the feeding cycle on the bulk lipid of 

the PM of rat hippocampus. Specifically, the present chapter provides information 

regarding the lipid composition, lateral heterogeneity and physical properties of PM, such 

as order and fluidity. 

 

4.1 Plasma Membrane domains – lipid composition 
and distinct phases  

Biological membranes provide physical boundaries between different worlds, separating 

the cellular and extracellular environments and the diverse cellular compartments. 

Contrary to previous assumptions based on the fluid mosaic model (Singer and Nicolson, 

1972), the plasma membrane (PM) is presently described as a mosaic of domains with 

different lipid and protein compositions, properties and functions. Lipids are 

characterized by a great structural diversity, both in terms of their polar head group, length 

and unsaturation degree of their hydrocarbon chains (Van Meer, 2005; Pike, 2009; Quinn 

& Wolf, 2010; Sonnino & Prinetti, 2010; Sezgin et al., 2017). The combination of 

different head groups and variations in fatty acid tails results in more than a thousand 

different lipid species in any eukaryotic cell (Van Meer et al., 2008). Such multiplicity of 

structures may induce the lateral segregation of lipids into domains with distinctive 

properties in terms of size, rigidity, and thickness (Quinn & Wolf, 2010; Ingólfsson et al., 

2014; Marquês et al., 2015). In this regard, one property of lipids that has fascinated 

scientists is their phase behaviour. In model systems, lipids can adopt various fluid and 

solid phases, which are characterized by a different spatial arrangement and motional 

freedom of each lipid with respect to its neighbours (Van Meer et al., 2008). Since some 

of these phases are adopted under physiological conditions of temperature, pH, ionic 
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strength, etc., by lipid species that coexist in cell membranes, it is expected that 

arrangements reminiscent of these different phases may be found in biological 

membranes in vivo (Elson et al., 2010; de Almeida & Joly, 2014). 

The fundaments for the structure and functions of biological membranes are thus 

determined, to a considerable extent, by the intrinsic properties and composition of 

membrane lipids. Indeed, altered lipid composition is linked to many pathological 

conditions, e.g., cancers, HIV infections, diabetes, atherosclerosis, cardiovascular 

disease, and Alzheimer’s disease (Van Meer, 2005; Adibhatla & Hatcher, 2008; 

Ingólfsson et al., 2017). The brain appears to be especially susceptible to disease states 

that are enhanced or accelerated by certain lipid compositions (Mattson, 2005; Adibhatla 

& Hatcher, 2008; Sebastião et al., 2013; Escribá & Nicolson, 2014)(Adibhatla & Hatcher, 

2008; Sebastião et al., 2013). For instance, specific phosphatidyl inositol phosphate (PIP) 

lipids are involved in regulation of aspects of neuronal cell function. In particular, PIPs 

can modulate ion flux through PM ion channels (Dart, 2010; Jiang & Gonen, 2012; 

Poveda et al., 2014) by direct interaction with the ion channels or by modulating 

membrane charge (Ingólfsson et al., 2017). 

The structure of biological membranes is mainly defined by three classes of lipids, whose 

packing forms the lipid bilayer: glycerophospholipids, which for simplicity will be 

designated here by phospholipids (PLs), sphingolipids (SLs) and sterols. PLs, the major 

lipids in eukaryotic membranes, contain a diacylglycerol (DAG) moiety as hydrophobic 

component with saturated or unsaturated fatty acyl chains of variable length and a polar 

head group, usually consisting of an alcohol attached to the phosphate group (Van Meer, 

2005; Simons & Sampaio, 2011; van Meer & de Kroon, 2011). The general structure of 

PLs and common head groups are shown in Figure 4.1, being phosphatidylcholine (PC) 

the most abundant in mammals, followed by phosphatidylethanolamine (PE), 

phosphatidylserine (PS), phosphatidylinositol (PI), and phosphatidic acid (PA) (Van 

Meer, 2005; Van Meer et al., 2008). The level of saturation of their fatty acyl chains 

regulates the rigidity of the biological membranes; the kinked hydrocarbon chains of the 

largely unsaturated PLs yield fluid phases in the membranes (also known as ld, liquid-

disordered phase), thus preventing close packing of the lipids within the bilayer. Analysis 

of the phospholipid composition of the rat hippocampus shows PC, PE and PS as the 

predominant phospholipids (Chavko et al., 1993; Wen & Kim, 2004), while the fatty acid 

composition shows enrichment with 16:0 (palmitic), 18:0 (stearic), 18:1 (oleic), 18:2 
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(linoleic), 20:4 (arachinodic) and 22:6 (docosahexaenoic) fatty acids (Ulmann et al., 

2001; Murthy et al., 2002).  

   

 

 

 

 

 

 

 

 

 

 

 

 

Another class of structural lipids is formed by the SLs, whose hydrophobic backbone is 

constituted by ceramide (Cer), consisting of a sphingoid base (such as sphingosine; Sph), 

which is amide-linked to a fatty acid (Figure 4.2A). The major SLs in mammalian cells 

is sphingomyelin (SM), which, like PC, contains a phosphocoline head, and the 

glycosphingolipids (GSLs), which contain mono-, di- or oligosaccharides based on 

glucosylceramide (GlcCer) and sometimes galactosylceramide (GalCer). These are 

important components in nerve cell membranes, where they have essential roles in the 

structure and function of myelin, the insulator that allows for rapid nerve conduction. SLs 

are usually the cell membrane components with the highest main phase transition 

Figure 4.1- General structure of phospholipids and common head groups. PLs contain two fatty acids 

ester-linked to glycerol at C-1 and C-2, and a polar head group attached at C-3 via a phosphodiester 

bond. The fatty acids in PLs can vary in carbon group length and saturation degree. The different common 

polar head groups and global charges of the phospholipid molecule at neutral pH are indicated. PA, 

phosphatidic acid; PE, phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; 

PG, phosphatidylglycerol; CL, cardiolipin; PI, phosphatidylinositol. Taken from (Aktas et al., 2014) 
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temperature (Tm), i.e., the temperature at which the lipids undergo a transition from a gel 

(or solid-ordered, so) phase, with the acyl chains highly ordered and packed to a fluid 

phase, with low order and packing (ld phase) (Marquês et al., 2015). Therefore, SLs hold 

large responsibility for the lateral segregation of lipids and are important components of 

membrane ordered domains (Figure 4.3). The fact that they have high Tm values means 

that at room temperature, at inner human body temperature (37 °C), or at the optimal 

growth temperature of many microorganisms (e.g., 30 °C for Saccharomyces cerevisiae), 

if isolated, they could exist in a gel or So phase, rather than in the fluid state usually 

attributed to biological membranes.  

The SLs are fluidized by sterols (cholesterol, in mammalian cell membranes; Figure 

4.2B), another class of lipids constituents of eukaryotic membranes. Sterols contain a 

tetra-ring hydrophobic core based on the cyclopentane-per-hydro-phenantrene motif, 

which can be further extended with an aliphatic chain, and bearing only a hydroxyl group 

as the polar part (Bloch, 1957). The preferential interaction between high Tm SLs and 

cholesterol is of the utmost importance, as it allows the formation of specialized 

microdomains, the so-called ‘lipid rafts’ (Figures 4.2C and 4.3) (Korade & Kenworthy, 

2008; Brown & Galea, 2010; de Almeida & Joly, 2014). These domains are in a state 

resembling a liquid-ordered (lo) phase, with an acyl chain order similar to the gel phase, 

but lateral diffusion on the same order of magnitude as the ld phase (thereby, also 

considered fluid) (Bastos et al., 2012). Moreover, they are usually defined as small, highly 

dynamic and transient plasma membrane entities, serving as platform for various cellular 

processes such as signal transduction and transport (Pike, 2006; Lingwood et al., 2009; 

Lingwood & Simons, 2010; Sonnino & Prinetti, 2010; Simons & Sampaio, 2011). 

Although these lateral assemblies can arise solely due to lipid-lipid interactions, in cell 

membranes lipid-protein and protein-protein interactions also play a vital role in the 

formation, properties and function of these domains (Castro et al., 2007; Smith, 2012; 

Barrera et al., 2013; Escribá & Nicolson, 2014).  
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4.2 Membrane Probes sensitive to different lipid 
domains 

The study of lipid microdomains requires the use of noninvasive, highly sensitive 

techniques with minimal perturbation of cellular integrity and function. Fluorescence 

spectroscopy is extensively used for monitoring membrane heterogeneity, due to its 

intrinsic sensitivity, suitable time scale, and minimum perturbation (Pucadyil & 

Chattopadhyay, 2004; Mukherjee et al., 2007). Thus, fluorescence techniques are suitable 

for this task, by providing direct information on molecular interactions and dynamic 

events involving biomolecules. As most lipids do not display intrinsic fluorescence, one 

needs to label the bilayer with an extrinsic fluorophore (membrane probe). Several 

fluorescence properties of membrane probes can be determined - spectral shifts, 

fluorescence lifetimes, and fluorescence anisotropy -, which enables us to retrieve 

information about the physical properties of the membranes, such as order, charge 

distribution, polarity, and hydration. There are, in general, no probes that label 

Figure 4.2- Main constituents of the lipid rafts. A) The phosphosphingolipid sphingomyelin (SM) and the 

glycosphingolipid glucosylceramide (GlcCer) have a ceramide (Cer) backbone, consisting of a sphingoid 

base (such as sphingosine; Sph), which is amide-linked to a fatty acid. SM contains a phosphocoline 

headgroup, and in GlcCer the sugar residue attached to ceramide is glucose. B) cholesterol, the sterol of 

mammalian cell membranes. Adapted from  (Van Meer et al., 2008) C) Defining feature of lipid raft 

formation. The preferential interaction between sphingolipids and sterols is due to the saturation of 

sphingolipid hydrophobic tails, but also to hydrogen bonding between these lipid species. The amide of the 

sphingolipid backbone can both donate and accept a hydrogen bond, and these hydrogen bonds are within 

the interfacial region of the membrane, in which the relative scarcity of water increases the stability of 

these bonds. Adapted from (Sezgin et al., 2017). 

A B
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exclusively a certain type of domain. Therefore, the fluorescence signal is most of the 

time a composition of the fluorescence from the probe incorporated in different types of 

domains (Bastos et al., 2012).  

