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To Inês, and all the little girls out there, whom deserve a better tomorrow. Stay strong, 

be humble, and keep going. Look within, where it lies all the strength and resilience to 

struggle, to fight vigorously, and to strive! It really does not matter what road you take… 

 

 

The Road Not Taken 

 

Two roads diverged in a yellow wood, 

And sorry I could not travel both 

And be one traveler, long I stood 

And looked down one as far as I could 

To where it bent in the undergrowth; 

 

Then took the other, as just as fair, 

And having perhaps the better claim, 

Because it was grassy and wanted wear; 

Though as for that the passing there 

Had worn them really about the same, 

 

And both that morning equally lay 

In leaves no step had trodden black. 

Oh, I kept the first for another day! 

Yet knowing how way leads on to way, 

I doubted if I should ever come back. 

 

I shall be telling this with a sigh 

Somewhere ages and ages hence: 

Two roads diverged in a wood, and I– 

I took the one less traveled by, 

And that has made all the difference. 

 

 

– Robert Frost – 
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Abstract 

 

Understanding the factors that constrain adaptation, namely in a colonization scenario, has been 

a major topic in evolutionary biology and was the chief focus of this thesis. Using a highly-

replicated experimental evolution design with well-characterized Drosophila melanogaster 

populations, we aimed to respond to several evolutionary questions relevant for the 

colonization of a new habitat. First, we showed that reduced effective population size (1) 

impaired the responses to directional selection, (2) increased between-population 

differentiation, and (3) shaped the signatures of history and chance, which were overrun by 

selection in larger populations. Second, we saw that interpopulation hybridization can have 

strong effects on a population’s subsequent evolution, especially under a sustained bottleneck. 

Most importantly, the outcome of hybridization is unpredictable, due to the complex genetic 

architecture of fitness-related traits and the multitude of interfering factors. This calls for 

caution on the use of hybridization in conservation management, especially in small, 

endangered populations. Third, we showed that evolutionary history is very important for a 

population’s subsequent evolution and fate, namely in a reverse colonization scenario. We 

additionally showed that the evolutionary patterns during reverse evolution are contingent to 

the trait under study. Finally, we presented the first, while crude, experimental test of the 

Hamiltonian wave of adaptation. We found that (1) small changes in diet can have significant 

effects on age-specific mortality but could not determine whether adaptation to a novel diet 

was greater at earlier than later ages, and (2) the age-specific decrease in differentiation 

between adapted and non-adapted populations, predicted by the Hamiltonian hypothesis, was 

not verified in our system. Despite the high replication and complex design of our experiments, 

many questions remain unanswered. Other studies involving genomic analysis of our 

populations, other traits, and diets will shed light on how history, selection, and effective 

population size shape evolution during colonization. 

 

Keywords: adaptive evolution, colonization, Drosophila melanogaster, effective 

population size, experimental evolution 

 

 



 

vi 

 

 

 

 

 

 

 



 

vii 

 

Resumo 

 

A compreensão dos factores que limitam a adaptação, nomeadamente durante a colonização, é 

um tema importante em evolução, sendo o objectivo principal desta tese. Utilizando populações 

de Drosophila melanogaster bem caracterizadas, num estudo de evolução experimental 

altamente replicado, procurámos responder a questões evolutivas relevantes para a colonização 

de um novo habitat. Primeiro, mostrámos que a redução do efectivo populacional (1) diminuiu 

as respostas à selecção direccional, (2) aumentou a diferenciação interpopulacional e (3) 

modelou as assinaturas da história e do acaso, rapidamente superadas pela selecção em 

populações grandes. Segundo, vimos que a hibridação interpopulacional pode ter fortes efeitos 

na evolução das populações, especialmente sob Ne reduzido. Sobretudo, verificámos que as 

consequências da hibridação são imprevisíveis, pela complexa arquitectura genética das 

características da história da vida e multiplicidade de factores que intervêm na sua evolução. 

Como tal, alertamos para o uso da hibridização em programas de conservação, especialmente 

em populações pequenas e ameaçadas. Terceiro, mostrámos que a história evolutiva é 

fundamental para a subsequente evolução da população, nomeadamente num cenário de 

colonização reversa, e que os padrões evolutivos durante a evolução reversa são contingentes 

às características analisadas. Finalmente, apresentámos o primeiro, apesar de rudimentar, teste 

experimental da onda Hamiltoniana da adaptação. Vimos que (1) alterações pequenas na dieta 

das populações podem ter efeitos significativos na mortalidade específica de cada idade, mas 

não pudemos determinar se a adaptação à nova dieta era maior em idades mais precoces e (2) 

a diminuição da idade-específica na diferenciação entre populações adaptadas e não adaptadas, 

previstas pela hipótese Hamiltoniana, não foi verificada. Apesar da elevada replicação e do 

complexo design destas experiências, muitas questões permanecem sem resposta. Outros 

estudos envolvendo análise genómica, outras características e dietas, dar-nos-ão uma melhor 

compreensão de como a história, a selecção e o efectivo populacional modelam a evolução 

durante a colonização. 

 

Palavras-chave: evolução adaptativa, colonização, Drosophila melanogaster, efectivo 

populacional, evolução experimental 
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Resumo alargado 

 

A compreensão dos factores que influenciam e limitam o processo adaptativo, em geral, 

e cenários de colonização de novos habitats, em particular, tem sido alvo de elevado interesse 

tanto da biologia evolutiva, como da biologia da conservação. Esta tese de doutoramento foi 

desenvolvida com o intuito de melhor compreender estes factores, recorrendo a populações de 

Drosophila melanogaster do laboratório do Professor Michael R. Rose, evolutivamente bem 

caracterizadas num estudo de evolução experimental muito rigoroso e altamente replicado. 

O objectivo desta dissertação foi responder, em cinco capítulos experimentais, a dez 

questões evolutivas relevantes num cenário de colonização: (i) como é que as populações 

respondem a novas condições demográficas? (ii) como é que as características da história da 

vida evoluem em resposta a um ambiente novo e inóspito? (iii) qual o efeito do tamanho 

efectivo da população (Ne) na resposta evolutiva à selecção direccional? (iv) populações com a 

mesma origem evoluem da mesma maneira? (v) quais os papéis relativos da história, do acaso 

e da selecção na evolução das populações? (vi) como é que a hibridização a diferentes Ne afecta 

a dinâmica evolutiva das populações sob selecção direccional? (vii) manter as populações em 

Ne reduzido influencia e/ou dificulta a colonização reversa? (viii) qual o impacto de novos 

desafios ambientais, como a mudança de dieta, durante um evento de colonização? (ix) a 

adaptação a uma nova dieta é específica da idade? E, finalmente, (x) a adaptação a longo prazo 

a condições novas leva à perda de adaptação no ambiente ancestral? 

A tese está estruturada em sete capítulos. O primeiro apresenta uma revisão da literatura 

relevante para os assuntos abordados nos capítulos dois a seis, que reportam a contribuição 

empírica deste trabalho. Finalmente, no capítulo sete são discutidos de uma forma integrada os 

resultados obtidos, sumarizadas as conclusões gerais da tese e apresentadas algumas questões 

pertinentes a desenvolver no futuro. 

As experiências do segundo capítulo, o estudo central da tese, foram realizadas com o 

intuito de responder às cinco primeiras questões. Primeiro, as idiossincrasias do protocolo de 

selecção para a resistência à inanição causaram alterações demográficas nas populações 

experimentais, aumentando a duração do ciclo de vida em relação às populações ancestrais B. 

Essas alterações, por si só, levaram a um aumento temporal da resistência à inanição e a uma 

diminuição da fecundidade jovem, padrão anteriormente observado no nosso laboratório. 

Segundo, a dinâmica evolutiva das características estudadas corroborou tanto previsões 
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teóricas como experiências anteriores no laboratório: o aumento temporal da resistência à 

inanição como resposta à selecção direccional forte, acompanhado pelo declínio da 

fecundidade precoce. Terceiro, a redução no Ne resultou (1) no declínio significativo da 

fecundidade, revelando a perda de função causada pelo tamanho populacional reduzido e (2) 

na redução significativa da resposta directa à selecção. Estes resultados corroboram as 

expectativas de menor desempenho associado ao Ne reduzido, devido ao aumento da 

consanguinidade, maior perda de heterozigosidade por deriva e consequente menor 

efectividade da selecção. Quarto, em experiências de evolução experimental em que as 

populações são mantidas separadas por várias gerações, espera-se que ocorra diferenciação 

interpopulacional por deriva, mais acentuada quanto menor o tamanho populacional. Os 

resultados confirmaram estas expectativas, com uma variância significativamente maior entre 

as populações pequenas em comparação com as populações maiores, na ausência de selecção 

direccional. Quando sob selecção forte, os padrões não foram tão claros. Quinto e por fim, é 

esperado que o papel relativo da história, do acaso e da selecção na evolução das populações 

dependa do tamanho populacional e com o tipo de características estudadas. Os nossos 

resultados, para além de corroborarem experiências anteriores, mostraram que a história e o 

acaso desempenham papéis preponderantes em populações mais pequenas, mas que são 

rapidamente ultrapassados pela selecção, especialmente em populações maiores. 

A hibridização entre populações tem sido sugerida como estratégia para atenuar os 

efeitos da depressão consanguínea, aumentando o desempenho das populações pequenas (e em 

declínio) e diminuindo o risco de extinção – resgate genético. Porém, a complexa interacção 

do fluxo génico, mutação, deriva e selecção dificulta a previsão da consequência evolutiva da 

hibridação. As experiências do terceiro capítulo foram feitas com o objectivo de melhor 

compreender a evolução de populações sob diferentes combinações de selecção direccional, 

tamanho efectivo e fluxo génico. Durante as quinze gerações que precederam a hibridação, 

seria esperado que as populações sofressem um aumento de homozigotia e diferenciação 

interpopulacional devido aos efeitos combinados da deriva e selecção, especialmente em 

populações mais pequenas. Seria também expectável que a hibridação recuperasse alguma da 

heterozigotia, levando ao aumento dos valores médios das características relevantes para a 

fitness (heterose). Os resultados mostraram, como esperado, que os efeitos da heterose são 

generalizados e geralmente diluídos com o passar das gerações. Os resultados sobre as 

consequências evolutivas da hibridação revelaram padrões complexos, sugerindo que a 

hibridação pode ter efeitos muito fortes na subsequente evolução da população, especialmente 
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sob Ne reduzido, e que alguns caracteres (como a fecundidade) são mais susceptíveis à 

hibridação do que outros (como a resistência à inanição). Em conclusão, a complexidade da 

arquitectura genética das características da história da vida e a multiplicidade de factores que 

podem interferir com a hibridação, tornam os seus efeitos muito imprevisíveis. As expectativas 

teóricas clássicas podem, assim, não ser atingidas, pelo menos no intervalo de gerações e de 

efectivos populacionais que abordámos. Portanto, o uso da hibridação em programas de 

conservação deve ser feito com muito cuidado, especialmente em populações pequenas em 

risco de extinção. 

As experiências do quarto capítulo pretenderam reproduzir um cenário de colonização 

reversa, onde populações com diferentes histórias evolutivas migraram de volta ao ambiente 

ancestral. Estudos anteriores no nosso laboratório com populações de Ne moderadamente 

elevado mostraram que a imposição de diferentes regimes selectivos leva à rápida divergência 

fenotípica e que, mais tarde, sob o mesmo regime, convergem rapidamente para um fenótipo 

semelhante. Com este projecto pretendíamos analisar as consequências de, após selecção 

direccional, manter o Ne reduzido durante as primeiras 21 gerações de selecção reversa. Os 

dados obtidos sugerem que a evolução reversa não é impossibilitada pelo efeito de gargalo 

continuado, reproduzindo os possíveis padrões teóricos de reversão ao estado ancestral: 

convergência completa, reversão parcial e reversão abrupta ultrapassando o ancestral. Estes 

padrões de reversão revelaram-se contingentes às características e/ou população em questão. 

Em particular, verificou-se que a assinatura da história definida pelos regimes selectivos 

contrastantes é muito marcada, podendo ser atenuada – mas não apagada – pela selecção 

reversa, pelo menos durante o período de tempo ensaiado. É, contudo, possível que estudos 

mais prolongados venham a revelar completa reversão. 

De acordo com a onda Hamiltoniana da selecção natural, o impacto da selecção é maior 

nas idades mais jovens e diminui progressivamente com a idade cronológica, porque a força da 

selecção natural também diminui com a idade. Espera-se, então, que a adaptação a um novo 

ambiente – como uma dieta nova durante a colonização – seja muito eficaz em idades jovens, 

mas progressivamente mais reduzida em idades mais avançadas. As experiências dos quinto e 

sexto capítulos visavam testar o efeito evolutivo da alteração da dieta na adaptação dependente 

da idade. Em primeiro lugar, os resultados mostram que pequenas alterações na dieta têm 

efeitos significativos na longevidade média e nas taxas de mortalidade específicas da idade das 

populações, o que é expectável por não estarem adaptadas a estes ambientes. Em segundo lugar, 

uma mudança de dieta, na perspectiva Hamiltoniana, deveria ter um efeito mais severo quanto 
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mais cedo a mudança ocorresse. Os nossos dados não corroboraram essa expectativa, indicando 

apenas que a duração de exposição à nova dieta terá sido o principal factor de aumento das 

taxas de mortalidade. No entanto, pelo facto desta experiência ter sofrido alguns problemas de 

delineamento, as considerações sobre este assunto são tecidas com reserva. Terceiro, 

recorrendo ao sistema UX-AUC desenvolvido por Mueller e colaboradores, procurámos 

aprofundar a hipótese Hamiltoniana, testando a diminuição idade-específica na diferenciação 

entre populações adaptadas e não adaptadas a um ambiente relativamente tóxico (a ureia 

ambiental). Os resultados mostraram que as populações expostas a ureia em idade jovem têm, 

em geral, melhor desempenho em ureia que os controlos não adaptados, mas sem diminuição 

ao longo da vida da diferenciação das taxas de mortalidade. Finalmente, fomos testar o 

desempenho das populações adaptadas a ureia no ambiente ancestral (banana). Os dados de 

mortalidade mostraram que, independentemente do ambiente (ureia ou banana) e da idade dos 

indivíduos, as populações adaptadas à ureia tiveram taxas de mortalidade reduzidas, divergindo 

das expectativas de Hamilton. 

As experiências realizadas no âmbito desta tese visaram responder a questões 

evolutivas fundamentais, particularmente sobre o impacto do efectivo populacional e 

relevantes num cenário de colonização. Devido à complexidade da base poligénica das 

características da história da vida, as expectativas teóricas clássicas podem não ser atingidas, 

pelo menos no nosso intervalo de gerações e de efectivos populacionais. Apesar da elevada 

replicação e da complexidade do delineamento experimental, muitas questões permanecem por 

responder. Outros estudos envolvendo a análise genómica das populações utilizadas, bem como 

outras características e diferentes dietas, permitir-nos-ão uma melhor compreensão de como a 

história, a selecção e o efectivo populacional influenciam a evolução durante um evento de 

colonização. 
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Evolutionary challenges facing colonization and reverse colonization 

Consider the following scenario. A population migrates to a new environment where it 

encounters qualitatively novel nutrition, possibly including periods in which it starves. How 

will the population evolve in response to such a novel environment? Furthermore, its effective 

population size may be reduced in the course of migration, or as a result of an initial lack of 

adaptation to the new environment and a consequent population size crash. How will its 

effective size affect the evolutionary response to this new environment? What will happen if 

the population survives and its descendants migrate back to their ancestral environment? This 

will be from here on referred to as reverse colonization. How will the initial period of 

adaptation to a new environment affect the population’s life history, and its subsequent 

evolution after returning to the ancestral environment? As we will discuss, this scenario is 

relevant for both evolutionary biology and conservation management. 

Natural selection is able to produce rapid adaptive responses to sustained environmental 

change under propitious conditions: intense selection, abundant genetic variation, and large 

population sizes. A classic example of directional selection and adaptation in nature is the 

melanism of Biston betularia during the industrial revolution, where the light-colored morph 

became a great predation target, after the darkening of the tree trunks due to pollution (Tutt 

1896; Kettlewell 1955, 1956). There is abundant evidence for directional selection on 

morphology and life history in many study systems, such as terrestrial plants (mainly 

angiosperms), invertebrates (mainly insects), and vertebrates, mainly birds and lizards (e.g. 

Endler 1986; Kingsolver et al. 2001; Kingsolver & Diamond 2011). Ever since the 

establishment of the evolutionary genetic paradigm, evolutionary geneticists have been 

interested in factors which constrain adaptation. Such constraints are the chief focus of this 

thesis. 

 

General constraints on colonization success 

When a population colonizes a novel environment and expands to new ranges, it faces 

several challenges that will limit and, perhaps, ultimately thwart the success of the colonization 

event. So, what are the evolutionary constraints facing colonization itself? The most obvious 

limiting factors affecting successful colonization of a novel environment are (i) the imposition 

of entirely novel environmental conditions to which the colonizers are not adapted, (ii) the 

effective population size (or Ne) of the colonizing population, (iii) the age-specific demographic 
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challenges, such as the age-distribution of the colonizers, and (iv) hybridization with residents 

and/or subsequent migrants from the source population. Conversely, when successful 

colonizers return to their ancestral environment, similar issues will again impinge on their 

success: (i) loss of adaptation to that ancestral environment, (ii) Ne of the reverse-colonizers, 

(iii) shifts in their age-specific demography, and (iv) adverse effects of hybridization with the 

endemic ancestral population (Carson & Templeton 1984; Wade & McCauley 1988; Allendorf 

et al. 2013; Santos et al. 2013). 

 

The importance of effective population size, Ne 

Population size is a major factor affecting the evolutionary dynamics of fitness and its 

components (Frankham 2005a,b; Allendorf et al. 2013). Whether in the wild or in a captive 

environment, evolving populations are inevitably vulnerable to the following factors: (i) 

inbreeding, (ii) loss of genetic diversity, and (iii) accumulation of deleterious mutations. Each 

of these factors can reduce Darwinian fitness, and each is dependent in part on effective 

population size (Ne). Smaller populations are expected to suffer lower fitness due to inbreeding 

depression (Charlesworth & Charlesworth 1987), as well as weaker selection against 

deleterious alleles (Crow & Kimura 1970). The rate of loss of genetic variation is also expected 

to be higher in smaller populations, leading to the expectation of reduced long-term response 

to selection (Robertson 1960). The magnitude of inbreeding depends also on the level of 

environmental stress (Frankham 2005a; Reed et al. 2003), which will be exacerbated to the 

extent to which a population finds itself in an environment to which it is not adapted. Deeper 

knowledge of the effects of all these factors is fundamental for both evolutionary and 

conservation biology, and particularly relevant to cases of environmental change and 

evolutionary rescue. Chapter Two will approach this subject in greater detail. 

 

Hybridization and its effects on adaptation 

Hybridization most commonly refers to mating between heterospecific individuals. 

However, the term has also been applied to mating between individuals of different subspecies 

and populations that, though not from different species, differ to an appreciable extent 

genetically. For the sake of clarity, we will adopt the definition of Rhymer & Simberloff 
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(1996): hybridization is the interbreeding of individuals from genetically distinct populations, 

regardless of their taxonomic status. 

Successful mating between different species is usually very difficult, but it is not as 

uncommon in nature as one might think (Mallet 2005). For the last two centuries, biologists 

tried to study hybridization, although from somewhat different perspectives. Some botanists, 

like Stebbins (1950), focused on hybridization as a source of genetic diversity. By contrast, 

zoologists such as Dobzhansky (1951) and Mayr (1942) considered animal hybrids to be rare 

or exceptional. Thus, they focused on hybridization as a negative selective agent that favored 

the strengthening of discrimination to maintain species (Stevison 2008), the reinforcement 

effect. Over the last few decades, the study of hybridization has yielded valuable insights, 

helping researchers to understand the forces limiting hybridization, as well as how gene flow 

and recombination can act to generate novel haplotypes to facilitate adaptation (Arnold 1997). 

Hybridization therefore has Janus-faced effects on adaptation. On the positive side, it may 

supply additional genetic variation, a limiting fuel for the process of adaptation in response to 

directional selection. On the negative side, when individuals adapted to ancestral conditions 

cross with colonizers that are adapting to a new environment, their hybrid offspring may have 

reduced fitness in the new environment (Woodworth et al. 2002; Gilligan & Frankham 2003; 

Frankham 2005a, 2005b, 2008). 

The effects of hybridization and effective population size on adaptation have been 

studied in both animal and plant populations (e.g. Klinger et al. 1992; Arnold et al. 1999; Peters 

et al. 2014), but the effect of hybridization on populations which vary in effective size has not 

been studied hitherto. Smaller populations are expected to lose more genetic variation at a faster 

rate. This in turn fosters the expectation that hybridization will have a greater effect on the 

restoration of genetic diversity in smaller populations. This topic is more thoroughly discussed 

in Chapter Three. 

 

Reverse colonization – trade-offs between novel and ancestral environments 

Many of the factors impinging on successful colonization could also play a role on the 

evolutionary success of former colonizers returning to their ancestral environment. The idea of 

trade-offs in adaptation to qualitatively different environments is a commonplace in 

evolutionary reasoning (e.g. Leroi et al. 1994a,b; Shirley & Sibly 1999; Kawecki & Ebert 

2004). Thus, colonizers that are long-adapted to a particular ancestral environment are naturally 
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supposed to have very low fitness in their new environment. Conversely, once colonizers are 

well-adapted to their new environment, they may no longer be well-adapted to their ancestral 

environment. Furthermore, if the colonizers return to depopulated ancestral environments, they 

will face yet another population size bottleneck, which may reduce both their fitness and their 

level of genetic variation (see the section above on Ne). On the other hand, hybridization with 

individuals that remained behind in the ancestral environment may improve the net fitness of 

those who reverse-colonize the ancestral environment. 

The full spectrum of effects on adaptation to qualitatively novel environments has been 

of major interest within conservation biology, specifically when long-maintained captive 

populations show deterioration in their ability to thrive in their ancestral wild environments. 

This is particularly important for the success of ex-situ conservation programs that aim to 

reintroduce into the wild their captive bred individuals (Allendorf et al. 2013; Frankham 1995a, 

2008, 2009a; Frankham et al. 2000, 2002; Woodworth et al. 2002; Gilligan & Frankham 2003). 

It has been shown that relaxing selection on starvation resistance leads to a clear 

reversal of the character when Ne is moderately large (e.g. Teotónio & Rose 2000; Passananti 

et al. 2004a). The scientific question addressed here was thus whether or not such a clear and 

immediate response would be exhibited at low values of Ne; in other words, whether reverse 

evolution is hampered by sustained small population sizes. Chapter Four of this thesis presents 

a reverse colonization experiment where small-sized populations that had undergone strong 

selection for starvation resistance were returned to their previous, long-standing selection 

regime, which featured early reproduction, ad libitum feeding, and no phase of food 

supplementation. 

 

The role of age-specific patterns of selection 

It is a general evolutionary expectation that adaptation to a novel environment shows 

strong age-specificity (Mueller et al. 2011). The idea stems from Hamilton’s theory (1966), in 

that the forces of natural selection provide age-dependent scaling or weighting factors for the 

impact of selection on each age-specific component of a population’s life history. This 

weighting is heavy at early ages, then the forces of natural selection decline with adult age until 

they reach an asymptotic plateau. This in turn leads to the evolution first of aging, and then (at 

much later adult ages) the evolution of plateaus in life-history characters (Rose et al. 2007; 

Mueller et al. 2011). Hamiltonian force-of-selection theory is therefore relevant to the problem 
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of a population which is transferred to a qualitatively novel environment. The key point is that 

the age-specific weighting of the force of natural selection leads to the corollary that selection 

for adaptation to a novel environment will act with full force only at early ages. Even though 

life-history adaptation to a novel environment proceeds quickly at early ages (vid. Matos et al. 

2000a; Simões et al. 2008), there may be age-dependent adaptation with later ages responding 

less to selection for adaptation to the new environment, at least initially. In Chapters Five and 

Six there is a more comprehensive discussion of this topic. 

 

The volte-face of colonization: biological extinctions 

There are two main types of threats that cause biological extinction: deterministic and 

stochastic (Caughley 1994). Deterministic threats include habitat destruction, pollution, 

overexploitation, species translocation, and global climate change. Stochastic threats are 

random changes in genetic, demographic or environmental factors. Genetic stochasticity 

(random drift) leads to loss of genetic variation, including beneficial alleles, and an increase in 

the frequency of harmful alleles. Demographic stochasticity includes variation in sex ratios and 

age distributions by chance. Environmental stochasticity is simply random environment 

variation, such as the occurrence of several harsh winters or summers in a row (Allendorf et al. 

2013). 

Extinction is, by definition, a demographic process, since populations are subjected to 

uncontrollable demographic factors as they become progressively smaller. A major controversy 

erupted over the role of genetic factors in population viability and extinction risk following 

Lande’s (1988) paper on genetics and demography. The Lande scenario is based on the 

hypothesis that genetic effects are negligible compared to demographic factors, implying that 

most species would be driven to extinction before genetic factors would have time to impact 

them. Because small populations are in much greater danger of extinction by purely 

demographic stochastic effects, they are not very likely to persist long enough to be affected 

by inbreeding depression (Lande 1988; Pimm et al. 1988; Pimm 1991; Young 1991; Wilson 

1992; Caro & Laurenson 1994; Caughley 1994; Dobson 1999; Elgar & Clode 2001; Frankham 

2003; Sarre & Georges 2009). Other authors have claimed that the genetic variation decrease 

due to inbreeding in small populations will likely cause a strong reduction in fitness that, in 

turn, will further reduce a population’s size (Frankel & Soulé 1981; Gilpin & Soulé 1986; 

Dobson et al. 1992; Keller 1998; Oostermeijer 2000; Brook et al. 2002). This will thereby 
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reduce the population’s ability to persist and drive the population into what is known as the 

extinction vortex (Allendorf et al. 2013). In a comprehensive meta-analysis, Spielman et al. 

(2004a) found that the majority of threatened taxa exhibited reduced genetic diversity, leading 

to a rejection of the Lande scenario for most of them. Most threatened taxa were found to be 

suffering from a reduced ability to evolve, high inbreeding, and impaired fitness, and for these 

reasons are likely to suffer elevated extinction risk in the future (Reed & Frankham 2003; 

Frankham 2005b). 

All in all, extinction is a demographic process that is likely to be influenced by genetic 

effects under different circumstances. The main issue is to determine under what conditions 

genetic concerns are likely to influence a population’s persistence and its ability to thrive in the 

long run (Nunney & Campbell 1993; Allendorf et al. 2013). 

 

Experimental Evolution – a powerful tool to study evolutionary constraints 

Evolutionary hypotheses are usually tested by studying patterns that reflect past 

evolution: phylogeny, divergence between groups, variation within populations, genome 

structure, and genome sequence. Experimental evolution is an alternative research framework 

that allows us to study evolutionary processes experimentally in real time, making it a very 

useful tool to study evolutionary constraints (Kawecki et al. 2012). 

Experimental evolution can be defined as the study of evolutionary changes occurring 

in experimental populations as a consequence of experimenter-imposed conditions, whether 

they are environmental, demographic, genetic, social, behavioral, etc. In this research 

approach, sometimes called laboratory natural selection, selection can act on any and all traits 

or nucleic acid sequences relevant to fitness under the environmental regimes. In contrast, 

artificial selection protocols proceed by breeding individuals explicitly chosen by the 

experimentalist based on the phenotypic values of defined traits or genotypes; artificial 

selection is, thus, not usually included in experimental evolution (cf. Garland & Rose 2009; 

Kawecki et al. 2012). In some respects, these are disjoint experimental strategies, although they 

have much in common. 

In experimental evolution, populations are studied across multiple generations under 

defined and reproducible conditions that are most readily achieved in the laboratory (e.g. Rose 

1984a; Lenski et al. 1991; Matos et al. 2000a; Chippindale 2006; Simões et al. 2007), but 

sometimes can be approximated in nature (e.g. Reznick et al. 1990; Ebert et al. 2002; Zbinden 
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et al. 2008). We can distinguish two chief types of experimental evolution: (i) the imposition 

of new forward selection regimes that lead to divergent evolution (e.g. Rose 1984a; Rose et al. 

1992; Chippindale et al. 1997; Joshi et al. 1996a; Borash et al. 2000; Rundle et al. 2005; Bennet 

& Lenski 2007; Hall & Willis 2006; Cooper & Lenski 2010); versus (ii) the re-imposition of 

an ancestral environment on diverged populations, establishing reverse selection (Service et al. 

1988; Teotónio & Rose 2000, 2001; Passananti et al. 2004a; Estes & Teotónio 2009). 

Experimental evolution is a very useful tool for generating contrasting phenotypes by divergent 

selection. Such divergent phenotypes can then be used to study the biological machinery, 

whether genetic, developmental or physiological, underlying those contrasts. With either 

forward or reverse selection, experimental evolution allows biologists to estimate evolutionary 

rates, trace evolutionary patterns, establish causal relations, and distinguish differentiation due 

to stochastic effects like genetic drift, from more deterministic mechanisms like natural 

selection, within the context of better defined historical constraints (Bell 2008; Chippindale 

2006; Simões et al. 2009; Fragata et al. 2014a,b). 

Experimental evolution has been used to address diverse questions in many areas of 

academic evolutionary biology, from speciation to aging (Garland & Rose 2009). It has also 

been very useful in applications from conservation biology to biotechnology, from medicine to 

engineering (Kawecki et al. 2012). Experimental evolution has been valuable for modern 

agriculture: the evolution of insect pest resistance to selection imposed by insecticides is one 

of the best-known examples of an evolutionary response to an agricultural practice (Thrall et 

al. 2011). The serial passage of a pathogen on a particular host often leads to increased 

specialization and higher virulence on that host thanks to laboratory evolution (Ebert 1998), 

producing more virulent strains for biological pest control (Kolodny-Hirsch & Van Beek 1997; 

Dion et al. 2011). Experimental evolution has also been used to improve biocatalysts (Kolodny-

Hirsch & VanBeek 1997; de Crecy et al. 2009). For decades, experimental evolution has been 

the method of choice for the development of vaccines against viral and bacterial diseases, such 

as polio, tuberculosis, yellow fever, measles, mumps, and rubella (Ebert 1998; Plotkin & 

Plotkin 2011), an invaluable contribution to human medicine evolution. More recently, 

experimental evolution combined with genome sequencing and genetic mapping has been used 

to identify mutations that confer drug resistance to pathogens, before such mutations appear in 

nature (e.g. Hunt et al. 2010). This should foster the rapid diagnosis of resistant infections, and 

possibly even the development of new drugs (Kawecki et al. 2012). From an industrial and 
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economic perspective, experimental evolution is a useful complement to genetic engineering 

for the production of biofuels (Arnold 2008; Zuroff et al. 2013). 

Of greatest relevance for the present research, experimental evolution has been valuable 

in evolutionary studies on conservation. Among other examples, it has been used in studies of 

(i) the capacity to adapt to environmental changes (Bell & Collins 2008; Bell & Gonzalez 2009; 

Simões et al. 2007; Santos et al. 2010), (ii) evolution in small/bottlenecked populations (Latter 

& Mulley 1995; Reed & Bryant 2000; Miller & Hedrick 2001; Reed & Frankham 2003; Reed 

et al. 2003), and (iii) the effect of adaptation to captivity with (Margan et al. 1998; Woodworth 

et al. 2002; Frankham 2008) and without hybridization (Gilligan & Frankham 2003). Such 

studies of experimental evolution under conditions of recently imposed captivity may be 

broadly defined as studies of Evolutionary Domestication (see below). 

 

Research on Evolutionary Domestication 

A natural experimental paradigm for the study of colonization is the adaptation of 

experimental populations to laboratory conditions, when these populations are founded with 

recently caught individuals from the wild. This paradigm is sometimes called evolutionary 

domestication (e.g. Simões et al. 2009), which has been a major focus of research in the 

laboratory of Margarida Matos at the University of Lisbon. Nonetheless, the research of Matos 

et al. can be viewed as one particular realization of a fairly broad experimental strategy. 

Domestication is historically a very important topic for evolutionary biology. Indeed, 

domestication can be considered the first evolutionary experiment performed by humans. Early 

cases of domestication have been dated back more than 10,000 years: dogs and some livestock 

species were the first animals to be domesticated (Mignon-Grasteau et al. 2005; Thalmann et 

al. 2013). Despite some terminological ambiguity, domestication refers (at least in part) to the 

genetic changes undergone by our commensal species, such as the genetic evolution of dogs 

from wolves. However, a more useful definition for scientific purposes is that domestication is 

evolutionary genetic change arising from the transition of a population from nature to deliberate 

human cultivation (Simões et al. 2007). Darwin used the cases of pigeon and dog domestication 

to argue for the capacity of selection to produce evolutionary change in the very opening 

chapter of On The Origin of Species (1859). Later, he devoted still more attention to it in a 

book that he wrote specifically on variation under domestication (Darwin 1868). 