Membrane probes include fluorescent molecules reminiscent of natural lipids. In the 

present study, I have used 1,6- diphenyl-1,3,6-hexatriene (DPH) and trans-parinaric acid 

(t-Pna), two of the most commonly used membrane probes in fluorescence spectroscopy 

studies (Figure 4.3). The former distributes evenly among most membrane domains, thus 

giving an indication of the average or global order of the lipid bilayer (Lentz & Burgess, 

1989). The partitioning property of DPH is particularly advantageous since it reports the 

phase-averaged rotational properties of fatty acyl chains without bias toward a particular 

type of membrane domain. The latter partitions preferentially into gel domains, where it 

displays increased fluorescence quantum yield (Sklar et al., 1977), thus being especially 

sensitive to changes in the amount and composition of those ordered domains (de Almeida 

et al., 2009). The strong preference for such domains makes it possible to detect gel 

domains even when these constitute less than 5% of the membrane (Castro et al., 2009; 

Marquês et al., 2015). The probe t-PnA presents the additional benefit of displaying a 

long lifetime component in its fluorescence intensity decay that is characteristic of the 

type of ordered domains being detected, namely gel or so (if clearly above 30 ns) or lo 

(below 30 ns) domains (Reyes Mateo et al., 1993a, 1993b; Castro et al., 2009). Both 

pertain to a very important class of membrane probes because they align parallel to the 

acyl chains of phospholipids/sphingolipids in lipid bilayers and their fluorophore locates 

at the hydrophobic core of the bilayer. Therefore, their fluorescence properties reflect 

very faithfully direct information on acyl chain packing (Bastos et al., 2012). In addition, 

the labeling of membranes with these probes renders a low background noise, given their 

strong and fast partition into the membranes, and low quantum yield in water. Another 

important feature is their cylindric shape, resulting in minimal perturbation in the system. 

Thus, the results can be interpreted without taking into consideration biophysical 

complexities on the lipid-water interface/lipid headgroup region or interactions with extra 

membrane molecules or domains of membrane proteins (Bastos et al., 2012). The 

concomitant application of DPH and t-Pna can be used to obtain an unbiased or 

quantitative description of the lipid domains behavior (de Almeida et al., 2009; Castro et 

al., 2009; Aresta-Branco et al., 2011; Bastos et al., 2012). However, these probes cannot 
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be used in fluorescence microscopy due to absorption and emission mostly in the UV 

spectral region and photobleaching (Bastos et al., 2012). 

 

4.3 Fluorescence spectroscopy – principles and types 
of measurements 

Fluorescence spectroscopy is extensively used in the study of biological membranes, 

mostly due to its intrinsic sensitivity, suitable time scale, and minimum perturbation, as 

explained above (Pucadyil & Chattopadhyay, 2004; Mukherjee et al., 2007). By assessing 

the fluorescence properties of the molecular probes located within the membrane, it 

allows the study of a vast variety of physical parameters: fluidity; structural ordering; 

Figure 4.3- Schematic depiction of a lipid bilayer exhibiting different lipid phases—Ld, Lo, and gel. The 

predicted location of fluorescent probes, such as di-4-ANEPPS, 1,6-diphenyl-1,3,5-hexatriene (DPH), 

trans-parinaric acid (t-Pna), and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-

DPH), in the different lamellar lipid phases is also depicted. The polar headgroups of sphingolipids are 

represented in red and green (types A and B), and that of phospholipids in blue. Sterols (Lo-forming) are 

represented by a ring system. Di-4-ANEPPS presents sensitivity to polarity and hydration patterns in the 

headgroup region, and membrane dipole potential; partition and fluorescence quantum yield favourable 

to sterol-rich domains; DPH reports the global order of the membrane in the hydrophobic core; t-PnA 

reports acyl chain packing, has preferential partition for gel phases (red t-PnA), but can be found also in 

Lo and Ld phases where it presents intermediate and lower quantum yield, respectively (black t-PnA); 

TMA-DPH, similar to DPH, reports the global order of the membrane, but is anchored at the membrane 

surface by the TMA group and is more sensitive to hydration. In the present work, I have only used t-Pna 

and DPH. Taken from (Marquês et al., 2015). 
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lipid – protein interactions; location of proteins; lateral organization (in the membrane 

plane); membrane potentials and molecular mobility (Valeur & Berberan-Santos, 2012). 

The fundamentals of fluorescence can be illustrated in a Jablonski energy diagram 

(Jabłoński 1935), more recently baptized as Perrin- Jabłoński (Valeur & Berberan-Santos, 

2012). Schematically, this diagram shows different energetic states of a chromophore 

after absorption of a photon, where transitions between them are depicted with arrows 

(Figure 4.4).  

 

 

Absorption of a photon by a fluorophore leads to the transition of an electron from the 

ground state, a singlet for most common organic chromophores (S0) to an excited state 

(Sn). The excitation then rapidly (10-13 s) relaxes non-radiatively to the lowest excited 

state (S1) via vibrational relaxation and internal conversion (IC). From S1 the fluorophore 

can then relax to S0 in several ways: non-radiatively by IC, by intersystem crossing 

forming a triplet state, by quenching, by energy transfer to another fluorophore (FRET) 

or by fluorescence (emission of a photon). 

Fluorescence measurements can be broadly classified into two types: steady-state and 

time-resolved. Steady-state measurements, the most common, are those performed with 

constant illumination and observation. The sample is illuminated with a continuous beam 

of light, and the intensity or emission spectrum is recorded. The combination of a constant 

Figure 4.4- The Jablonski energy diagram. Light absorption and emission are represented by vertical, 

black arrows. Vibrational relaxation, internal conversion and intersystem crossing are indicated by 

light gray dashed arrows. Taken from (Laptenok, 2009). 
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flow of photons, with a nanosecond timescale of fluorescence, results in a constant 

(steady-state) concentration of excited fluorophore.    

The second type of measurement is time-resolved, which is used for measuring 

fluorescence intensity decays or anisotropy decays. For these measurements the sample 

is exposed to a pulse of light, where the pulse width is typically shorter than the decay 

time of the sample. This intensity decay is recorded with a high-speed detection system 

that permits the intensity or anisotropy to be measured on the nanosecond timescale. A 

steady state observation is simply an average of the time-resolved phenomena over the 

intensity decay of the sample (Lakowicz, 2006). It should also be stressed that time- 

resolved techniques have the advantage of not evaluating the total intensity, so they are 

much less biased by the known problems associated to steady-state data such as light 

scattering, or error in probe concentration (de Almeida et al., 2009). 

 

4.3.1 Steady-state fluorescence anisotropy. Into the 
rigidity of biological membranes derived from 
rotational dynamics of excited molecular probes  

Fluorescence anisotropy (〈𝑟〉) measurements provide information on the size and shape 

of proteins or the rigidity of various molecular environments. Anisotropy measurements 

are based on the principle of photoselective excitation of fluorophores by polarized light. 

Fluorophores preferentially absorb photons whose electric vectors are aligned parallel to 

the transition moment of the fluorophore. Upon excitation with polarized light, one 

selectively excites those fluorophore molecules whose absorption transition dipole is 

parallel to the electric vector of the excitation. Fluorophores absorb light along a 

particular direction with respect to the molecular axes. For example, DPH only absorbs 

light polarized along its long axis.  

Several phenomena can decrease the measured anisotropy to values lower than the 

maximum theoretical values. The most common cause is rotational diffusion. Such 

diffusion occurs during the lifetime of the excited state and displaces the emission dipole 

of the fluorophore. Measurement of this parameter provides information about the relative 

angular displacement of the fluorophore between the times of absorption and emission. 
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The extent to which a fluorophore rotates during the excited-state lifetime determines its 

polarization or anisotropy, which can be defined by 

〈𝑟〉 =
(𝐼𝑉𝑉−𝐺×𝐼𝑉𝐻)

(𝐼𝑉𝑉+2×𝐺×𝐼𝑉𝐻)
                                                                                       (Equation 4.1), 

where the different intensities, I, are the vertical and horizontal components of 

fluorescence emission in steady-state with vertical (IVV and IVH, respectively) and 

horizontal (IHV and IHH, respectively) excitation relatively to the emission axis. G factor 

is used to correct the different sensitivity of the detector for the vertical and horizontal 

polarization. 

In fluid solution most fluorophores rotate extensively in 50 to 100 picoseconds. Hence, 

the molecules can rotate many times during the 1–10 nanoseconds excited-state lifetime, 

and the orientation of the polarized emission is randomized. For this reason, fluorophores 

in non-viscous solution typically display anisotropies near zero. The effects of rotational 

diffusion can be decreased if the fluorophore is bound to a macromolecule. Thus, 

measurements of fluorescence anisotropy will be sensitive to any factor that affects the 

rate of rotational diffusion. The rotational rates of fluorophores in cell membranes also 

occur on the nanoscale timescale, and the anisotropy values are thus sensitive to 

membrane composition (Lakowicz, 2006). That said, if the fluorophore is confined to a 

rigid environment it will not freely rotate, yielding higher values of anisotropy (typically 

> 0.3). Conversely, if the fluorophore is contained in a more fluid medium, where it can 

rotate more freely, emitted light will not exhibit a preferential polarization orientation. In 

this case, one will obtain lower values of anisotropy. 

 

4.3.1.1 Technical instrumentation used in steady-state 
fluorescence anisotropy 

To perform fluorescence anisotropy measurements, one needs to use a spectrofluorometer 

device which must be equipped with polarizers, as exemplified in Figure 4.5. Briefly, 

xenon arc lamps are the light source generally used due to their high intensity at all 

wavelengths ranging upward from 250 nm. These lamps produce excitation light that 

follows an optical pathway where monochromators motorize/select both the excitation 

and emission wavelengths. The excitation monochromator, for instance, contains two 

gratings, which decreases stray light, that is, light with wavelengths different from the 
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chosen one. In fluorescence anisotropy measurements, the light that is not reflected by 

the beam splitter passes through a polarizer before reaching the sample chamber. The 

light emitted by the sample in a direction perpendicular to the incident beam may 

encounter an emission polarizer prior to a subsequent emission wavelength sieve in the 

emission monochromator. Finally, the fluorescence is detected with a photomultiplier 

tube and quantified with the appropriate electronic devices. The output is usually 

presented in graphical form and stored digitally. 

 

 

 

 

 

 

 

 

 

 

4.3.2 Time-resolved fluorescence intensity decays. 
Into the organization of biological membranes 

Time-resolved fluorescence spectroscopy, in particular the determination of fluorescence 

lifetimes, is a technique often used in membrane biophysics that allows to retrieve crucial 

information about the organization of the membrane, namely the presence of certain types 

of lipid domains, the packing of the acyl chains or the extent of water penetration (de 

Almeida et al., 2009). 