Domestication typically involves forward directional selection and significant 
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reductions in effective population size, both of which can reduce Darwinian fitness. 

Populations under domestication will usually, on the other hand, benefit from relaxation of 

those selection pressures that arise from predation, interspecific competition, and climatic 

extremes, particularly if the populations are given artificial housing. However, pastoralists and 

farmers will impose more stringent selection for other attributes, deliberately or not, 

particularly tameness (Mignon-Grasteau et al. 2005). 

Research on domestication in Drosophila has become a prominent feature of the 

scientific literature on the topic: e.g. Frankham & Loebel 1992; Latter & Mulley 1995; Hercus 

& Hoffmann 1999a,b; Matos et al. 2000a, 2002, 2004; Sgrò & Partridge 2000; Griffiths et al. 

2005; Hoffmann et al. 2001; Krebs et al. 2001; Woodworth et al. 2002; Gilligan & Frankham 

2003; Reed et al. 2003). This is the body of research which constitutes the chief foundations 

for the present dissertation research. 

 

The Matos laboratory 

The Matos lab’s characteristic experimental paradigm has featured laboratory 

populations of Drosophila subobscura founded from wild individuals collected from locations 

within Portugal (e.g. Matos et al. 2000a, 2002; Simões et al. 2008). Once these individuals 

have been collected from the wild, they and their descendants are maintained with discrete 

generations of 28 days duration at a steady lab temperature. Care is taken to provide an 

unchanging food medium and stable population density. Census population sizes are about 600-

1,000 individuals during early adulthood (Simões et al. 2008). 

Figure 1.1 shows the generic type of domestication result generated by the Matos 

laboratory, in which early fecundity steadily increases over some 100 generations of 

domestication, relative to a long-established D. subobscura stock. Nevertheless, it should be 

noted that not all functional characters undergo such a clear improvement over the course of 

domestication. For example, there was no significant change in female starvation resistance 

among the newly domesticated populations shown in Figure 1.1, relative to long-established 

populations (Simões et al. 2009). 

Over the last decade, Matos et al. have been studying the repeatability of domestication 

of Drosophila subobscura populations over repeated samplings from nearby Portuguese 

locations (Simões et al. 2007, 2008). They have shown that the evolution of newly-sampled 

populations is repeatable in some respects, with general evolutionary convergence of 
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phenotypes to those of long-established populations (Simões et al. 2008). It has also been found 

that most of the observed differences in the evolution of replicate populations across 

experiments were due to genetic sampling effects during the first few generations of lab culture 

(Santos et al. 2012). 

 

 
Figure 1.1. Fecundity during the first week of life in populations founded in 1998 (NW) relative to the longer-

established (NB) populations. Each data point is the difference between the average absolute values of each 

population and the same numbered longer-established population. Replicate population 1: black circles, full black 

line; replicate population 2: open circles, broken line; replicate population 3: gray circles, gray line (Simões et al. 

2009). 

 

 

A more recent project addressed the impact of evolutionary history on the dynamics of 

D. subobscura adaptation along the European latitudinal cline (Fragata et al. 2014a,b; Matos 

et al. 2015). Fly samples were collected from historically differentiated wild populations from 

three European locations: Groningen (Netherlands), Montpellier (France), and Adraga 

(Portugal). Phenotypic analysis showed that initial samples from these populations were clearly 

differentiated, they subsequently converged for several life-history, physiological, and 

morphological traits (Fragata et al. 2014b). These experimental populations also featured 

initially strong differentiation in inversion frequencies. But unlike the case of the phenotypes 

studied, after 40 generations of laboratory evolution, populations remained differentiated at the 

inversion frequencies level. It seems that, despite the clear evidence for the role of selection in 

phenotypic convergence, history played an important role in the evolutionary dynamics of 

inversions (Fragata et al. 2014a). 
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Other work on evolutionary domestication in Drosophila 

Sgrò and Partridge (2000) studied domestication in D. melanogaster populations, also 

finding clear changes for some functional characters, but not others. They found increased 

development time and early fecundity, but some decreases in late fecundity. Using some of the 

same D. melanogaster populations, Hoffmann et al. (2001) found that stress resistance was 

reduced during laboratory adaptation. Griffiths et al. (2005) studied laboratory adaptation in 

D. birchii populations derived from crosses of isofemale lines that were in turn derived from 

wild-caught flies. They found increases in starvation resistance and development time, but 

reduced recovery from cold shock. In that same study, heat knockdown resistance and wing 

size did not change with the number of generations of domestication. Comparing the results 

from these other labs with those from Matos et al., it is apparent that some Drosophila 

characters evolve in a consistent manner across studies of domestication, such as early 

fecundity. However other characters, such as particular types of stress resistance, exhibit no 

such consistency across the findings of different labs, or even in the same lab across populations 

(Simões et al. 2008, 2009). 

 

The experimental evolution work of Rose and colleagues 

A major problem with early fruit fly research using experimental evolution was 

insufficient replication (e.g. Rose & Charlesworth 1980). With only one or two experimentally 

evolved populations compared to similar numbers of control populations, these early 

experiments provided very little statistical power, and thus low confidence in their scientific 

inferences and very little ability to differentiate between natural selection and genetic drift in 

selection experiments. Thus, in the early 1980s, a number of Drosophila labs began 

experiments with much greater replication of both deliberately selected and matched control 

populations (e.g. Mueller & Ayala 1981; Luckinbill et al. 1984). 

Of these labs, the one that eventually produced the greatest number of experimentally 

evolved Drosophila populations was that of Rose (e.g. Rose et al. 2004), starting with the Rose 

(1984a) study of the experimental evolution of aging with different age-specific windows for 

reproduction. At the present time, the Rose lab has a number of D. melanogaster stocks that 

have undergone as much as 38 years of laboratory evolution, where each type of stock usually 

has five replicate populations that have evolved separately (Rose et al. 2004). This research 

has generally used population sizes large enough to sustain genetic variation genome-wide (Ne 
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~ 600-1100, Burke et al. 2010; Mueller et al. 2013). The Rose laboratory has conducted not 

only forward selection, but also reverse selection in which populations have been returned to 

their ancestral conditions (e.g. Teotónio & Rose 2000). There have been studies of selection 

with contrasting population sizes in different experiments, both small (e.g. Rose 1984b) and 

moderately large Ne (Rose 1984a). But the Rose lab has not yet studied the impact of varying 

Ne on the response to selection in a single well-defined experiment.  

Some have argued that experimental evolution using long-established laboratory 

populations are of little use for evolutionary inference (Promislow & Tatar 1998; Harshman & 

Hoffmann 2000; Linnen et al. 2001). This line of criticism is premised at least in part on the 

notion that laboratory evolution is of value to the extent that its results can be extrapolated to 

evolution in the wild. Yet it can be argued instead that experimental evolution is about bare 

possibilities for evolution, not any expected evolutionary process in nature. After all, the 

laboratory environment is a particular kind of environment, and lab lines are simply natural 

populations evolving in such environment (Matos et al. 2000b; Mueller et al. 2005). 

 

Pilot Study of the Impact of Ne on Evolutionary Domestication 

The outcome of evolution is a balance between the deterministic effects of natural 

selection and the stochastic effects of genetic drift. Since genetic drift is more significant in 

smaller populations, evolutionary dynamics during evolutionary domestication will be affected 

by population size as it impinges on both genetic drift and the response to selection. Larger 

populations are thus expected to respond faster when adapting to a novel environment (Hartl 

& Clark 2007; Woodworth et al. 2002), all other things being equal. If multiple populations 

are maintained under the same selective conditions, genetic drift will cause divergence between 

them. Finally, effective population size should also affect the likelihood of extinction through 

both the rate of accumulation of deleterious mutations and demographic stochastic events, such 

as the loss of most females (Frankham et al. 2002, 2005b). 

My initial study of laboratory adaptation in the Matos laboratory used populations of 

contrasting sizes (census ~50 vs. ~1200 individuals). The results qualitatively corroborated 

some of the said theoretical expectations (Santos 2008): smaller Ne populations had both greater 

between-population heterogeneity of response as well as a slower average rate of improvement 

in early fecundity (Figure 1.2). 
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Figure 1.2. Evolutionary trajectories for early fecundity during the initial generations of adaptation to a laboratory 

environment. (a) Large population sizes, (b) Small population sizes. All trajectories show the difference between 

each replicate population and its respective control. From Santos (2008). 

 

Overall Plan of Thesis Research: Combining Matos & Rose Experimental Strategies 

This thesis plan results from the combination of Matos and Rose experimental strategies 

and expertise: a rigorous and highly-replicated design to study adaptation to a novel 

environment, using Drosophila melanogaster stocks with a well-known evolutionary history. 

This research was conducted in the Rose laboratory, using six replicate populations 

made up of outbred B-type flies that have been uniformly maintained in vials on a 14-day life 

cycle for more than 800 generations (vid. Rose et al. 2004 for more details on their evolutionary 

history). These populations were maintained at sizes (Ne ~ 1000; Mueller et al. 2013) large 

enough to sustain genome-wide genetic variation (Teotónio et al. 2009; Burke et al. 2010), and 

have been extensively studied since the 1980’s (Rose 1984a,b, Rose et al. 1992; Chippindale 

et al. 1997; Teotónio & Rose 2000; Rose et al. 2004; Mueller et al. 2011; Burke et al. 2016; 

Graves et al. 2017). While this system is not in any sense a replication of any evolutionary 

radiation that exists in the wild, it is suitable for strong-inference tests of general theories of 

evolutionary genetics (vid. Rose et al. 2011) from the standpoint of providing six essentially 

equivalent ancestral sources of colonists for the present experiments. 

 

Chapter Two: Does size really matter? Forward Selection for Starvation Resistance with 

Varying Effective Population Size  

Despite the fundamental importance of effective population size for evolutionary theory 

and conservation, its impact on evolution is rarely evaluated under well-defined conditions. 

Chapter Two aims to examine several evolutionary questions concerning a scenario where 
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populations encounter a novel environment, with and without deliberately reduced effective 

population size, focusing on the following specific questions. (i) How will these populations 

respond to new demographic conditions? (ii) How will life-history evolve in response to such 

new, harsh conditions? (iii) How will the population size differences affect the evolutionary 

response to selection? (iv) Will populations from the same ancestral source population evolve 

the same way? 

Each of the six source populations was used as the ancestor for 10 small-sized 

populations of about 50 surviving individuals per generation and four large-sized populations 

maintained at similar moderate Ne levels as their ancestors, for a total of 84 experimental 

populations. This is the largest laboratory experiment on colonization by Mendelian 

populations known to us. Of the 14 populations derived from each Bi ancestral population, half 

were maintained without any strong selection being imposed. The other half were subjected to 

strong selection for starvation resistance. In this way, the experimental system features both a 

replicated bottleneck design without drastic selection, and bottlenecking with strong selection, 

as well as matched large Ne populations. A schematic for this phase of the experimental work 

is shown in Figure 1.3. 

 

 

Figure 1.3. Schematic representation of the overall experimental design used to derive the first set of experimental 

populations. Each Bi ancestor gave origin to 10 small-sized (P; N ≈ 50) and four large-sized populations (G; N ≈ 

1000), half of which were selected for starvation resistance (S) while the other half were used as controls (C). 

Thus, SPB2d refers to the fourth small-sized replicate population derived from ancestral population B2 that 

underwent selection for starvation resistance, for example. This phase involved a total of 84 experimental 

populations. 

 

Chapter Three: Hybridization and Forward Selection with Varying Effective Population Size 

Chapter Three examines the effects of (i) hybridization on the evolutionary dynamics 

of populations under forward selection and (ii) population size before and after an 

interpopulation hybridization event. 
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After 15 generations of selection, both the forward-selected populations and their 

matched controls were hybridized within each combination of selection, size, and Bi ancestor. 

This allowed us to compare hybrid vigor in large to small populations, testing for differences 

in inbreeding depression as a function of Ne. 84 hybrid lines were then created, increasing the 

total number of experimental populations to 168. Selection was then resumed in order to test 

for hybrid enhancement of the rate of response to further selection, as well as continuing to test 

for differences in rate of response as a function of Ne. A schematic for the hybridization 

component of this phase of the experimental work is shown in Figure 1.4. 

 

 

Figure 1.4. Schematic representation of the experimental design used to create the hybrid populations from the 

first set of 84 lines. For each set of selected and control lines derived from a Bi population, hybridization took 

place among all replicates, and the resultant hybrids were split into the same number of replicates as their 

unhybridized ancestors. Starvation resistance selection was then resumed among all the S lines, both hybridized 

and unhybridized (SPB, SGB, hSPB, and hSGB). 

 

 

Chapter Four: Reverse Evolution in Small-Sized Populations  

The motivation for this experiment was that relaxing selection on starvation resistance 

leads to a clear reversal of the character when Ne is moderately large (e.g. Teotónio & Rose 

2000; Passananti et al. 2004a). The scientific question was thus whether or not such a clear and 

immediate response would be exhibited at low values of Ne. In other words, this experiment 

tested whether reverse evolution was hampered by sustained small population sizes. 

After 15 generations of forward selection for starvation resistance, derivatives of the 

small populations (both selected and control) were created and a reverse-selection experiment 

was started. Specifically, these populations were returned to 14-day culture in vials, without 

the dietary changes or selection imposed during the first phase of the experiment (Figure 1.3). 

Nonetheless, these reverse-selected small Ne populations were kept at the same low Ne as was 
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imposed on them during the first phase of the experimental work, simulating a sustained 

bottleneck (Figure 1.5). 

 

 

Figure 1.5. Schematic representation of the experimental design used to create the reverse-selected lines. After 

15 generations of forward selection, each CPBij population was used to derive a single RCPBij population, and 

each SPBij population was used to derive one RSPBij population. These 60 populations were then subjected to 21 

generations of reverse selection and sustained small Ne. 

 

Chapter Five: Age-Specific Adaptation to Novel Diets 

While some work on quantitative variation in diet has been performed in the Rose 

laboratory (e.g. Chippindale et al. 1993, 1997), this thesis presents the first experimental work 

on the impact of qualitatively different diets on life-history. Such novel diets are likely to arise 

when populations colonize a new habitat. Of particular interest for the present research was 

differential impact of dietary change across the ages of adult life-history during new 

colonization events. Chapter Five presents the first experimental test of the evolutionary effect 

of dietary change on the age-dependent adaptation of Drosophila melanogaster populations 

that have been exposed to a specific type of food for more than 800 generations.  

 

Chapter Six: Aging and Mortality Patterns in Urea-adapted Populations 

Adaptation to nitrogenous waste has been an ongoing project of the Mueller laboratory 

for over 20 years (Joshi et al. 1996a,b, 1997, 1998; Borash et al. 2000). In the Fall of 1996, 

Mueller et al. created and maintained outbred lines of Drosophila melanogaster selected for 

increased urea tolerance and their life-cycle matched controls (vid. Borash et al. 2000 for more 

details). The study of the adult mortality patterns of this unique experimental system enabled 

us to test several hypotheses that arise from Hamiltonian theory, relevant in a colonization 

scenario. Specifically, whether (i) dietary adaptation is age-specific and (ii) long-term 

adaptation to a new environment (urea) leads to loss of fitness in the ancestral environment. 

The experimental work on this matter is presented on Chapter Six. 
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Overall creation of a stock system as a better foundation for further experiments 

While there are substantive findings from this doctoral research that we believe will be 

of interest to our colleagues in evolutionary biology, the greater significance of this thesis 

project may be the creation of this remarkable stock system. As far as we know, this is the 

largest well-defined and highly-replicated system for studying the impact of different Ne levels 

across a range of types of laboratory-evolved populations: strongly selected, moderately 

selected, and reverse-selected populations. The total number of populations that were created 

for this study was 228, an audacious number for research using outbreeding metazoans. 

Although not all of these populations are still in culture, frozen samples from all of them are 

available for sequencing, many of these samples coming from different generations during their 

experimental evolution. Furthermore, there remain a total of 132 populations still alive, and 

they constitute an enduring resource for experimental research on the effects of Ne on the 

response to selection. 
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Chapter Two. 

Does size really matter? Forward Selection for Starvation Resistance 

with Varying Effective Population Size 
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ABSTRACT 

Effective population size (Ne) is a key factor affecting the evolutionary dynamics of 

populations. It affects all the major forces that shape evolution: genetic drift, natural selection, 

and mutation accumulation. Despite the fundamental importance of Ne in evolutionary theory 

and conservation genetics, it is notoriously difficult to estimate. It is even less often 

experimentally manipulated in order to study its impact on evolution under well-defined 

conditions. This chapter presents a highly-replicated and controlled experimental design that 

aims to examine several evolutionary questions in the context of a colonization scenario, in 

which populations encounter qualitatively novel selection with and without reduced effective 

population size. Here we provide strong evidence bearing on the effect of a 20-fold reduction 

in population size on responses to both weak and strong directional selection. We find 

significantly impaired responses to selection and increased population differentiation due to 

drift. We also show that the relative roles of history, chance, and selection are shaped by 

population size and contingent on the trait under analysis. 
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RESUMO 

O efectivo populacional (Ne) é um factor preponderante na dinâmica evolutiva de uma 

população, influenciando as principais forças que modelam a evolução: deriva genética, 

selecção natural e mutação. Apesar da importância fundamental do Ne na teoria evolutiva e na 

genética da conservação, é um factor extraordinariamente difícil de estimar. Como tal, a sua 

determinação é muito pouco frequente na literatura. Menos frequentes ainda são a manipulação 

experimental e o estudo do impacto do Ne em condições experimentais bem definidas. Este 

capítulo apresenta um delineamento experimental altamente replicado e controlado onde são 

analisadas várias questões evolutivas no contexto da colonização. Nomeadamente, as 

populações encontram condições selectivas qualitativamente novas, com e sem redução do 

efectivo populacional. Aqui apresentamos provas sólidas do efeito duma redução do tamanho 

populacional (em 20 vezes) na resposta à selecção direccional, forte e fraca. Os dados mostram 

uma diminuição da resposta selectiva e um aumento da diferenciação populacional devido à 

deriva genética. Mostramos também que os papéis relativos da história, do acaso e da selecção 

são moldados pelo tamanho da população e estão dependentes das características em análise. 
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INTRODUCTION 

An evolving population, whether in its natural environment or in a controlled laboratory 

setting, is a complex system influenced by several evolutionary forces: genetic drift, selection, 

mutation, and migration. Understanding the effects and interactions of these factors in their full 

complexity is hard, so experimental evolutionists seek to comprehend their impact, one at a 

time. Consider the following colonization scenario. After members of a population migrate to 

a new inhospitable environment they will suffer a reduction in their effective population size 

as a result of both (i) the limited number of migrants, and (ii) increased mortality and 

reproductive failure in the inhospitable environment. Assuming that no other conspecifics are 

found and no additional migration occurs, the outcome of evolution will be affected by the 

balance between increased Darwinian fitness (due to the action of natural selection producing 

adaptation to the new environment) and reductions in fitness that arise from increased 

expression of homozygous deleterious genetic effects (which arise from initial sampling effects 

and subsequent genetic drift). This is the evolutionary scenario experimentally addressed in 

this chapter. 

 

Effective Population Size 

One of the fundamental parameters in both conservation and evolutionary biology is 

effective population size (Ne), which integrates the genetic effects of life history variation and 

total census size on microevolutionary processes. It impinges on both the response to selection 

and the impact of genetic drift. The concept of Ne was first introduced and developed by Sewall 

Wright (1931) and Fisher (1930), who defined it as the size (N) of an imaginary, theoretically 

ideal population affected by genetic drift at the same rate per generation as the population being 

studied. This idealized population size, referred to as a Wright-Fisher population, can take into 

account factors that increase genetic drift in real populations, such as uneven sex ratio, 

population size fluctuations, and variance in reproductive success. The comparison with a 

theoretically ideal population standardizes the rate of genetic drift, not only making Ne 

comparable across populations with very different life histories, but also reducing to one 

variable all the factors that contribute to genetic drift (Hare et al. 2011). Ne was thus originally 

developed to adjust for deviations from Wright-Fisher genetic drift (vid. Crow 1948), but it has 

since become a central parameter in evolutionary genetic theory (e.g. Ewens 2004; Nagylaki 

2011). Effective population size is a major factor affecting the evolutionary dynamics of 

Darwinian fitness and its components (Reed & Frankham 2003; Frankham 2005b; Reed 2005; 
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Allendorf et al. 2013). We will now address how it affects the major forces that shape 

evolution. 

 

Inbreeding 

The most immediate effect on fitness of a population bottleneck is an increase in the 

level of inbreeding (F), which is defined as the probability of mating between individuals that 

are more genetically similar than individuals drawn at random from the population (Hedrick & 

Kalinowski 2000). Since Darwin (1876), if not earlier, inbreeding has long been known to 

reduce the reproduction and survival of inbred offspring. The decline in fitness due to 

inbreeding is known as inbreeding depression (Charlesworth & Charlesworth 1987; Ralls et 

al. 1988; Lynch 1989; Thornhill 1993; Katju et al. 2015; see Charlesworth & Willis 2009 for 

a review). It has commonly been found in most natural populations that have been tested for it 

(e.g. Jiménez et al. 1994; Crnokrak & Roff 1999; Keller & Waller 2002; Reed et al. 2003). 

The cost of inbreeding can be defined as the magnitude of inbreeding depression. This 

cost can vary greatly, and is difficult to predict in any given population (Bouzat 2010). This 

inability to predict accurately this detrimental effect makes it difficult to incorporate inbreeding 

into models that predict population viability, even when a population’s past demographic 

history and reproductive biology are well known. Nevertheless, substantial inbreeding 

depression is usually observed among populations that have recently undergone reduced 

effective population size, especially under stressful conditions, which is of great importance 

for population management and conservation (Frankham 2010). 

 

Loss of Genetic Diversity and Evolutionary Potential 

Loss of genetic diversity is a major concern in both evolution and conservation biology, 

as genetic diversity is the raw material upon which natural selection acts to produce adaptive 

evolutionary change. Almost every trait that has been examined shows genetic variation in 

natural populations (Lewontin 1974). Such genetic variation arises from the combined action 

of mutation, genetic drift, and natural selection. In the absence of selection, the temporal loss 

of heterozygosity in a randomly mating diploid population after t generations is related to 

effective population size (Ne), number of generations (t), and the inbreeding coefficient (Ft), as 

follows (see Wright 1969; Falconer & Mackay 1996): 

Ht / H0 = [ 1 – 1/( 2 Ne ) ]
 t  = 1 – Ft (1.1) 
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Since the middle term in the equation is approximately e-t/2Ne, it implies a roughly exponential 

decline of genetic diversity with time that occurs at greater rates in smaller than larger 

populations (Frankham 2005b). Thus, among small randomly mating populations in the 

absence of selection, inbreeding and loss of heterozygosity through drift are unavoidable, the 

effects being more severe the smaller the population size is. Though the equation applies to 

neutral variation only, alleles subject to selection may also be lost by drift (Frankham et al. 

2002; Frankham 2012). This loss of heterozygosity will clearly affect how fast populations 

respond to selection, and how well they can adapt to environmental changes. 

In sum, genetic drift is an important evolutionary process in part because the strength 

of stochastic genetic processes strongly influences how selection operates. As Ne decreases, 

genetic drift erodes genetic variation, elevates the probability of fixation of deleterious alleles, 

and reduces the effectiveness of selection, all of which reduce overall fitness and limit 

responses to selection (Woodworth et al. 2002; Hartl & Clark 2007; Hare et al. 2011). 

 

Short and Long-term Responses to Selection 

The breeder’s equation 

R = S h2 

states that the short-term response (R) is proportional to the strength of selection (or selection 

differential, S) and the narrow-sense heritability (h2), i.e. the proportion of additive phenotypic 

variance of the trait under selection (VA /VP) (Falconer & Mackay 1996). According to 

Robertson (1960), the maximum response to selection (Rmax) due to pre-existing 

polymorphisms for additive genes depends on the effective population size (Ne), the 

standardised selection differential (i), the narrow-sense heritability (h2), and the phenotypic 

standard deviation (P): 

Rmax = 2Ne i h2 P 

 

Furthermore, after t generations of selection, quantitative adaptation (Rt) to a given 

environment is also expected to be proportional to the selection differential (S), the initial 

heritability (h0
2), and the effective population size (Ne), as follows: 

        t 

     Rt = S h0
2 Σ [ 1 – 1 / (2Ne i) ] t-1 

      i=1 

 

(1.3) 

(1.4) 

(1.2) 
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Hence, assuming an additive model in the absence of mutation, the temporal loss of 

genetic diversity leads to the expectation of reduced long-term response to selection. Therefore, 

for a given value of additive genetic variance (VA), the long-term response to selection will 

decrease as Ne declines (Robertson 1960; Hill & Rasbash 1986; Wei et al. 1996; Willi et al. 

2006). Moreover, the selection differential (S) itself declines during long-term selection, 

because the population of selected individuals is highly related and, therefore, smaller than its 

numbers alone would suggest (Verrier et al. 1991). Thus, small populations are expected not 

only to possess lower levels of genetic variation, but they are also less likely to achieve the 

maximum response to selection predicted by their genetic variance (Hoffmann et al. 2017; but 

see Wood et al. 2016). Finally, the response to selection is less predictable in populations that 

are small and/or have low genetic variation (Hill 1982; Nomura 1997), as the variance of the 

response is given by 2FVA, where F is the inbreeding coefficient and VA is the initial additive 

genetic variance. Thus, the response becomes more variable as populations remain small for 

some time (Willi et al. 2006). 

These models were developed to predict the response to selection acting on traits that 

vary primarily due to additive genetic variance, in the absence of mutation, where the rates of 

loss of molecular and quantitative genetic variation do not differ significantly (Gilligan et al. 

2005). The fact that characters close to fitness can have high non-additive genetic variance and 

possible linkage disequilibrium may lead to results that deviate substantially from these 

theoretical predictions (Frankham et al. 2002; Frankham 2005b; Gilligan et al. 2005). 

 

Mutation Accumulation 

Mutation is the ultimate source of all the genetic variation on which selection may act. 

Hence it is essential to evolution. Mutations may carry a large cost as many are deleterious and 

thereby reduce the fitness of the organisms in which they occur (Lynch et al. 1999). Mutation 

is therefore a source of both good and ill for a population (Lande 1995). 

The overall effect of mutation on a population is strongly dependent on population size. 

On the one hand, populations with more individuals have statistically higher probability of 

acquiring new mutations in each generation and, for the same reason, the absolute number of 

those mutations that are beneficial is more likely to be higher. On the other hand, larger 

populations have more effective selection against deleterious mutations, which keeps them at 

lower frequencies in the balance between the forces of selection and those of mutation (Crow 
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& Kimura 1970). Consequently, a population with fewer individuals will have lower fitness on 

average, not only because fewer new beneficial mutations arise, but also because deleterious 

mutations of sufficiently small effect are roughly selectively neutral and more likely to reach 

high frequencies through genetic drift. Over long time-spans, this shift in mutation-selection 

balance can cause numerous deleterious alleles to fix, producing declines in fitness that lead 

the population to extinction – an outcome referred to as mutational meltdown (Lynch & Gabriel 

1990; Lande 1994, 1995; Zeyl et al. 2001; Whitlock & Bürger 2004; Coron et al. 2013). 

 

Effects of Population Size on History, Chance, and Selection signatures 

The relative roles of history, chance, and selection in shaping evolution are long-

standing topics for debate among evolutionary biologists (Fisher 1930; Wright 1931; Kimura 

1968; Gould & Lewontin 1979; Travisano et al. 1995; Teotónio & Rose 2000; Joshi et al. 2003; 

Lenormand et at. 2009; Losos 2011; Flores-Moya et al. 2012; Fragata et al. 2014b; Lachapelle 

et al. 2015; Burke et al. 2016; Seabra et al. 2018). Life-history traits are great characters with 

which to address this issue, because of their strong association with fitness. This property 

allows to test for the relative effects of history, chance, and selection in adaptation, relative 

effects that are strongly dependent on underlying genetic variation (Lande & Arnold 1983; Flatt 

& Heyland 2011). Also, the widespread pleiotropy and epistasis among these characters (Roff 

& Emerson 2006) should foster the dependence of selection outcome on genetic background 

(Whitlock et al. 1995; Gavrilets 2010). 

In general, the available experimental results show that the relative roles of history, 

chance and selection are contingent on the trait under analysis. History and chance have a more 

preponderant role in characters loosely related to fitness (e.g. morphological and stress 

resistance traits). They are more often of less importance for characters more closely related to 

fitness, like fecundity and mortality (Travisano et al. 1995; Teotónio & Rose 2000; Teotónio 

et al. 2002; Joshi et al. 2003; but see Fragata et al. 2014b). Furthermore, history’s signature is 

more apparent at the genetic level compared to phenotypic level, as historical contingencies 

can arise due to the effect of mutations on specific alleles that affect molecular evolutionary 

paths that have equivalent effects on the phenotype (Blount et al. 2008; Bedhomme et al. 2013; 

Fragata et al. 2014a; Spor et al. 2014). 

However, the effect of population size on the evolutionary importance of history, 

chance, and selection has only recently been addressed by Lachapelle and colleagues (2015) 
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whom studied different-sized experimental populations of Chlamydomonas reinhardtii 

adapting to a high salt environment. They found that adaptation to salt was repeatable (i.e. the 

evolutionary trajectories and outcomes of different lineages in given conditions will be the 

same) only in populations with Ne > 50,000 because of the large contribution of selection. 

Adaptation was not repeatable in smaller populations (Ne > 5,000) because of large constraints 

from history. 

 

Previous Experiments with Varying Ne 

Smaller populations are expected to have lower adaptive potential. Nevertheless, this 

association is not straightforward in natural populations, as shown by Wood et al. (2016) meta-

analysis. In part this may be due to low statistical power, focus on traits loosely related to 

fitness and complexity of natural population meta-structures (Hoffmann et al. 2017). 

Experimental studies may explore different scenarios under controlled conditions and help 

clarify the actual role of Ne on adaptive potential. 

Experiments which have compared selection lines with markedly different Ne 

consistently yield large contrasts in the phenotypic response to selection (e.g. Jones et al. 1968; 

Eisen et al. 1973; Madalena & Robertson 1975; Weber 1990; Weber & Diggins 1990). 

Furthermore, the magnitude of the effect of Ne depends on the level of environmental stress, 

and thus the intensity of selection. This is particularly relevant in cases of environmental 

change (e.g. global warming, new pests, habitat degradation, and introduced or evolving 

parasites), because reduced genetic diversity limits the ability of populations to evolve in 

response to environmental challenges (e.g. Lande 1988, Heschel & Paige 1995, Templeton et 

al. 2001, Frankham et al. 2002; Reed et al. 2003; Reed & Frankham 2003; Spielman et al. 

2004b; Frankham 2005a). The population’s ability to evolve in response to novel 

environmental conditions is termed evolvability (Houle 1992) or adaptive potential.  

It is important to take into account how fast populations adapt to adverse or 

deteriorating environments (e.g. Bell & Gonzalez 2009; Carlson et al. 2014; Stelkens et al. 

2014). Because environments undergo stochastic fluctuations, a factor like Ne which reduces 

fitness will make a population more susceptible to extinction when further perturbations occur 

(Reed 2005). A population exposed to rapid and sustained environmental change will decline 

in numbers if it is too maladapted, risking extinction. Before this happens, however, resistant 

alleles that are already present in the population, or that appear by mutation, may proliferate, 
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increase the level of adaptation to the novel environment, and restore population growth – this 

phenomenon is called evolutionary rescue (Bell & Gonzalez 2009). Extinction in the face of 

environmental change is therefore a race between demography and adaptive evolution 

(Maynard Smith 1989). 

Despite the fundamental importance of Ne in evolutionary theory, it is notoriously 

difficult to assess (Wang 2005). Several techniques have been developed to estimate Ne in 

natural and artificial populations (e.g. Frankham 1995b; Wang 2005; Luikart et al. 2010) and 

in laboratory Mendelian populations (e.g. Gilligan et al. 2003; Santos et al. 2012; Mueller et 

al. 2013), often now using genomic signatures of genetic drift (Teotónio et al. 2009, Orozco-

terWengel et al. 2012). Still less often is Ne experimentally manipulated to study its impact on 

evolution under well-defined conditions (Frankham et al. 1999; Woodworth et al. 2002; Reed 

et al. 2003; see review in Frankham et al. 2014). There are classic experiments on such 

characters as Drosophila bristle number which illustrate the impact of Ne qualitatively, 

especially the way low Ne generates genetic drift (e.g. Rasmuson 1952). Weber (2004) has 

supplied a review of the impact of Ne on the response to selection in studies published between 

1949 and 1996. Roughly speaking, the response at generation 50 of selection increases as Ne 

increases, up to a crude plateau for Ne values over 100-300, as shown in Figure 2.1. 

 

 

 

 

Figure 2.1. A summary of 11 selection experiments showing total response in generation 50, normalized by 

response in generation one (R50/R1). The curves show predicted R50/R1 with and without new mutation at a rate 

of 0.001 x initial additive genetic variance per generation. © Weber, 2004.  



CHAPTER TWO 

 

34 

 

Woodworth et al. (2002) studied the joint effect of selection and varying Ne during 

evolutionary domestication. They founded a total of 23 laboratory populations of D. 

melanogaster at census population sizes ranging from 25 to 500 individuals. After 50 

generations in the lab, they compared the performance of flies that had been maintained at 

different census population sizes, under both benign and crowded conditions. Under benign 

conditions, individuals from larger Ne populations had better performance compared to 

individuals from populations with smaller effective size. Under crowded conditions, all 

laboratory populations had lower performance than recently derived populations.  

 

What do we bring to the table? – The added value of this experiment. 

The present study differs from earlier Drosophila studies of the effect of effective 

population size on the response to selection in the following ways: (i) the use of 6 ancestral 

populations with well-characterized histories of maintenance and selection, well-studied 

functional characteristics, and extensive genome-wide sequencing; (ii) the derivation of 84 

directly selected and matched control populations; (iii) repeated sampling of phenotypic direct 

and indirect responses to selection over multiple generations. 

With this highly-replicated experimental design we aim to respond to several 

evolutionary questions in the context of colonization, where a population encounters 

qualitatively novel conditions, suffers demographic perturbations and a reduction in its 

effective size: (i) How will the population respond to these new demographic conditions? (ii) 

How will its life-history evolve in response to such new, harsh conditions? (iii) How will the 

population size differences affect the evolutionary response to the new environment? (iv) Will 

populations from the same source evolve the same way? (v) Will the roles of history, chance, 

and selection shift in populations evolving at different sizes? 
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MATERIALS AND METHODS 

Source of the experimental populations 

The experimental populations used in this study were derived from a wild Drosophila 

melanogaster population collected in South Amherst, Massachusetts by Ives in August 1975. 

The IV population has been maintained ever since at 24-25ºC, large census sizes (N~1,000-

2,000), with unlimited food, and 14-day discrete generations. In February 1980, after 

approximately 130 generations in the laboratory setting, five experimental populations were 

derived from a single generation of the base population and designated B1-5 (where the 

subscripts indicate the five replicate populations). The B/IV stocks (writing IV as B0, we have 

B0-5) have since been assayed maintained in the aforementioned conditions for over 800 

generations (vid. Rose et al. 2004 for more details on their evolutionary history; Kimber & 

Chippindale 2013, overview their laboratory evolution). 

 

Derivation of the experimental populations 

Each of the B replicate populations was used as the ancestor for 10 small-sized 

populations of about 50 surviving individuals at the time reproduction (5 directly selected + 5 

matched controls) and 4 large-sized populations (2 directly selected + 2 matched controls) each 

maintained with about 1000 surviving individuals at the time of reproduction (see Table 2.1), 

for a total of 84 populations. These census population sizes were sustained throughout the 

experiment, with increased numbers of adults reared for the replicate populations undergoing 

selection so as to sustain comparable numbers of surviving females at the time of egg-laying 

to start the next generation. 

 

Table 2.1. Derivation of the experimental populations. Each Bi population was used to derive 5 selection (S) and 

5 control (C) lines (j = a, b, c, d, and e), that are kept at small Ne (P for pequeno) and 2 selection (S) and 2 control 

(C) lines (k = a, b) at large (G for grande) population sizes. 

STARVATION 

RESISTANCE 

POPULATION SIZE 

SMALL (P) 
~50 ind. 

LARGE (G) 
~1000 ind. 

SELECTED (S) SPB i j SGB i k 

CONTROLS (C) CPB i j CGB i k 

Notes 
i = 0,1,2,3,4,5 

j = a, b, c, d, e 

i = 0,1,2,3,4,5 

k = a, b 
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Forward selection procedures for starvation resistance 

The eggs from all the populations were collected on regular banana food and given 14 

days to develop to adulthood. On day 14, the flies were mixed using CO2 anesthesia, 

redistributed in vials (≈50 individuals each), and given 3 days of yeast-supplemented banana 

food. The control populations were fed with regular banana food, while the populations 

undergoing selection were given plain agar lacking nutrients during the period of selection. 

With this protocol, the selected flies had water available from the agar – they were starving but 

not desiccating. During selection, the census sizes of the cohorts undergoing selection were 

estimated every 4 hours, until about 80% of each population had starved to death. The surviving 

flies were then given yeast-supplemented food for 72h. Then the eggs of all populations 

(selected and controls, both small and large sizes) were synchronously collected to found the 

new generation. 

Figure 2.2 diagrams the starvation-resistance selection protocol. This selection 

procedure lead to a parallel progressive increase in the age of reproduction for all populations, 

since the next generation of the controls was initiated at the same time as that of their matched 

starvation-selected lines. This chapter follows the experimental lines for 25 generations of 

forward selection to starvation resistance. 

 

Figure 2.2. Starvation resistant selection protocol in small (SPB) and large (SGB) populations.  

 

Starvation resistance assay 

After one generation with common garden rearing, starvation-assay flies were reared in 

control conditions. They were given 14 days from egg to develop, after which they were given 

72h of yeast-supplemented food. Using CO2 anesthesia, the flies were paired in couples and 

flipped into a vial with agar only. Individual mortality was checked every 4 hours, until the last 

fly died. This trait was assayed at generations 0, 4, 8, 11, 12, 13, 14, 15, 16, 18, 22, and 25 of 

starvation-resistance selection. 
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Fecundity assay 

After one generation with common garden rearing, fecundity-assay flies were reared 

for 14 days using the same conditions as those for the starvation resistance assay. Adults were 

then paired as couples in single vials, with 20 pairs per population. Every 24h for five days, the 

couple was given fresh charcoal-colored food with yeast paste spread on the surface of the 

medium. The eggs laid by each female were counted from a photograph of the vial surface (see 

Figure 2.3). This trait was assayed at generations 0, 4, 8, 11, 15, 16, 18, and 22 of starvation-

resistance selection. 

 

 

Figure 2.3. Vial surface photograph showing the eggs resulting from 24h of egg-laying by a single female from 

the experimental populations. 

 

Statistical data analysis 

In all analyses, the normality and homoscedasticity of data were tested by Shapiro-Wilk 

(1965) and Brown-Forsythe (1974) tests, respectively. After testing by ANOVA and ANCOVA, 

and when it was appropriate, Tukey HSD (1953) post-hoc tests were done. A significance value 

of 0.05 () was used to test all null hypotheses. All analyses were done using STATISTICA 13 

(Dell 2015). 
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The key statistical tests focused on quantitative measures of how marked Ne disparities 

affected the direct and indirect responses to selection for increased starvation resistance, i.e. 

estimating the magnitudes of the interactions between these responses and the different Ne 

values. 

The evolutionary trajectories of starvation resistance and fecundity throughout the 25 

generations of selection were analyzed according to the following ANCOVA model: 

𝒀 =  𝝁 + 𝑯𝒊 + 𝑻𝒋 + 𝑺𝒌 + 𝑮𝒍 + 𝑹𝒆𝒑{𝑯 ∗ 𝑻 ∗ 𝑺} + 𝑯𝒊 ∗ 𝑻𝒋 + 𝑯𝒊 ∗ 𝑺𝒌 + 𝑯𝒊 ∗ 𝑮𝒍 + 𝑻𝒋 ∗ 𝑺𝒌

+ 𝑻𝒋 ∗ 𝑮𝒍 + 𝑺𝒌 ∗ 𝑮𝒍 + 𝑯𝒊 ∗ 𝑻𝒋 ∗ 𝑺𝒌 + 𝑻𝒋 ∗ 𝑺𝒌 ∗ 𝑮𝒍 + 𝑯𝒊 ∗ 𝑺𝒌 ∗ 𝑮𝒍 + 𝑯𝒊 ∗ 𝑻𝒋

∗ 𝑮𝒍 + 𝑯𝒊 ∗ 𝑻𝒋 ∗ 𝑺𝒌 ∗ 𝑮𝒍 + 𝑮𝒍  ∗ 𝑹𝒆𝒑{𝑯 ∗ 𝑻 ∗ 𝑺} + 𝜺 

where Y is the trait under analysis (starvation resistance or fecundity); H represents the 

evolutionary history (i = 0–5), random factor; T the population size (j = large or j = small), 

fixed factor; S the selection regime (k = selected or k = control), fixed factor; G the covariate 

generation (see which on the assays description), and Rep the replicate population (random 

factor). Generation 0 data were not included in the ANCOVA, since replicates within History 

were still lacking. This is a comprehensive model that includes all variables under study. 

Analyses within population size or selection regime used adapted versions of the 

aforementioned model (e.g. when comparing small and large populations in control conditions, 

the factor Selection and all its interactions were removed). 

When analyzing the selection lines (SGB and SPB), in order to remove the background 

experimental evolution effect of the changed culture procedures we used data relative to control 

instead of raw data, i.e. we used the difference between the raw value of the character for each 

individual and the average for the CGBi controls (or CPBi depending on the analysis). CGBi is 

the average of the two CGBik lines and CPBi is the average of the five CPBij lines. In particular, 

since we found statistically significant changes in starvation resistance and fecundity without 

the imposition of selection (Figures 2.4 and 2.5, Table 2.2), this correction was required for 

estimating the response to direct starvation selection, stripped of the evolutionary effects of 

altered nutrition and culture time. 

 

Selection differentials analysis 

The selection differential, S, was computed for each one of the populations using the 

breeder’s equation: R = S h2 (equation 1.2 of thesis; Falconer & Mackay 1996). R was the 

cumulative response of female starvation resistance in the first four generations of forward 

selection (R4). As a surrogate for h2 the average heritability estimated for starvation resistance 

(1.5) 
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of B-females by Hutchinson et al. (1991) was used. Heritability for starvation resistance has 

been shown to be high (Service & Rose 1985; Hoffman & Harshman 1999) and it is not 

expected to change in the first few generations of selection (Jones et al. 2003). A two-way 

mixed-model ANOVA with one fixed factor (Regime) and one random factor (History) was used 

to test the differences between the regimes (defined by each combination of size and selection). 

 

Estimation of variance components 

This experimental project presents two levels of imbalance in its design: (1) the number 

of populations within size regime is different (60 populations for small, 24 for large size), and 

(2) the number of samples per population varies (from 16 to 20 couples). This creates problems 

when estimating variance components using factorial ANOVA. Joshi, Castillo & Mueller (2003; 

see Neter et. al 1990) presented a solution for a four-way mixed-model ANOVA with a single 

imbalance at the lowest level. In order to use their approach in our statistical analysis, we split 

the work into two steps: (1) variance components estimation for History, Size, and Selection 

(and its interactions), and (2) variance components estimation for Population (or Chance). 

(1) Variance components estimation for History, Size and Selection: in this analysis, 

the average values of each replicate were used, and we had n replicate populations in each 

H×T×S combination. Thus, there was only one imbalance due to the number of populations 

within size regime. The variance components were computed using the expected mean square 

values of a three-way mixed-model ANOVA with the factors History (random, a=6 levels), Size 

(fixed, b=2 levels), and Selection (fixed, c=2 levels), as follows:  

 

History: 𝐻
2 =

MS H − MSe

b c n
 

Size: "𝑇
2 " =

MS T − MS(H∗T)

a c n
 

Selection: "𝑆
2" =

MS S − MS(H∗S)

a b n
 

History * Size: 𝐻∗𝑇
2 =

MS(H∗T) − MSe

c n
 

History * Selection: 𝐻∗𝑆
2 =

MS(H∗S) − MSe

b n
 

Size * Selection: "𝑇∗𝑆
2 " =

MS(T∗S) – MS(H∗T∗S)

a n
 

History * Size * Selection: 𝐻∗𝑇∗𝑆
2 =

MS(H∗T∗S) − MSe

n
 

Error: 𝑒
2 = MS e 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 
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Because the number of replicates per cell (interaction H*T*S) varied, n was substituted by n’, 

given by: 

𝑛′ =  
1

(𝑎 𝑏 𝑐 ) − 1
 [∑ 𝑛𝑖 −  

∑ 𝑛𝑖
2𝑎𝑏𝑐

𝑖=1

∑ 𝑛𝑖
𝑎𝑏𝑐 
𝑖=1

𝑎𝑏𝑐

𝑖=1

] 

 

(2) Variance components estimation for Chance: in this analysis, the absolute value for 

each individual was used. We had d replicate populations in each H×T×S combination and n 

individual values in each {Pop}H×T×S combination. Thus, there were two levels of imbalance: 

due to the number of populations within size regime and due to the number of samples per 

population. The variance components for chance were computed using the expected mean 

square values of a four-way mixed-model ANOVA with the factors History (random, a=6 

levels), Size (fixed, b=2 levels), Selection (fixed, c=2 levels), and Population (nested within 

H*T*S, d levels), as follows: 

Population (chance): 𝑃𝑜𝑝{𝐻∗𝑇∗𝑆}
2 =

MS Pop{H∗T∗S} − MSe

n
 

Because the number of individuals per population varied, n was substituted by n’, given by: 

𝑛′ =  
1

(𝑎𝑏𝑐𝑑) − 1
 [ ∑ 𝑛𝑖 − 

∑ 𝑛𝑖
2𝑎𝑏𝑐𝑑

𝑖=1

∑ 𝑛𝑖
𝑎𝑏𝑐𝑑 
𝑖=1

𝑎𝑏𝑐𝑑

𝑖=1

] 

 

The variance components of large and small populations were also analyzed separately 

using adapted versions of the previous models. 

 

Population differentiation analysis 

Population differentiation was assessed by comparing the variances for starvation 

resistance and early fecundity between the four regimes (CGB, CPB, SGB, and SPB) after 25 

and 22 generations of forward selection, respectively. For each regime the variance was 

computed using the mean square of error in a one-way ANOVA (History has a random factor) 

of the populations’ average value. The variance was then standardized by dividing the average 

value of the character. This standardization was chosen because the relationship between 

variance (2) and mean () in the characters under study was more linear than the relationship 

between variance (2) and square of mean (2). The significance of the difference between 

each pair of variances was then compared, using the ratio of the greater variance over the 

smaller (Fs, Sokal & Rohlf 1995).  

(1.14) 

(1.15) 

(1.16) 
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RESULTS 

General linear model assumptions 

As a consequence of the Central Limit Theorem, moderate violations of normality have 

little material effect on the robustness of analysis of variance, as long as homoscedasticity is 

guaranteed (Sokal & Rohlf 1995). Small deviations from normality were accepted, and 

homoscedasticity was verified by the Brown-Forsythe test, which has great robustness and 

statistical power even when significant deviations from normal distributions occur (Olejnik & 

Algina 1987). Our distribution tests showed that all populations were homoscedastic and 

generally normal (data not shown). 

 

Adaptation to the culture regime 

To analyze the effect of the handling procedure on the characters of interest, regardless 

of any imposed selection, both small and large control populations were assessed. During the 

25 experimental generations, a general increase in starvation resistance and decrease of early 

fecundity was seen. Starvation resistance of large N controls (CGB) significantly increased 

from 28.7 to 35.9 hours, in males, and from 49.9 to 62.5 hours, in females. The small N controls 

(CPB) saw their starvation resistance significantly increased from 28.7 hours to 40.2 hours, in 

males, and from 49.9 to 74.3 hours, in females. In terms of early fecundity, CGB populations 

suffered a statistically significant decline, from 244 to 176 eggs. A similar effect was shown 

by the small controls, CPB, which started with 244 eggs and ended with 144 eggs. The pattern 

of life-history trait change over the length of the experiment is shown on Figures 2.4 and 2.5 

for CGB and CPB, respectively. Table 2.2 summarizes the ANCOVA results. 

 

Table 2.2. Summary of the mixed-effects ANCOVAs used to analyze the evolutionary trajectories of small and 

large controls. Data shows the F statistic and respective p-value for the factor Generation of each size regime and 

life-history trait analyzed. All changes through time were significant. 

Regime 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

CGB 89.7852 0.000221 59.0850 0.000594 8.2936 0.034581 

CPB 24.7176 0.004136 14.2969 0.012834 33.407 0.002179 
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a)  

b)  

c)  

Figure 2.4. Evolutionary trajectories for a) male starvation resistance, b) female starvation resistance, and c) early 

fecundity of large control populations (CGB). Average population values for each Bi ancestor are shown. Error 

bars denote standard error of mean (computed as differences between replicate populations). 
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a)  

b)  

c)  

Figure 2.5. Evolutionary trajectories for a) male starvation resistance, b) female starvation resistance, and c) early 

fecundity of small control populations (CPB). Average population values for each Bi ancestor are shown. Error 

bars denote standard error of mean (computed as differences between replicate populations). 
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Effect of population size reduction in controlled laboratory conditions 

As seen in the previous section, throughout this experiment, both large and small 

control populations significantly increased their starvation resistance and decreased their early 

fecundity (Figures 2.4 and 2.5, Table 2.2). The evolutionary rates between the two control 

regimes were then compared. In terms of starvation resistance, there were no significant 

differences between regimes. However, the early fecundity decline was significantly more 

abrupt in the small populations (CPB) than in their larger counterparts (CGB). Table 2.3 

summarizes the ANCOVA used to compare the evolutionary trajectories. 

 
Table 2.3. Summary of the mixed-effects ANCOVAs used to compare the evolutionary trajectories of small and 

large controls. Data shows the F statistic and respective p-value for the interaction Size*Generation of each life-

history trait analyzed. Significant changes are highlighted in bold. 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

0.0028 0.959778 0.6146 0.468503 15.9569 0.010354 

 

 

Effect of population size under strong forward selection 

To analyze the effect of sustained small population size on the rate of response to strong 

selection we compared the evolutionary trajectories of SGB and SPB regimes using the control-

corrected data (that is, the difference from their respective CGBi control, see Material and 

Methods). This correction was required for focal statistical analysis of the effects of direct 

starvation selection, since we found statistically significant changes in starvation resistance and 

fecundity among the control lines (Figures 2.4 and 2.5, Table 2.2). Additionally, we repeated 

all the analyses using CPBi as controls for SPBij and obtained similar results (data not shown). 

All selected populations, both in large (SGB) and small size (SPB), substantially 

increased their starvation resistance and declined their early fecundity over the course of the 

experiment (Figures 2.6 and 2.7). After 25 generations of forward selection, the SGB 

populations had their male starvation resistance (relative to CGB) increased by 128.5 hours, 

being a four-fold higher than the controls. SGB females also had their starvation significantly 

increased to 152.9 hours, three times higher than CGB. By the end of the selection experiment, 

SPB male starvation resistance averaged 44.4 hours (two times larger than CGB) and SPB 

females increased 66.7 hours (also twice the controls). Both starvation-selected stocks suffered 
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a fecundity decrease through the experiment, although only SPB showed a significant decline 

(54 eggs less than CGB by generation 22, or 70% of the latter output). Table 2.4 summarizes 

the ANCOVA results. 

 
Table 2.4. Summary of the mixed-effects ANCOVAs used to analyze the evolutionary trajectories of small and 

large selected lines. Data shows the F statistic and respective p-value for the factor Generation of each size regime 

and life-history trait analyzed. Significant changes are highlighted in bold. 

Regime 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

SGB 279.4444 0.000013 845.4445 0.000001 0.514836 0.505121 

SPB 36.72685 0.001765 73.02790 0.000361 9.554997 0.027037 

 

 

After analyzing the evolutionary trajectories of each regime, we tested for differences 

in the response of starvation resistance and fecundity between the SGB and SPB stocks. As 

expected, in both males and females, the rate of response of the large lines was significantly 

higher than the one observed for small Ne populations. In terms of early fecundity, no 

significant difference between SGB and SPB lines were found (see Table 2.5). 

 
Table 2.5. Summary of the mixed-effects ANCOVAs used to compare the evolutionary trajectories of small and 

large selected stocks. Data shows the F statistic and respective p-value for the interaction Size*Generation of each 

life-history trait analyzed. Significant changes are highlighted in bold. 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

62.6444 0.000516 95.5595 0.000188 0.50520 0.508980 
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a)  

b)  

c)  

Figure 2.6. Evolutionary trajectories for a) male starvation resistance, b) female starvation resistance, and c) early 

fecundity of large selected populations (SGB). Average population values (CGBi-corrected) per Bi ancestor are 

shown. Error bars denote standard error of mean (computed as differences between replicate populations). 
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a)  

b)  

c)  

Figure 2.7. Evolutionary trajectories for a) male starvation resistance, b) female starvation resistance, and c) early 

fecundity of small selected populations (SPB). Average population values (CGBi-corrected) per Bi ancestor are 

shown. Error bars denote standard error of mean (computed as differences between replicate populations). 
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Effect of strong directional selection during a sustained bottleneck 

In order to evaluate the effect of sustaining a strong selection protocol when the 

populations undergo a long-term bottleneck, we compared the small-selected stocks (SPB, 

Figure 2.7) with their small-controlled counterparts (CPB, Figure 2.5). Because of the 

evolutionary response to the culture regime, these two small stocks were compared using the 

relative data to the average CGBi. As expected, both male and female starvation resistances 

were significantly higher in the selected lines. In terms of fecundity, no significant difference 

was found between CPB and SPB evolutionary trajectories (see Table 2.6). 

 
Table 2.6. Summary of the mixed-effects ANCOVAs used to compare the evolutionary trajectories of SPB and 

CPB. Data shows the F statistic and respective p-value for the interaction Selection*Generation of each life-

history trait analyzed. Significant changes are highlighted in bold. 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

34.53016 0.002023 49.56771 0.000890 0.00722 0.935585 

 

Effect of Size on Selection Differentials 

Selection differentials were computed based on the cumulative response of female 

starvation resistance in the first four generations of forward selection (Table 2.7). First, 

selected lines were compared to controls within population size regime, and significant 

differences were found in both large (p<0.002) and small sizes (p<0.002). This implies that the 

selection protocol is causing a difference between the base populations and the selected 

individuals. Second, the effect of size was assessed, by comparing large selected populations 

(SGB) with the small selected populations (SPB). In this case, no significant differences were 

found (p>0.9), i.e. the differences in selective response between SGB and SPB were due to the 

effect of size and not to different selection pressures from the start of the experiment. 

Table 2.7. Selection differentials computed for female starvation resistance. Data shows the mean selection 

differential for each regime (size*selection interaction) and the respective standard error. 

Regime Size Selection Mean value Standard error 

CGB Large Control -6.574 6.742 

CPB Small Control -1.973 7.578 

SGB Large Selected 4.367 8.279 

SPB Small Selected 4.448 7.698 
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Relative Effect of History, Chance, Size, and Selection during Forward Selection 

The evaluation of the relative effects of History, Chance, Size and Selection was done 

using a variance components analysis through time. This analysis provided estimates of the 

relative amount of variance that could be attributed to each one of these factors. The initial 

differences between the experimental populations were attributed exclusively due to the effect 

of History only (differences in Bi ancestor), which accounts for 100% explained variance for 

History in generation zero. 

Male and female starvation resistance showed a very similar pattern of variance 

component change – see Figure 2.8 a) and b). The effect of History suffered a very sharp 

decrease during the first 5 generations, showed some variation during the following 12, and by 

generation 18 (and from there on) was null. The effect of Chance increased for 5-6 generations, 

reaching 40% of explained variance; it then dropped slower until generation 15, and stayed 

steadily low for the rest of the experiment (about 5% of explained variance). The effect of Size 

was only apparent by generation 12, when it explained 20% of the total variance. That value 

remained steady for the rest of the experiment. Lastly, Selection exhibited a rapid increase in 

its relative effect up to generation 12, when it explained about 80% of the variance encountered. 

It stayed around that value for the remainder of the experiment, albeit with some variation. 

As expected, the temporal change of variance components for early fecundity was very 

different from starvation resistance – see Figure 2.8 c). First, Selection had a lower impact, 

explaining at most only 20% of the total variance. There was a slow increase until generation 

18, with a sudden drop at generation 15 and a smaller decrease at generation 22. The effect of 

Size was only apparent from generation 6 on, reaching 40% towards the end of the experiment. 

It increased with time and showed two drops to zero on generations 15 and 18. History dropped 

abruptly and stayed close to zero from the first few generations on (with slight increases on 

generations 16 and 22). Finally, Chance seemed to be the most important factor for early 

fecundity variance. It showed somewhat erratic fluctuation. It was around 90% of explained 

variance from generation 4 to 15. It then started decreasing, showing a fast drop and then 

recovered at generation 16. 
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a)  

b)  

c)  
Figure 2.8. Evolution of variance components for a) male starvation resistance, b) female starvation resistance, 

and c) early fecundity, expressed as percent of explained variance. 
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Effect of Size on History, Chance, and Selection signatures 

The evolution of variance components of large and small populations was analyzed 

separately and compared. Once again, the initial differences between the populations were 

exclusively due to the differences in Bi ancestor, accounting for 100% of explained variance 

for History in generation zero. 

The patterns for male and female starvation resistance were again very similar (Figure 

2.9 and 2.10, respectively). The effect of History dropped slower, and it was always higher, in 

the small populations. Similarly, the % of variance explained by Chance in small populations 

was generally higher, and the differences were aggravated with time. The effect of Selection 

showed a sharper increase in the large populations and it was always higher when compared to 

its effect on the small populations. 

The temporal change of variance components for early fecundity was clearly different 

from that for starvation resistance; it is depicted in Figure 2.11. The effect of History dropped 

sharply and it was generally lower in small populations. Except for a sudden drop in generation 

16, the effect of Chance was always more pronounced in small than in large populations. 

Finally, the effect of Selection was barely noticed in large populations, explaining from 20 to 

40% of the character variance in small populations. 
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Importance of History in Male Starvation Resistance 

a)  

 

Importance of Chance in Male Starvation Resistance 

b)  

 

Importance of Selection in Male Starvation Resistance 

c)  
Figure 2.9. Variance components in large and small populations for male starvation resistance: a) history, b) 

chance, and c) selection, expressed as percent of explained variance. 
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Importance of History in Female Starvation Resistance 

a)  

 

Importance of Chance in Female Starvation Resistance 

b)  

 

Importance of Selection in Female Starvation Resistance 

c)  

Figure 2.10. Variance components in large and small populations for female starvation resistance: a) history, b) 

chance, and c) selection, expressed as percent of explained variance. 
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Importance of History in Early Fecundity 

a)  

 

Importance of Chance in Early Fecundity 

b)  

 

Importance of Selection in Early Fecundity 

c)  

Figure 2.11. Variance components in large and small populations for early fecundity: a) history, b) chance, and 

c) selection, expressed as percent of explained variance.   
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Selection, Drift, and Population Differentiation 

At the end of the forward selection experiment, the population differentiation was 

assessed by computing and comparing the nested-population (or “chance”) variance in each 

of the four regimes (CGB, CPB, SGB, and SPB) in terms of starvation resistance at generation 

25 of selection and fecundity at generation 22. In the absence of selection, the small populations 

showed a significantly higher variance in starvation resistance, but not in male starvation 

resistance or fecundity. Under selection, there was no variance difference between SPB and 

SGB. Selection seemed to cause an increase of population differentiation among the large 

selected populations only (SGB), with a significantly higher heterogeneity in female starvation 

resistance relative to large unselected populations. Table 2.8 shows the F-ratios (Sokal & 

Rohlf 1995) and their respective statistical significance. 

 

Table 2.8. Effect of size and selection on population differentiation. Each comparison shows the variance of each 

regime standardized (divided by the mean). Significance of F-ratios: n.s. p>0.05; * 0.01<p<0.05; ** p<0.01. 

Comparison CPB / CGB SPB / SGB SGB / CGB SPB / CPB 

Effect 
Size in control 

conditions 

Size under 

forward selection 

Selection in 

large size 

Selection in 

small size 

Male starvation 

resistance 
5.95 / 0.95 * 4.26 / 3.20 n.s. 3.20 / 0.95 n.s. 4.26 / 5.95 n.s. 

Female starvation 

resistance 
5.45 / 0.23 ** 3.72 / 3.21 n.s. 3.21 / 0.23 ** 3.72 / 5.45 n.s. 

Early Fecundity 2.45 / 1.28 n.s. 2.07 / 1.02 n.s. 1.02 / 1.28 n.s. 2.07 / 2.45 n.s. 
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DISCUSSION 

Adaptation to the culture regime 

An important feature of any experimental evolution design is the effect of the handling 

procedure on the characters of interest, irrespective of any deliberately imposed selection. 

There are significant differences between the general handling procedures imposed on the Bi 

ancestors and those imposed on the control and starvation-selected populations in this 

experiment. Specifically, the generation length and the pattern of nutrition were both changed 

for all populations. Generation length was increased at first to 19 days, but progressively 

extended to 31 days over the course of the 25 generations of selection, due to the increasing 

average starvation resistance of the selected lines. The nutritional change consisted of yeast 

supplementation on the surface of the vials in which adults were kept, as described in the 

Materials and Methods section. The secular increase in starvation resistance and decrease in 

fecundity among the large-sized controls (the CGB populations, Figure 2.4) were strong 

evidence of this phenomenon. While the changes in starvation resistance were statistically 

significant (Table 2.2), they were of relatively small magnitude, particularly compared to the 

changes in starvation resistance shown by the selected lines (Figures 2.6 and 2.7). These 

patterns of increased starvation resistance and antiparallel decline in early fecundity with 

postponed reproduction were previously observed (e.g. Service & Rose 1985; Hutchinson et 

al. 1991; Rose et al. 1992). 

 

Effect of population size reduction in controlled laboratory conditions 

The comparison of replicated experimental stocks kept simultaneously in conditions 

that only differed with respect to their population size regimes, provides a powerful test for the 

evolutionary effect of sustained small Ne. Evidence for the impact of reduced Ne on function 

was supplied by the significant difference between small (CPB) and large stocks (CGB) in 

early fecundity. However, there were no detectable effects on male or female starvation 

resistance (Figures 2.4 and 2.5, Table 2.3). Because fecundity is a character closer to fitness 

than starvation resistance, we have a greater expectation that weaker selection and more rapid 

genetic drift allowed recessive deleterious alleles to rise to high frequencies for fecundity in 

these populations. 
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Effect of population size under strong forward selection 

With strong selection for starvation resistance, the response to the imposed stress is 

expected to be proportional to the strength of selection differential, the initial heritability, and 

the effective population size (Frankham & Kingsolver 2004). The evolutionary trajectories of 

both small (SPB) and large-sized populations (SGB) showed a substantial increase in starvation 

resistance with time, but significantly lower magnitude responses to selection in the small-

selected stocks (Figures 2.6 and 2.7, Tables 2.4 and 2.5). These findings matched conventional 

expectations, since lower Ne is expected to reduce overall fitness and limit the response to 

selection, because the smaller lines are subjected not only to more loss of heterozygosity in 

turn due to more rapid genetic drift, but also to less effective selection (Woodworth et al. 2002; 

Hartl & Clark 2007; Hare et al. 2011; Hoffmann et al. 2017, but see Wood et al. 2016). 

Furthermore, the selection lines were significantly different from their controls with 

respect to the selection differentials for female starvation resistance (Table 2.7). This means 

that the selection protocol is causing differences between the base populations and the selected 

individuals, as expected. In addition, the lack of initial differences between SGB and SPB 

selection differentials, implies that the phenotypic differences between small and large stocks 

were due to the effect of population size and not to different selection pressures. 