Figure 4.5- Schematic representation of the optical pathway in a conventional fluorometer. Taken 

from (Lakowicz, 2006)  
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Time-resolved fluorescence gives information on the kinetics of fluorescence emission 

and excited-state lifetimes, that is, the average time the fluorophore spends in the excited 

state attained after light absorption and prior to fluorescence emission or deactivation by 

other processes. Fluorescence lifetimes, usually in the order of nanoseconds, are sensitive 

to biomolecule dynamics, solvent relaxation, and presence of other molecules 

(concentration and diffusion coefficient) that decrease the excited-state lifetime (Bastos 

et al., 2012). 

Since the emission probability decreases with time after excitation, a fluorescence 

intensity decay is obtained. The simplest kinetics of fluorescence emission is a first order 

law (exponential decay) and the fluorescence (or excited-state) lifetime is the reverse of 

the decay rate constant. However, in most cases, the fluorescence decay is more complex 

and is usually described by a sum of exponentials, 

𝐼(𝑡) =  ∑ 𝛼𝑖𝑒
(−𝑡 𝜏𝑖⁄ )𝑛

𝑖=1                                                                                   (Equation 4.2), 

where 𝛼𝑖 and 𝜏𝑖 are the normalized amplitude and lifetime of component 𝑖, respectively. 

More specifically, 𝛼𝑖 is a pre-exponential factor representing the fractional contribution 

to the time-resolved decay of the component with a lifetime 𝜏𝑖, such that ∑ 𝛼𝑖 = 1𝑖 . 

Multicomponent decays are indications of heterogeneity and, at the same time, give 

information on the biophysical properties and relative abundance of the lipid domains that 

are responsible for the appearance of each lifetime. Thus, when resolution of multiple 

exponentials is possible, the lifetime components together with their amplitudes contain 

information on the type and relative abundance of domains (de Almeida et al., 2009; 

Bastos et al., 2012). 

Sometimes, due to the unclear physical meaning of each exponential used in the fit to the 

experimental decay curve, it is useful to describe the fluorescence kinetics through a 

parameter named mean or average fluorescence lifetime (the true mean lifetime of the 

excited state since it is weighted by the intensity of each component), given by 

〈𝜏〉 =
∑ 𝛼𝑖𝜏2

𝑖𝑖

∑ 𝛼𝑖𝜏𝑖𝑖
                                                                                                (Equation4.3) 

In some cases, where there is a dependence of the quantum yield with the interaction 

under studied, the determination of the quantum yield-weighted lifetime (𝜏̅) (also named 

as amplitude-weighted average fluorescence lifetime) becomes more significant. This 

parameter can be determined as follows 
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(𝜏̅) = ∑ 𝛼𝑖𝜏𝑖𝑖                                                                                                   (Equation 4.4) 

 

4.3.2.1 Technical instrumentation used in time-resolved 
fluorescence intensity decays 

Time-resolved experiments are often performed through direct measurements in the time 

domain, in which a short pulse of light excites the sample, and the subsequent 

fluorescence emission is recorded as a function of time. This is generally achieved using 

time-correlated single photon counting (TCSPC), which uses electronics to detect single-

photon events at a detector. By repeating many start-stop signals, a histogram of single-

photon counts in discrete time channels is obtained (O’Connor & Phillips, 1984; 

Lakowicz, 2006; Wahl, 2014). The technique of TCSPC consists in exciting the sample 

and detecting the arrival time of the first emitted photon. Therefore, this technique is also 

called single photon timing (SPT) (de Almeida et al., 2009). In the experiments of this 

thesis, a nanoLED, which emits light pulses of short duration (70 ps) and a repetition rate 

up to 1 MHz, was used as the light source. 

If the condition for detecting a single photon after excitation pulse is fulfilled, i.e., only 

one fluorescence photon per excitation pulse is detected and there are no photons coming 

from the sample during the “dead time” of the setup, the probability of detecting a photon 

in channel i is proportional to the fluorescence intensity at delay time i, meaning that the 

histogram of photon arrival times is proportional to the fluorescence intensity decay 

(Figure 4.6) (Laptenok, 2009). 

  

Figure 4.6- Time-correlated single photon counting (TCSPC) principle. The arrival time of the first 

photon after the excitation pulse is measured and stored in the memory. The histogram of the arrivals 

times of photons represents the fluorescence intensity versus time curve. Taken from (Laptenok, 2009). 
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4.4 Materials and Methods 

4.4.1 Chemicals 

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-Dipalmitoyl-sn-

glycero-3-phosphoethanolamine (DPPE) and N-palmitoyl-sphingomyelin (PSM) were 

purchased from Avanti Polar Lipids (Alabaster, AL); cholesterol was purchased from 

Sigma (St. Louis, MO). Ludox (colloidal silica diluted to 50 weight % in water) was 

purchased from Sigma. Trans-parinaric acid (t-PnA) was purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA), and 1,6-diphenyl-1,3,5-hexatriene (DPH) from 

Invitrogen (Madrid, Spain). Solvents for lipid and probe stock solutions were 

spectroscopic grade. All other reagents were of the highest purity available. 

4.4.2 Plasma membrane-enriched fraction isolation 

Hippocampal plasma membrane fractions were prepared as described previously (Sun et 

al., 1988) with some modifications. Briefly, hippocampi from fed and fasted rats were 

homogenized in ice-cold homogenization buffer - 0.32M sucrose, 50mM Tris HCl 

(pH7.4), 1mM EDTA, 2mM EGTA, 1x protease inhibitor cocktail from Roche® 

Diagnostics -, using a glass tissue homogenizer pestle, and centrifuged for 10min at 500g 

to sediment nucleus and cell debris. The supernatant was centrifuged at 18800g, for 

20min, to obtain a crude mitochondrial pellet. The post-mitochondrial supernatant was 

centrifuged at 45500g for 30min, which resulted in the sedimentation of a white-colored 

pellet. This pellet, constituted by the crude plasma membranes, was resuspended in a 

minimum volume of PBS buffer (in mM): K2HPO4, 1.8; NaH2PO4, 10; NaCl, 137; and 

KCl, 2.7 (pH 7.4), with 1x protease inhibitor cocktail. The protein concentration was 

determined by the bicinchoninic acid (BCA) protein assay kit (Micro BCA Pierce 

Thermo®) using BSA as a standard. Plasma membrane-enriched fractions were stored at 

4ºC until use. All steps were performed on ice and centrifugations at 4ºC.  

 

4.4.3 Total lipids extraction 

Lipids were extracted by the method of Bligh and Dyer (Bligh & Dyer, 1959). Briefly, 

for each 1 ml of sample, 3.75 ml of 1:2 (v/v) chloroform-methanol (CHCl3:MeOH) was 

added and vortexed thoroughly for 1 min. Then 1.25 ml of CHCl3 was added and vortexed 
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thoroughly for 1 min. Finally, 1.25 ml of 1 M NaCl was added and again vortexed 

thoroughly for 30 sec. Samples were centrifuge at 1,000 g for 5 min at room temperature 

to give a two-phase system (aqueous top, organic bottom) and the bottom phase was 

recovered and dried under a mild flow of nitrogen, forming a thin layer of lipid in the 

bottom of the tube. Total lipid concentration was determined by gravimetry. The dried 

extracts were resuspended in a mixture of CHCl3:MeOH (1:1). 

 

4.4.4 Phospholipid and cholesterol quantification  

An aliquot of lipid extract was transferred to a test tube and organic solvent evaporated. 

Concentration of phosphate (inorganic) was determined with a colorimetric reagent 

(ascorbic acid/ammonium heptamolybdate) subsequently to total lipid digestion by 

perchloric acid using Na2HPO4 as standard (Rouser et al., 1970). Cholesterol 

concentration was estimated by direct treatment of the lipid extracts with a reagent 

composed of ferric chloride dissolved in a glacial acetic acid-sulfuric acid mixture 

(Zlatkis et al., 1953). Both concentrations were determined spectrophotometrically, with 

the following wavelength (λ(nm)): 797 and 550, for phospholipids and cholesterol 

determination, respectively.  

 

4.4.5 Membrane preparation for fluorescence 
spectroscopy measurements 

DPH and t-Pna were added from a concentrated stock solution to membranes at a final 

probe concentration of 0.5 and 1mol%, respectively, with respect to total phospholipid 

content. Membranes containing 50 nmol of total phospholipids were suspended in 1ml of 

PBS buffer and used for fluorescence spectroscopy experiments. The resultant probe 

concentration was 0.25µM and 0.5µM for DPH and t-Pna, respectively. These conditions 

have ensured optimal fluorescence intensity with negligible membrane perturbation. 

Probes were incubated for 10 min, at room temperature. Probe concentrations in stock 

solutions were determined spectrophotometrically using ε(DPH, 355 nm, chloroform) = 

80.6 x 103 M-1cm-1 and ε(t-PnA, 299.4 nm, ethanol) = 89 x103 M-1cm-1 (Castro et al., 

2007). Blank samples were prepared the same way except that probes were omitted. 
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4.4.6 Fluorescence spectroscopy measurements 

The fluorescence measurements were carried out on a Spex Fluorolog 3-22/Tau 3 

spectrofluorometer equipped with double grating monochromators in both excitation and 

emission light paths from Horiba Jobin Yvon at 23ºC, using 1cm path length quartz 

cuvettes. 

For steady-state measurements (450 W Xe arc lamp light source), the samples were under 

constant magnetic stirring, and the excitation / emission wavelengths were 358nm / 

430nm for DPH and 303nm / 404 nm for t-PnA. The steady-state anisotropy (<r>) was 

calculated according to equation 1. An adequate blank was subtracted from each intensity 

reading. The set of the four intensity components for each sample, depicted in equation 

4.1, was measured seven times.  

For time-resolved measurements by the single photon counting technique, nanoLED N-

320 (Horiba Jobin Yvon) was used for the excitation of t-PnA, and emission wavelength 

was 404 nm. The resolution of the detection system was 50 ps. The number of counts on 

the peak channel was 20,000. The number of channels per curve used for the analysis was 

~1000. The timescale was 0.1114 ns/channel. Ludox was used as the scatter to obtain the 

instrumental response function. The program TRFA Data Processor v.1.4 (Scientific 

Software Technologies Center, Minsk, Belarus) was used for the analysis of the 

experimental fluorescence decays. 

A sum of exponentials (Equation 4.2) was used to describe the fluorescence intensity 

decay and the mean fluorescence lifetime was calculated according to equation 4.3. The 

goodness of the fit of a given set of observed data was evaluated by the reduced χ2 ratio, 

the weighted residuals, and the autocorrelation function of the weighted residuals. A fit 

was considered acceptable when plots of the weighted residuals and the autocorrelation 

function showed random deviation around zero, with a minimized χ2 value not larger than 

1.4. Four exponentials were required to described t-Pna fluorescence intensity decays. 

The background (obtained with the blank sample) was subtracted from the decay.  

All the data represents the mean ± SEM of 4 independent samples. 
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4.4.7 Thin Layer Chromatography 

Individual phospholipids classes and neutral lipids were separated by thin layer 

chromatography (TLC). Whatman silica gel-60 plates (20 × 20 cm, 250 μm, GE 

Healthcare, England) were heat-activated at 110°C for 1 h, and samples (with 20 µg of 

phospholipids) were streaked onto the plates. Phospholipids were separated using 

chloroform/methanol/acetic acid/acetone/water solvent system (35:25:4:14:2, Xu et al., 

1996), which separates all major glycerophospholipids. Phospholipids were detected by 

staining with Coomassie brilliant blue (Nakamura & Handa, 1984). The mixture of 

standard phospholipids was constituted by POPC, DPPE, PSM and cholesterol. Their 

concentrations in stock solutions made in chloroform were determined by gravimetry.  
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4.5 Influence of feeding cycle on lipid organization 
and composition of neuronal plasma membrane 

 

A fractionation protocol has been applied to obtain plasma membrane-enriched fractions 

from rat hippocampus (Sun et al., 1988), which were subsequently labeled with the 

molecular probes DPH and t-Pna. This important fractionating step allowed me to 

overcome expected incorporations of the fluorescence membrane probes into intracellular 

compartments (Aresta-Branco et al., 2011; Bastos et al., 2012). These two probes present 

different phase partitioning behavior; DPH distributes indistinctly between gel and fluid 

phases, whereas t-PnA presents a high preference for gel phase domains, being therefore 

an exceptional reporter of this gel phase. Consequently, by combining these two 

membrane probes complementary information is obtained (Castro et al., 2007). 

The fluorescence properties of DPH and t-Pna were characterized by fluorescence 

spectroscopy techniques, mainly steady-state anisotropy and time-resolved fluorescence 

intensity decay.  

 

4.5.1 Fluorescence spectroscopy  

4.5.1.1 Anisotropy measurements 

Fluorescence anisotropy is correlated to the rotational diffusion of probes embedded in 

membranes, which is highly sensitive to the packing of lipid acyl chains. The premise 

that, for both probes used here, the fluorescence anisotropy is high in the gel and low in 

the fluid, allows for a detailed characterization of the lipid phases encountered in the PM 

of rat hippocampus.   

To understand how the whole membrane system may respond to cellular alterations 

brought up by the feeding cycle, the PM-enriched fractions were labeled with DPH, a 

probe that is sensitive to its global properties. Its steady-state fluorescence anisotropy is 

a well-established parameter to report on the alterations undergone in the global order of 

the membrane (de Almeida et al., 2003, 2005; Aresta-Branco et al., 2011).  
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Figure 4.7A shows that the fluorescence anisotropy of DPH is practically the same 

between fed and fasted membranes (0.25 in both membranes), meaning that feeding cycle 

does not alter the global order/fluidity of PM of rat hippocampus. This anisotropy value, 

consistent with another work performed in crude membranes of rat hippocampus 

(Schaeffer et al., 2011), unveils that the PM of rat hippocampus is overall highly ordered 

(anisotropy of DPH higher than 0.2). The fluorescence anisotropy values measured for 

DPH corresponds, roughly, to the one measured for the membrane models mimicking lo 

domains, composed by the 1:1:1 equimolar mixture of POPC/PSM/cholesterol, at 23ºC 

(de Almeida et al., 2003). 

On the other hand, the fluorescence anisotropy of t-Pna (0.27 in both membranes; Figure 

7B) indicates that the PM of rat hippocampus does not contain a significant fraction of so 

domains, whose typical anisotropy values are higher than 0.3. Additionally, the fact that 

anisotropy of t-Pna is only slightly larger than that of DPH indicates that PM of rat 

hippocampus is mainly characterized by ld/lo domains. The quantum yield of t-PnA is 

moderately higher in this phase (Castro et al., 2007). Feeding cycle also does not alter the 

anisotropy of t-Pna, which indicates that the lateral heterogeneity of the most ordered 

domains of rat hippocampus does not change whether the animals have or not been fed. 

Considering the values obtained, one can conclude that lo-like domains probably 

predominate in the plasma membrane crude extract, as expected from the composition 

reported for the neuronal membrane (Ingólfsson et al., 2017) (see also next section).  
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Figure 4.7- Feeding cycle does not influence the order of plasma membrane domains of rat hippocampus 

at the level of the hydrophobic core. The steady-state fluorescence anisotropy of A) DPH and B) t-PnA 

was obtained from isolated plasma membrane of fed (black) and fasted (grey) animals. The values are the 

mean ± SEM of four independent experiments. 
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4.5.1.2 Fluorescence lifetime measurements 

Fluorescence lifetime distribution analysis of membrane probes represents a powerful and 

sensitive tool in characterizing the membrane organization and dynamics through the 

heterogeneity of population of the probe. The quantum yield of the probes used in this 

work behaves differently, i.e., whereas the DPH quantum yield is weakly sensitive to the 

lipid phase, t-PnA presents quantum yield values and fluorescence lifetime components 

that are typical of each lipid phase. Thus, the plasma membrane of rat hippocampus was 

labeled with t-PnA, and the fluorescence decay of the probe was obtained (Figure 4.8).  

 

 

 

The fluorescence intensity decays of t-Pna presented in Figure 8A disclose a similar 

pattern between fed and fasted membranes. A long lifetime component higher than 30ns 

was detected in both cases, which reveals the presence of a gel phase, i.e. a so phase 

(Castro et al., 2009; Bastos et al., 2012). This similitude is also depicted in the values 

obtained for the mean fluorescence lifetime of t-Pna, as follows: 22.5 ± 1.06 ns and 23.3 

± 1.35 ns, for fed and fasted membranes, respectively (Figure 4.8B). Again, these values 

are close to the ones measured in model systems with an equimolar mixture of 

POPC/PSM/cholesterol (de Almeida et al., 2005). These results indicate that the time that 
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Figure 4.8- Feeding cycle does not alter the fluorescence lifetime of t-Pna. A) Fluorescence intensity 

decay and B) mean fluorescence lifetime of t-Pna was obtained from fed (black) and fasted (grey) 

membranes. In A), top panel: the fluorescence intensity decay was better described by a sum of 4 

exponentials (white lines, equation 4.2), and the long lifetime component indicates the presence of gel 

domains in the PM of rat hippocampus. Middle panel: random distribution of weighted residuals of the 

fitting. Bottom panel: autocorrelation of the residuals. In B), results are mean ± SEM of four independent 

experiments. 
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t-Pna spends in an excited state before relaxation to a fundamental state is the same in fed 

and fasted conditions, which means that the physical properties of the ordered domains 

of rat hippocampus does not undergo modifications during the feeding cycle. 

The detection of multi-exponentials allows a deeper analysis on what the heterogeneity 

of lipid domains is concerned. t-PnA presents quantum yield values and fluorescence 

lifetime components that are typical of each lipid phase (Castro et al., 2007, 2009). Hence, 

the relative amplitude of each component gives us an overall idea of the abundance of the 

lipid domains in the PM of rat hippocampus (Figure 4.9).  

 

 

 

 

 

 

Accordingly, the α3 component is representative of the cholesterol-enriched lo domains, 

as the correspondent fluorescence lifetime (τ3) is reminiscent of those obtained for 

ordered domains in mammalian cells (smaller than 21ns) (Schroeder et al., 1984, 1987). 
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Figure 4.9- Analysis of the individual components constituents of the fluorescence lifetime of t-Pna. A) 

Normalized amplitude and B) lifetime (ns) values of the components obtained from plasma membrane-

enriched fractions of hippocampus from fed (black) and fasted (grey) animals. Values are mean ± SEM of 

four independent experiments. C) Fraction of the product 𝛼𝑖𝜏𝑖 weights the relative abundance of lipid 

domains and the preference of t-Pna for highly ordered domains. The first component was not considered 

here because it reflects the most fluid lipid domains, where the t-Pna presents marginal partition, and 

hence, negligible small values (α1<0.1 and τ1<0.05ns), similar to the instrumental response function 

obtained from the fluorescence intensity decay of the scatter used (Ludox) 
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Thus, the larger contribution of α3 (45% and 43% of the total components, in fed and 

fasted membranes, respectively; see Figure 4.9A) is linked to the high demand of neuronal 

cells for lo domains, where the specialized microdomains (or lipid rafts) are exclusively 

localized. In other words, these results indicate that lipid rafts are responsible for almost 

50% of the total lipid domains in PM of rat hippocampus. The second most abundant lipid 

domain is enclosed in α2, with fluorescence lifetime values < 5ns (Figure 4.9B), 

characteristic of (poly)unsaturated phospholipid-enriched ld domains. This component 

accounts for an overall contribution of 30% to the PM. The results concerning α2 and α3 

components suggest that the PM of rat hippocampus is mainly constitutes by ld-lo 

domains, as previously indicated by the results obtained from the fluorescence anisotropy.  

As far as I can tell from the literature, this is the first time that t-Pna is applied to label 

plasma membrane-enriched fractions of rat hippocampus, and, also, the first time that a 

long component typical of the gel phase (>30 ns) is found in plasma membrane of 

mammalian cells. The longer component, α4, rendered the following fluorescence 

lifetime values: 35.5±0.96 and 38.5 ± 1.70, for fed and fasted membranes, respectively 

(Figure 4.9B). This difference is not significant. This result is not quite surprising, for it 

is known the great contribution of sphingolipids for neuronal development, functioning, 

maintenance and survival (Sonnino & Prinetti, 2016; Olsen & Færgeman, 2017). Thus, 

the tendency of sphingolipids to coalesce in the PM into solid (gel)-like domains 

contributed to the detection of such long components. However, it is important to recall 

that these measurements were carried out at 23⁰C, and thus it is possible that at 37⁰C this 

long lifetime component is not detected. In addition, the strong preference of t-PnA for so 

domains (2 to 5-fold), which makes it a unique probe able to detect such kind of domains 

in complex biological membranes, also means that the value of α4 (roughly 15%-20%, 

Figure 4.9A) is a majorant of the actual fraction of such domains in the system under 

study. 