In previous studies, selection for starvation resistance has shown to increase mean 

longevity and reduce early fecundity, indicating a positive genetic correlation between these 

stress-resistance traits and longevity, and a negative genetic correlation between such survival-

related characters and early fecundity (Rose et al. 1992; Leroi et al. 1994a,b; Chippindale et 

al. 1996). Our findings corroborate these results, as both small and large-sized selection stocks 

saw their fecundity decline through time (Figures 2.6c and 2.7c, Table 2.4). We would expect 

the small stocks to suffer a less pronounced decline in fecundity due to the said trade-off, but 

a sharper one due to inbreeding depression. Indeed, SPB fecundity decreased abruptly with 

time, while SGB did not (Table 2.5). SPB decline could be solely explained by the detrimental 

effects of inbreeding in small stocks, but it was not: when SPB fecundity was corrected using 

CPB controls (to account for the effects of inbreeding) there was still a significant decline with 

time. The lack of difference between SPB and SGB was probably due to low statistical power 

in large stocks, given the high variance observed. The relative lack of replication in the large 

populations can contribute for these results. But an open question remains: considering 

previous studies in the Rose lab why is it that the trade-off is not visible in the large 

populations? 
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Effect of strong directional selection during a sustained bottleneck 

When populations are kept at small Ne for extensive periods of time, their fitness is 

expected to decline due to the detrimental effects of inbreeding (Charlesworth & Willis 2009). 

As our results showed, those populations that underwent a sustained bottleneck saw their 

evolutionary response to starvation impaired, as well as their fecundity (Figures 2.5 and 2.7, 

Tables 2.2 and 2.4). 

We also wanted to determine how sustained bottlenecks interact with directional 

selection. The a priori expectation was that all small-sized populations would suffer a decline 

in fecundity due to inbreeding, but that this decline would be exacerbated by starvation 

resistance selection and its trade-off with early fecundity (e.g. Chippindale et al. 1996). Our 

results showed that selected lines had a significantly higher starvation resistance than the 

controls, which means that, although impaired, the effect of selection was strong enough to 

counteract the inbreeding caused by small Ne. In terms of fecundity, selected females from 

small populations laid on average 23 eggs less than their matched unselected counterparts, but 

this difference was not statistically significant (Table 2.6). It seems that selection for starvation 

resistance, by itself, was not strong enough to cause a significant decline in fecundity. 

 

Size and its Effect on History, Chance, and Selection signatures 

At the beginning of this experiment, variation among all populations was due to the 

secular drift of the source stock, as the Bi ancestors were kept separate for over 800 generations. 

For male and female starvation resistance, the strongly selected traits in SPB and SGB, the 

signature of History was quickly erased by Selection (Figures 2.8a,b), as shown in other 

studies (Travisano et al. 1995; Joshi et al. 2003; Fragata et al. 2014b). The signature of 

Selection was always relatively weaker and the one of Chance always stronger in small 

populations, compared to their effects on the large populations (Figures 2.9 and 2.10), as 

expected. In fact, in large populations Chance was important only for the first few generations, 

probably due to sampling effects (Santos et al. 2012). For early fecundity (Figure 2.11), an 

indirectly selected trait in regimes selected for starvation resistance, and in large-sized 

populations, the importance of History dropped fast and abruptly a few generations into the 

experiment, while Selection had little impact throughout the generations. Conversely, Chance 

seemed to be the most important factor for fecundity variance. These results corroborate 

theoretical expectations, since Selection is not acting directly on this trait across regimes. 
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Furthermore, in small populations, the effect of History was generally lower and the signature 

of both Chance and Selection was always more pronounced. Overall, our results show that the 

relative roles of history, chance and selection are contingent on the trait under analysis, in 

accordance with other studies (Travisano et al. 1995; Joshi et al. 2003; Fragata et al. 2014b). 

Additionally, History and Chance play more preponderant roles in smaller populations but are 

quickly overrun by selection, particularly in larger populations. 

 

Selection, Drift, and Population Differentiation 

In the absence of mutation and directional selection, genetic variation is randomly lost 

by drift from individual populations, but between-population differentiation increases, as a 

result of genetic drift (e.g. Hänfling & Brandl 1998). Our results showed that, in the absence 

of strong directional selection, as occurs for starvation resistance in the control populations, the 

between-population variance was significantly higher in small populations than large, most 

likely due to differences in genetic drift. Under selection, the variance between small replicates 

seemed to be reduced, which supports the thesis that strong directional selection can reduce 

between-population variance. In the large outbred lines, selection seemed to cause an increase 

of population differentiation on the starvation resistance of females that showed to have a 

significantly higher heterogeneity when compared to their matched controls (Table 2.8). This 

later result, though not the former, is consistent with the findings of Cohan & Hoffmann (1989), 

where selection led their Drosophila populations to diversify. The causes of such contrasting 

patterns among populations of different sizes are elusive. Future genomic analysis in these 

populations may help clarify this issue. 

 

Final remarks 

In the absence of strong directional selection, one impact of a 20-fold reduction in 

population size was a significant decline in fecundity, showing clearly the loss of function 

caused by small Ne. On the other hand, the response to strong directional selection for starvation 

resistance was significantly reduced in magnitude in the smaller population-size lines. These 

results are consistent with the overall fitness decline and reduced response to selection expected 

with lower Ne, as smaller-sized populations are subjected not only to more severe loss of 

heterozygosity and inbreeding due to stronger drift, but also to less effective selection. 
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The relative roles of history, chance, and selection in shaping evolution are a long-

standing topic for discussion among evolutionary biologists and, in general, the present results 

show that they are contingent on the trait under analysis. Our experimental results also show 

that history and chance are more important with smaller than with larger Ne. 
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Chapter Three. 

Hybridization and Forward Selection with Varying Population Size
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ABSTRACT 

The complex interplay of gene flow, mutation, drift, and selection in natural populations 

hinders the prediction of which evolutionary force will be predominant at any given time or 

place. It has been clearly shown that inbreeding resulting from genetic drift (especially in small 

populations) can strongly reduce a population’s fitness and increase extinction risk. Several 

natural and experimental studies have demonstrated that small, inbred populations can have 

their fitness increased and inbreeding depression alleviated by introducing genetic variation, in 

a process called genetic rescue. Here we present a comprehensive study of the effect of the 

genetic rescue using inter-population hybridization in different evolutionary scenarios: i) under 

a sustained bottleneck, ii) under strong directional selection, and iii) under strong directional 

selection and small population size. Our major findings suggest that (1) hybridization can have 

very strong effects on a population’s subsequent evolution, especially under a sustained 

bottleneck; (2) the effects of heterosis are pervasive and generally diluted with succeeding 

generations; (3) some characters are more susceptible to hybridization than others (fecundity 

and starvation resistance, respectively). We conclude that the complexity of life-history genetic 

architecture and the multitude of factors that can interfere with the outcome of hybridization, 

make it very unpredictable. As such, the classical theoretical expectations may not be obtained, 

at least over our range of time and effective population sizes. Thus, the evolutionary 

consequences of hybridization are of such magnitude and unpredictability that its use on 

conservation management should be done with caution, especially in small, endangered 

populations. 

 

  



CHAPTER THREE 

 

64 

 

 



CHAPTER THREE 

 

65 

 

RESUMO 

A complexa interacção do fluxo de genes, mutação, deriva e selecção em populações 

naturais dificulta a previsão de qual a força evolutiva predominante num determinado momento 

ou cenário. Já foi claramente demonstrado que a consanguinidade resultante da acção da deriva 

genética (especialmente em populações pequenas) pode reduzir fortemente a performance 

adaptativa duma população e aumentar o seu risco de extinção. Vários estudos em populações 

naturais e experimentais demonstraram que populações pequenas e consanguíneas podem 

aumentar sua performance adaptativa e diminuir os efeitos da depressão consanguínea por 

introdução de variabilidade genética, num processo denominado resgate genético. Neste 

manuscrito apresentamos um estudo abrangente do efeito do resgate genético usando 

hibridação interpopulacional em diferentes cenários evolutivos: i) sob constante efeito de 

gargalo, ii) sob forte selecção direccional e iii) sob forte selecção direccional e tamanho 

populacional pequeno. Os nossos resultados sugerem que (1) a hibridação pode ter efeitos 

muito fortes sobre a subsequente evolução da população, especialmente sob um constante 

efeito de gargalo; (2) os efeitos da heterose são generalizados e geralmente diluídos com o 

passar das gerações; (3) alguns caracteres são mais susceptíveis à hibridação do que outros 

(fecundidade e resistência à inanição, respectivamente). Concluímos que a complexidade da 

arquitectura genética de características da história da vida e a multiplicidade de factores que 

podem interferir com a hibridação, tornam os seus efeitos muito imprevisíveis. Assim, as 

expectativas teóricas clássicas podem não ser atingidas, pelo menos com o nosso intervalo de 

gerações e de efectivos populacionais. Deste modo, as consequências evolutivas da hibridação 

são de tal magnitude e imprevisibilidade que o seu uso como estratégia de gestão populacional 

em conservação deve ser feito com cautela, especialmente em populações pequenas, em risco 

de extinção. 
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INTRODUCTION 

Hybridization provides an exceptionally tough set of problems for evolutionary and 

conservation biologists (Ellstrand et al. 2010; Fitzpatrick et al. 2015). The issues are complex 

and very controversial, beginning with the seemingly simple task of defining hybridization 

(Harrison 1993). It has been used to refer to the interbreeding between species, but this 

taxonomically restrictive use of hybridization can be problematic, especially since it is 

sometimes difficult to agree on what a species is (Allendorf et al. 2013; Harrison & Larson 

2014; Fitzpatrick et al. 2015). Here we use a more general definition, formulated by Rhymer 

& Simberloff (1996): hybridization is the interbreeding of individuals from genetically distinct 

populations, regardless of their taxonomic status. 

In the mid-nineteenth century, Darwin developed the modern view of species by 

arguing that mating between them can be difficult (Darwin 1859). Detection of hybridization 

is troublesome, although it is becoming much easier through the application of molecular 

techniques. Since Darwin, and with the help of improved molecular data, researchers have been 

able to uncover many examples of hybridization across multiple taxa. Although interpreting 

the evolutionary significance of hybridization and determining the role of hybrid populations 

can be challenging, over the last 50 years the study of hybridization has yielded valuable 

insights, providing a better understanding of the forces that shape adaptation and evolution (e.g. 

Arnold 1997; Pekkala et al. 2012, 2014; Allendorf et al. 2013). 

Primordial thoughts on the role of hybridization in systematics and evolution go back 

to Linnaeus and Darwin (Arnold 1997). On the one hand, botanists have generally accepted 

hybridization as a pervasive and important aspect of evolution (e.g. Grant 1963, Stebbins 1950, 

1959) because many plant taxa have hybrid origins; hybridization can produce both new 

species and novel adaptations (Mallet 2007). On the other hand, evolutionary biologists 

working with animals have been more interested in how the evolution of reproductive isolation 

leads to speciation (Mayr 1942; Dobzhansky 1951). Hybrid offspring are often relatively unfit, 

among animals, fostering the development of reproductive isolation, and eventually speciation. 

Many studies in both conservation and evolutionary biology have studied the role of 

hybridization in the evolution of genetically differentiated populations (e.g. Mayr 1970; 

Rieseberg 1995; Rhymer & Simberloff 1996; Margan et al. 1998; Allendorf et al. 2001, Barton 

2001; Mallet 2005; Frankham 2008; Frankham et al. 2011; Pekkala et al. 2012). The 

introduction of genetic material from other populations has often been proposed as an aid to 
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conservation and resource management, because of its presumed benefits for the viability of 

inbred populations, leading to genetic rescue or genetic restoration (cf. Tallmon et al. 2004; 

Hedrick 2005; see also Edmands 2007; Frankham et al. 2011; Hedrick et al. 2011; Frankham 

2015). There is now good experimental evidence for the genetic benefits of interpopulation 

hybridization (reviewed in Tallmon et al. 2004), as interbreeding by individuals from 

genetically differentiated populations often leads to heterosis – the increased fitness of hybrid 

offspring when compared to non-hybridized parents. 

 

Heterosis and inbreeding depression reversion 

Inbreeding can be defined as the probability of two genes at any given locus being 

identical by descent and inbreeding depression as a reduction of life-history traits in crosses 

between relatives (Falconer & Mackay 1996; Lynch & Walsh 1998). The amount of inbreeding 

depression will be determined by the state of dispersion of gene frequencies in a population. In 

the absence of selection, the coefficient of inbreeding can be a measure of this state of 

dispersion. Since inbreeding tends to reduce fitness, natural selection is likely to oppose the 

inbreeding process by favoring the least homozygous individuals, making inbreeding 

depression dependent on the rate of inbreeding (Falconer & Mackay 1996). The effect of 

inbreeding on a given character depends on the proportion of directional dominance: the higher 

the dominance genetic variance, and the lower the additive genetic variance, the greater the 

effect of inbreeding (Falconer & Mackay 1996; Roff 1997; Lynch & Walsh 1998). Traits 

closely related to fitness often show large dominance variance at evolutionary equilibrium, 

making them more susceptible to inbreeding depression. It is expected that the closer a 

character is to fitness, the greater the impact of inbreeding depression when closely related 

individuals mate (Roff 1997, 1998; DeRose & Roff 1999; Wright et al. 2008; Charlesworth & 

Willis 2009; Pekkala et al. 2014). 

The temporal loss of heterozygosity in closed, randomly mating populations is 

contingent on the population’s effective size, its inbreeding level, and the number of 

generations involved (Wright 1969; Falconer & Mackay 1996; see the Introduction section of 

Chapter Two for more details). In the absence of selection, the decrease in heterozygosity will 

be more severe in populations of smaller size, where genetic drift has a stronger effect. The 

stochasticity of genetic drift through time also causes randomness in the direction of gene 

frequency change, thus different small populations will lose (or fix) different alleles. This will 
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produce both (1) specific maladaptive changes in individual populations and (2) differentiation 

of populations. Both will be more severe in smaller populations, compared to larger ones. 

Sufficiently strong directional selection can counteract the stochastic effects of drift. Except 

for loci that feature some type of balancing selection, selection is expected to reduce 

heterozygosity because of the fixation of alleles that confer a fitness advantage. In the absence 

of genetic drift, selection drives gene frequencies toward stable equilibria at values which 

would be the same for all populations under the same conditions (Falconer & Mackay 1996). 

Heterosis in crosses between populations, just like inbreeding depression, depends on 

dominance: loci without dominance cause neither inbreeding depression nor heterosis. Also, 

the amount of heterosis following a cross between two populations depends on the difference 

of gene frequency between the populations. Heterosis at the level of a cross will be greatest 

when, at loci which show overdominance, one allele is fixed in one parent population and the 

other allele in the other parent population. When considering the joint effects of all loci at 

which the two parent populations differ (and assuming no epistasis), the heterosis of the cross 

will be the sum of net dominance effects across all loci. When there is no overdominance, if 

some loci are dominant in one direction and some in the other, their effects may largely cancel 

out, leading to an absence of cross-level heterosis. Hence, the occurrence of heterosis upon 

crossing is not only dependent on dominance, but also on its direction (Falconer & Mackay 

1996). Finally, because heterozygosity peaks in the first hybrid generation and is diluted 

thereafter, cross-heterosis should also peak in the first generation and decrease when hybrid 

offspring mate randomly with each other in subsequent generations (Lynch 1991; Lynch & 

Walsh 1998). 

Hybridization restores heterozygosity and heterosis is thought to reverse inbreeding 

depression through three different, though not exclusive, mechanisms. First, the dominance 

model proposes that the hybrid vigor is due to the effects of recessive deleterious alleles being 

largely masked in the heterozygote. Second, the overdominance model, suggests that 

synergistic allelic interactions at overdominant loci lead to superior performance in the 

progeny, since crossing increases levels of heterozygosity. Finally, the epistasis model 

presumes that the establishment of new favorable interactions between loci and disruption of 

negative interactions that may have been fixed by genetic drift are responsible for the hybrid 

superiority (Lewontin 1964; Lynch 1991; Lynch & Walsh 1998; Whitlock et al. 2000; Erickson 

& Fenster 2006; Lippman & Zamir 2007; Charlesworth & Willis 2009; Edmands et al. 2009). 
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The risk of outbreeding depression 

Hybridization between differentiated populations can, however, result in a decrease in 

fitness of the hybrid offspring below that of the non-hybridized parents due to several kinds of 

genetic incompatibilities – so-called outbreeding depression (e.g. Parker 1992; Gharrett et al. 

1999; Fenster & Galloway 2000; Edmands & Deimler 2004; Galloway & Etterson 2005; 

Burton et al. 2006). Three main mechanisms have been proposed to explain outbreeding 

depression: (1) chromosomal incompatibilities, (2) adaptive differentiation among populations, 

and (3) genetic drift. We address each of these in succession. First, it has long been known that 

fixed chromosomal differences (such as polyploidy, translocations, centric fusions, 

inversions...) between two interbreeding populations may cause karyotypic imbalance and 

incompatibility, reducing the hybrid's capacity to mature into a healthy, fit adult (e.g. 

Dobzhansky 1951; Wilson et al. 1974; Barton & Hewitt 1981). Second, when isolated 

populations evolve in different local environments, selection might lead to the evolution of 

different multi-locus genotypes that work well together – coadapted gene complexes 

(Templeton 1986; Lynch 1991; Fenster et al. 1997; Lynch & Walsh 1998). Hybridization can 

break up these complexes, causing a decrease in the hybrid population’s fitness. Furthermore, 

bringing together alleles that are neutral or beneficial individually but have deleterious effects 

when combined can also result in outbreeding depression (Phillips & Johnson 1998; Orr & 

Turelli 2001; Edmands 2007; Presgraves, 2010). Third, genetic drift has been proposed as a 

mechanism leading to reproductive isolation because drift’s random effects may lead to high 

levels of population differentiation. Through time, two closed populations can suffer so much 

genetic change that they become incompatible, and hybrid progeny have very low fitness (Ralls 

et al. 2013). 

Whether hybridization has a positive or a negative impact on population viability will 

depend on the relative magnitudes of heterosis and outbreeding depression which, in turn, are 

influenced by the level of genetic divergence between the populations (Lynch 1991; Falconer 

& Mackay 1996; Lynch & Walsh 1998; Whitlock et al. 2000; Pekkala et al. 2012). In the 

absence of selection, heterosis should increase linearly with the divergence of the populations, 

whether the underlying genetics involve overdominance or recessive deleterious genetic 

effects. This is particularly relevant in evolution under small effective population size. By 

contrast, outbreeding depression due to epistasis is expected to develop slowly in the first stages 

of population divergence, but then accelerate as populations become increasingly diverged 

(Orr, 1995; Orr & Turelli, 2001). 
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Hybridization can, thus, be a double-edged sword for adaptation. On the positive side, 

it may supply additional functional genetic variation, the limiting fuel for the process of 

adaptation. Theoretical and experimental studies suggest that some threatened species may be 

able to adapt to environmental change on a sufficiently fast time-scale to prevent their 

extinction, so-called “evolutionary rescue” (Carlson et al. 2014; Stelkens et al. 2014) The 

probability of rescue will depend on the severity of the stress, the effective population size, and 

the level of genetic variance present in the evolving population (Lande & Shannon 1996; 

Barrett & Schluter 2008; Bell & Gonzalez 2009; Gonzalez et al. 2013). On the negative side, 

adaptation to a given environment may reduce fitness in other environments. Hybrids between 

an ancestral and a newly-adapted population may reduce fitness in the ancestral environment 

or the new environment, perhaps even both environments. For instance, when individuals that 

are adapting to novel conditions cross with others that are adapted to the ancestral environment, 

their hybrid offspring may have reduced fitness in the novel environment (Woodworth et al. 

2002; Gilligan & Frankham 2003; Frankham, 2005a, 2005b, 2008). In sum, several factors can 

change the outcome of a hybridization event, making it difficult to predict the evolutionary 

consequences of interpopulation crosses in a given evolutionary scenario. Nonetheless, 

disentangling the influence of various factors on the long-term effects of hybridization is very 

important, not only for the advancement of evolutionary theory, but also for creating informed 

policies of endangered populations’ management. 

 

Hybridization, effective size, and adaptation 

The effects of hybridization and effective population size on adaptation have been 

studied in both animal and plant populations (e.g. Klinger et al. 1992; Arnold et al. 1999; Peters 

et al. 2014), but the effect of hybridization on experimental populations that are evolving at 

different effective population sizes has rarely been studied (see Margan et al. 1998; Pekkala et 

al. 2014). Despite the need for this kind of knowledge, long-term studies on the effects of 

hybridization are still scarce (but see Edmands et al. 2005; Erickson & Fenster 2006; Bijlsma 

et al. 2010; Hwang et al. 2011). 

According to classical population genetic theory, the capacity of a population to 

respond to selection depends on its level of genetic variation for the traits undergoing selection 

(Falconer & Mackay 1996). Genetic variation within randomly mating populations is generally 

increased by mutation and gene flow but decreased by drift and directional selection in the 
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absence of heterozygote advantage (Willi et al. 2006). Neutral models usually characterize 

genetic variation in terms of mean heterozygosity or allelic diversity, being the latter considered 

a better measure of the adaptive potential under environmental change (Allendorf 1986). When 

only drift and mutation occur, heterozygosity increases monotonically with population size, 

because (1) the magnitude of genetic drift is inversely proportional to Ne and drift results in a 

decrease of heterozygosity at a rate of 1/[2Ne] per generation (Kimura 1955, Wright 1931), and 

(2) fewer mutations appear in small populations per generation. Consequently, larger 

populations are always expected to have higher heterozygosity in neutral evolutionary genetic 

theory. Likewise, under these assumptions of neutrality and additive gene effects, the additive 

genetic variance (VA) of a quantitative trait increases linearly with Ne (Lynch & Hill 1986) and 

the amount of new genetic variance introduced by mutation. Another effect of Ne in its 

relationship with drift is that populations of small size will tend to differentiate through time 

as a consequence of random fixation of different alleles (Falconer & Mackay 1996). In fact, 

the effect of 1/[2Ne] per generation (mentioned above) also applies to the evolutionary 

dynamics of population differentiation (FST, see Wright 1951; Hartl & Clark 2007). 

Consequently, through migration or hybridization, populations may recover the lost 

heterozygosity by drift. The outcome of neutral evolution becomes less predictable at low 

effective population sizes and, therefore, small populations should exhibit widely varying 

amounts of genetic variation. This suggests that their direct and correlated responses to 

selection will be more variable (Willi et al. 2006). 

For polygenic traits under selection, the genetic variance is supposed to depend on the 

type and intensity of selection, the rate and effect of mutations, and the number of loci involved 

(Houle 1989). As in neutral models, the additive genetic variance is predicted to be higher at 

larger Ne with simple directional selection, because of the combined effects of more mutations 

and weaker drift. Particularly, under strong directional selection there is no theoretical limit to 

this contribution (Keightley & Hill 1987), because mutations with positive effect on the 

phenotype are always favored (Willi et al. 2006). In any case, under strong directional selection 

(and assuming additive gene effects only) genetic variation is expected to decline through time, 

because selection increases the likelihood that the allele with the highest fitness will be fixed 

(Willi et al. 2006). With the assumption of this type of directional selection, selection should 

be more efficient in large than in small populations, because the probability of elimination of 

a deleterious mutation (whether recessive or not) shows a positive sigmoidal relationship with 

the product of Ne and the selection coefficient (Robertson 1960). Thus, according to classical 
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population genetics theory, as population size declines, stronger selection is required to prevent 

the loss of rare beneficial mutations due to drift, and to ensure elimination of deleterious 

mutations (Willi et al. 2006). Once again, interpopulation hybridization may allow the increase 

of genetic variants, which will eventually promote a higher evolutionary response (Tallmon et 

al. 2004; Hedrick 2005; Edmands 2007; Hedrick et al. 2011). 

This chapter’s experiments constitute an attempt to link the classic evolutionary studies 

that address the effects of hybridization and effective population size separately. Furthermore, 

we will address a neglected issue in the literature, the impact of hybridization as a function of 

evolutionary scenario. To be specific, we performed a massive hybridization that involved the 

84 populations created for the forward selection experiment (see Chapter Two for more details). 

After 15 generations of forward selection for starvation resistance, each combination of 

selection, size, and Bi ancestor were crossed, creating 84 new hybrid populations. Selection 

was then resumed for ten more generations. Our highly replicated experimental design allowed 

us to study the effects of hybridization after many generations under different selection and 

effective population size conditions. We were also able to analyze how much these hybrids 

differed from their parental populations right after hybridization, as well as the effect of 

hybridization on the population’s evolutionary dynamics. Most importantly, we were able to 

determine how much the aforementioned effects depended on population size versus both past 

and present selective regime.  
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MATERIALS AND METHODS 

Hybridization and derivation of the experimental populations 

The experimental populations used in this study were derived from the 84 populations 

described in Chapter Two, after 15 generations of forward selection for starvation resistance. 

The creation of these new 84 populations involved crosses within each Bi group formed by a 

combination of size and selection. For instance, SPB0a, SPB0b, SPB0c, SPB0d, and SPB0e were 

all crossed together to derive hSPB0, hSPB0, hSPB0, hSPB0, and hSPB0. Similarly, SGB0a 

and SGB0b were crossed to derive hSGB0 and hSGB0. A schematic for this phase of the 

experimental work is shown in Figure 1.4 of Chapter One, which is here reproduced for the 

sake of convenience. 

 

 

 

Figure 1.4. Schematic representation of the experimental design used to create the hybrid populations from the 

first set of 84 lines. For each set of selected and control lines derived from a Bi population, hybridization took 

place among all replicates, and the resultant hybrids were split into the same number of replicates as their 

unhybridized ancestors. Starvation resistance selection was then resumed and imposed to all the S lines (SPB, 

SGB, hSPB, and hSGB). 

 

For each of the small hybrid populations, 5 male and 5 female virgins from each 

parental line were placed into one vial; e.g. 5m + 5f from each of SPB0a, SPB0b, SPB0c, SPB0d, 

and SPB0e resulting in a total of 50 flies (see Figure 3.1a). This was repeated five times to 

create the five hybrid populations hSPB0, hSPB0, hSPB0, hSPB0, and hSPB0. Large 

hybridized populations were created using 10 virgin males and 10 virgin females that were 

collected into 25 vials for each population e.g. (10m + 10f) from SGB0a and SGB0b to total 

1000 flies. This was repeated two times to generate the hybrid populations hSGB0 and hSGB0 

(see Figure 3.1b). During the hybridization generation, selection was relaxed to forestall 

differential representation of lines that had responded more to selection. 
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Continued forward selection procedures for starvation resistance 

The hSPBim and hSGBin hybrid populations, as well as their unhybridized SPBij and 

SGBik ancestors, underwent continued selection for ten more generations, with the four sets of 

lines handled in parallel. The selection protocol is described in the Materials and Methods 

section of Chapter Two of this thesis. 

 

Starvation resistance and fecundity assays 

Both of these traits were assayed according to the protocol described on Chapter Two. 

Starvation resistance and fecundity were assayed at generations 1, 3, and 7 after the 

hybridization event (corresponding to generations 16, 18 and 22 from the start of the 

experiment). This means that the first hybrid assay was done after one generation of selection. 

An additional starvation resistance assay was done at generation 10 (generation 25 from the 

beginning of the study). 

 

Statistical data analysis 

In all analyses, the normality and homoscedasticity of data were tested by Shapiro-Wilk 

(1965) and Brown-Forsythe (1974) tests, respectively. After testing by ANOVA and ANCOVA, 

and when it was appropriate, Tukey HSD (1953) post-hoc tests were done. A significance value 

of 0.05 () was used to test all null hypotheses. All analyses were done using STATISTICA 13 

(Dell 2015). 

The key statistical tests focused on quantitative measures of how marked Ne disparities 

affect the direct and indirect responses to forward selection for increased starvation resistance, 

after the hybridization event. The magnitudes of the interactions between the evolutionary 

responses, the hybridization state, and different Ne values were estimated. 

The evolutionary trajectories of starvation resistance and fecundity throughout the 10 

generations of selection following hybridization were analyzed according to the following 

ANCOVA model:  

𝒀 = 𝝁 + 𝑯𝒊 + 𝑻𝒋 + 𝑺𝒌 + 𝑪𝒍 + 𝑮𝒎 + 𝑯𝒊 ∗ 𝑻𝒋 + 𝑯𝒊 ∗ 𝑺𝒌 + 𝑯𝒊 ∗ 𝑪𝒍 + 𝑯𝒊 ∗ 𝑮𝒎 + 𝑻𝒋 ∗ 𝑺𝒌 + 𝑻𝒋 ∗ 𝑪𝒍

+ 𝑻𝒋 ∗ 𝑮𝒎 + 𝑺𝒌 ∗ 𝑪𝒍 + 𝑺𝒌 ∗ 𝑮𝒎 + 𝑪𝒍 ∗ 𝑮𝒎 + 𝑯𝒊 ∗ 𝑻𝒋 ∗ 𝑺𝒌 + 𝑯𝒊 ∗ 𝑺𝒌 ∗ 𝑪𝒍 + 𝑯𝒊

∗ 𝑪𝒍 ∗ 𝑮𝒎 + 𝑯𝒊 ∗ 𝑻𝒋 ∗ 𝑪𝒍 + 𝑯𝒊 ∗ 𝑻𝒋 ∗ 𝑮𝒎 + 𝑯𝒊 ∗ 𝑺𝒌 ∗ 𝑮𝒎 + 𝑻𝒋 ∗ 𝑺𝒌 ∗ 𝑪𝒍 + 𝑻𝒋 ∗ 𝑪𝒍

∗ 𝑮𝒎 + 𝑻𝒋 ∗ 𝑺𝒌 ∗ 𝑮𝒎 + 𝑺𝒌 ∗ 𝑪𝒍 ∗ 𝑮𝒎 + 𝑯𝒊 ∗ 𝑻𝒋 ∗ 𝑺𝒌 ∗ 𝑪𝒍 + 𝑯𝒊 ∗ 𝑺𝒌 ∗ 𝑪𝒍 ∗ 𝑮𝒎

+ 𝑯𝒊 ∗ 𝑻𝒋 ∗ 𝑪𝒍 ∗ 𝑮𝒎 + 𝑯𝒊 ∗ 𝑻𝒋 ∗ 𝑺𝒌 ∗ 𝑮𝒎 + 𝑻𝒋 ∗ 𝑺𝒌 ∗ 𝑪𝒋 ∗ 𝑮𝒎

+ 𝑹𝒆𝒑{𝑯 ∗ 𝑻 ∗ 𝑺 ∗ 𝑪} + 𝑮𝒎 ∗ 𝑹𝒆𝒑{𝑯 ∗ 𝑻 ∗ 𝑺 ∗ 𝑪} + 𝜺 (3.1) 
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where Y is the trait under analysis (starvation resistance or fecundity); H represents the 

evolutionary history (i = 0-5), random factor; T the population size (j = large or j = small), fixed 

factor; S the selection regime (k = selected or k = control), fixed factor; C the cross type (l = 

parental or l = hybrid), fixed factor, G the covariate generation (see which on the assays 

description), and Rep the replicate population (random factor). This is a comprehensive model 

that includes all variables under study. Analyses within population size or selection regime 

used adapted versions of the aforementioned model (e.g. when comparing small and large 

populations in control conditions, the factor Selection and all its interactions were removed). A 

significance value () of 0.05 was used to test all null hypotheses. 

Because we found statistically significant changes in starvation resistance and fecundity 

of the control lines CGB and CPB (Figure 3.2 and Table 3.2), when analyzing the selection 

lines (SGB, SPB, hSGB, and hSPB), we used data relative to control instead of raw data; i.e. 

the difference between the raw value of the character for each individual and the average for 

the CGBi controls. This correction was required for estimating the response to direct starvation 

selection, stripped of the evolutionary effects of altered nutrition and culture time (see Chapter 

Two for a more detailed explanation). Additionally, we repeated all the analyses using CPBi as 

controls for SPBij and obtained similar results (data not shown). 
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Figure 3.1. Hybridization and derivation of the new experimental populations of a) small and b) large size, using 

the B0 derivatives as an example. This protocol was followed 5 times for the small lines and twice for the large 

lines, within each Bi ancestor, over all six B-type evolutionary radiations. 

 

  

a) 

b) 
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RESULTS 

General linear model assumptions 

Small deviations from normality were accepted, and homoscedasticity was verified by 

the Brown-Forsythe test. Our distribution tests showed that all populations were homoscedastic 

and generally normal (data not shown). 

Detection of inbreeding depression 

The decline in fitness due to inbreeding was tested by comparing the performance of 

hybrid populations with their respective parental lines, two generations after hybridization. In 

terms of starvation, both male and female hybrids were generally more resistant than the 

respective parental lines (except for hSGB females), but no significant differences were found 

within any of the size*selection regimes (p>0.05). The early fecundity of hybrids lines was 

lower than that of the respective parental stocks, but only significantly so for the small controls 

(CPB-hCPB comparison, p<0.002). Table 3.1 shows the comparison between the two types 

(parental and hybrid) of each size*selection regime regarding starvation resistance and 

fecundity. 