Overall, these results report the natural lipid organization in the PM of rat hippocampus, 

which, apparently, do not suffer any modifications during the feeding cycle. The product 

𝛼𝑖𝜏𝑖, depicted in Figure 4.9C, which weights the abundance of the components in the PM 

with the preference of the t-pna for more ordered domains, summarizes this general 

thought. Remarkably the proportions are evenly distributed among the fed and fasted 

membranes. Not surprisingly, the products 𝛼3𝜏3 and 𝛼4𝜏4 represent the larger proportions 

which confirms, on one hand, the large abundance of cholesterol-enriched lo domains, 
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and, on the other hand, the preference of t-Pna for the most ordered domains (so) of the 

PM.   

 

4.5.2 Biochemical characterization of the plasma 
membrane of rat hippocampus 

4.5.2.1 Lipid content 

The assessment of the lipid content of the plasma membrane of rat hippocampus was 

attained by applying a widely used lipid extraction method (Bligh & Dyer, 1959), with 

which I was able to extract the total lipids from the plasma membrane-enriched fractions 

of fed and fasted animals. Concentration of lipid phosphate was determined subsequent 

to total digestion by perchloric acid using Na2HPO4 as standard (Rouser et al., 1970) and 

cholesterol concentration was estimated by direct treatment of the lipid extracts with a 

reagent composed of ferric chloride dissolved in a glacial acetic acid-sulfuric acid mixture 

(Zlatkis et al., 1953). Subsequently, the phospholipid to cholesterol molar ratios and their 

relative abundance to protein concentration (previously calculated after the isolation of 

PM-enriched fractions) were obtained (Table 4.1). 

 

 

 

From the results presented in table 4.1, it is reasonable to conclude that feeding cycle did 

not exert any influence on the biochemical composition of the PM. All the ratios 

calculated did not disclose significant differences between fed and fasted conditions. This 

is consistent with the indication that the feeding cycle does not change the order and 

lateral heterogeneity (lipid domains segregation in the plane of bilayer phospholipid) of 

the PM of rat hippocampus, as illustrated by the anisotropy and fluorescence lifetime 

analyses. For example, the fact that cholesterol to phospholipid molar ratio did not show 

        

  
Phospholipid/Protein 

(mol/mg) 

Cholesterol/Protein 

(mol/mg) 
Cholesterol/Phopholipida 

Fed 3.8 ± 1.07 1.4 ± 0.37 0.4 ± 0.10 

Fasted 4.3 ± 1.05 2.1 ± 0.36 0.5 ±0.04 

a Molar ratios    

 

Table 4.1- Estimation of cholesterol and phospholipid content of the PM of rat hippocampus. Values are 

mean ± SEM (n=4). 
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any significant differences between fed and fasted animals is an insightful clue that the 

extent of the coalescence of lipids into lipid-raft domains might be the same in the PM of 

hippocampus from fed and fasted animals. In both metabolic conditions, the cholesterol 

content, normalized to the phospholipid concentration (cholesterol to phospholipid molar 

ratio), is roughly defined by 1mol of cholesterol to 2moles of phospholipid, which is in 

agreement with the proportion obtained in native membrane of bovine hippocampus 

(Pucadyil & Chattopadhyay, 2004; Mukherjee et al., 2007; Saxena et al., 2015) and with 

the estimation made above based on DPH fluorescence anisotropy.  

The proteins are also a major component of the PM, as it is well-established that proteins 

possess the potential to organize membrane domains, and indeed protein– protein 

interactions have been regarded for several years as the main factor responsible for the 

stabilization of membrane domains (Prinetti et al., 2009; Sonnino & Prinetti, 2010; Aktas 

et al., 2014; Sezgin et al., 2017). Nevertheless, the cooperation between protein- and 

lipid-driven lateral organizations is utterly important in the creation of membrane 

structural and functional heterogeneity, namely in the formation of specialized 

microdomains (commonly known as ‘lipid rafts’), where specific membrane proteins are 

essentially located. That said, the results obtained for the content of cholesterol with 

respect to total protein (Table 4.1) are another suggestion that the distribution and 

abundance of lipid rafts encountered in the PM of rat hippocampus might be the same 

whether the animals have or not eaten. Furthermore, the phospholipid to protein ratio 

emphasizes the higher abundance of phospholipids in the PM (in relation to cholesterol 

and proteins) and the resistance of PM of rat hippocampus on modifying the molecular 

dynamics and mosaic organization during the feeding cycle.  

 

4.5.2.2 Phospholipid composition of the PM of rat hippocampus 

The phospholipid composition of the PM of rat hippocampus was also addressed by using 

Thin Layer Chromatography (TLC) technique. Total lipids extracted from hippocampal 

plasma membrane were separated with the following solvent system: chloroform–

methanol–acetic acid–acetone–water, in the ratio 35:25:4:14:2 (Xu et al., 1996). 

Phospholipids were detected by staining with Coomassie brilliant blue (Nakamura & 

Handa, 1984).  
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The silica gel plate in figure 4.10 depicts the main phospholipids of the PM of rat 

hippocampus, being PC and PE the most predominant, followed by SM. This is in 

agreement with results obtained by other authors, from experiments performed with rat 

hippocampal membranes (Ulmann et al., 2001; Murthy et al., 2002). The stained spots 

between PE and PC might be related to the presence of PI and/or PS (Xu et al., 1996). 

However, this identification remains elusive as I did not use any standards of these 

phospholipids. Regarding the cholesterol, either it was totally eluted, or the staining 

method was not adequate for sterol identification. The lanes 7 and 8 show smeared dots 

at the starting line which indicates that the application of these samples did not succeed. 

However, the overall qualitative comparison of the spots between fed and fasted lanes 

allows me to state that the feeding cycle did not have a major influence on the 

phospholipid composition of rat hippocampal membranes.  

  

Figure 4.10- Separation of phospholipids constituents of the PM of rat hippocampus by one-dimensional 

thin layer chromatography. The plate contains 8 lanes with samples from fasted (lanes 1-4) and fed (lanes 

5-8) animals. 20µg of phospholipids were applied at the starting line spots. A mixture of standard 

phospholipids (10µg per phospholipid; SM, PC, PE and cholesterol) was applied in lane 9.   
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4.5.3 Conclusions on the influence of feeding cycle on 
the plasma membrane of rat hippocampus 

The results disclosed by the fluorescence anisotropy of DPH indicate that fed and fasted 

animals have similar hippocampal global membrane order and, together with the 

anisotropy of t-Pna, suggests that the hippocampus of both is essentially constituted by lo 

domains, functionally known as lipid-raft domains. These are characterized by a higher 

density of lipid-protein interactions, where the ion channels studied on this thesis are 

located (Tsui-Pierchala et al., 2002; Lee, 2006; Dart, 2010; Jiang & Gonen, 2012). 

Furthermore, as indicated by the individual analysis of the components of fluorescence 

lifetime of t-Pna, the abundance of these lipid-raft domains is virtually the same during 

the feeding cycle. This might be thought as a safeguard mechanism of the neurones to the 

peripheral metabolic variations. Also, the relative contribution of the remaining lipid 

domains to the mean fluorescence lifetime of t-Pna is identical in fed and fasted animals.  

The thesis that the feeding cycle has no influence on the dynamics of neuronal membranes 

is further supported by the fact that lipid content of the PM was kept unaltered whether 

the animals were or not fed. The phospholipid composition, as well as the ratios calculated 

between the phospholipid, cholesterol and protein concentrations did not change 

significantly between the samples extracted from the hippocampus of fed and fasted 

animals.      

The experiments carried out cannot exclude that more subtle changes might be occurring. 

For example, a complete lipidomic profiling of the lipid extracts could reveal changes 

that could not be detected by TLC involving minor lipids involved in signaling, such as 

PIPs. Also, there are solvent extraction methods that might be more adequate for the full 

extraction of gangliosides, which could then be analyzed by TLC using solvent systems 

that can separate different ganglioside subtypes. On another hand, the use of other 

fluorophores with a preferential location at more surface regions of the membrane would 

relay other biophysical properties that were not assessed in this thesis, such as order and 

hydration of the PM at the membrane/water interface. Thus, despite that the amount and 

packing of lipid raft domains did not change, as indicated by the DPH and t-Pna results, 

it is not clear yet whether the feeding cycle influences or not the lipid-protein interactions, 

at least, at a surface level.  
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In summary, this chapter provides compelling evidence on the maintenance of the overall 

organization and dynamics of neuronal membranes during the feeding cycle.  
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5 Final considerations 

5.1 General discussion 

The function of hippocampus as a hub for energy balance is a subject of broad and current 

interest. This thesis further exploits this point by giving insights into the mechanisms 

underlying the adaptation of intrinsic neuronal membrane properties to variations of 

physiological metabolism, brought up by the feeding cycle. 

A previous work performed on rat hippocampal CA1 neurones had suggested a marked 

impact of feeding cycle on the neuronal excitability (Lima et al., 2012). Here, I have 

drawn a set of experiments to further investigate such effect and, accordingly, outline 

possible underlying mechanisms. Specifically, I have addressed the hypothesis of the 

involvement of voltage gated ion channels into the influence of feeding cycle upon 

neuronal activity. 

The biophysical behaviour of voltage gated Na+ and Ca2+ currents was analysed, given 

their importance in the initiation and propagation of action potentials (INa), and influence 

on the influx of the most widely known second messenger, Ca2+, into the neurones (ICa).  

The electrophysiology findings were obtained in isolated neurones. The enzymatic and 

mechanical digestion steps used in this methodological approach might confer an 

unpredictable outcome with respect to structure and shape of the neurones. In order to 

duly circumvent this technical idiosyncrasy, I have used neurones with identical shape 

and appearance (for more details, see section 3.1.4). Such procedure diminished the 

variability of the initial conditions. The efficacy of this visual selection was confirmed by 

the similarity of the mean membrane capacitance (pF) values observed between all fed 

(9.3 ± 0.31pF; n=72) and fasted (8.8 ± 0.4pF; n=81) neurones used in this thesis. Hence, 

as the feeding cycle did not influence the membrane capacitance of neurones, the 

physiological differences here outlined are attributed to the actual ion channels` 

biophysical properties. For example, the conspicuous effect of feeding cycle upon the Na+ 

current density (pA/pF) reflects a real increase of the current amplitude (pA, not 

normalised; data not shown).    