 

Table 3.1. Comparison of parental and hybrid lines for inbreeding depression detection. Data are given as the 

mean value ± standard error of mean (as differences between replicates) of each size*selection*type regime, for 

each life-history trait analyzed. Starvation resistance values are in hours and early fecundity in number of eggs 

laid per female. Significant differences between each size*selection parental-hybrid pair are highlighted in bold. 

Size*selection 

comparison 
Regime 

Male starvation 

resistance (hours) 

Female starvation 

resistance (hours) 

Early fecundity 

(eggs per female) 

Large controls 
CGB 24.3 ± 2.18 45.6 ± 4.07 220 ± 10.4 

hCGB 28.8 ± 3.55 49.2 ± 5.66 211 ± 12.3 

Small controls 
CPB 26.8 ± 1.54 47.5 ± 3.01 163 ± 4.6 

hCPB 26.8 ± 1.01 47.9 ± 2.42 116 ± 3.1 

Large selected 
SGB 78.4 ± 5.75 117.1 ± 7.79 224 ± 10.4 

hSGB 79.1 ± 5.63 113.5 ± 7.06 198 ± 12.9 

Small selected 
SPB 39.5 ± 2.43 74.4 ± 5.13 212 ± 7.4 

hSPB 44.9 ± 1.93 84.5 ± 3.61 175 ± 5.7 
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Evolution after hybridization I: Controlled laboratory conditions 

After the hybridization event, parental and hybrid control lines were maintained under 

control conditions and followed for ten more generations. Figures 3.2 and 3.3 depict the 

evolutionary trajectories for starvation resistance and early fecundity of parental and hybrid 

controls, respectively. 

The parental control lines (CGB and CPB) showed a significant increase in their 

average starvation resistance. CGB starvation resistance increased from 24.3 to 35.9 hours 

(p<0.008) in males, and from 45.6 to 62.5 hours (p<0.01) in females. CPB saw its starvation 

resistance increased from 26.8 to 40.2 hours (p<0.02) in males, and from 47.5 to 74.3 hours 

(p<0.0004) in females. Although both stocks showed a reduction in early fecundity, only 

CGB’s decline was significant (from 220 to 176 eggs, p<0.007). Even though CPB went from 

an average of 163 to 144 eggs, the trend was not linear (p>0.1). See Figure 3.2 for their 

evolutionary trajectories and Table 3.2 for the ANCOVA results. 

 

   
Figure 3.2. Evolutionary trajectories for a) male and female starvation resistance, and b) early fecundity of the 

parental control populations. Average values for small (CPB) and large (CGB) regimes are shown. Error bars 

denote standard error of mean (as differences between replicates). 

 

Similar to the results for the parental lines, the hybrid controls showed a general 

increase of starvation resistance, but these results were not always statistically significant. 

hCGB went from 28.8 to 36.3 hours (p>0.2) in males, and from 49.2 to 65.3 hours (p<0.02) in 

females. The small hybrid lines (hCPB) showed non-significant increasing trends in both male 

a) b) 
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(from 26.8 to 36.5 hours, p>0.2) and female (from 47.0 to 67.4 hours, p>0.1) starvation 

resistances. In terms of fecundity, the large hybrids (hCGB) showed a non-significant decline 

with time, from 211 to 189 eggs (p>0.6) and hCPB a significant increase, from 116 to 154 eggs 

(p<0.009). See Figure 3.3 for the evolutionary trajectories and Table 3.2 for the summary of 

ANCOVA results. 

 

 

Figure 3.3. Evolutionary trajectories for a) male and female starvation resistance, and b) early fecundity of the 

hybrid control populations. Average values for small (hCPB) and large (hCGB) regimes are shown. Error bars 

denote standard error of mean (as differences between replicates). 

 

Table 3.2. Summary of the mixed-effects ANCOVAs used to analyze the evolutionary trajectories of parental and 

hybrid controls. Data shows the F statistic and respective p-value for the factor Generation of each size*type 

regime and life-history trait analyzed. Significant changes through time are highlighted in bold. 

Size * Type 

regime 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

CGB 18.40258 0.007784 16.66240 0.009521 19.62947 0.006821 

CPB 11.25586 0.019910 68.80258 0.000349 2.83051 0.152870 

hCGB 2.063342 0.210369 12.85771 0.015778 0.20595 0.668673 

hCPB 1.51147 0.272897 3.243847 0.131096 17.45012 0.008666 

 

a) b) 
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The effect of hybridization in control stocks was then tested, comparing the 

evolutionary trajectories of parentals and hybrids within each size regime: large, CGB vs. 

hCGB and small, CPB vs. hCPB. In terms of starvation resistance, for both large and small 

controls, no significant differences were found in males or females’ performances. Also, 

fecundity trajectories within the large lines did not differ significantly (p>0.1). However, the 

evolution of fecundity in the small lines was significantly different: CPB decreased and hCPB 

increased with time. See Figure 3.4 for the comparison per trait and Table 3.3 for the summary 

of ANCOVA results. 

 

Table 3.3. Summary of the mixed-effects ANCOVAs used to analyze the effect of hybridization in control 

conditions. Data shows the F statistic and respective p-value for the interaction Type*Generation of each size 

regime and life-history trait analyzed. Significant changes are highlighted in bold. 

Comparison 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

CGB – hCGB 
(large controls) 

0.795229 0.413364 0.92540 0.380239 3.34851 0.126354 

CPB – hCPB 
(small controls) 

1.25331 0.313249 2.02562 0.212965 11.14260 0.020479 

 

Finally, the effect of hybridization under contrasting population size was analyzed, 

comparing hybrid and parental lines evolving in different size regimes (Figure 3.4). For all the 

traits under study, no interaction between hybridization and population size was detected 

(Table 3.4), i.e. under control conditions, hybridization seems to have the same influence on 

the evolutionary rate of small and large populations. 

 

Table 3.4. Summary of the mixed-effects ANCOVAs used to analyze the effect of hybridization in control 

conditions, under different population sizes. Data shows the F statistic and respective p-value for the interaction 

Size*Type*Generation of each life-history trait analyzed. 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

0.37139 0.568788 3.77947 0.109091 0.5850 0.478828 
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a)  

b)   

c)  

Figure 3.4. Evolutionary trajectories for a) male starvation resistance, b) female starvation resistance, and c) early 

fecundity of the hybrid (dashed) and parental (solid) controls, under both size regimes. Average values for the 

four size*type regimes are shown. Error bars denote standard error of mean (as differences between replicates). 
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Evolution after hybridization II: strong directional selection 

After the hybridization event, selection for starvation resistance in the previously 

selected lines was resumed, yielding ten more generations of evolutionary trajectories for the 

four Size*Type selected regimes. Since we found statistically significant changes in starvation 

resistance and fecundity among the control lines, and similar to what was done in Chapter Two, 

we used the control-corrected data (that is, the difference from their respective CGBi control, 

see Material and Methods) to build and analyze the evolutionary trajectories of parental and 

hybrid selected lines (see Figures 3.5 and 3.6). Therefore, if a population’s trait average value 

is lower than the controls, we will obtain a negative value for that character, whether it is 

starvation or fecundity. 

Both large-population-size (SGB) and small-population-size (SPB) parentals showed a 

significant increase in their average starvation resistance with continued selection. SGB 

starvation resistance increased from 53.9 to 128.5 hours (p<0.00001) in males, and from 71.5 

to 166.7 hours (p<0.0001) in females. Their small counterparts, SPB, saw their starvation 

resistance increased from 15.5 to 44.4 hours (p<0.006) in males, and from 29.4 to 129.2 hours 

(p<0.0004) in females. Even though both small and large parental stocks showed decreases in 

early fecundity, none were statistically significant. SGB went from 5 to -3 eggs on average 

(p>0.7) and SPB from -8 to -53 eggs (p>0.05). See Figure 3.5 for the evolutionary trajectories 

and Table 3.5 for the ANCOVA results. 

The hybrid selected lines also had a significant increase on their starvation resistance. 

The large hybrids (hSGB) went from 54.7 to 122.8 hours (p<0.00006) in males, and from 67.9 

to 150.7 hours (p<0.00009) in females. The small hybrid (hSPB) males started with 20.4 and 

ended with 42.3 hours (p<0.03) and the females started with 38.9 and ended with 61.3 hours, 

p<0.03). In terms of fecundity, both large and small hybrids showed a significant increase with 

time: hSGB went from -16 to 30 eggs (p<0.03) and hSPB from -47 to -18 eggs (p<0.02). See 

Figure 3.6 for the evolutionary trajectories and Table 3.5 for the ANCOVA results. 
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Figure 3.5. Evolutionary trajectories for a) male and female starvation resistance, and b) early fecundity of the 

parental selected populations. Average CGBi-corrected values for small (SPB) and large (SGB) regimes are 

shown. Error bars denote standard error of mean (as differences between replicates). 

 

 

 

 

Figure 3.6. Evolutionary trajectories for a) male and female starvation resistance, and b) early fecundity of the 

hybrid selected populations. Average CGBi-corrected values for small (hSPB) and large (hSGB) regimes are 

shown. Error bars denote standard error of mean (as differences between replicates). 

 

 

a) b) 

a) b) 
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Table 3.5. Summary of the mixed-effects ANCOVAs used to analyze the evolutionary trajectories of parental and 

hybrid selected lines. Data shows the F statistic and respective p-value for the factor Generation of each size*type 

regime and life-history trait analyzed (CGBi-corrected data). Significant changes through time are highlighted in 

bold. 

Size * Type 

regime 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

SGB 113.1945 0.000007 94.30370 0.000012 0.077236 0.791046 

SPB 21.82289 0.005467 15.09473 0.011571 6.337088 0.051690 

hSGB 164.9600 0.000051 134.1379 0.000084 10.33925 0.023577 

hSPB 10.79742 0.021811 11.04759 0.020921 11.87343 0.018281 

 

 

We then compared the evolutionary trajectories of parentals and hybrids within each 

size regime: SGB vs. hSGB (large) and SPB vs. hSPB (small), in order to test for the effect of 

hybridization in starvation selected stocks. Similar to what was found in the control regimes, 

no significant differences were found in males or females’ starvation resistance, for both large 

and small selected lines. The evolutionary trajectories for early fecundity of hybrids were 

significantly different from the parental lines, in both large (p<0.002) and small (p<0.009) 

regimes: the parental lines experienced a decrease in fecundity and the hybrids saw their 

fecundity increased. See Figure 3.7 for the comparison per trait and Table 3.6 for the summary 

of ANCOVA results. 

 

Table 3.6. Summary of the mixed-effects ANCOVAs used to analyze the effect of hybridization under selection for 

starvation resistance. Data shows the F statistic and respective p-value for the interaction Type*Generation of 

each size regime and life-history trait analyzed. Significant changes are highlighted in bold. 

Comparison 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

SGB – hSGB 
(large controls) 

3.9710 0.082442 0.0024 0.962733 25.92458 0.001156 

SPB – hSPB 
(small controls) 

0.65032 0.456618 1.21653 0.320266 17.03969 0.008822 
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Finally, the effect of hybridization under contrasting population sizes was analyzed, 

comparing hybrid and parental lines evolving in different size regimes (Figure 3.7). For all the 

traits under study, no interaction between hybridization and population size was detected 

(Table 3.7), i.e. under selection for starvation resistance, hybridization seems to have the same 

influence on the evolutionary rate of small and large populations. 

 

 

Table 3.7. Summary of the mixed-effects ANCOVAs used to analyze the effect of hybridization under selection for 

starvation resistance and different population sizes. Data shows the F statistic and respective p-value for the 

interaction Size*Type*Generation of each life-history trait analyzed. 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

0.71889 0.431487 0.69880 0.437210 0.23125 0.648100 
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a)  

b)  

c)  

Figure 3.7. Evolutionary trajectories for a) male starvation resistance, b) female starvation resistance, and c) early 

fecundity of the hybrid (dashed) and parental (solid) selected lines, under both size regimes. Average CGBi-

corrected values for the four size*type regimes are shown. Error bars denote standard error of mean (as differences 

between replicates).  
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DISCUSSION 

The complex interplay of gene flow, mutation, drift, and selection in natural populations 

makes it difficult to predict which evolutionary force will be most important at any given time 

or place (Grant & Grant 2002). It has been unequivocally shown that inbreeding resulting from 

genetic drift, especially in small populations, can strongly reduce a population’s fitness and 

increase extinction risk (e.g. Frankham 2005a,b; Hedrick & Kalinowski 2000; Allendorf et al. 

2013; Pekkala et al. 2014). Several natural and experimental studies have demonstrated that 

small, inbred, endangered populations can have their fitness increased and inbreeding 

depression alleviated by introducing genetic variation through immigrants, in a process called 

genetic rescue (Richards 2000; Ingvarsson 2001; Tallmon et al. 2004; Frankham 2015; 

Whiteley et al. 2015). Furthermore, Margan et al. (1998) showed that several small pooled 

populations were similar or superior to a single large population of equivalent size in terms of 

inbreeding, fitness, and genetic diversity, as genetic theory would predict (Kimura & Crow 

1963; Robertson 1964; Maruyama 1970; Varvio et al. 1986; Chesser 1991; Nei & Takahata 

1993). Here we present a comprehensive study of the effect of the genetic rescue using inter-

population hybridization in different evolutionary scenarios: i) under a sustained bottleneck 

(CPB and SPB), ii) under strong directional selection (SGB and SPB), and iii) under strong 

directional selection and small population size (SPB). 

 

Inbreeding depression and heterosis 

Inbreeding, the mating of individuals that are related by ancestry, and inbreeding 

depression, the decline of the phenotypic value of fitness-related traits due to crosses between 

relatives, are expected to be stronger in smaller populations (Falconer & Mackay 1996). After 

the first 15 generations of this experiment, a general increase in homozygosity by descent and 

population differentiation would be expected, with a much stronger expression in the lines 

under a sustained bottleneck (CPB and SPB). The mass hybridization event was then expected 

to restore some of the lost heterozygosity due to drift and selection, causing a general increase 

of characters’ mean value (heterosis). 

Regardless of size or selection regime, the experimental lines generally improved their 

resistance to starvation stress following hybridization (Table 3.1). Although the increased 

starvation trend was consistent across stocks, hybrid females of the large selected lines (hSGB) 

showed a slight decrease in stress resistance. This result can be explained by means of 
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outbreeding depression: the combined effects of drift and selection could have led to the 

evolution of different genotypes combinations that work well together (the coadapted gene 

complexes). The hybridization event could have broken up these gene complexes, resulting in 

lower fitness of the resulting hybrids (Templeton 1986; Lynch 1991; Fenster et al. 1997; Lynch 

& Walsh 1998). Interestingly, none of these differences proved to be statistically significant. 

This may be owing to (1) opposed directions in dominance of some loci which effects may 

have cancelled out (Falconer & Mackay 1996) and/or (2) the peaking of heterosis in the first 

generation (Lynch 1991; Lynch & Walsh 1998) and the traits being assayed two generations 

after hybridization, due to experimental limitations. 

All hybrid populations showed a decline in early fecundity when compared to their 

parentals, irrespective of size or selection regime (Table 3.1). If all effects were due only to 

inbreeding depression, fecundity should increase following heterozygotic restoration by 

hybridization (heterosis). Notwithstanding, declining fecundity as a result of increasing 

starvation resistance has been previously observed (e.g. Hutchinson et al. 1991; Rose et al. 

1992; Chapter Two of thesis), providing evidence for antagonist pleiotropy between survival 

and reproduction. Because heterosis depends on directional dominance (Falconer & Mackay 

1996; Roff 1997; Lynch & Walsh 1998) and fecundity is in a trade-off with starvation 

resistance, a decline in hybrid fecundity is to be expected if the genes that are responsible for 

the trade-off have dominance effects in the same direction: the heterozygous value for both 

starvation resistance and fecundity is closer to the same homozygous genotype (Figure 3.8). 

Only in hybrids of small controls (hCPB) was the decline in early fecundity statistically 

significant. Hybridization may have broken up advantageous parental gene combinations and 

exposed harmful epistatic interactions involving recessive alleles, which were differentially 

fixed by the individual CPB lines. This, when combined with the decline in early fecundity due 

to the fecundity-starvation trade-off, could have further reduced early fecundity in hCPB lines. 
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(a)  

 

(b)  

 

Figure 3.8. Direction of dominance effects of two characters in a trade-off: (a) Different direction: the 

heterozygote is closer to P2 in starvation and to P1 in fecundity. (b) Same direction: the heterozygote is closer to 

the same homozygote (P2) in both starvation and fecundity.    P1 phenotypic values.     Hybrid (P1P2) 

phenotypic values.     P2 phenotypic values.    Mid-parent values (MPV). 
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Evolutionary consequences of hybridization 

For many decades, there has been little doubt that the existence of genetic variation is 

advantageous to the evolutionary survival of a population: it confers the ability to evolve 

rapidly and so to meet the needs of a changing environment, both through the course of time 

and in the colonization of new locations (Frankham 1996; Reed & Frankham 2003; Willi et al. 

2006; Johansson et al. 2007; Hoffmann & Sgrò 2011). Interpopulation crossing as a way to 

introduce genetic variation has proved to improve the viability of endangered populations (see 

Tallmon et al. 2004; Edmands 2007; Frankham et al. 2011; Hedrick et al. 2011). In the previous 

section, we analyzed the effects of hybridization on life-history immediately after an 

interpopulation cross; now we will refer to the longer-term consequences of the hybridization 

event. A population’s ability to respond to selection depends on its level of genetic variation, 

for the traits undergoing selection. This variation can be characterized in terms of 

heterozygosity, the frequency of heterozygotes at any given time, or allelic diversity, the 

number of different allelic types segregating in the population (Falconer & Mackay 1996). 

According to neutral evolutionary genetic theory, when only drift and mutation occur, 

heterozygosity increases monotonically with population size (Kimura 1955, Wright 1931). 

Larger populations are expected to have higher heterozygosity and, thus, higher response to 

selection than smaller populations (Falconer & Mackay 1996). For polygenic traits under 

strong selection, the genetic variation is also expected to be higher at larger Ne because of the 

combined effects of more mutations and weaker drift. Hybridization may allow the recovery 

of genetic variants previously lost, leading to an increase of evolutionary response (Tallmon et 

al. 2004; Hedrick 2005; Edmands 2007; Hedrick et al. 2011). 

 

The impact of hybridization without directional selection  

In the absence of strong directional selection and as far as starvation resistance 

concerns, our results corroborated the predicted increase of resistance to stress, associated with 

postponed reproduction, as previously found (e.g. Hutchinson et al. 1991; Rose et al. 1992; 

Chapter Two of this thesis). Nevertheless, neither small nor large lines showed significant 

differences due to hybridization (Figure 3.4a,b and Tables 3.3 and 3.4). It seems that 

hybridization caused little to no effect on the experimental lines under control conditions, 

which may be due to a lack of differential loss of genetic variance in the different populations. 

This is not surprising in large populations due to the inverse relationship between 
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heterozygosity loss, as well as population differentiation, and Ne (Wright 1951; Hartl & Clark 

2007). But it is somewhat more surprising in small lines, although there were no differences in 

the evolutionary responses of starvation resistance between small and large controls prior to 

hybridization (see Chapter Two). 

In terms of early fecundity, the large populations showed an expected decline over time 

due to the trade-off with postponed reproduction and, once again, there were no significant 

differences from the uncrossed controls. The small hybrid lines, however, showed an 

immediate drop in early fecundity (compared to their parentals) followed by a sharp temporal 

increase, slightly exceeding that of the matched parental stock, but always below the large 

population’s fecundity (Figure 3.4c and Table 3.3). One possible explanation is that the 

hybridization event had a very strong effect, causing an immediate and substantial decline in 

fecundity. The interpopulation cross may have broken up advantageous parental gene 

combinations and exposed harmful epistatic interactions involving recessive alleles 

(outbreeding depression; see Edmands 2007; Frankham et al. 2011; Ralls et al. 2013), which 

were differentially fixed by the individual CPB lines. As time went by, the negative effects of 

hybridization may have been alleviated, because the negative epistatic relationships created 

during the intercross were broken up and the deleterious alleles were eliminated. This could 

account for the hybrid’s recovery to non-hybridized values. Nevertheless, outbreeding 

depression is not a classical expectation when populations of small sizes under similar selection 

regimes are considered (Ralls et al. 2013). 

 

The impact of hybridization under strong directional selection 

Under strong directional selection for starvation resistance, both large and small 

experimental populations showed, as expected, a significant temporal increase of the trait’s 

mean value. However, there was no significant effect of hybridization (Figure 3.7a,b and 

Tables 3.5 and 3.6). Due to strong selection, the loss of genetic variation for starvation 

resistance could have been consistent across lines, making the populations very similar and, 

consequently, indifferent to the effect of hybridization, even in the smaller lines. Nonetheless, 

during forward selection, small populations showed an increased differentiation through time, 

higher than large populations (see Chapter Two), which contradicts the hypothesis stated 

above. A possible explanation is that small populations lose environmental homeostasis due to 

inbreeding, increasing both within and between population environmental variance (Fox & 
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Reed 2010). For instance, Reed et al. (2003) found strong lineage effects across environments 

in inbred D. melanogaster populations. In our system, such effect might have led to higher 

interpopulation variance in small vs. large populations, without necessarily increase additive 

variance after hybridization. Noteworthy, most of the alleles that are likely to be lost in small 

populations are those rare alleles that are neutral or slightly deleterious (Kimura 1983). Such 

alleles are considered by many to play a little role in adaptation to novel or changing 

environments. For quantitative traits, several empirical studies have shown that some 

morphology, behavior, and fitness traits’ heritabilities can remain high, or even increase, 

despite reduction of the population to as small as a single pair (e.g. Bryant et al. 1986; Lopez-

Fanjul & Villaverde 1989; Bryant & Meffert 1993; Wade et al. 1996; Cheverud et al. 1999). 

Hence, the effects of population size and fluctuations in population size on genetic variation 

are not completely clear (Reed et al. 2003). Moreover, the evolutionary dynamics of outbred 

sexual populations in a polygenic scenario may contribute to the lack of effective fixation of 

certain alleles (Chevin & Hospital 2008; Burke et al. 2010; Phillips et al. 2016; Graves et al. 

2017; Seabra et al. 2018), which makes the small population size less important for the 

evolutionary outcome than what is predicted by conventional population genetic theories. 

In terms of fecundity, both small and large lines suffered an initial post-hybridization 

decline, followed by a significant increase (Figure 3.7c and Table 3.5), marking a substantial 

impact of hybridization on this character (Table 3.6). As mentioned before, the initial decline 

in hybrid fecundity can be explained by the survival-reproduction trade-off, if the genes that 

are involved have dominance effects in the same direction (Figure 3.8). Over the course of 

subsequent generations, several factors could have accounted for the recovery of the character: 

(1) the effect of heterosis is diluted, (2) some negative epistatic interactions created by 

hybridization are broken up through recombination, (3) some of the restored heterozygosity 

allow the establishment of new, favorable gene interactions. These are a posteriori hypotheses 

that might by worthy to further explore. Once again, these experimental results do not follow 

the classical expectations of the effects of hybridization in finite, randomly mating populations. 

Whether a stronger bottleneck and/or a longer-term experiment would change the 

impact of hybridization that we report here remains unknown. Also, a population expansion 

after hybridization could foster reshuffling between variants across populations (e.g. fast 

breaking of epistatic combinations) leading to increased additive variance and further selective 

response (Reed et al. 2003; Allendorf et al. 2013). Founder-flush experiments have indeed 

showed that bottlenecks followed by population expansion may increase additive genetic 
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variance (e.g. Bryant & Meffert 1993). But a pertinent experiment that is lacking, to the best 

of our knowledge, would be to impose a prolonged bottleneck followed by extensive expansion 

and gene flow. 

 

Final remarks 

Interpopulation hybridization has often been suggested as a way to improve the viability 

of inbred populations and decrease extinction risk (Tallmon et al. 2004; Hedrick 2005; 

Edmands 2007; Frankham et al. 2011; Hedrick et al. 2011). Because of the complex genetic 

architecture of fitness-related traits and the multitude of factors that can interfere with the 

outcome of a hybridization event, it is very difficult to predict the evolutionary consequences 

of interpopulation cross in any given scenario. With our highly-replicated experimental design, 

we tried to shed light on the evolution of populations under different combinations of 

directional selection and population size regimes. Our major findings suggest that conventional 

theoretical expectations of the effects of hybridization are not generally obtained, at least over 

the range of time and effective population sizes used by us. We further note that no comparably 

scaled experiments have been done by other laboratories under such carefully controlled 

conditions. One interpretation of this is that conventional theory (e.g. Falconer & Mackay 

1996; Hartl & Clark 2007) concerning the effects of hybridization and population size may 

have survived up to this point chiefly because of a lack of experiments of sufficiently powerful 

design to test its predictions. 
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Chapter Four. 

Reverse Evolution in Small-Sized Populations
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ABSTRACT 

Extensive research on experimental evolution of Mendelian populations showed that 

contrasting selection regimes rapidly cause phenotypic divergence and that populations under 

the same selection regime quickly converge on common phenotypes. A population’s 

evolutionary history is very important for its subsequent evolution and fate, namely, in a 

scenario of reverse colonization, i.e. migration back to the ancestor environment. Prior research 

in the Rose laboratory has shown clear reversal of fitness-traits when Ne is moderately large; 

here we focused on whether reverse evolution is impaired (or not) by a sustained bottleneck. 

Our major findings show that populations kept in a small Ne can reproduce the possible patterns 

of reversion to the ancestor, contingent to character and/or population: complete reversion, 

partial convergence, and steep convergence with superior outcome than the ancestor. We 

further found the history signature to be strong with respect to the tempo of reverse evolution, 

smoothed but not erased by reverse selection, over the time period studied. 
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RESUMO 

Diversos estudos de evolução experimental em populações mendelianas mostraram que 

a aplicação de diferentes regimes de selecção provoca rápida divergência fenotípica e que 

populações sob o mesmo regime selectivo convergem rapidamente num fenótipo semelhante. 

A história evolutiva de uma população é muito importante para sua subsequente evolução, 

nomeadamente, num cenário de colonização reversa (i.e., migração para o ambiente ancestral). 

Estudos anteriores no laboratório de Michael R. Rose mostraram uma clara reversão de 

características da história da vida quando Ne é moderadamente grande; neste projecto 

estudamos se a evolução reversa é (ou não) comprometida por um efeito de gargalo continuado. 

Os nossos resultados sugerem que as populações mantidas em Ne reduzido reproduzem os 

possíveis padrões de reversão ao estado ancestral, dependendo da característica e/ou da 

população: reversão completa, convergência parcial e convergência abrupta ultrapassando o 

ancestral. Adicionalmente, verificou-se que a assinatura da história é muito marcada em termos 

da taxa evolutiva, podendo ser atenuada, mas não apagada por selecção reversa durante o 

período de tempo estudado. 

  



CHAPTER FOUR 

 

100 

 

 

 

  



CHAPTER FOUR 

 

101 

 

INTRODUCTION 

In research over the last three decades, it has been found that laboratory selection can 

quickly and reproducibly shape population phenotypes (see Garland & Rose 2009). 

Experimental evolution in Mendelian populations that have not been inbred shows the 

following. (1) Phenotypic divergence occurs rapidly when these populations are subjected to 

new types of selection (e.g. Luckinbill et al. 1984; Rose et al. 1992; Chippindale et al. 1997; 

Zhou et al. 2007; Turner et al. 2011; Turner & Miller 2012; Burke et al. 2016).  (2) Independent 

replicate populations under the same regime quickly converge on common phenotypes 

(Teotónio & Rose 2000; Simões et al. 2008; Fox et al. 2011; Fragata et al. 2014b; Burke et al. 

2016; Simões et al. 2017). 

Mendelian populations that have not been inbred maintain considerable amounts of 

standing genetic variation, reshuffled every generation by recombination. It has been found 

that, under uniform conditions, previous selection histories will be erased quickly, if Ne is kept 

moderate to high (Burke et al. 2016). Populations of Drosophila with different genetic 

backgrounds and varied census sizes sometimes converge when given common selection 

regimes, but not always (Cohan & Hoffman 1989; Griffiths et al. 2005; Simões et al. 2008; 

Santos et al. 2010; Fragata et al. 2014a,b; Simões et al. 2017). The evolutionary rates at which 

convergence occurs can also be trait-specific, as the relative contributions of history and 

selection may vary across traits. Fitness-related traits, as defined by a particular selection 

regime, are expected to converge faster and more consistently than characters less associated 

with fitness, where history can have a more preponderant role (Travisano et al. 1995; Teotónio 

& Rose 2000; Teotónio et al. 2002; Joshi et al. 2003; but see Fragata et al. 2014b). 

One particular case of convergence is reverse evolution. For the sake of clarity, we use 

the Bull & Charnov (1985) definition of reverse evolution as the reacquisition by derived 

populations of the same character states, including fitness, as those of ancestor populations. 

The (ir)reversibility of evolution has long received the attention of evolutionary biologists 

(Darwin 1859; Dollo 1893; Gregory 1936; Muller 1939; Simpson 1953; Lewontin 1966; Gould 

1970; Maynard-Smith 1970; Wright 1977; Wagner 1982; Bull & Charnov 1985; Service et al. 

1988; Marshall et al. 1994; Gayon 1998; Teotónio & Rose 2000, 2001; Teotónio et al. 2002, 

2009; Whiting et al. 2003; Passananti et al. 2004a,b; Bridgham et al. 2009; Desai 2009; Duncan 

et al. 2011; Klimov & OConnor 2013). There has been considerable controversy about the 

reversibility of evolution over shorter time spans, (Gayon 1998). But it was long thought that 

long-term evolution was not likely to be reversible at all levels of biological organization, 
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because retracing several evolutionary events over long periods of time was considered 

improbable (Teotónio & Rose 2001). Irreversible evolution is now viewed as an extreme type 

of evolutionary restriction, one that renders a population incapable of reacquiring an ancestral 

state (Bull & Charnov 1985). Thus, a major question of interest is the degree to which 

evolutionary history constrains reverse evolution (Maynard Smith 1970; Bull & Charnov 1985; 

Loeschcke 1987; Gould 1989; Williams 1992; Travisano et al. 1995; Losos et al. 1998; 

Teotónio & Rose 2000, 2001; Bell 2008).  

Reverse evolution was, for a long time, approached through comparative biology, 

embryology, and paleontology (e.g. Simpson 1953; Lande 1978; Bull & Charnov 1985; Wake 

1991; Sanderson & Hufford 1996). Although it is a widely used and very useful method to 

understand the phylogenetic history of the compared taxa, it cannot unveil the specific genetic 

mechanisms that drive reverse evolution (Teotónio & Rose 2001). Real-time experimental 

evolution, notwithstanding its limits with respect to observable evolutionary time, is the tool 

that we use to address these issues here. 

Experimental studies of reverse evolution are fairly scarce. Most of them have used 

somewhat inbred lines that were artificially selected for a morphological trait. In those cases, 

reverse selection was usually able to revert character states to levels close to the ancestral one 

(reviews in Wright 1977; Falconer & Mackay 1996). Over the last three decades, several 

reverse evolution experiments have been attempted with both sexual and asexual populations 

(e.g. Lenski 1988a,b; Service et al. 1988; Graves et al. 1992; Bull et al. 1997; Lenski 1998; 

Rainey & Travisano 1998; Burch & Chao 1999; Crill et al. 2000; Moore et al. 2000; Teotónio 

& Rose 2000; see Teotónio & Rose 2001 for a review; also Passananti et al. 2004a,b). 

Reverse evolution can be achieved with experimental evolution by imposing an 

ancestral laboratory environment on populations that have been subjected to different culture 

regimes since their last common ancestors. Because this requires the use of the ancestral 

population as a control, a sample of the ancestral (kept in a state of suspended animation) or an 

equivalent population (direct descendants of the ancestral kept in ancestral conditions) must be 

available. Examples of the use of this experimental design using Drosophila melanogaster are 

the studies of Service et al. 1988, Graves et al. 1992, and Teotónio & Rose 2000. Service and 

colleagues took a 5-fold replicated stock of Drosophila melanogaster that had been selected 

for increased late-life reproduction and re-imposed the same environment as that of their 

common ancestral population, which featured early reproduction (Rose 1984a; Service et al. 

1988). The late-reproduction populations were differentiated for several characters, including 
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increased late fecundity, longevity, and stress resistance, as well as depressed early fecundity. 

During the first 20 generations, starvation resistance and early fecundity showed a rapid, 

although incomplete, reverse evolution. Conversely, ethanol tolerance and desiccation 

resistance showed no significant response to reverse selection over those same 20 generations 

(Service et al. 1988). The experiment was extended by Graves and collaborators for more 100 

generations; convergence to the ancestral values became apparent in all traits in that study. The 

rapid reversion observed for starvation resistance and early fecundity indicates that these 

characters were under the influence of pleiotropic alleles generating a large negative genetic 

correlation between the two traits. Because of this correlation, both traits rapidly moved toward 

their ancestral values during reverse evolution, as selection focused on early fecundity (Graves 

et al. 1992). 

Teotónio & Rose (2000) performed a similar 50-generation reverse experiment on a 

much larger scale, assessing a greater number of fitness-related traits in several populations of 

diverse evolutionary histories. The patterns of reverse evolution varied among evolutionary 

histories and characters: except for early fecundity, populations with different histories had 

statistically heterogeneous responses to reverse selection. Four kinds of evolutionary 

trajectories were observed. (1) Reversion to ancestral character values with full convergence 

after ~20 generations of reverse selection. (2) Linear response without convergence within the 

50 generations of the experiment. (3) Initial rapid reversion, followed by a stalling of evolution, 

without full convergence to ancestral character values. And, finally, (4) no significant change 

throughout the 50 generations of evolution. 

These studies showed that reverse evolution is neither inevitable nor impossible, but 

contingent on the number of generations exposed to the novel environment, the degree of 

differentiation from the ancestral population, and the genetic variation of the character as well 

as its relation to fitness. This range of evolutionary responses of differentiated populations that 

share common origin to the ancestral environment as well as basic underlying genetic 

mechanisms are summarized in Figure 4.1. 
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Figure 4.1. Possible evolutionary responses of differentiated populations of common origin to the ancestral 

environment. A: The character does not change because it is effectively neutral or there is no available genetic 

variability. B: When the character is directly related to fitness, or is fitness itself, there is response with 

concomitant convergence to the ancestral character state by pleiotropy. C: Two-phased response: (1) rapid initial 

response through pleiotropy with fitness is accomplished but convergence is only partial. (2) no change through 

time because the character is effectively neutral or all standing genetic variability was exhausted during the first 

phase. D: Response that surpasses the ancestral character state – the genetics of the derived population may allow 

the attainment of a previously inaccessible character level. © Teotónio & Rose (2001) 

 

Previously in this thesis, two major constraints that can shape colonization and the 

colonizing populations’ subsequent evolution were addressed: effective population size 

(Chapter Two) and hybridization and its effects on adaptation to a novel and challenging 

environment (Chapter Three). This section of the thesis will focus on factors influencing the 

evolutionary success of reverse colonization: (i) loss of adaptation to that ancestral 

environment, (ii) Ne of the reverse-colonizers, (iii) shifts in their age-specific demography, and 

(iv) adverse effects of hybridization with the endemic ancestral population. 

Factors that might affect colonization and reverse-colonization have been of major 

interest within conservation biology, especially whether long-maintained captive populations 

show deterioration in their ability to thrive in their ancestral wild environments. This is 

particularly important for ex-situ conservation programs that aim to reintroduce into the wild 

their captive bred individuals (Allendorf et al. 2013; Frankham 1995b, 2008, 2009b; Frankham 

et al. 2000, 2002; Woodworth et al. 2002; Gilligan & Frankham 2003). 
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Prior research from the Rose Laboratory has shown that relaxing selection on starvation 

resistance leads to a clear evolutionary reversion of the character when Ne is moderately large 

(e.g. Teotónio & Rose 2000; Passananti et al. 2004b). The scientific question addressed in this 

chapter is whether such clear response would be exhibited at low values of Ne, specifically 

whether reverse evolution is impaired by sustained small population sizes. This is tested using 

a reverse colonization experiment where small-sized populations that had undergone strong 

selection for starvation resistance were returned to their previous, long-standing selection 

regime, which featured early reproduction, ad libitum feeding, and no phase of food 

supplementation. 
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MATERIALS AND METHODS 

Derivation of the reverse-selected experimental populations 

The experimental populations used in this study were derived from the 84 populations 

described in Chapter Two. After 15 generations of forward selection for starvation resistance, 

derivatives of the small populations (both selected and control) were created and a reverse-

selection experiment was started. Each of the 30 CPBij lines was used to derive a single RCPBij, 

and each of the 30 SPBij populations was used to derive one RSPBij. The creation of the reverse-

selected small stocks increased the experiment’s replication size to 228. Figure 1.5 of Chapter 

One, which is here reproduced, shows a diagram of the derivation process. 

 

Figure 1.5. Schematic representation of the experimental design used to create the reverse-selected lines. After 

15 generations of forward selection, each CPBij population was used to derive a single RCPBij population, and 

each SPBij population was used to derive one RSPBij population. These 60 populations were then subjected to 21 

generations of reverse selection and sustained small Ne. 

 

Reverse selection procedures for starvation resistance 

These reverse-selected populations were returned to a 14-day culture in vials, without 

the dietary changes or selection imposed during the first phase of the experiment (Chapter Two 

of this thesis). These stocks were kept at the same low Ne as was imposed on them during the 

first phase of the experimental work, simulating a sustained bottleneck in effective population 

size (Figure 1.5 of Chapter One, which is here reproduced). 

 

Starvation resistance and fecundity assays 

Both life history traits were assayed using the protocols described in Chapter Two. 

Starvation resistance and fecundity were assayed at generations 0, 5, 12, and 21 after the 

derivation of the R-selected lines. 

 

Statistical data analysis 

In all analyses, the normality and homoscedasticity of data were tested by Shapiro-Wilk 

(1965) and Brown-Forsythe (1974) tests, respectively. After testing by ANOVA and ANCOVA, 

and when it was appropriate, Tukey HSD (1953) post-hoc tests were done. A significance value 
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of 0.05 () was used to test all null hypotheses. All analyses were done using STATISTICA 13 

(Dell 2015). 

The key statistical tests focused on quantitative measures of how reverse selection 

affects starvation resistance and fecundity, after the 15 generations of forward selection for 

increased starvation resistance. The magnitudes of the interactions between the evolutionary 

responses and the selection regime were estimated. 

The evolutionary trajectories of starvation resistance and fecundity throughout the 21 

generations of reverse selection were analyzed according to the following ANCOVA model: 

𝒀 = 𝝁 + 𝑯𝒊 + 𝑺𝒋 + 𝑮𝒌 + 𝑯𝒊 ∗ 𝑺𝒋 + 𝑯𝒊 ∗ 𝑮𝒌 + 𝑯𝒊 ∗ 𝑺𝒋 ∗ 𝑮𝒌 + 𝑹𝒆𝒑{𝑯 ∗ 𝑻} + 𝑮𝒌

∗ 𝑹𝒆𝒑{𝑯 ∗ 𝑻} + 𝜺 

where Y is the trait under analysis (starvation resistance or fecundity); H represents the 

evolutionary history (i = 0-5), random factor; S the prior selection regime (j = selected or j = 

control), fixed factor; G the covariate generation (see which on the assays description), and 

Rep the replicate population (random factor). This is a comprehensive model that includes all 

variables under study. Analyses within prior selection regime or within a single generation used 

adapted versions of the aforementioned model (e.g. when analyzing the trajectories of selected 

or control lines, the factor Selection and all its interactions were removed). The slopes of the 

evolutionary trajectories of each population were compared using the respective slopes as raw 

data (Y in the model). 

 

Ancestral population state proxy 

Because a sample of the ancestral Drosophila melanogaster population could not be 

kept in a state of suspended animation, this experiment required the use of its direct descendants 

which were kept in ancestral conditions, i.e. the B flies. Due to experimental constraints, the B 

populations were not assayed in synchrony with generation 0 of the experimental stocks; for 

the initial differentiation comparisons data from the earliest time point assayed (generation 5) 

was used instead. 

 

Differences to control as raw data 

Since statistically significant changes in starvation and fecundity were found among the 

control lines (Table 4.3 and Figure 4.3), to remove confounding effects due to environmental 

stochasticity, we used the control-corrected data (difference from the respective Bi control) to 

perform all the statistical analyses.  

(4.1) 
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RESULTS 

General linear model assumptions 

Small deviations from normality were accepted, and homoscedasticity was verified by 

the Brown-Forsythe test. Our distribution tests showed that all populations were homoscedastic 

and generally normal (data not shown). 

 

Initial differentiation from the ancestral population 

The initial differentiation of the reverse-selected populations from the ancestral stock 

was tested. The RCPB flies showed significantly higher starvation resistance in both males 

(p<0.02) and females (p<0.02) and lower early fecundity, although not significantly (p>0.2). 

The RSPB lines showed significantly higher starvation resistance in both males (p<0.01) and 

females (p<0.001), and significantly lower early fecundity (p<0.05). The mean values and 

standard errors for each character and regime are detailed in Table 4.1. 

 

Table 4.1. Comparison of the ancestral B stock with the reverse-selected lines (RCPB and RSPB) for initial 

differentiation testing. Data are given as the initial (generation 5) mean value ± standard error of mean (as 

differences between replicates) of each regime, for each life-history trait analyzed. Starvation resistance values 

are in hours and early fecundity in number of eggs laid per female. Significant differences to the ancestral 

population (B) are highlighted in bold. 

Regime 
Male starvation 

resistance (hours) 

Female starvation 

resistance (hours) 

Early fecundity 

(eggs per female) 

B 27.2 ± 1.94 43.2 ± 2.01 210.0 ± 15.04 

RCPB 41.1 ± 2.55 67.2 ± 3.72 170.6 ± 6.56 

RSPB 59.4 ± 2.80 102.6 ± 3.36 172.6 ± 3.77 

 

Differentiation from the ancestor after 21 generations of reverse selection 

After 21 generations under ancestral conditions, the differentiation of the reverse-

selected populations from the ancestral stock was tested. The RCPB flies showed higher 

starvation resistance than the B counterparts, significantly higher in females (p<0.02) but not 

in males (p>0.05); on average, RCPB early fecundity was higher than B but the difference was 

not statistically significant (p>0.4). The RSPB lines showed not only significantly higher 

starvation resistance in both males (p<0.01) and females (p<0.001), but also in early fecundity 

(p<0.03). The mean values and standard errors for each character and regime are detailed in 

Table 4.2. 



CHAPTER FOUR 

 

109 

 

Table 4.2. Comparison of the ancestral B stock with the reverse-selected lines (RCPB and RSPB) after 21 

generations of reverse selection. Data are given as the final (generation 21) mean value ± standard error of mean 

(as differences between replicates) of each regime, for each life-history trait analyzed. Starvation resistance values 

are in hours and early fecundity in number of eggs laid per female. Significant differences to the ancestral 

population (B) are highlighted in bold. 

Regime 
Male starvation 

resistance (hours) 

Female starvation 

resistance (hours) 

Early fecundity 

(eggs per female) 

B 22.1 ± 1.81 41.7 ± 2.33 171.3 ± 9.21 

RCPB 29.9 ± 1.38 58.2 ± 2.18 184.8 ± 7.33 

RSPB 36.2 ± 1.54 75.5 ± 2.70 204.8 ± 5.43 

The average initial (G5) and end-of-experiment (G21) values for the life-history traits assayed 

as well as the relevant statistical tests of differentiation to the ancestral stock are summarized 

in Figure 4.2. 

 

Evolutionary change of the ancestral population  

During this experiment, the B flies saw their starvation resistance significantly 

decreased in males (from 27.2 to 22.1 hours, p<0.03) but not in females (from 43.2 to 41.7 

hours, p>0.7). At the start of the experiment, the early fecundity of each control female 

averaged 210 eggs, and at the end of the experiment it averaged 171 eggs (p<0.03). Table 4.3 

summarizes the ANCOVA results from the B evolutionary trajectories’ analyses. The pattern of 

change of starvation resistance and fecundity over the experiment is shown on Figure 4.3. 

 

Table 4.3. Summary of the mixed-effects ANCOVAs used to analyze the evolutionary trajectories of B controls. 

Data shows the F statistic and respective p-value for the factor Generation of each life-history trait analyzed. 

Significant changes through time are highlighted in bold. 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

9.7996 0.025945 0.1039 0.760224 9.7925 0.025848 
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a)  

b)   

c)  

Figure 4.2. Initial (G5) and final (G21) state of the experimental populations for a) male, b) female starvation 

resistance, and c) early fecundity. Average stock values are shown and error bars denote standard error of mean. 

p≤0.05 is marked with * and p>0.05 with ns.  

* 

* 
ns 

* 

* 

* 

* 

* 

ns 

* 

* 
ns 
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a)  

b)  

c)  

Figure 4.3. Evolutionary trajectories of the ancestral populations (B) for a) male, b) female starvation resistance, 

and c) early fecundity. Average population values are shown. Error bars denote standard error of mean.  
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Evolution under reverse selection 

The evolutionary trajectories of the experimental lines were analyzed over 21 

generations of reverse selection. Because the general expectation is the reversion to B state, 

using relative-to-control data to analyze evolutionary trajectories, the predicted trend is toward 

zero. E.g., if a population’s trait average value is lower than the controls, a negative value for 

the trait is obtained, and a positive slope is expected (see Figures 4.4 and 4.5).  

Through the length of the experiment, RCPB starvation resistance decreased in males 

and females though not significantly (Table 4.4 and Figure 4.4). The formerly forward-

selected counterparts, RSPB, saw their male and female starvation resistances significantly 

decreased (Table 4.4 and Figure 4.5). In terms of early fecundity, both RCPB and RSPB stocks 

showed a significant increase in their average values (Table 4.4). Interestingly, RSPB started 

with lower fecundity than the control and by generation 21 presented higher values (Figure 

4.2). 

 

Table 4.4. Summary of the mixed-effects ANCOVAs used to analyze the evolutionary trajectories of the reverse-

selected stocks. Data shows the F statistic and respective p-value for the factor Generation of each prior selection 

regime and life-history trait analyzed (Bi-corrected data). Significant changes through time are highlighted in bold. 

Prior 

selection 

regime 

Male starvation 

resistance 

Female starvation 

resistance 
Early fecundity 

F statistic p-value F statistic p-value F statistic p-value 

RCPB 1.64754 0.255454 2.18103 0.199540 8.46003 0.033349 

RSPB 9.63804 0.026716 8.4163 0.033748 14.02589 0.013322 
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a)  

b)  

c)  

Figure 4.4. Evolutionary trajectories of the RCPB populations for a) male, b) female starvation resistance, and c) 

early fecundity. Average Bi-corrected values for each Bi ancestor are shown. Error bars denote standard error of 

mean (computed as differences between replicate populations).  
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a)  

b)  

  c)  

Figure 4.5. Evolutionary trajectories of the RSPB populations for a) male, b) female starvation resistance, and c) 

early fecundity. Average Bi-corrected values for each Bi ancestor are shown. Error bars denote standard error of 

mean (computed as differences between replicate populations).  
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Prior evolutionary history and reverse evolution 

The effect of previous evolutionary history on the process and outcome of reverse 

selection was tested, comparing RCPB and RSPB in terms of evolutionary trajectories and 

character states, respectively. 

First, the populations were tested at the start of the reverse selection experiment (G5). 

Initially, when compared with RCPB lines, the RSPB populations showed higher starvation 

resistance both in males (p<0.002) and females (p<0.002) but no significant differentiation in 

early fecundity (p>0.9), as detailed in Table 4.5. Then, the same test was done after 21 

generations of reverse selection (G21). By the end of the experiment, the RCPB and RSPB flies 

were less differentiated in terms of starvation resistance than at G5, but they were still 

significantly different in both males (p≈0.05) and females (p<0.04). Early fecundity was still 

similar in both stocks (p>0.4). See Table 4.6 for details. 

 
Table 4.5. Initial differentiation between the reverse-selected lines, RCPB and RSPB. Data are given as the initial 

(generation 5) mean value ± standard error of mean (as differences between replicates) of each regime, for each 

life-history trait analyzed. Starvation resistance values are in hours and early fecundity in number of eggs laid per 

female. Significant differences are highlighted in bold. 

Regime 
Male starvation 

resistance (hours) 

Female starvation 

resistance (hours) 

Early fecundity 

(eggs per female) 

RCPB 41.1 ± 2.55 67.2 ± 3.72 170.6 ± 6.56 

RSPB 59.4 ± 2.80 102.6 ± 3.36 172.6 ± 3.77 

 

Table 4.6. Differentiation between the reverse-selected lines, RCPB and RSPB, after 21 generations of reverse 

selection. Data are given as the final (generation 21) mean value ± standard error of mean (as differences between 

replicates) of each regime, for each life-history trait analyzed. Starvation resistance values are in hours and early 

fecundity in number of eggs laid per female. Significant differences are highlighted in bold. 

Regime 
Male starvation 

resistance (hours) 

Female starvation 

resistance (hours) 

Early fecundity 

(eggs per female) 

RCPB 29.9 ± 1.38 58.2 ± 2.18 184.8 ± 7.33 

RSPB 36.2 ± 1.54 75.5 ± 2.70 204.8 ± 5.43 

 

The average initial (G5) and end-of-experiment (G21) values for the life-history traits assayed 

as well as the relevant statistical tests of differentiation to the ancestral stock are summarized 

in Figure 4.6. 
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a)  

b)   

c)  

Figure 4.6. Initial (G5) and final (G21) state of RCPB and RSPB for a) male, b) female starvation resistance, and 

c) early fecundity. Average stock values are shown and error bars denote standard error of mean. p≤0.05 is marked 

with * and p>0.05 with ns.  

* 

* 

* 

* 

ns 

ns 
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Finally, the evolutionary trajectories of RCPB and RSPB for the three characters were 

compared in terms of direction and rate of evolution. The slopes of the evolutionary trajectories 

of each population were computed (data not shown) and the reverse-selected regimes were 

compared. Both RCPB and RSPB showed an overall negative slope for starvation resistance 

(i.e. temporal decrease) and an overall positive slope for early fecundity (i.e. temporal 

increase), which means that both regimes responded in the same direction. In terms of the 

evolutionary rates for starvation resistance, significant differences for both males (p<0.04) and 

females (p<0.05) were found; early fecundity rates of the reverse-selected lines showed no 

significant difference (p>0.4). The average evolutionary rates for the life-history traits assayed 

as well as the relevant statistical tests of differentiation between RCPB and RSPB are 

summarized in Figure 4.7. 
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a)   

b)  

c)  

Figure 4.7. Evolutionary rates of RCPB and RSPB for a) male, b) female starvation resistance, and c) early 

fecundity. Average slopes are shown and error bars denote standard error of mean p≤0.05 is marked with * and 

p>0.05 with ns.  

* 

* 

ns 
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DISCUSSION 

Our findings show that Mendelian populations kept in a sustained bottleneck reproduce 

a general response of reversion to the ancestor, B. Several patterns, trait and/or population-

specific were found: (1) a rapid and linear convergence to ancestral values (RCPB male 

starvation resistance and early fecundity); (2) a rapid decline with partial convergence (female 

starvation resistance of all populations), and (3) a response that significantly overcame the 

ancestral state (early fecundity of RSPB populations). We will further analyze these patterns 

and provide plausible explanations below. 

 

Evolution under reverse selection I: initial divergence and further convergence 

Extensive research on experimental evolution of Mendelian populations showed that 

contrasting selection regimes rapidly cause phenotypic divergence and that populations under 

the same selection regime quickly converge on common phenotypes (see Garland & Rose 

2009; Burke et al. 2016). After 15 generations of forward selection, the small populations 

RSPB and their non-selected counterparts, RCPB, were expected to diverge from the B-

ancestor as a consequence of direct response to selection and/or due to the postponed 

reproduction (see results on SPB and CPB lines in Chapter Two of this thesis). This initial 

differentiation was a conditio sine qua non to start the reverse evolution experiment. The 

divergence expectation was met in both RCPB and RSPB experimental stocks, with higher 

starvation resistance and lower fecundity (Table 2.1, Figure 4.2). 

In the large-scale reverse evolution experiments by Teotónio & Rose (2000) outbred 

populations with different past histories of selection, reversion of starvation resistance was 

clear but contingent to the stock’s previous evolutionary history: in some lines starvation 

resistance converged to the ancestral state but in others reversion stalled (after 12-20 

generations). In a different experiment, where selection for starvation resistance was relaxed 

for 20 generations, a strong decline in the mean trait value was also shown (Passananti et al. 

2004b). Our results seem to follow this trend of decline of starvation resistance during reverse 

selection, contingent to the populations’ selection history (Table 2.2, Figure 4.2). 

 

Evolution under reverse selection II: starvation resistance 

By generation 21, RCPB flies were less starvation resistant than at the start, but 

complete reversion to the ancestral state was found only in males (Table 2.2). Interestingly, 
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when analyzing their evolutionary trajectories, the downward trend was not statistically 

significant, neither in males nor females (Figure 4.4a,b; Table 4.4). The lack of statistical 

significance can be explained by the high heterogeneity seen in the rate of the individual 

population response within each Bi ancestor; this interpopulation variation is most likely due 

to the diverging effect of genetic drift on the response of the bottlenecked populations. RSPB, 

the previously forward-selected stock, after 21 generations of reverse selection, showed a 

significant decline in both male and female starvation resistances, however not reaching full 

convergence to the ancestor (Figure 4.5a,b; Table 4.4). This significant linear decrease of the 

mean character value was confirmed by the RSPB evolutionary trajectories. One possible 

explanation for the incomplete reversion is that our experimental populations were not given 

enough time to allow reverse evolution to conclude the process of convergence. The lack of 

complete reversion to the ancestral state of starvation resistance was previously found in an 

experiment with over 100 generations of reverse selection (Service et al. 1988; Graves et al. 

1992). Later, a reverse experiment in independent lines selected for starvation resistance (in 

the same lab), once again revealed a pattern of incomplete reversion with stalling after 12 

generations (Teotónio & Rose 2000). On the other hand, parallel selection experiments 

sustained for more than 100 generations from the Rose laboratory are revealing a greater 

tendency to convergence (Burke et al. 2016; Graves et al. 2017), even in populations which 

failed to converge with 20-100 generations of reverse selection. Even though these later studies 

do not involve starvation resistance selection, they do show that time may be essential for 

convergence to occur. 

Unfortunately, we were not able to further investigate the genetic mechanisms and find 

out the causes of partial convergence for starvation resistance in our stocks. It would be very 

interesting to determine whether (1) the sustained bottleneck these lines had depleted genetic 

variation, (2) epistasis could have played a role on forestalling reverse evolution, or (3) 

genotype-by-environment interaction was impeding further return to ancestral state. Given that 

we did not find an increased response of hybrids in forward-selected small populations 

(Chapter Three of this thesis), we are tempted to say that the lack of genetic variation due to 

small population size will not be implicated in the partial reversion. 

 

Evolution under reverse selection III: fecundity 

Teotónio & Rose’s (2000) reverse-selection results for early fecundity showed 

generalized convergence to ancestral levels. Our data partially corroborate the previous results, 
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with rapid and full convergence to control levels in RCPB (Table 4.2), confirmed by the stock’s 

evolutionary trajectory (Figure 4.4c, Table 4.4). The pattern of increased fecundity with 

antiparallel decreased starvation resistance is easily expected due to (1) the character’s direct 

relationship with fitness and (2) the extensively reported antagonist pleiotropy between 

starvation resistance and early fecundity (Service & Rose 1985; Rose et al. 1992; Leroi et al. 

1994a,b; Chippindale et al. 1996). Surprisingly, the RSPB response to reverse selection not 

only equaled the fecundity of the B-controls, but even significantly overcame it (Table 4.2), 

by means of a strongly ascending evolutionary trajectory (Figure 4.5c, Table 4.4). One 

possible explanation is that genetic architectural changes undergone during their past 

evolutionary history, previously inaccessible to the ancestor, pushed the populations to a novel 

adaptive peak – Wright’s mass selection under changing conditions (Figure 4.8; Wright 1977; 

Lenski 1988b; Teotónio & Rose 2001). Another explanation lies on the environments at which 

the populations evolve. It is possible that, during reverse selection, the experimental lines were 

not subjected to the exact same environment as the ancestor. If, in turn, these differences are 

closer to the assay environment, the experimental populations may be at an advantage, like 

Leroi et al. (1994b) found in one of their experiments. The maintenance regime of the RSPBs 

involved a 24h egg-laying, whereas the B flies were given two hours only. Early fecundity was, 

indeed, assessed in conditions more similar to the RSPB lines than the ancestor, with longer 

egg-laying periods giving them an advantage comparatively to the ancestral Bs (Teotónio et al. 

2002). Finally, fecundity could also be trading-off with other life-history characters and the 

visible benefit in fecundity is being achieved at the cost of other unseen, untested traits (given 

that these flies are still significantly more resistant than the ancestor). The interplay of different 

trade-offs (e.g. fecundity with starvation resistance, egg-to-adult viability, or developmental 

rate) may implicate non-linear evolutionary patterns. In fact, it is possible that later in time 

these “super flies” might settle down to fecundity levels comparable to those of the B flies. A 

combination of these non-exclusive hypotheses can account for the “paradoxal” RSPB super 

flies. 

 

Evolution under reverse selection – prior evolutionary history contingency 

The evolutionary rates at which populations respond to reverse selection can be trait-

specific: fitness-related traits are expected to converge faster and more consistently than 

characters more loosely associated with fitness (Travisano et al. 1995; Teotónio & Rose 2000; 

Teotónio et al. 2002; Joshi et al. 2003; but see Fragata et al. 2014b). Thus, a strong history 
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signature might be harder to erase in morphological traits, for example, compared to life history 

characters that underlie fitness. 

Our experimental design allowed us to test for the effect of previous evolutionary 

history on the process and outcome of reverse evolution, by comparing the trajectories of one 

group of populations with a previous history of strong forward selection for starvation 

resistance (RSPB) with another group which was never subjected to such strong starvation 

selection (RCPB). These lines were initially very distinct in terms of starvation resistance 

(Figure 4.6a,b; Table 4.5); as generations of reverse selection went by they became less 

differentiated but did not reach the same character state (Table 4.6). Their evolutionary 

trajectories were similar in direction but not in rate, with the RSPB populations showing a 

much higher rate of convergence than the RCPB (Figure 4.7). Therefore, the historical 

differentiation for starvation resistance was smoothed by reverse evolution but note entirely 

eliminated. We would expect that for fecundity, a more fitness-related trait, the sign of history 

might not be seen. But our data on fecundity showed no differentiation between these 

populations to start with (Figure 4.6c; Table 4.5), which was of no use in this matter. 

 

 

 

Figure 4.8. Schematics of a shift between two adaptive peaks precipitated by a transient environmental change. 

In environment A, selection pushed a population to a local adaptive peak, but opposes a shift to another adaptive 

peak. In environment B, the adaptive topography has changed, causing selection to favor a new genetic 

composition. Although the environment subsequently reverts to its former state, the population is pushed to a 

novel adaptive peak. © Lenski (1988b) 
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Final remarks 

The history of a population is extremely important for its subsequent evolution. 

Namely, in a scenario of reverse colonization, i.e. migration back to the prior environment, will 

populations return to the ancestral state? Here we aimed to understand the consequences of 

recent divergent selection history in the outcome of life-history reverse evolution. Previous 

research in the lab has shown clear reversal of fitness-traits when Ne is moderately large (e.g. 

Service et al. 1988; Graves et al. 1992; Teotónio & Rose 2000; Passananti et al. 2004b). The 

scientific question addressed here was whether reverse evolution is impeded (or not) by small 

population sizes. Our major findings show that experimental populations kept in a sustained 

bottleneck still exhibit reverse evolution albeit with features contingent on character and/or 

population. Thus, we found (1) rapid and complete reversion, (2) fast response with partial 

convergence, and (3) steep convergence with a superior outcome to that of the ancestor, three 

of the possibilities outlined in Teotónio & Rose (2001). Furthermore, we found the signature 

of evolutionary history to be strong with respect to the tempo of reverse evolution. 
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Chapter Five. 

Age-Specific Adaptation to Novel Diets 
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ABSTRACT 

Hamilton’s forces of natural selection provide scaling or weighting factors for the 

impact of selection on each age-specific component of a population’s life history. This 

weighting is heavy at early ages, and then it falls with time, as the force of natural selection 

declines with chronological age. Applying Hamiltonian reasoning to laboratory experiments 

conducted in model species raises questions of genotype-by-environment interaction. 

Therefore, there is large potential for artifacts and confounds that arise from Hamiltonian 

waves of age-specific adaptation to novel laboratory environments, which can compromise the 

validity of experiments that use such novel environments. It is, thus, essential to know whether 

the Hamiltonian waves of age-dependent adaptation to novel environments in fact occur in 

well-defined laboratory experiments. In this chapter we present the first experimental test of 

the evolutionary effect of dietary change on the age-dependent adaptation of Drosophila 

melanogaster populations that have been exposed to a specific novel type of food for more than 

800 generations. Our results show that surprisingly small changes in diet can have significant 

effects both on overall longevity and on age-specific mortality rates. Although we could not 

determine whether adaptation to a novel diet has proceeded to a greater extent at earlier ages 

compared with later ages, there is some evidence that the longer the flies are given novel diets, 

the more their mortality rates are increased. 
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RESUMO 

As forças de Hamilton da selecção natural fornecem factores de escala ou ponderação 

do impacto da selecção em componentes específicos de cada idade na história de vida de uma 

população. Esta ponderação é maior em idades precoces e decai progressivamente com o 

tempo, devido à diminuição da força da selecção natural com a idade cronológica. A aplicação 

da teoria Hamiltoniana a experiências laboratoriais em organismos-modelo levanta problemas 

de interacção genótipo-ambiente. Existe um grande potencial para artefactos que surgem a 

partir das ondas Hamiltonianas de adaptação específica da idade para ambientes laboratoriais 

novos, o que pode comprometer a validade dos ensaios que utilizam tal novidade ambiental. É 

essencial saber se estas ondas de adaptação dependente da idade, de facto, ocorrem em 

experiências laboratoriais bem definidas. Neste capítulo apresentamos o primeiro teste 

experimental do efeito evolutivo da alteração da dieta na adaptação dependente da idade. Para 

tal, usaram-se populações de Drosophila melanogaster que tinham sido expostas a uma 

determinada dieta por mais de 800 gerações. Os nossos resultados mostram que pequenas 

mudanças na dieta das populações podem ter efeitos significativos tanto na longevidade média 

como nas taxas de mortalidade específicas de cada idade. Embora não se tenha podido 

determinar se houve maior adaptação à nova dieta em idades mais precoces em comparação 

com idades mais avançadas, os dados sugerem que quanto mais tempo as coortes são expostas 

às novas dietas, maior é o aumento das suas taxas de mortalidade. 
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INTRODUCTION 

In the last decade we have been struck by a paradox that arises from an ostensible 

conflict between the biology of human aging and the findings of experimental evolution. 

Several anthropologists and physicians have drawn attention to the increased incidence of age-

associated disorders, like type II diabetes and cardiovascular disease, in populations which 

have adopted the agricultural diet (and lifestyle) within historical times. These authors have 

claimed that the adoption of a Paleolithic or hunter-gatherer diet might alleviate many aging 

diseases, particularly heart conditions (Eaton & Konner 1985; O’Keefe & Cordain 2004; 

Frassetto et al. 2009; Jönsson et al. 2009; Lindeberg 2010; Ryberg et al. 2013). The rationale 

behind this idea is that the human population is not sufficiently adapted to the agricultural 

conditions, dominated by grains and dairy products, but it is well-adapted to the hunter-gatherer 

diet, a more ancient nutritional environment at which humans were exposed for millions of 

years. Consequently, the adoption of the agricultural diet is detrimental to human health and 

some medical anthropologists propose the wholesale adoption of hunter-gatherer regimes to 

fight age-associated diseases (e.g. Lindeberg 2010; Ryberg et al. 2013). 

This statement is apparently in direct contradiction to solid experimental evolutionary 

research on what is called in our field evolutionary domestication (vid. Simões et al. 2007, 

2009). Domestication is an extremely important topic in evolution and may be considered the 

most ancient evolutionary experiment carried out by humans. Its history dates back about 

14,000 years from present, at least in the Middle East and Asia, starting with the domestication 

of the dog and several livestock species (Mignon-Grasteau et al. 2005). Since then, multiple 

plant species have undergone domestication (Figure 5.1). Traditionally, the term 

domestication refers to the genetic changes undergone by our commensal species, from dogs 

to agricultural animals, from grains to legumes, sometimes with an additional connotation 

related to behavioral change, especially reduction in wildness (Soanes 2003). In evolutionary 

terms, domestication can be defined as the population genetic change arising from its transition 

from nature to deliberate human cultivation (Simões et al. 2007). 