The larger Na+ channel density and higher single-Na+ channel conductance assigned to 

fed neurones are the foundations of the significant differences observed in the whole-cell 
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Na+ current output. Specifically, increased current density (~1.5 fold) and larger window 

current (meaning more channels available to respond to activation), upon feeding, 

confirm that the feeding cycle alters inward flux of Na+ ions, which, in turn, influence 

neuronal excitability. Furthermore, the overall change in the number of channel 

population due to the feeding cycle can be virtually quantified. Dividing the mean 

maximum conductance of whole-cell recordings by the mean unitary conductance 

calculated in single-channel recordings, one yields an estimate of the number of 

functional channels (Ogden, 1994; Sakmann & Neher, 1995; Ashcroft, 2000; Hille, 2001) 

present at the surface of the neurones. Following this rationale, we have obtained 

1.61 × 109 and 1.38 × 109 sodium channels per cm2 of the soma of CA1 pyramidal cells, 

in fed and fasted conditions, respectively.  

On the other hand, the effect of feeding cycle upon the whole-cell Ca2+ currents was not 

so evident, probably because the fact that intracellular calcium concentration ([Ca2+
i]) 

must be tightly regulated. Any small alteration in [Ca2+
i] results in a substantial neuronal 

physiological output given that numerous intracellular biochemical processes are 

modulated by Ca2+. Amongst them, the processes that reinforce the synaptic performance 

have to be highlighted. The influence of Ca2+ ions upon such phenomena is well-

established. Ca2+ modulates several preparatory steps of the synaptic processes, mainly 

the release of neurotransmitters into the synaptic cleft. Thus, one may state that the 

predominance of voltage gated Ca2+ channels that contribute to a major Ca2+ entry into 

the neurones will induce a major Ca2+-dependent neuronal response. In this study I have 

showed that fed neurones do gather greater conditions to a boost of Ca2+ influence on 

neuronal activity, when compared to fasted neurones.  

In conclusion, the results obtained from both currents – INa and ICa - point out to an 

augmented synaptic performance, after feeding, given the putative increased neuronal 

excitability levels, brought up by INa, and the probable potentiation of intracellular Ca2+-

dependent signal transduction, with respect to ICa. Together, these two observations may 

render optimal conditions for supporting synaptic plasticity phenomena in fed neurones. 

In this way one could establish a bridge between the two roles of hippocampus, either as 

a substrate for learning and memory and as a centre of energy homeostasis. Specifically, 

the results presented here endorse the role of hippocampus on regulating the start of a 

new meal, by the formation of meal episodic-related memories (Higgs, 2002, 2008; 

Henderson et al., 2013; Parent, 2016a, 2016b; Hannapel et al., 2017) 
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The observed influence of feeding cycle on the biophysical and molecular expression of 

voltage-gated Na+ and Ca2+ channels did not have repercussions on the lipid environment 

of the plasma membrane. The results presented in this thesis indicate that the organization 

and lipid content of the plasma membrane of rat hippocampus did not endure any 

notorious variation during the feeding cycle. Such observation is consistent with the 

resemblance of the mean membrane capacitance values between fed and fasted neurones 

(see above). The absence of meal driven alterations on the lipid membrane environment 

may be regarded as a homeostatic mechanism of central nervous system neurones to 

preserve their biological functions regardless the peripheral metabolic state. Thus, despite 

the variations in the biophysical and molecular behaviour of voltage-gated Na+ and Ca2+ 

channels imbedded in the plasma membrane, the overall organization and dynamics of 

neuronal membranes must be kept under strict parameters, denotating that it is tightly 

regulated, in order to maintain the structure and function of the neurones. In other words, 

neurones must have a shield mechanism to preserve their functional viability, either when 

the animals are fed or maintained in fasting conditions for a period of, at least, 20 hours, 

which corresponds to the maximum fasting time spanned in this study. The suggestion 

that the relative contribution of lipid-raft domains did not undergo any alteration during 

the feeding cycle is a highly relevant indicator of this protecting mechanism, as these 

domains segregate all the molecules responsible for the signaling to the interior of the 

cells. 

Furthermore, the variation observed in the τhslow of INa is not linked to alterations in the 

lateral heterogeneity of the plasma membrane, as suggested in the discussion section of 

the voltage-gated Na+ currents chapter. However, it must be noted that the interactions 

between the channels and the lipids in the vicinity of the channels were not exploited. The 

differences obtained in the τhslow may stem from the greater channel density, since more 

channels may take, on average, more time to complete the inactivation process. 

 

Further translational perspective – implications of diet on excitability, seizure 

controlling and experimental design considerations 

Most of the discussion throughout the thesis was held by the effect of the post prandial 

period upon the neuronal activity. However, this work can be viewed from a whole 

distinct perspective, by considering the benefits of fasting. This is a subject which is 
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undergoing intense study due to its impact on epidemic diseases like obesity, and 

subsequent consequences on neurological diseases.    

Several clinical studies point to a clear influence of diet in neurological disorders, such 

as epilepsy and Alzheimer´s disease. For instance, fasting protocols (Intermittent fasting 

diet, caloric restriction diet) or diet protocols that pretend to mimic fasting metabolic 

states (ketogenic diet) are thought to develop beneficial effects on mitigating the 

frequency of epilepsy seizures (Cunnane et al., 2002; Likhodii et al., 2003; Papandreou 

et al., 2006; Bough & Rho, 2007; Hartman & Vining, 2007; Rho, 2017). Such observation 

may be related with a constant production of ketone bodies induced by fasting (Cunnane 

et al., 2002; Likhodii et al., 2003; Mattson, 2008; McNally & Hartman, 2012; Lima et 

al., 2014). However, the molecular mechanisms that overrule such effects are not well 

understood. Here, the voltage-gated Na+ channels, widely known to play a central role in 

the genesis and alleviation of epilepsy (Goldin, 1999; Denac et al., 2000; Eijkelkamp et 

al., 2012; Mantegazza & Catterall, 2012; Kaplan et al., 2016; Deuis et al., 2017), are 

regarded to mediate the impact of diet and metabolism in epilepsy. Changes in the 

biophysics of the Na+ channels may contribute to seizure susceptibility as they are 

exquisitely sensitive sites for determining neuronal excitability. Thus, increased 

inhibition or decreased excitability, as observed in fasted neurones, if sufficiently intense, 

may influence the normal functioning of the brain in addition to controlling seizures. In 

contrast, in fed conditions, increased sodium current amplitude, associated with 

depolarizing shift in the voltage dependence of inactivation and hyperpolarizing shift in 

the voltage dependence of activation, may result in an increase of AP firing frequency 

which, eventually, may fallout in an epileptic activity. In conclusion, the results showed 

for fasting condition may have a relationship with the present notion in which a fasting 

diet slows down the activity of neurones, preventing the outburst of epilepsy seizures 

(Likhodii et al., 2003; Bough & Rho, 2007; Fond et al., 2013; Longo & Mattson, 2014; 

Rho, 2017). Indeed, a previous report on whole-cell Na+ currents of hippocampal CA1 

neurones of chronic epileptic rats showed electrophysiology characteristics reminiscent 

of those reported here for fed neurones (Ketelaars et al., 2001). Additionally, it is 

noteworthy to mention that the Na+ channels highlighted in this report - Nav1.1 and 

Nav1.2 - have been implied in epilepsy seizure activity (Eijkelkamp et al., 2012; 

Mantegazza & Catterall, 2012; Kaplan et al., 2016; Deuis et al., 2017).  
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These results constitute a major contribution to ameliorate the understanding of the 

molecular mechanisms by which fasting affects central nervous system neurones. The 

promotion of Na+ channels as molecular determinants in the impact of feeding cycle on 

brain function is of the utmost importance because they can help to explain the 

underpinning molecular mechanisms of several epidemiologic studies that relate fasting 

with seizure control.  

This thesis also infers a very practical implication on how neuroscientists should look at 

rat preparations as experimental models. The results outlined here raise the levels of 

awareness and control one should have on what the feeding-state of each experimental 

design may concern. The present report shows that variations in electrophysiological 

recordings may solely due, after all, to the fact that a given animal have eaten or not. 

Thus, the feeding cycle must be a condition tightly controlled in all electrophysiology 

experimental designs. 

 

5.2 Future perspectives  

The findings presently reported might be also translated into the influence of peripheral 

physiological metabolism upon cognitive processes, since hippocampus is considered 

central in operations related with memory and learning. It is plausible to envisage 

different firing patterns in hippocampus slices from fed and fasted rats, which in the long 

run may affect consolidation of cognitive processes such as learning and memory. Scaling 

out these findings into a more physiological context will enable a more robust 

interpretation. Thus, whole-cell current clamp recordings in hippocampal CA1 neurones 

within brain slices obtained from fed and fasted rats will help us to confirm and 

understand better the higher levels of neuronal excitability This would be done by 

studying the action potential shape, firing patterns and induction thresholds. Finally, 

synaptic current measurements in hippocampal slices will also be highly valuable to 

understand further if there is a potentiation of synaptic function through over feeding and, 

accordingly, provide functional implications of physiological metabolism.  

Furthermore, to support the interpretation of the results here presented and to answer 

questions raised by this work, the following experiments/studies are proposed: 
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• Immunostaining studies (western blotting and/or immunocytochemistry) will be 

applied to assess the expression of other Nav isoforms, namely Nav1.1, in fed 

and fasted neurones.  

• Voltage activated Ca2+ currents will be recorded from the isolated neurones 

using different selective blockers to confirm the nature of the currents involved 

in the tidal variation brought up by the feeding cycle.  

• Measurements of cytosolic Ca2+ concentration can be used to confirm the larger 

entry of Ca2+ into the fed neurones. This can be done on single neurones by 

using ester-loaded with the fluorescent indicator Fura2 and ratiometric 

measurements. 