Extensive adaptation has been reported in less than 60 generations of experimental 

evolutionary domestication (Simões et al. 2007, 2009).  This seemingly implies that the 

hundreds of generations that most human populations have had to adapt to agricultural 

conditions should have been more than enough to a full adaptation state to this novel 

environment (vid. Zuk 2013). This apparent contradiction can be mitigated if we bring together 
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the concepts of evolutionary domestication and Hamiltonian age-dependent adaptation to 

novel environments (Mueller et al. 2011, Ch. 11). 

 

 

Figure 5.1. Archaeological map of agricultural homelands and the spread of Neolithic/Formative cultures, with 

approximate radiocarbon dating for the onset of agriculture (Diamond & Bellwood 2003). 

 

Hamilton’s (1966) forces of natural selection provide scaling or weighting factors for 

the impact of selection on each age-specific component of a population’s life history. This 

weighting is heavy at early ages, and then it falls with time, as the force of natural selection 

declines with chronological age (Figure 5.2). This theory can be applied to scenarios in which 

a population is transferred to a qualitatively novel environment, such as the human transition 

from hunting-and-gathering to mainly agricultural subsistence. The key point is that the age-

specific weighting of the force of natural selection leads to the corollary that selection for 

domestication will act with full-force only at early ages. In this scenario, the evolutionary 

expectations are that (1) young people from populations with longer agriculture exposure will 

be well adapted to agricultural diets and (2) older people from the same populations will be 

less adapted to agricultural than hunter gatherer diets, as the age-specific evolutionary 

domestication in response to agriculture will progressively decline with age. In effect, 

individuals from ancestrally agricultural populations will undergo, at later ages, a partial 

physiological reversion, a kind of evolutionary time travel, to a condition of relatively better 

adaptation to the hunter-gatherer, compared to the agricultural diet. 
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Figure 5.2. The age-specific forces of natural selection acting on mortality. Natural selection is intense at early 

ages, until the first age of reproduction (from ages a to b), and then begins to decline rapidly until the last age of 

reproduction, after which it converges on, and remains at zero. The onset of late-life plateaus occurs sometime 

after age c. © Rauser et al. 2006. 

 

Thus, far from favoring the universal adoption of a hunter-gatherer regime, this 

evolutionary reasoning only supports the adoption of such diets later in adult life, perhaps from 

middle-age onward, at least among individuals with agricultural ancestry. This hypothesis is 

conveyed graphically in Figure 5.3. 

 

 

Figure 5.3. Age-specific adaptation to a novel environment. If the most fit phenotype changes in a new 

environment, and there is sufficient genetic variation, there should be an evolutionary response to the new 

environment with the population gradually approaching the most fit phenotype in that novel environment. 

However, the dynamics of this process will depend on the strength of selection. So, we expect the greatest and 

fastest evolutionary changes to occur at ages where selection is strongest, i.e. the early ages. From Mueller et al. 

(2011). 

This minor application of Hamiltonian reasoning to one species, however, raises more 

general questions concerning how experiments on aging are generally conducted on model 

organisms. These questions revolve around genotype-by-environment (GxE) interaction and 

the amount of laboratory evolution (i.e. domestication) that model organisms have undergone 
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prior to their use in gerontological experiments. This is a well-known issue in evolutionary 

biology, where it has been referred to as the evolutionary no-man’s-land problem (vid. Matos 

et al. 2000b; Simões et al. 2007). If a laboratory model organism is studied for its aging in an 

evolutionarily novel environment, there will be difficulties arising from the degree of 

laboratory-adaptation of the stock under use. Figure 5.4 illustrates the differences in the 

evolutionary trajectories between short and long-term studies in Drosophila subobscura done 

by the Matos lab. 

Additionally, there will be issues of age-dependent patterns of maladaptation. Age-

dependent maladaptation may further increase the problems of GxE interaction, which are in 

any case well-known to trouble experimentation with model organisms in the laboratory (e.g. 

Figure 5.5; Leroi et al. 1994b). Thus, the potential for artifacts and confounds that arise from 

Hamiltonian waves of age-specific adaptation to novel laboratory environments will be 

substantial, and can compromise the validity of experiments that use such novel environments. 

This inference is a direct extension of Hamiltonian theory based on the declining forces 

of natural selection. And, as with Rose and Mueller’s previous experimental work testing 

Hamilton’s theory (cf. Rose 1991; Mueller et al. 2011), what is now needed is to test whether 

Hamiltonian waves of age-dependent adaptation to novel environments, in fact, occur in well-

defined laboratory experiments. Fortunately, there were experimentally evolved populations at 

University of California, Irvine which allowed an initial, though admittedly crude, test of the 

Hamiltonian wave hypothesis. We thus present the first experimental test of the effect of dietary 

change on the age-dependent adaptation of Drosophila melanogaster populations that have 

been exposed to a specific type of food for more than 800 generations. As far as we know, this 

was the first experimental test of the Hamilton hypothesis, a test which opened doors into a 

novel and important line of research for evolutionary biology. 
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a)  

b)  

Figure 5.4. Evolutionary trajectories for early fecundity in (a) short and (b) long-term studies of evolutionary 

domestication in Drosophila subobscura: In the short-term analysis of the adaptive dynamics the results show a 

positive linear trend, whereas the long-term displays a logarithmic tendency. These results are congruent with an 

initial high selective pressure and rapid evolutionary rate of domestication, followed by its deceleration (Matos et 

al., unpublished data). 
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Figure 5.5. Paradoxical evolution of relative B and O fecundity and longevity (bars denote standard errors of 

means over five pairs of replicate populations). The solid line represents the progress of the difference (O-B) mean 

longevity: as the O’s, which are selected for late-life reproductive success, increase in longevity, the difference 

becomes increasingly positive. The broken line represents the progress of the difference (O-B) mean early-life 

fecundity (number of eggs laid by a female in a 24-h period at day 4 after emergence). Initially, the difference is 

negative, as the O’s decline, which is an apparent trade-off. Later the direction of evolution of relative fecundity 

reverses itself, such that by 1992 the O’s have a greater early fecundity than the B’s. This differential expression 

of the trade-off was shown to be due to (1) the O’s started to be maintained in a different environment (e.g. density 

and general handling), and (2) the assay conditions were more similar to the O-type environment (Leroi et al. 

1994b). 
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MATERIALS AND METHODS 

Experimental populations 

The experiments reported in this chapter involved a five-fold replicated stock of outbred 

flies of Drosophila melanogaster: the ACO1-5 populations, derived from the O stock of Rose 

(1984a) as described in Chippindale et al. (1997). These populations have a nine-day-long life 

cycle and had been adapted to banana-molasses food for more than 800 generations at the time 

of the experiment. 

Food preparation 

Regular banana-molasses food was prepared with agar, nipagin, banana, corn syrup, 

dry active yeast, and barley malt. The experimental foods (orange and avocado) were obtained 

using the same recipe, in which orange or avocado are substituted for banana, using the same 

wet weight and no additional syrup provided. 

Banana-avocado-orange mortality assay 

All populations were reared in vials with regular banana food and were given 9 days to 

develop. The 30 cohorts were then dumped into transparent acrylic cages (2 x 1000 flies, per 

population, per treatment) and given the respective diet treatment: banana, orange or avocado 

(Table 5.1). Every 24 hours each cage was given fresh food, assessed for mortality, and 

individuals were sexed at death. Cohort size was then calculated from complete death records. 

The cages were kept at room temperature (24ºC ± 1ºC) and their locations were randomized to 

reduce variation in light distribution. 

 
Table 5.1. Experimental design for the banana-avocado-orange mortality assay. Two cages ( and ) from each 

population were assessed in each of the three environments (banana, orange and avocado). 

Diet 

Population 
Banana Orange Avocado 

ACO i 

(i = 1, 2, 3, 4, 5) 

ACO i  Ba ACO i  Or ACO i  Av 

ACO i Ba ACO i Or ACO i Av 

 

Banana-orange switch mortality assay 

This experiment involved cohorts from the ACO1 population only. A combination of 

eight different diet conditions were tested with four cages in each condition (and), 

giving a total of 32 cohorts. Half of the flies were reared in control banana-molasses diet, while 

the other half were given the experimental orange diet. After 9 days of development, the flies 
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were dumped into cages with about 1000 individuals per cage and fed daily the same diet in 

which they were reared. On day 14 of the trial, 8 of the 32 cohorts had their diets switched from 

banana to orange or vice-versa. The same switch occurred for 8 different cohorts on day 21 and 

day 28 (Table 5.2). After each diet switch, the cohorts were fed that same diet for the remaining 

of their life cycle. The rest of the protocol was the same as for the banana-orange-avocado 

mortality assay. 

 

Table 5.2. Experimental design for the banana-orange switch mortality assay. Four cohorts (and) from 

each of the eight treatments were followed. Day (from egg) at which the diet switches started are highlighted in 

bold. 

Day 

Treatment 
0-14 15-21 22-28 28-death Cohorts 

BaBaBaBa (1) Banana Banana Banana Banana 
BaBaBaBa 

and 

BaBaBaOr (2) Banana Banana Banana Orange 
BaBaBaOr 

and 

BaBaOrOr (3) Banana Banana Orange Orange 
BaBaOrOr 

and 

BaOrOrOr (4) Banana Orange Orange Orange 
BaOrOrOr 

and 

OrOrOrOr (5) Orange Orange Orange Orange 
OrOrOrOr 

and 

OrOrOrBa (6) Orange Orange Orange Banana 
OrOrOrBa 

and 

OrOrBaBa (7) Orange Orange Banana Banana 
OrOrBaBa 

and 

OrBaBaBa (8) Orange Banana Banana Banana 
OrBaBaBa 

and 

 

Statistical data analysis 

In all analyses, the normality and homoscedasticity of data were tested by Shapiro-Wilk 

(1965) and Brown-Forsythe (1974) tests, respectively. Tukey HSD post-hoc tests (1953) were 

done when appropriate. A significance value of 0.05 () was used to test all null hypotheses. 

The general linear model tests used to analyze mean longevity and age-specific mortality were 

done in STATISTICA 13 (Dell 2015). Analyses of age-specific mortality patterns and Gompertz 

were done in R (R Core Team 2013). 

Mean longevity statistical analysis for the banana-avocado-orange experiment 
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The effect of sex and its interaction with diet on mean longevity (average age-specific 

mortality standardized by the cohort size) was analyzed using the following linear mixed-

effects model: 

 

where Y is mean longevity, D the diet treatment (fixed factor) applied during the assay (i = 

banana or i = orange or i = avocado), S the sex of the flies tested (j = males or j = females), and 

Pop the random replicate population. 

The effect of diet and selection regime on mean longevity was also analyzed for males 

and females separately, using the following linear mixed-effects model: 

 

where Y is mean longevity, D the diet treatment applied during the assay (i = banana or i = 

avocado or i = orange), and Pop the replicate population. 

 

Mean longevity statistical analysis for the banana-orange switch experiment 

Similarly to the previous experiment, the effect of sex and its interaction with diet on 

mean longevity was analyzed using the following linear model: 

 

where Y is mean longevity, D the diet treatment applied during the assay (i = BaBaBaBa or i = 

BaBaBaOr or i = BaBaOrOr or i = BaOrOrOr or i = OrOrOrOr or i = OrOrOrBa or i = 

OrOrBaBa or i = OrBaBaBa), and S the sex of the flies tested (j = males or j = females). 

To analyze the effect of diet and selection regime on mean longevity of males and 

females (separately) the following linear model was used: 

where Y is mean longevity and D the diet treatment as before. 

 

Gompertzian analysis of banana-avocado-orange mortality rates and patterns 

Mortality rates and patterns were analyzed by fitting the mortality assay data to a two-

stage Gompertz equation (Gompertz 1825), using maximum-likelihood. Let d be the age at 

𝒀 =  𝝁 +  𝑫𝒊  + 𝑺𝒋  +  𝑷𝒐𝒑 + 𝑫𝒊 ∗ 𝑺𝒋  + 𝑫𝒊 ∗ 𝑷𝒐𝒑 +  𝑺𝒋 ∗ 𝑷𝒐𝒑 +  𝑫𝒊 ∗ 𝑺𝒋 ∗ 𝑷𝒐𝒑 +  𝜺 

𝒀 =  𝝁 + 𝑫𝒊  +  𝑷𝒐𝒑 + 𝑫𝒊 ∗ 𝑷𝒐𝒑 +  𝜺 

𝒀 =  𝝁 +  𝑫𝒊  +  𝑺𝒋  +   𝑫𝒊 ∗ 𝑺𝒋  +  𝜺 

𝒀 =  𝝁 +  𝑫𝒊  +  𝜺 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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which mortality rates become constant with age or the break day. At ages x < d, age-specific 

mortality rates are modeled by the continuous time Gompertz equation and set equal to A e(αx), 

where A is the age-independent mortality rate, and  is the age-dependent parameter. For ages 

x > d, mortality rates are assumed to equal a constant value A2 (independent of age and different 

from A). 

This is a powerful methodology with which to analyze data from populations that are 

relatively long-lived and follow Gompertz mortality curves (as these experimental stocks), 

because (1) it does not assume constant mortality rates, (2) it does not force the data onto a 

mortality plateau, and (3) it yields more accurate and unbiased estimates of the Gompertz 

parameters, compared with techniques based on linear and non-linear regression models (vid. 

Mueller et al. 1995; Joshi et al. 1996a, Drapeau et al. 2000). The estimation of A and α from 

each combination of population*treatment*sex was used as data in a mixed-effects ANOVA, 

which included the following fixed factors: treatment (banana vs. orange vs. avocado) and sex 

(female vs. male). All these factors were crossed with the five replicate blocks. Additionally, 

for each population*treatment*sex combination, the coefficient of determination, R2, was 

calculated, as an indication of the proportion of variation explained by the Gompertz model. 

Hamiltonian analysis of mortality rates and patterns 

For each combination of treatment*sex the data from  and cages of all 5 populations 

(banana-avocado-orange assay) or from  and  cages (banana-orange switch assay) was 

combined and three-day survivorship intervals were computed. For each interval a new 

categorical variable was then created, defining the status of each one of the flies (0 = dead or 1 

= alive). The counts of each interval were used in a chi-squared test to compare the orange and 

avocado diets (banana-avocado-orange assay) or the switch treatments with all-banana control 

(banana-orange switch assay). The mortality rates in each interval (i.e. the age-specific 

mortality), defined as the logarithm of the total number of deaths to surviving cohort of that 

age, were plotted and analyzed fitting linear and log-linear least-square curves. The best fitting 

model was chosen based on the highest proportion of explained variance and the adequate 

ANCOVA model was used to test the difference between the curves. 
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RESULTS 

General linear model assumptions 

Small deviations from normality were accepted, and homoscedasticity was verified by 

the Brown-Forsythe test. Our distribution tests showed that all populations were homoscedastic 

and generally normal (data not shown). 

 

Mean longevity analysis of the banana-avocado-orange data 

The diet change from banana to orange or avocado caused an overall decrease in mean 

longevity, an effect which was not significantly different between males and females, though 

there was a significant interaction between sex and diet treatment (see Table 5.3 and Figure 

5.6). The same diet effect was found when sexes were analyzed separately (Table 5.4). 

Furthermore, Tukey HSD post-hoc analysis, summarized in Table 5.5, showed that orange-fed 

males (~20.0 days of average adult longevity) were significantly shorter-lived than the 

avocado-fed males (~21.6 days), and these two had a significantly lower longevity than control 

males given banana (~27.2). In females, there was no significant difference between orange 

(~21.5 days) and avocado (22.0 days), which were significantly shorter-lived than the controls 

(25.5 days). 

 

 

Table 5.3. Summary of the mixed-effects ANOVA used to analyze the effect of diet change and sex interactions 

on mean longevity. Data shows the F statistic and respective p-value for the factors Diet, Sex, and Diet*Sex 

interaction. Significant results are highlighted in bold. 

Effect F statistic p-value 

Diet 59.105 0.000016 

Sex 0.158 0.711019 

Diet*Sex 16.145 0.001554 
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Figure 5.6. Mean longevity (in days as adult) of males and females in banana, avocado and orange. Average stock 

values are shown and error bars denote standard error of mean. p≤0.05 is marked with * and p>0.05 with ns. 

 

 

Table 5.4. Summary of the mixed-effects ANOVAs used to analyze the effect of diet change on mean longevity of 

males and females separately. Data shows the F statistic and respective p-value for the factor Diet. Significant 

results are highlighted in bold. 

Effect 
Males Females 

F statistic p-value F statistic p-value 

Diet 106.118 0.000002 19.97107 0.000775 

 

 

Table 5.5. Summary of the Tukey HSD test used to analyze the effect of diet change on mean longevity of males 

and females separately. Data shows p-values for Diet tested against the interaction Diet*Population. Significant 

results are highlighted in bold. 

Diet 
Males Females 

Banana Avocado Orange Banana Avocado Orange 

Banana ------------   ------------   

Avocado 0.000205 ------------  0.002459 ------------  

Orange 0.000201 0.033041 ------------ 0.001224 0.793095 ------------ 
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Mean longevity analysis of the banana-orange switch data 

Switching the food from banana to orange at different points in the cohorts’ life cycle 

caused a general decrease in mean longevity, with a similar effect on males and females 

(Tables 5.6-7 and Figure 5.7). Overall, the longer the flies were subjected to orange, the shorter 

was their average life span, but the moment at which the food was switched did not influence 

the cohorts mean longevity (e.g. BaBaBaOr ≈ OrBaBaBa; see Table 5.8 for the multiple 

comparison results). Furthermore, females lived significantly longer than males (♀=26.096, 

♂=24.813, p<0.02) and, when analyzed separately, were found to be less sensitive to diet 

switching: the only diet switch which was significantly different from the others was 

OrOrOrBa (p<0.02; see Table 5.9 for the multiple comparison of males and females 

separately). 

 

Table 5.6. Summary of the mixed-effects ANOVA used to analyze the effect of diet switch and sex interactions on 

mean longevity. Data shows the F statistic and respective p-value for the factors Diet, Sex, and Diet*Sex 

interaction. Significant results are highlighted in bold. 

Effect F statistic p-value 

Diet 8.22 0.000001 

Sex 6.79 0.012190 

Diet*Sex 0.52 0.814638 

 

Table 5.7. Summary of the mixed-effects ANOVAs used to analyze the effect of diet switch on mean longevity of 

males and females separately. Data shows the F statistic and respective p-value for the factor Diet. Significant 

results are highlighted in bold. 

Effect 
Males Females 

F statistic p-value F statistic p-value 

Diet 7.490 0.000082 2.487 0.045234 
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a)   

 

b)   

 

Figure 5.7. Mean longevity (in days as adult) of a) males and b) females from different diet switch treatments. 

Average cohort values are shown and error bars denote standard error of mean. 
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Table 5.8. Summary of the Tukey HSD tests used to analyze the effect of diet switch on mean longevity (males 

and females together). Data shows p-values for Diet tested against the difference between cohorts and least-square 

means are presented in brackets. Significant results are highlighted in bold. 

Diet 
BaBaBaBa 

(28.607) 

BaBaBaOr 

(26.644) 

OrBaBaBa 

(26.771) 

BaBaOrOr 

(25.322) 

OrOrBaBa 

(25.779) 

BaOrOrOr 

(24.591) 

OrOrOrBa 

(22.076) 

OrOrOrOr 

(23.847) 

BaBaBaBa ------------        

BaBaBaOr 0.498127 ------------       

OrBaBaBa 0.581878 1.000000 ------------      

BaBaOrOr 0.032834 0.878023 0.819068 ------------     

OrOrBaBa 0.102080 0.986754 0.971314 0.999777 ------------    

BaOrOrOr 0.004049 0.439981 0.363356 0.995208 0.926462 ------------   

OrOrOrBa 0.000134 0.000790 0.000555 0.036418 0.010249 0.199311 ------------  

OrOrOrOr 0.000470 0.109345 0.081507 0.805268 0.517980 0.994626 0.625441 ------------ 

 

 

Table 5.9. Summary of the Tukey HSD tests used to analyze the effect of diet switch on mean longevity (males 

and females separately). Data shows p-values for Diet tested against the difference between cohorts and least-

square means are presented in brackets. The upper triangle refers to males and the lower triangle to females. 

Significant results are highlighted in bold. 

Males 

Females 

BaBaBaBa 

(28.642) 

BaBaBaOr 

(26.100) 

OrBaBaBa 

(26.261) 

BaBaOrOr 

(24.768) 

OrOrBaBa 

(25.482) 

BaOrOrOr 

(23.572) 

OrOrOrBa 

(21.478) 

OrOrOrOr 

(22.199) 

BaBaBaBa 

(28.571) 
------------ 0.442068 0.521514 0.063298 0.199863 0.006740 0.000226 0.000534 

BaBaBaOr 

(27.188) 
0.984356 ------------ 1.000000 0.950389 0.999502 0.448592 0.016023 0.060266 

OrBaBaBa 

(27.281) 
0.989521 1.000000 ------------ 0.913546 0.997774 0.373954 0.011771 0.045363 

BaBaOrOr 

(25.875) 
0.667507 0.988444 0.982904 ------------ 0.998729 0.971808 0.164634 0.428635 

OrOrBaBa 

(26.076) 
0.743791 0.995721 0.993039 1.000000 ------------ 0.757915 0.050338 0.166445 

BaOrOrOr 

(25.610) 
0.561886 0.967710 0.956429 1.000000 0.999986 ------------ 0.668351 0.942084 

OrOrOrBa 

(22.675) 
0.017225 0.116850 0.103923 0.467961 0.393785 0.572203 ------------ 0.998644 

OrOrOrOr 

(25.495) 
0.516132 0.953292 0.938950 0.999997 0.999938 1.000000 0.618333 ------------ 
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Data analysis of life-long diet regimes based on Gompertz model fitting 

The Gompertz model used to analyze the mortality patterns in the banana-avocado-

orange experiment revealed significant differences between the diets to which the flies were 

exposed during adulthood. The age-independent mortality rate (A) was significantly larger in 

orange compared with the other treatments, which were not shown to differ significantly from 

each other. In terms of the age-dependent mortality parameter (), banana and orange 

estimates were not significantly different from each other but significantly smaller than that for 

avocado. Table 5.10 shows the estimated Gompertz parameters (A and α) for the banana-

avocado-orange comparisons, in which there was no diet switching throughout the adult phase, 

and Table 5.11 presents the results of their statistical comparison. Although females had a 

significantly smaller A (p<0.01) and a significantly larger  (p<0.002), no sex*diet interactions 

were found (p>0.1). Figure 5.8 illustrates the log-transformed age-specific mortality rates 

observed for males and females in the banana-avocado-orange experiment. 

The two-stage Gompertz analysis could not be done, because the best fit break day for 

avocado and orange treatments was greater than the age at death of the oldest fly, i.e. after the 

last fly died. Thus, the flies treated with the novel diets lacked a distinctive break day, and the 

populations did not show a well-defined late-life plateau. 

 

Table 5.10. Gompertz parameters for banana, avocado and orange diets, estimated from the non-linear mixed-

effects model fitted by maximum likelihood, for: a) males and b) females. 

 Diet 

Par. ♂ 
Banana Avocado Orange 

 Diet 

Par. ♀ 
Banana Avocado Orange 

 A 0.019 0.017 0.029  A 0.012 0.010 0.022 

a)  0.068 0.100 0.068 b)  0.084 0.116 0.084 

 

Table 5.11. p-values from the non-linear mixed-effects model for all paired diet treatments for: a) the age-

independent parameter, A and b) the age-dependent parameter, . Significant results are highlighted in bold. 

 Comp of A Banana Avocado Orange  Comp of  Banana Avocado Orange 

 Banana ---------- 0.493 0.045  Banana ---------- 0.001 0.999 

 Avocado 0.493 ---------- 0.006  Avocado 0.001 ---------- 0.001 

a) Orange 0.045 0.006 ---------- b) Orange 0.999 0.001 ---------- 
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Figure 5.8. Age-specific mortality rates for a) males and b) females in banana, avocado, and orange food. Data 

shows the average log-transformed two-day age-specific mortality computed as the fraction of deaths over the 

remaining cohort. 

 

 

 

Disclaimer on Gompertz analysis of diet switch experiment 

Because of the nature of the experiment, the banana-orange switch data was not 

analyzed using the Gompertz modelling. Switching the diet during the cohorts’ life cycle is 

expected to cause changes in their age-specific mortality rates that will most likely compromise 

the Gompertz goodness of fit. 
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Hamiltonian analysis of mortality rates for the banana-avocado-orange experiment 

The analysis of age-specific mortality rates with life-long maintenance of specific 

dietary regimes (banana-avocado-orange) characteristically showed most significant 

differentiation at later adult ages, compared with early adult ages, for both males and females 

(Figures 5.9 and 5.10). There was no significant differentiation at the most advanced ages most 

likely due to the small numbers of surviving flies in all cohorts. 

The age-specific mortality curves of each treatment were analyzed by fitting linear and 

log-linear models. The best fit, chosen based on the coefficient of determination (R2), was the 

log-linear model (Table 5.12) and a significant age-dependence of the mortality rates in each 

environment was found (p<0.001), although there was no significant effect of diet or diet*age 

interaction (p>0.3). Table 5.13 summarizes the ANCOVA results for males and females. 

 

Table 5.12. Coefficients of determination (R2) computed for linear and log-linear model fitting for: a) males and 

b) females, in the banana-avocado-orange experiment. The best fit for each sex*diet interaction is highlighted in 

bold. 

 R2 for ♂ 

Diet 
Linear Log-linear 

 R2 for ♀ 

Diet 
Linear Log-linear 

 Banana 0.937 0.965  Banana 0.946 0.964 

 Avocado 0.890 0.963  Avocado 0.944 0.976 

a) Orange 0.729 0.831 b) Orange 0.874 0.912 

 

 

Table 5.13. Summary of the fixed-effects ANCOVA used to test the age-dependence effect of diet change on age-

specific mortality of males and females separately. Data shows the F statistic and respective p-value for the factors 

Diet, Age (log scale) and diet*age interaction. Significant results are highlighted in bold. 

Effect 
Males Females 

F statistic p-value F statistic p-value 

Diet 1.4233 0.253154 0.0771 0.925920 

Log (age) 468.0763 0.000000 687.1272 0.000000 

Diet*Log(age) 0.9431 0.398109 0.3109 0.734748 
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a)  

 

b)  

Figure 5.9. Age-specific mortality rates for males in (a) banana vs. avocado and (b) banana vs. orange. Data 

shows the average log-transformed three-day age-specific mortality computed as the fraction of deaths over the 

remaining cohort. Significant differentiation between each pair of compared diets is marked with an asterisk. 
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a)  

 

b)  

Figure 5.10. Age-specific mortality rates for females in (a) banana vs. avocado and (b) banana vs. orange. Data 

shows the average log-transformed three-day age-specific mortality computed as the fraction of deaths over the 

remaining cohort. Significant differentiation between each pair of compared diets is marked with an asterisk. 
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Hamiltonian analysis of the mortality rates for the banana-orange switch experiment 

The analysis of age-specific mortality rates with the banana-orange switch regimes 

showed that the longer the duration of orange-based medium exposure during the life of a 

cohort, as well as the earlier the exposure starts, the greater the statistical differentiation from 

the control always-banana cohort (Figures 5.11 and 5.12). However, this pattern was not 

absolutely consistent, perhaps reflecting the small number of cohorts undergoing comparison. 

The age-specific mortality curves of each banana-orange switch treatment were 

analyzed by fitting linear and log-linear models. The best fit, chosen based on the coefficient 

of determination (R2), was in most cases the log-linear model (Table 5.14). Here we found not 

only a significant age-dependence of the mortality rates in each environment, but also a 

significant effect of diet and diet*age interaction (p<0.001), i.e. a significant age-dependence 

effect on the timing of diet switching. Tables 5.15 summarizes the ANCOVA results for males 

and females. 

 
Table 5.14. Coefficients of determination (R2) computed for linear and log-linear model fitting for: a) males and 

b) females, in the banana-orange switch experiment. The best fit for each sex*diet interaction is highlighted in 

bold. 

 R2 for ♂ 

Diet 
Linear Log-linear 

 R2 for ♀ 

Diet 
Linear Log-linear 

 BaBaBaBa 0.955 0.977  BaBaBaBa 0.951 0.967 

 BaBaBaOr 0.814 0.842  BaBaBaOr 0.962 0.947 

 BaBaOrOr 0.900 0.957  BaBaOrOr 0.926 0.978 

 BaOrOrOr 0.881 0.955  BaOrOrOr 0.945 0.964 

 OrOrOrOr 0.755 0.890  OrOrOrOr 0.909 0.960 

 OrOrOrBa 0.752 0.883  OrOrOrBa 0.900 0.968 

 OrOrBaBa 0.951 0.950  OrOrBaBa 0.921 0.974 

a) OrBaBaBa 0.899 0.910 b) OrBaBaBa 0.934 0.912 

 
Table 5.15. Summary of the fixed-effects ANCOVA used to test the age-dependence effect of diet switch on age-

specific mortality of males and females separately. Data shows the F statistic and respective p-value for the factors 

Diet, Age (log scale) and diet*age interaction. Significant results are highlighted in bold. 

Effect 
Males Females 

F statistic p-value F statistic p-value 

Diet 6.485 0.000002 6.505 0.000002 

Log (age) 1459.103 0.000001 2735.366 0.000001 

Diet*Log(age) 5.795 0.000008 5.685 0.000011 
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a) b)  

 

c) d)  
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e) f)  

 

 

g)   

Figure 5.11. Age-specific mortality rates for males in BaBaBaBa compared 

to (a) BaBaBaOr, (b) OrBaBaBa, (c) BaBaOrOr, (d) OrOrBaBa, (e) 

BaOrOrOr, (f) OrOrOrBa, and (g) OrOrOrOr. Data shows the average log-

transformed three-day age-specific mortality computed as the fraction of 

deaths over the remaining cohort. Significant differentiation between each 

pair of compared diets is marked with an asterisk. Vertical dashed line shows 

the moment when the diet switch occurred. 



CHAPTER FIVE 

 

154 

 

 

a) b)  

 

 

c) d)  
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e) f)  

 

 

g)   

Figure 5.12. Age-specific mortality rates for females in BaBaBaBa compared 

to (a) BaBaBaOr, (b) OrBaBaBa, (c) BaBaOrOr, (d) OrOrBaBa, (e) 

BaOrOrOr, (f) OrOrOrBa, and (g) OrOrOrOr. Data shows the average log-

transformed three-day age-specific mortality computed as the fraction of 

deaths over the remaining cohort. Significant differentiation between each 

pair of compared diets is marked with an asterisk. Vertical dashed line shows 

the moment when the diet switch occurred. 
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DISCUSSION 

Lindeberg (2010) contributed a comprehensive discussion of the relationship between 

human diet and chronic disease, particularly those chronic non-infectious diseases that could 

be considered age-associated. A key conclusion of his review is that many features of the age-

dependent pathophysiology of chronic human diseases, such as cardiovascular disease and 

metabolic syndrome, arise from the agricultural diet. Evidently, this mode of reasoning is based 

on the concept of inadequate adaptation to the agricultural diet, with significant benefits to be 

achieved by switching back to a diet that resembles that of a hunter-gatherer. Regardless of the 

prominence of views like those of Lindeberg (2010) and others (e.g. Eaton & Konner 1985; 

Ryberg et al. 2013) concerning the effects of qualitative human dietary change in human 

evolution, the adoption of an agricultural way of life must have radically changed the 

demographic patterns of human survival, at least initially. 

The results of our dietary experiments in Drosophila corroborate this hypothesis: very 

small changes in diet (like the ground fruit) can have significant effects on mortality rates, both 

overall (Figure 5.8) and over specific age-intervals in which these changes are imposed 

(Figures 5.11 and 5.12). Specifically, mortality rates are characteristically lower when the 

experimental cohorts are provided with the banana medium to which they have been adapted 

for more than 800 generations. 

A more subtle point that arises from these experiments is that the longer the flies are 

given moderately novel diets, the more their mortality rates are increased in most cases – there 

seems to be a quantitative effect of diet novelty, independent of when it is introduced (Figures 

5.11 and 5.12). This is not as striking or as consistent of an effect in these data, perhaps because 

of a lack of statistical power. But again, it supports the view that genotype-by-environment 

effects may arise from diet. In other words, we would suggest that, if these fruit flies had 

evolved for 800 generations on avocado or orange-based medium rather than banana, then the 

experimental cohorts that were given avocado or orange food would have had lower mortality 

rates and higher longevity than those given banana. 