• Study the lipid organization at the vicinity of the Na+ channels, in order to 

confirm if the plasma membrane exerts any effect on the conformational 

rearrangements of the outer pore of the Na+ channels. For such, it is important to 

apply fluorescence spectroscopy studies on fluorophores that bind to the 

extracellular pore of the channels, such as fluorescent and photoactivatable 

fluorescent derivatives of tetrodotoxin (TTX, Angelides, 1981) or fluorescently 

labelled derivatives of saxitoxin (STX, Ondrus et al., 2012). 
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6 ANNEX I 

6.1 Hippocampus – historical perspective of anatomy 
and circuitry  

There are several reasons the hippocampus has attracted the interest of scientists (…) The 

hippocampus has something for everyone (Andersen et al., 2007) 

Hippocampus is a complex brain structure embedded deep into the temporal lobe. The 

hippocampus received its name from the Italian anatomist Julius Caesar Arantius in the 

late 16th century (1587), who considered the three-dimensional form of the human 

hippocampus to be reminiscent of the seahorse. The Latin word hippocampus was then 

coined from the Greek word hippokampos (hippos meaning “horse” and kampos meaning 

“sea monster”). Its terminology has suffered continuous alterations, which resulted in a 

certain vagueness regarding the terminology and anatomical description of the 

hippocampus (Walther, 2002). Currently, it is accepted that the term hippocampus is 

applied for the region of the hippocampal formation that comprises the CA (cornu 

ammonis, latin for ‘horn of the ram’) fields (CA3, CA2, CA1), identified by the 

neuroanatomist Rafael Lorente de Nó (Lorente de Nó, 1934). In contrast, the term 

hippocampal formation is applied to a cytoarchitectonic group of distinct contiguous 

regions including the dentate gyrus, hippocampus, subiculum, presubiculum, 

parasubiculum, and entorhinal cortex. These six regions are linked, one to the next, by 

unique and largely unidirectional (functional) neuronal pathways. 

Ramon y Cajal`s monumental effort (Ramón y Cajal, 1893), including an analysis of all 

portions of the hippocampal formation in several animal species, allowed him to propose 

a first functional circuit diagram of this region. Following his two fundamental laws – 

Neuron Doctrine and Dynamic Polarization - he placed arrows indicating his view of the 

direction of impulse flow through the hippocampal formation (Figure 6.1). Briefly, the 

former principle states that the nerve cell (neuron) is the structural and functional unit of 

nervous system circuitry, and nerve cells interact with other nerve cells by way of contact 

or contiguity, contrasting with the idea of direct continuity between nerve cells as stated 

by the Reticular Theory, held by a contemporary scientist, Camilo Golgi (1886). The 

second law states that information flows through a nerve cell, and thus through neural 

circuits, in one direction - input to the dendrites, output through the axon -, which, once 
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again, contradicts Golgi´s concept regarding dendrites function as being the roots of the 

nerve cells (Newman et al., 2017).  

All the studies undertaken by Ramón y Cajal came, ironically, from preparations made 

with Golgi’s method. They ended up sharing the Nobel Prize for Physiology or Medicine 

in 1906; Golgi had provided the method and Cajal had given us new and penetrating 

insights into the structure of the brain and spinal cord.  

 

 

 

 

  

 

 

 

 

 

 

 

6.1.1 Intrinsic hippocampal circuit 

 The flow of signals between hippocampal neurones is unidirectional, since the output of 

a given structure of the hippocampal formation does not flow back to the previous 

structure from which it received an input. That said, much of the neocortical input 

reaching the hippocampal formation does so through the entorhinal cortex, which can, for 

convenience, be considered the first step in the intrinsic hippocampal circuit (Figure 6.2).  

Figure 6.1- Santiago Ramon y Cajal and his famous drawing of the hippocampus in his 1911 book 

Histologie de Système Nerveux. The arrows give his interpretation of likely impulse direction. Taken 

from Andersen et al., 2007 
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Cells in the superficial layers of the entorhinal cortex give rise to axons that project, 

among other destinations, to the dentate gyrus. The projections from the entorhinal cortex 

to the dentate gyrus form part of the major hippocampal input pathway called the 

perforant path. Although the entorhinal cortex provides the major input to the dentate 

gyrus, the dentate gyrus does not project back to the entorhinal cortex. Likewise, the 

principal cells of the dentate gyrus, the granule cells, give rise to axons called mossy fibers 

that connect with pyramidal cells of the CA3 field of the hippocampus. The CA3 cells, 

however, do not project back to the granule cells. The pyramidal cells of CA3, in turn, 

are the source of the major input to the CA1 hippocampal field (the Schaffer collateral 

axons). Following the pattern of its predecessors, CA1 does not project back to CA3. The 

CA1 field of the hippocampus then projects unidirectionally to the subiculum and to the 

Figure 6.2- Lamellar or transversal circuitry of the hippocampal formation. A) Neurones in layer II of the 

entorhinal cortex (EC) project to the dentate gyrus (DG) and the CA3 field of the hippocampus proper via the 

perforant pathway. Neurones in layer III of the entorhinal cortex project to the CA1 field of the hippocampus 

and the subiculum via the perforant and alvear pathways. The granule cells of the dentate gyrus project to the 

CA3 field of the hippocampus via mossy fiber projections. Pyramidal neurones in the CA3 field of the 

hippocampus project to CA1 via Schaffer collaterals. Pyramidal cells in CA1 project to the subiculum. Both 

CA1 and the subiculum project back to the deep layers of the entorhinal cortex. B. Projections along the 

transverse axis of the hippocampal formation; the dentate gyrus is located proximally and the entorhinal cortex 

distally. Taken from (Andersen et al., 2007)  
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entorhinal cortex, closing the hippocampal processing loop that begins in the superficial 

layers of the entorhinal cortex and ends in its deep layers. 

 

6.2 Rat hippocampal CA1 neurones  

The rat hippocampal formation is an elongated, banana-shaped structure. The long axis 

of the hippocampal formation is referred to as the septotemporal (or dorsal-ventral) axis 

and the orthogonal axis as the transverse axis (Figure 6.3). 

 

 

 

 

 

 

 

 

 

 

 

 

The transversal axis unveils the laminar/layer organization of the hippocampus, which is 

generally similar for all the fields of the hippocampus. The principal cellular layer is 

called the pyramidal cell layer, which is tightly packed in CA1 (Figure 6.4). The narrow, 

relatively cell-free layer located deep to the pyramidal cell layer is called the stratum 

oriens. This layer contains the basal dendrites of the pyramidal cells and several classes 

of interneurones. The stratum radiatum is located immediately above the pyramidal cell 

layer in CA2 and CA1. The most superficial layer of the hippocampus is called the 

stratum lacunosum-moleculare.  

Figure 6.3 - Line drawing of the rat brain showing 

the septotemporal and transverse axes of the 

hippocampal formation 
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Figure 6.4- Anatomy of rat hippocampal CA1 neuron. A) Camera lucida drawing of a CA1 pyramidal 

neuron from the midportion of the field. Note that side branches originate from the primary dendrites 

throughout the full extent of the stratum radiatum. Note also the curved and irregular trajectories of 

dendritic branches in the stratum lacunosum-moleculare. The axon of this neuron is indicated by an 

arrowhead. pcl, pyramidal cell layer; sl-m, stratum lacunosum-moleculare; so, stratum oriens; sr, stratum 

radiatum. Bar 100 µm. B) Photomicrographs of intracellularly labeled pyramidal cells in CA1 from rat 

hippocampus. Small arrows indicate the initial portion of the axon. Adapted from (Ishizuka et al., 1995).    

 

CA1 pyramidal cells show remarkable homogeneity of their dendritic trees. As well as 

being more homogeneous, they are also, on average, smaller than CA3 cells. The total 

dendritic length averages approximately 13.5 mm, and the average size of CA1 cell 

somata is about 193 µm2 or 15 µm in diameter (Bannister & Larkman, 1995a, 1995b; 

Ishizuka et al., 1995). 

The CA1 pyramidal neuron is arguably the most studied class of neuron in the brain, and 

probably better understood from both structural and functional points of view than any 

other type of neuron in the hippocampus. There are enough reasons that justify why most 

of the studies have focused on the CA1 region: a) Relative ease of obtaining field potential 

recordings and intracellular recordings in this region; b) Schaffer collateral axons from 

CA3 form a homogeneous pathway that is easily activated to study synaptic transmission 

and plasticity; c) Studies of CA1 are more numerous than adjacent CA3 because it is 

A B
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generally easier to keep cells in this region alive and healthy in slice and acutely isolated 

preparations; d) CA1 pyramidal neurones have been the focus of several studies of 

dendritic integration because of the large primary apical dendrite, from which dendritic 

patch-clamp recordings can be obtained routinely. 

In fact, the electrophysiological studies on CA1 neurones were of the utmost importance 

as they have contributed to tremendous advances in understanding synaptic transmission, 

integration, and plasticity in the CNS. Thus, the CA1 subfield lends optimal conditions 

to study the effect of feeding cycle on the behaviour of ion channels present at the surface 

of rat hippocampal neurones.  
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7 ANNEX II 

7.1 Voltage clamp techniques  

Much of what we know about the properties of ion channels in cell membranes has come 

from experiments using voltage clamp (VC). The method was first developed by Cole 

(Cole, K.S, 1949) and Hodgkin et al. (Hodgkin & Huxley, 1952a, 1952b) for use with the 

squid giant axon.  

In a VC experiment, the membrane potential of a cell is controlled from an external device 

(the VC amplifier), with the goal of measuring the ionic currents that flow through the 

channels in the cell membrane at this given command potential. This requires an active 

compensation of the current flow across the membrane. The membrane potential is 

measured and compared to the command signal; the VC amplifier compensates by active 

charge injection the deviation to keep the error as small as possible. The quality of the 

current recording is mainly determined by this error signal. In summary, the method 

allows ion flow across a cell membrane to be measured as electric current, whilst the 

membrane voltage is held under experimental control with a feedback amplifier. The 

usefulness of the voltage clamp stems firstly from the fact that it allows the separation of 

membrane ionic (through open ion channels) and capacitive (charging of the membrane 

capacitance) currents; when the potential is held constant, there will be no capacity 

current and the ionic current will be the same as the total membrane current. A further 

advantage is that it prevents the regenerative potential response (the action potential) that 

is triggered by the activation of voltage-gated ion channels. Thus, it enables the currents 

responsible for the action potential to be investigated in a quantitative way. 

Many variants of the VC technique have evolved since its advent, and voltage clamp 

analysis has been extended to a wide range of tissues.  

This thesis encompassed VC methods that are used to measure currents from 1) whole 

cells or large areas of membrane containing at least a few hundred channels -macroscopic 

currents or whole-cell currents - and from 2) an isolated small patch of membrane 

containing just a few (ideally, one) ion channels – microscopic or single-channel currents.  
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7.1.1 Patch clamp configurations  

Patch clamp recordings are the basis of modern electrophysiology, and their importance 

to related research fields cannot be underestimated. Patch clamp recordings are based on 

the use of blunt (as oppose to sharp microelectrodes used in intracellular recordings), fire 

polished microelectrodes that form a so-called “giga-seal” with the cell membrane. The 

invention of the giga-seal, and development of the various patch methods in the late 

1970’s by Erwin Neher and Bert Sakmann (Neher & Sakmann, 1976) were rewarded with 

the Nobel Prize for Physiology or Medicine, in 1991, “for discoveries concerning the 

function of single ion channels in cells”. Their work revolutionized cellular biology and 

neuroscience and allowed the electrophysiologists to extend their knowledge on the 

underlying mechanisms of ion channels functioning. 

Originally the term “patch clamp” referred to voltage clamp recordings of currents 

through individual ionic channels from an isolated patch of membrane. The principle of 

the technique is to electrically isolate a patch of membrane from the external solution and 

record current flowing into the patch. This is achieved by pressing the tip of a heat-

polished pipette (with an opening of 1–3 µm, fire polished) onto a clean membrane. Once 

the tip of the electrode touches the cell membrane at the outer surface, a gentle negative 

pressure is applied to the electrode interior. This sucks the membrane tightly to the edges 

of the electrode tip, resulting in a very tight seal between pipette tip and membrane, with 

a resistance greater than 10GΩ, hence the term "giga-seal". This enables the recording of 

currents in the pA (10-12A) or fA (10-15A) range with low background noise. After giga-

seal formation, it is now possible to record either currents from the entire cell using the 

whole-cell (WC) recording mode or single channel activity with cell- attached, inside-out 

or outside-out modes (Figure 7.1). WC voltage clamp and inside-out patch clamp are the 

configurations presently used in this thesis, whose fundamentals were fabulously 

described in a reference paper by Hamill, O. P. and co-workers (Hamill et al., 1981). WC 

was applied to record Na+ and Ca2+ currents, whilst inside-out patch clamp was used to 

record single-Na+ channel activity.   
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7.1.1.1 Whole-cell and inside-out patch clamp recordings – 
technical singularities and procedure 

Upon formation of a giga seal (cell-attached configuration in figure 7.1), withdrawing the 

pipette from the cell (in a sharply upwards movement) results in an excised membrane 

patch with its cytoplasmic side exposed to the bath solution - Inside-out patch 

configuration. The likely formation of vesicles at the tip of the pipette upon this 

movement is prevented by the chelation of calcium ions in the bath solution (Hamill et 

al., 1981). This configuration has the advantage of allowing the control of the 

transmembrane voltage (inverted in this case), as well as the access to the intracellular 

part of the channels. This is extremely important for the study of the influence of 

cytoplasmic constituents or second messengers on channel activity or address events that 

occur at the cytoplasm milieu of the channels (e.g., removal of fast inactivation by 

application of proteases) (Patlak & Horn, 1982; Horn & Vandenberg, 1984; Vandenberg 

Figure 7.1- Schematic representation of 

the procedures for various recording 

configurations. A fine tipped (about 0.5 to 

5µm in tip diameter) glass patch electrode 

is used as a current monitor and the voltage 

in the pipette is held at a desired level. The 

first step in applying the technique is the 

formation of a high resistance seal between 

the patch electrode and the surface of the 

cell. Once the seal is established, several 

recording configurations are available to 

the investigator, and these fall into two 

broad categories. On the one hand, current 

flow through the patch of membrane under 

the electrode tip can be monitored, in which 

case single channel currents are usually 

recorded. Alternatively, for whole cell 

recording, the patch of membrane can be 

disrupted so that the electrode monitors 

current flow through the entire cell surface. 

Taken from (Lehmann-Horn & Jurkat-Rott, 

2003) 
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& Horn, 1984; Patlak, 1991). However, the lower structure stability of the excised patch 

(when compared to cell-attached patch), along with the loss of cytoplasmic constituents 

might impair the intrinsic behavior of ion channel proteins. Moreover, the signal-to-noise 

output is a major concern, as the currents are recorded in a pA range, instead the nA 

(1000-fold) obtained in WC (see Table 7.1). Hence, to attain a proper single channel 

recording with low noise levels, one needs to comply with a demanding setting up, whose 

laborious steps are described in the materials and methods section of chapter 3 (section 

3.1.6).  

Instead of withdrawing the patch pipette from the membrane after seal formation, 

application of gentle suction will disrupt the membrane patch directly under the pipette, 

leading to the formation of a low resistance (in the MΩ range) pathway between the cell 

interior and the solution in the pipette – whole-cell (WC) configuration. The interior of 

the cell and the solution of the pipette become contiguous and the currents passing 

through the entire cell membrane are recorded. This configuration is equivalent to 

intracellular recording with sharp microelectrodes and has the advantage that it can be 

applied to very tiny or flat cells that would be impossible to impale. However, because 

the cell interior is being perfused with pipette solution, this configuration has the 

disadvantage that certain cytosolic factors important for cellular function may be washed 

out.  

Formation of the WC configuration becomes immediately apparent by the sudden 

appearance of large capacity transients at the beginning and end of the test pulse, which 

reflect the charging and discharging of the capacitance of the cell membrane. These 

transients can be minimized using the whole-cell capacitance (Cm) cancellation and series 

resistance (Rs) compensation dials on the patch-clamp amplifier. This allows a crude 

estimation of the cell capacitance (and hence cell size) to be made because cell 

membranes have a constant specific capacitance of 1µF/cm2. Smaller Cm and Rs values 

render better voltage clamping conditions, as the membrane reaches the steady-state 

voltage command potential rather faster.  
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Single-channel recordings, thus, have their own particularities when compared to WC. 

The most relevant differences are depicted in table 7.1, highlighting the conditions used 

in this work.  

 

 

 

 

 

 

7.1.2 Principles of patch-clamp recording – technical 
instrumentation 

The patch pipettes are mounted on a pipette holder that connects the Ag wire electrode 

(coated with AgCl), immersed into the pipette solution, directly to the headstage amplifier 

(Figure 7.2). Patch clamp amplifiers are based on a current-to-voltage (I/V) converter 

circuit, which transfers the pipette current into an equivalent output voltage. Therefore, 

they cannot measure membrane potentials directly. The key element in the patch clamp 

recording is the feedback amplifier in the headstage (Figure 7.2, inset).  

 

 

 

 

 

 

Single-channel (inside-out) 

patch clamp
Whole-cell 

Pipette

Tip diameter (µm) 1 to 2 2 to 3

Rod length (cm) ~3 ~5

Shank Coating Sylgard -

Resistance 13-25 MΩ 3-5 MΩ

Outside/Inside diameter 

(mm)
1.5/0.86 1.5/1.05

Capacitance ↓ ↑

Seal resistance >10GΩ MΩ

Recording currents pA (10-12A); fA (10-15A) nA (10-9A)

Table 7.1- Main technical differences between the two patch clamp configurations used in this study. 
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The feedback amplifier controls the membrane potential. Current flows from the output 

of the amplifier when the voltage of its two inputs is not equal. The amplifier receives 

two inputs: a positive input from a command potential output source of variable setting 

(Vref), which is determined by the user, and a negative input from the pipette potential 

(Vp). When both inputs are at the same potential, the output will be zero. When a 

discrepancy arises between the two inputs, the amplifier strives to null this discrepancy 

and force Vp to equal Vref. This is achieved by the amplifier passing current across the 

Headstage

Circuitry of the Feedback 
amplifier in the headstage

Figure 7.2- Patch clamping setup. The pipette, coated with a hydrophobic substance to reduce the pipette 

capacitance, is attached to a pipette holder, which connects the pipette to the electronic circuitry by means 

of a silver chloride electrode. The inset highlights the schematic diagram of the headstage current/voltage 

amplifier circuitry. The gain (Vo/ip, mV/pA) is set by the feedback resistor Rf to the input. This ensures that 

the input voltage Vi is kept nearly equal to the input voltage Vref. Adapted from (Morgan & DeCoursey, 

2007) and (Ogden & Stanfield, 1994).     

Vi 

Vref 

Vo 
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feedback resistor, Rf, to drive the inside of the cell to the reference potential. This current 

supplied by the feedback amplifier is equal and opposite to the current carried by ions 

flowing across the membrane. The current flowing through the pipette (Ip) to clamp the 

cell membrane is proportional to the voltage drop (Vout - Vp) across the resistor, Rf, 

according to Ohm's law 

−𝑖𝑝𝑅𝑓 =  𝑉𝑜𝑢𝑡 − 𝑉𝑟𝑒𝑓                                                                                  (Equation 7.1) 

In practice, therefore, pipette current is monitored by a differential amplifier that 

constantly measures the difference between Vref and Vout. This subtraction, which happens 

in a later stage on the circuitry, generates an output voltage that is purely proportional to 

the patch membrane current (recorded as opening and closures of individual channels). 

Thus, since the potential in the pipette is equal to Vref, the patch membrane potential can 

be held in a steady state level or changed in stepwise fashion by changing Vref. During 

recordings, pulses from a computer (Vcommand) were used to change Vref in a stepwise way.  

From Equation 7.1, it follows that the sensitivity of current measurement is inversely 

proportional to the size of the Rf, with a large resistor enabling measurement of smaller 

current amplitudes and lower background noise levels. For recording currents in the pA 

range, a high value feedback resistor Rf is needed (up to 50 GΩ). In the inside-out 

configuration presently used, another approach suitable for high-resolution recordings has 

been applied - the “capacitive feedback” technique (also called integrating headstage). 

Here, a capacitor replaces the feedback resistor and the headstage circuit becomes an 

integrator. This approach has a superior noise performance compared to the resistive 

feedback, as long as the input (stray) capacitance can be kept low (clearly below 10 pF). 

In the whole cell configuration, larger currents are needed (in the nA range), therefore, 

the feedback resistor is in the range of a few ten MΩ. Subsequently, the voltage drop 

across the pipette resistance cannot be ignored, and needs to be compensated 

electronically, by adjusting the Rs compensation dial on the electromer.  
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