Given Hamilton’s forces of natural selection (1966), adaptation to a novel environment 

will scale according to age when there is age specificity to (at least some of) the genetic 

variation that underlies such adaptation to the novel environment. That is, Hamilton’s forces 

scale the intensity of natural selection that, qualitatively, we can expect adaptation to a novel 

diet to proceed very effectively at early ages. But at later adult ages, we should expect to see a 
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quantitative and progressive reduction in the extent of adaptation to the novel diet. In part, the 

present study suffers from the lack of a more ancestral food regime than banana (which is in 

fact relatively recent), that might allow a test of the evolutionary expectation of the 

Hamiltonian scenario directly.  

In this study we compared mortality patterns in populations long-adapted to banana 

under banana food and under moderately novel diets. According to Hamiltonian theory 

(Mueller et al. 2011), a change of diet should have a stronger effect if made at an earlier age. 

This was not observed in our data, where the amount of time with the new nutrient was the 

main factor affecting survival. However, in our experiments, there was an association between 

how early the new nutrient was introduced and how long it was imposed, as after the switch 

the diet remained the same for the rest of the cohort’s life. This did not allow us to accurately 

test whether age, per se, affects how flies survive on a novel diet. A better comparison would 

have been to make a larger set of age-dependent diet-switch combinations, with diets differing 

not only with in the age of the change but also the amount of time under different nutrients. 

 

Final remarks 

Despite the experimental design issues, our dietary change experiments confirm the 

need for caution in interpreting experimental data, because of the considerable potential for 

confounds that arise from genotype-by-environment interactions and lack of adaptation to novel 

laboratory environments. Future studies involving more populations evolving under different 

diets, with diet switching between novel and ancestral environments, as well as life-long 

characterization of several life-history traits would provide better tests of the application of 

Hamiltonian theory to human aging and health. 
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Chapter Six. 

Aging and Mortality Patterns in Urea-adapted Populations 
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ABSTRACT 

The problem of adaptation to nitrogenous waste has been an ongoing project of Mueller 

and collaborators for over 20 years, who created and maintained outbred lines of Drosophila 

melanogaster selected for increased urea tolerance and their life-cycle matched controls. This 

experimental system enabled us to test the hypotheses that (1) dietary adaptation is age-specific 

and (2) long-term adaptation to urea might lead to loss of fitness in the ancestral environment. 

Here we studied the adult mortality patterns of Mueller’s replicated stocks of Drosophila 

adapted to the presence of urea during their larval and early adult stages for more than 250 

generations, and their controls. Our results confirm the previous findings that exposure to 

environmental urea increases mean longevity, despite the population’s evolutionary history, 

and that the increase in longevity is achieved by lowering the age-independent mortality rates. 

Our data did not verify the hypothesis (1) of age-dependence of dietary adaptation – cohorts 

exposed to urea did not show a decrease in differentiation of mortality rates with age. 

Furthermore, the urea-adapted populations showed lower mortality rates than their matched 

controls in the ancestral banana food – the hypothesis (2) of loss of adaptation to the ancestral 

environment was also not corroborated. On the one hand, the present results do not support the 

Hamiltonian expectations that greater adaptation should occur at early ages which feature 

stronger forces of selection. On the other hand, we have not adequately characterized the range 

of life-history characters that might be impinged on by urea, or adaptation to urea for that matter 

(e.g. reduced fecundity and the consequent benefits to longevity). 
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RESUMO 

A adaptação a resíduos metabólicos como os produtos azotados tem sido amplamente 

estudada por Mueller e colaboradores nos últimos 20 anos, equipa que criou e manteve em 

laboratório populações de Drosophila melanogaster seleccionadas para a tolerância à ureia e 

respectivos controlos. Este sistema experimental permitiu-nos testar as hipóteses de que (1) a 

adaptação uma nova dieta é específica da idade e (2) a adaptação a longo prazo à ureia pode 

levar à perda de fitness no ambiente ancestral. Neste capítulo, estudámos os padrões de 

mortalidade adulta em populações de Drosophila adaptadas à presença de ureia durante as fases 

larvar e de jovem adulto durante mais de 250 gerações, e respectivos controlos. Os nossos 

resultados confirmaram os obtidos anteriormente de que a exposição ambiental a ureia aumenta 

a longevidade das populações, independentemente da sua história evolutiva. Confirmou-se 

também que este aumento de longevidade é conseguido através da redução das taxas de 

mortalidade independentes da idade. Os dados obtidos não verificaram a hipótese (1) da 

dependência da idade na adaptação uma nova dieta – não houve diminuição da diferenciação 

das taxas de mortalidade com a idade em coortes expostas a ureia. Adicionalmente, as 

populações adaptadas a ureia mostraram taxas de mortalidade mais baixas do que os controlos 

no ambiente ancestral – a hipótese (2) de perda de adaptação ao ambiente ancestral também 

não foi corroborada. Por um lado, estes resultados não apoiam a expectativa Hamiltoniana de 

maior adaptação em idades mais jovens, onde a força da selecção natural é maior. Por outro 

lado, não foram estudadas adequadamente as características da história de vida que podem estar 

a ser negativamente afectadas pela ureia ou adaptação à ureia (e.g. redução da fecundidade e 

os consequentes benefícios para a longevidade). 
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INTRODUCTION 

The problem of adaptation to nitrogenous wastes has been an ongoing project of the 

Mueller laboratory at UC Irvine (e.g. Joshi et al. 1996a,b; Joshi et al. 1998, Pierce et al. 1999, 

Borash et al. 2000). This work, in turn, arose from the long-standing interest of Mueller in 

density-dependent selection and evolution of larval adaptation to crowded conditions (e.g. 

Mueller & Sweet 1986, Mueller 1988a,b; Joshi & Mueller 1988, Mueller et al. 1993). Since 

the work of MacArthur & Wilson (1967), among the first researchers to explore systematically 

the evolutionary consequences of extreme population densities, much progress has been made 

in understanding how density-dependent selection shapes life-history evolution. Most of the 

close dissection of its biological details has come from empirical studies with Drosophila 

(reviewed by Mueller 1995). Initially, such studies focused on understanding the biology of 

traits thought to be advantageous under conditions of extreme larval crowding. These traits 

ranged from primarily behavioral characters, like pupation height, larval feeding rate and 

locomotor activity, to predominantly physiological, as larval efficiency in biomass production 

and tolerance to nitrogenous metabolic waste (Joshi et al. 1996b). But more importantly, the 

relevance of these traits to the density-dependent evolution of life histories was unequivocally 

demonstrated by showing that they did, in fact, evolve in laboratory populations of Drosophila 

melanogaster maintained at high larval densities for several generations (Mueller & Sweet 

1986; Joshi & Mueller 1988, 1993, 1996; Mueller et al. 1991, 1993). 

The connection Mueller found between density-dependent selection and adaptation to 

nitrogenous waste was first established when his laboratory K populations were found to have 

lower feeding rates (Joshi & Mueller 1988). Mueller then hypothesized that the decrease in 

feeding rates might have been related to increased levels of nitrogenous waste in the media in 

which the K populations had evolved. Therefore, the Mueller lab deliberately created outbred 

lines of Drosophila melanogaster cultured with two different kinds of nitrogenous waste: 

ammonia (AX flies, vid Borash et al. 2000) which larval fruit flies excrete, and urea (MX and 

UX flies, vid Joshi et al. 1996a,b, 1998; Pierce et al. 1999; Borash et al. 2000), which arises 

only at low levels in fruit fly culture. Both of these nitrogenous compounds had been reported 

to accumulate in the food of crowded Drosophila cultures (Botella et al. 1985, Borash et al. 

1998). These substances do not appear to target any specific biochemical processes solely, but 

instead have general cytotoxic effects. Urea is a protein denaturant (Somero & Yancey, 1997), 

and larvae reared on urea-containing media have increased levels of proteins containing 

isoaspartyl residues, a form of protein damage (David et al. 1999). Ammonia’s effects are less 
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well understood, but it appears to be neurotoxic from vertebrate research (Cooper & Plum 

1987) and may affect pH regulation. We were particularly interested in the lines that had been 

cultured with exposure to high levels of urea generation after generation, precisely because 

urea is a relatively rare toxic substance in the lives of Drosophila species. 

The most relevant results from the urea-exposure experiments performed by Mueller 

and collaborators for the present purpose were (1) the increase of larval tolerance to urea as a 

direct response to selection, (2) the greater survivorship and development time of selected lines 

when urea was present, (3) the greater longevity and lower fecundity when the cohorts were in 

urea-supplemented food, regardless of their evolutionary history, and (4) the general increase 

in development time in urea-laden environments, showing the detrimental effect of this 

nitrogenous waste (Joshi et al. 1996a,b; 1998). Adding urea to the food improved mean 

longevity of all populations in Mueller’s laboratory, regardless of their past selection history – 

evolved larval tolerance doesn’t seem to affect this effect on adults. This increase in longevity 

seemed to involve lowering the age-independent mortality rates rather than altering the rate of 

aging. Moreover, urea-selected lines (MX) had higher mean longevities on urea-supplemented 

food, when compared to MC, their matched controls (Figure 6.1, Joshi et al. 1996b). 

 

 

 

Figure 6.1. Mean longevity of (A) female and (B) male flies from the urea-adapted populations (MX) and their 

matched life-cycle controls (MC) in banana (0g/L) and urea-supplemented food (18 g/L). The error bars denote 

95% confidence intervals about the mean of the five replicate populations of each regime. The asterisk marks a 

significant difference in mean longevity of MX females compared to MC females. All other differences between 

MX and MC are not significant (Joshi et al. 1996b). 
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Long-term exposure to urea led reduced fecundity when compared to fecundity on 

regular banana food, and this inhibition was accentuated with increasing exposure to urea. The 

Joshi et al. experiments on fecundity (1996b, 1998) also show that selection for increased larval 

tolerance to this nitrogenous waste does not seem to affect the response of adult components 

of fitness to urea-supplemented food (Figure 6.2). These results provide another illustration of 

the ubiquitous trade-off between reproduction and survival involved in an environmental effect 

on longevity. 

 

 

Figure 6.2. Mean fecundity of MX and MC flies (urea-adapted populations and their controls, respectively) 

assayed in banana (0g/L) and urea-supplemented food (18 g/L), after being maintained as adults in (A) regular 

food, or (B) urea food. The error bars denote 95% confidence intervals about the mean of the ten MX and MC 

replicate populations. Data for MX and MC populations were pooled because there was no significant effect of 

selection regime nor any significant regime interactions (Joshi et al. 1998 adapted). 

 

 

Another very valuable characteristic of these urea-banana stock systems is that the urea 

selection regime involved urea exposure only at young ages, rather than throughout a long life-

cycle. As such, these populations together with their life-cycle matched controls, provided an 

accidental experiment in early-life adaptation to a relatively toxic diet. Given the perspective 

offered in Chapter 5, then, the differences between urea-adapted lines and their matched 

controls with respect to their tolerance for urea-laden environments provide a simple test of the 

degree to which dietary adaptation is age-specific. 
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In this chapter we study the adult mortality patterns of populations of Drosophila 

melanogaster adapted to the presence of urea during their larval and early adult stages for more 

than 250 generations (UX), together with their matched controls, not adapted to urea (AUC). 

The UX-AUC stock system was created by Mueller and collaborators in the Fall of 1996, 

similarly to the MX-MC populations (vid Borash et al. 2000 for more details). This study 

system allowed us to experimentally test the expectations of the Hamiltonian wave hypothesis 

discussed in Chapter 5. In particular, (1) whether or not urea tolerance fades with adult age, 

implicating an age-dependent pattern of evolutionary domestication, and (2) the effect on aging 

and late-life of returning populations long-selected (to urea) to their ancestral environment 

(absence of urea). 
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MATERIALS AND METHODS 

Experimental populations 

The experiments in this chapter involved two five-fold replicated stocks of outbred flies 

of Drosophila melanogaster: (1) the UX1-5 populations, adapted to urea exposure as larvae and 

young adults for more than 250 generations; and (2) the AUC1-5 populations, cultured in regular 

banana-molasses food from egg to adult, without urea (control conditions). Both sets of 

populations were derived from the UU stock from Joshi & Mueller (1996), as described in 

Borash et al. (2000). Each B population from Rose (1984a) was used to originate one UU 

population, which in turn, originated one UX and one AUC population (Bi  UUi  UXi, 

AUCi, i = 1 – 5). Consequently, the UX and AUC populations bearing the same numerical 

subscript are more closely related to each other, compared to other populations subjected to the 

same selection regime (vid. Joshi et al. 1996a,b; 1998). It is important to bear in mind that both 

the UX and AUC stocks are given a reproductive window at 3 weeks of age from eggs, due to 

the stretching of the developmental period caused by urea in the UX stocks. The AUC stocks 

have always been handled to match such life-history shifts, in order to separate qualitative 

medium adaptation (with urea vs. without urea) from selection that arises from shifts in the 

timing of reproduction. 

 

Food preparation 

Regular banana-molasses food was prepared with agar, nipagin, banana, corn syrup, 

dry active yeast, and barley malt. The urea food was obtained by adding 16g of crystallized 

urea to each liter of banana food. 

 

Mortality assay 

All populations were reared in vials with regular banana food for two generations of 

common garden and were given 14 days to develop. The cohorts were then dumped into 

transparent acrylic cages (2 x 1000 flies, per population, per treatment) and given the respective 

diet treatment: banana or urea (Table 6.1). Every 24 hours each cage was given fresh food, 

assessed for mortality, and individuals were sexed at death. Cohort size was then calculated 

from complete death records. The cages were kept at room temperature (24ºC ± 1ºC) and their 

locations were randomized to reduce variation in light distribution. 
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Table 6.1. Experimental design for the mortality assay. Two cages ( and ) from each population were assayed 

in both environments (banana and urea). 

Diet 

Population 
Banana Urea 

UX i 

(i = 1, 2, 3, 4, 5) 

UX i  Ba UX i  Ur 

UX i Ba UX i Ur 

AUC i 

(i = 1, 2, 3, 4, 5) 

AUC i  Ba AUC i  Ur 

AUC i Ba AUC i Ur 

 

Statistical data analysis 

In all analyses, the normality and homoscedasticity of data were tested by Shapiro-Wilk 

(1965) and Brown-Forsythe (1974) tests, respectively. A significance value of 0.05 () was 

used to test all null hypotheses. The general linear model tests used to analyze mean longevity 

and age-specific mortality were done in STATISTICA 13 (Dell 2015). Analyses of age-specific 

mortality patterns and Gompertz were done in R (R Core Team 2013). 

 

Mean longevity statistical analysis 

The effect of sex and its interaction with diet on mean longevity (average age-specific 

mortality standardized by the cohort size) was analyzed using the following linear mixed-

effects model: 

 

where Y is mean longevity, R represents the selection regime (i = UX or i = AUC), D the diet 

treatment applied during the assay (j = urea or j = banana), S the sex of the flies tested (k = 

males or k = females), and Pop the random replicate population nested in the regime. 

The effect of diet and selection regime on mean longevity was also analyzed for males 

and females separately, using the following linear mixed-effects model: 

 

where Y is mean longevity, R represents the selection regime (i = UX or i = AUC), D the diet 

treatment applied during the assay (j = urea or j = banana), and Pop the random replicate 

population nested in the regime. 

 

𝒀 =  𝝁 +  𝑹𝒊  +  𝑫𝒋  +  𝑺𝒌  +  𝑷𝒐𝒑{𝑹𝒊} + 𝑹𝒊 ∗ 𝑫𝒋 + 𝑹𝒊 ∗ 𝑺𝒌  +  𝑫𝒋 ∗ 𝑺𝒌  + 𝑹𝒊 ∗ 𝑫𝒋 ∗ 𝑺𝒌  + 𝑫𝒋 ∗ 𝑷𝒐𝒑{𝑹𝒊}  

+  𝑺𝒌 ∗ 𝑷𝒐𝒑{𝑹𝒊}  +  𝑫𝒋 ∗ 𝑺𝒌 ∗ 𝑷𝒐𝒑{𝑹𝒊} +  𝜺 

𝒀 =  𝝁 + 𝑹𝒊  + 𝑫𝒋  +  𝑷𝒐𝒑{𝑹𝒊} + 𝑹𝒊 ∗ 𝑫𝒋  + 𝑫𝒋 ∗ 𝑷𝒐𝒑{𝑹𝒊}  +  𝜺 

(6.1) 

(6.2) 
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Gompertzian analysis of mortality rates and patterns 

The mortality rates and patterns were analyzed by fitting the mortality assay data to a 

two-stage Gompertz equation (Gompertz 1825), using maximum-likelihood. The estimates of 

A and α from each combination of population*diet*sex were used as data in a mixed-effects 

ANOVA, which included the following fixed factors: diet (banana vs. urea) and sex (female vs. 

male). All these factors were crossed with the five replicate blocks. Additionally, for each 

population*diet*sex combination, the coefficient of determination, R2, was calculated, as an 

indication of the proportion of variation explained by the Gompertz model. See the Materials 

and Methods section of Chapter Five for more details on this analysis. 

 

Hamiltonian analysis of mortality rates and patterns 

For each combination of diet*regime*sex the data from  and cages from all 5 

populations were combined and three-day survivorship intervals were computed. For each 

interval, a new categorical variable was then created, defining the status of each one of the flies 

(0 = dead or 1 = alive). The counts of each interval were used in a chi-squared test to compare 

all combinations. The mortality rates in each age-interval, defined as the logarithm of the total 

number of deaths over the number of the cohort surviving to that age, were plotted and analyzed 

by fitting linear and log-linear least-square curves. The best fitting model was chosen based on 

the highest proportion of explained variance and the adequate ANCOVA models were used to 

test the differences between the curves. 
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RESULTS 

General linear model assumptions 

Small deviations from normality were accepted, and homoscedasticity was verified by 

the Brown-Forsythe test. Our distribution tests showed that all populations were homoscedastic 

and generally normal (data not shown). 

 

Mean longevity analysis 

The addition of urea to the medium fed to the flies caused a general increase in mean 

longevity, regardless of the cohorts’ regime or the sex of the flies. Furthermore, the urea-

adapted cohorts (UX) showed a generally higher longevity across the environments where they 

were tested and no significant interactions between sex, diet, and regime were found (see Table 

6.2 and Figure 6.3). Similar effects of diet and selection regime were found when sexes were 

analyzed separately: the presence of urea led to a longevity increase of ~7.6 days in males and 

~8.2 days in females; also, UX flies lived longer than their matched AUC controls by ~6.9 

days, in males, and 8.5 days, in females (Table 6.3). 

 

Table 6.2. Summary of the mixed-effects ANOVA used to analyze the effect of diet, regime, and sex interactions 

on mean longevity. Data shows the F statistic and respective p-value for the factors Diet, Sex, Regime, and their 

interactions. Significant results are highlighted in bold. 

Effect F statistic p-value 

Diet 60.7743 0.000053 

Regime 9.3521 0.015627 

Sex 13.1791 0.006682 

Diet*Regime 0.0123 0.914384 

Diet*Sex 0.8568 0.381710 

Regime*Sex 1.2143 0.302525 

Diet*Regime*Sex 1.0709 0.331003 
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Figure 6.3. Mean longevity (in days as adult) of males and females of AUC and UX, in banana and urea. Average 

stock values are shown and error bars denote standard error of mean. Significant differences are marked with *. 

 

 

Table 6.3. Summary of the mixed-effects ANOVAs used to analyze the effect of diet and regime on mean longevity 

of males and females separately. Data shows the F statistic and respective p-value for the factors Diet, Regime, 

and Diet*Regime. Significant results are highlighted in bold. 

Effect 
Males Females 

F statistic p-value F statistic p-value 

Diet 64.3460 0.000043 48.5626 0.000116 

Regime 8.3163 0.020392 10.2935 0.012455 

Diet*Regime 0.2399 0.637402 0.0409 0.844783 
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Two-stage Gompertz analysis of mortality rates and patterns 

The Gompertz model fitting provided us with estimates of the mortality rates (A and ) 

and late-life parameters (plateau height and break day), which are shown in Table 6.4 for 

males and females separately. Figures 6.4 and 6.5 show the age-specific mortality of each 

regime*diet interaction for males and females, respectively. 

The mortality data analysis showed that females have a significantly lower age-

independent mortality, A (p<0.02) and higher age-dependent mortality,  (p<0.01), but no 

significant interaction between sex, regime and diet was found (p>0.2). The presence of urea 

significantly lowered A in both UX (p<0.01) and AUC (p<0.03) regimes, and the effect on 

AUC was significantly greater (p<0.05). Other than the difference between males and females, 

the analysis of age-dependent mortality () showed only significant differences due to the 

interaction of selection regime and diet (p<0.03), i.e. urea increased the rate of aging in UX but 

decrease it in AUC. 

In terms of late-life, although without a significant difference, females entered late-life 

earlier (p>0.3) with higher plateau heights (p>0.1), across all regimes and food treatments. In 

both environments, UX males entered late-life at significantly later ages (p<0.04) than AUC 

with insignificantly lower plateau heights (p>0.07). The same pattern was observed in females.  

 

Table 6.4. Age-independent (A) and age-dependent () mortality rates, plateau height (ph) and break day (bd) 

estimated from the two-stage Gompertz analysis for all diet*regime combinations in a) males and b) females. All 

A,  and ph estimations were significantly different from zero, and all bd were significantly different from infinity, 

indicating the existence of late-life plateaus. 

 MALES UX AUC  FEMALES UX AUC 

 
Diet 

Param. 

Banan

a 
Urea Banana Urea  

Diet 
Param. 

Banana Urea Banana Urea 

 A 0.007 0.001 0.012 0.005  A 0.005 0.002 0.007 0.004 

  0.067 0.087 0.076 0.071   0.070 0.073 0.093 0.074 

 ph 0.236 0.263 0.151 0.321  ph 0.274 0.290 0.301 0.329 

a) bd 57.0 64.5 45.2 57.0 b) bd 56.0 57.5 40.4 52.7 
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Figure 6.4. Age-specific mortality for males of each regime*diet interaction: a) AUC in banana, b) AUC in 

urea, c) UX in banana, and d) UX in urea. 

  

a)         b) 

 

 

 

 

 

 

 

 

 
c)         d) 
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Figure 6.5. Age-specific mortality for females of each regime*diet interaction: a) AUC in banana, b) AUC in 

urea, c) UX in banana, and d) UX in urea. 

a)         b) 

 

 

 

 

 

 

 

 

 
c)         d) 
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Hamiltonian analysis of mortality rates 

The analysis of the age-specific mortality rates of the UX and AUC male cohorts, 

showed in general more significant differentiation at later compared with earlier adult ages and 

the differentiation pattern observed for females was more consistent throughout the cohorts’ 

life (Figures 6.6 and 6.7). Adding urea to the medium fed to the adults caused a significant 

decline in mortality across all ages, in both UX and AUC cohorts. This reduction in mortality 

was more evident on female flies of the controls (80% of the age classes were differentiated 

between environments). Furthermore, the UX cohorts always showed a significantly lower 

mortality than AUC cohorts, when tested in the same environment. 

The age-specific mortality curves of each regime*diet combination were analyzed by 

fitting linear and log-linear models. The best fit, chosen based on the coefficient of 

determination (R2), was in all cases, except one, the log-linear model (Table 6.5), and in that 

one case the coefficient was only 0.4% units apart. The ANCOVA model used to analyze the 

age-specific mortality data showed a significant age-dependence of the mortality rates 

(p<0.001), but no other significant interactions were found (p>0.5). Table 6.6 summarizes the 

ANCOVA results for males and females. 

 

Table 6.5. Coefficients of determination (R2) computed for linear and log-linear model fitting for: a) males and 

b) females, of UX and AUC cohorts, in both banana and urea environments. The best fit for each sex*regime*diet 

interaction is highlighted in bold. 

 Regime UX AUC  Regime UX AUC 

 
Diet 

R2 for ♂ 

Banan

a 
Urea Banana Urea  

Diet 
R2 for ♀ 

Banana Urea Banana Urea 

 Linear 0.885 0.921 0.828 
0.89

6 
 Linear 0.832 0.921 0.849 0.908 

a) 
Log-

linear 
0.905 0.917 0.908 

0.94

5 
b) 

Log-

linear 
0.919 0.926 0.929 0.960 

 

 

We, then, tested whether urea adaptation fades with adult age, i.e. if UX flies were less 

different from AUC flies at older ages, by comparing the age-specific mortality rates in urea 

only. The results showed no significant differences for both males and females (interaction 

age*regime, Table 6.7). Finally, we checked if the adaptation to urea caused loss of adaptation 

in the ancestral environment, and if so if it was age-dependent, by confronting UX and AUC 

in banana medium. The mortality rates showed no significant differences between the two 

regimes (factor regime, Table 6.8) nor age-dependence of those differences (interaction 

age*regime, Table 6.8). 
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Table 6.6. Summary of the fixed-effects ANCOVA used to test the age-dependence effect of diet and regime on 

age-specific mortality of males and females separately. Data shows the F statistic and respective p-value for the 

factors Diet, Age (log scale), Regime, and interactions. Significant results are highlighted in bold. 

Effect 
Males Females 

F statistic p-value F statistic p-value 

Diet 0.432 0.512776 0.540 0.464577 

Regime 0.057 0.811497 0.170 0.681384 

Log (age) 845.707 0.000001 1128.954 0.000001 

Diet*Regime 0.323 0.571509 0.242 0.623828 

Diet*Log (age) 0.006 0.941069 0.003 0.957718 

Regime*Log (age) 0.153 0.696515 0.254 0.615422 

Diet*Regime*Log (age) 0.354 0.553523 0.433 0.512089 

 

Table 6.7. Summary of the fixed-effects ANCOVA used to test the age-dependence effect of regime on age-specific 

mortality of males and females in urea. Data shows the F statistic and respective p-value for the factors Age (log 

scale), Regime, and interaction Age*Regime. Significant results are highlighted in bold. 

Effect 
Males Females 

F statistic p-value F statistic p-value 

Regime 0.3940 0.533775 0.4951 0.485368 

Log (age) 522.8898 0.000001 701.8543 0.000001 

Regime*Log (age) 0.0255 0.873928 0.0147 0.903959 

 

Table 6.8. Summary of the fixed-effects ANCOVA used to test the age-dependence effect of regime on age-specific 

mortality of males and females in banana. Data shows the F statistic and respective p-value for the factors Age 

(log scale), Regime, and interaction Age*Regime. Significant results are highlighted in bold. 

Effect 
Males Females 

F statistic p-value F statistic p-value 

Regime 0.0452 0.832817 0.0027 0.958979 

Log (age) 345.9620 0.000001 459.2631 0.000001 

Regime*Log (age) 0.4002 0.530866 0.5516 0.462000 
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a)       b)  

c)        d)  

Figure 6.6. Age-specific mortality rates for males of (a) UX and AUC in urea, (b) UX and AUC in banana, (c) UX in urea and banana, and (d) AUC in urea 

and banana. Data shows the average log-transformed three-day age-specific mortality computed as the fraction of deaths over the remaining cohort. Significant 

differentiation in age-specific mortality between each pair of regime*diet is marked with an asterisk. 



CHAPTER SIX 

 

180 

 

a)       b)  

c)       d)  

Figure 6.7. Age-specific mortality rates for females of (a) UX and AUC in urea, (b) UX and AUC in banana, (c) UX in urea and banana, and (d) AUC in 

urea and banana. Data shows the average log-transformed three-day age-specific mortality computed as the fraction of deaths over the remaining cohort. 

Significant differentiation in age-specific mortality between each pair of regime*diet is marked with an asterisk.
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DISCUSSION 

The experiments reported in this chapter came as an attempt to test whether 

Hamiltonian waves of age-dependent adaptation to novel conditions occur in a well-defined 

laboratory environment. To do so, we resorted to a replicated system of urea-adapted 

populations created by Mueller and collaborators two decades ago. 

Consistent with what has been previously seen by Joshi et al. (1996b), exposure to 

environmental urea increases longevity in experimental cohorts of Drosophila melanogaster, 

regardless of the evolutionary history of the populations (Figures 6.1 and 6.3). Once again, the 

increase in longevity seems to be achieved by lowering the age-independent mortality rates 

rather than altering the rate of aging (Table 6.4, Figures 6.4 and 6.5, Joshi et al. 1996b). Of 

greater interest is that the urea-adapted UX populations have reduced mortality levels when 

exposed to urea, compared to their matched AUC controls (Figures 6.6a and 6.7a), again 

confirming previous independent findings by Joshi et al. (1996b, 1998). 

According to Hamilton’s (1966) forces of natural selection, the weight of selection on 

life-history is heavy at early ages, falling with time, as the force of natural selection declines 

with chronological age. In these experiments, we did not find the fading of adaptation to urea 

with adult age, as the differentiation of mortality rates did not decrease with age in urea-

exposed cohorts (Figures 6.6a and 6.7a); interaction age*regime Table 6.7). Hence, our first 

hypothesis of age-dependence of dietary adaptation is not corroborated with respect to age-

specific mortality rates. Nonetheless, this finding does not preclude the validation of this 

hypothesis for other fitness-related traits, such as age-specific fecundity, not measured in this 

study. Furthermore, our second hypothesis concerning the effect on aging and late-life of 

returning long-selected populations to their ancestral environment also lacked verification from 

these experimental data. On the ancestral banana medium, the urea-adapted populations had 

overall reduced mortality rates compared to the banana-adapted control populations (Figures 

6.6b and 6.7b; factor regime Table 6.8), and that feature was irrespective of age (interaction 

age*regime Table 6.8). If costs of adaptation were involved (Kassen 2002, Kawecki & Ebert 

2004) we would expect that urea adaptation would lead to reduced performance on the ancestral 

banana medium, in particular at young ages, while at older ages the performance might improve 

when returning to the ancestral environment. Yet again, the fact that this was not observed for 

mortality rates does not preclude the possibility that other life-history characters behave in 

accordance with our second hypothesis. 
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Final remarks 

The present results provide no support for Hamiltonian expectations with respect to 

age-specificity of adaptation, where greater adaptation should occur at early ages due to 

stronger forces of selection. There is also no evidence that adapting to urea involves any cost 

for functional performance under ancestral conditions. Indeed, it seems that adaptation to the 

novel environment enhanced performance on the ancestral environment, a wholly unexpected 

result. 

It is important to note that we have not adequately characterized the range of life-history 

characters that might be involved in the adaptation to urea. Specifically, this system has been 

well-characterized for a striking benefit to longevity from reduced fertility (Joshi et al. 1996b; 

1998). What we may be seeing are the benefits to longevity that arise from impaired fecundity, 

among other measures of adult reproductive activity. At this point, we have insufficient 

information to decide between several alternatives. More experiments involving other 

characters (and possibly embarking on the metabolomics train) are needed to clarify the 

scientific importance of the results presented here, shedding brighter light on the evolutionary 

features of age-specific adaptation. 
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Understanding the several factors that constrain evolution is one of the long-standing 

questions in evolutionary biology, ever since the establishment of the evolutionary genetic 

paradigm in the twentieth century (Fisher 1930; Wright 1931). When a population colonizes a 

new environment, it faces several challenges that will limit and eventually impede the success 

of the colonization event: (i) the imposition of entirely novel environmental conditions to which 

the colonizers are not adapted, (ii) the effective population size (Ne) of the colonizing 

population, (iii) the age-specific demography, such as the age-distribution of the colonizers, 

and (iv) the hybridization with residents and/or subsequent migrants from the source 

population. Later on, if the successful colonizers return to their ancestral environment, similar 

issues may again impinge on their success (Carson & Templeton 1984; Wade & McCauley 

1988; Allendorf et al. 2013; Santos et al. 2013). The main focus of this thesis was to study the 

constraints of adaptation on colonization success, by means of experimental evolution with a 

rigorous and highly-replicated design (see Figure 7.1), using Drosophila melanogaster stocks 

with a well-known evolutionary history. 

This thesis, divided in five experimental chapters, aimed to answer ten evolutionary 

questions relevant for colonization of a new habitat: (i) How do populations respond to novel 

demographic conditions? (ii) How will life-history evolve in response to new, harsh 

conditions? (iii) How will the Ne affect the evolutionary response to selection? (iv) Will 

populations from the same ancestral source population evolve the same way? (v) What are the 

relative roles of history, chance, and selection in shaping the populations’ evolution? (vi) How 

does hybridization at different Ne affect the evolutionary dynamics of populations under 

directional selection? (vii) Will sustained small Ne hinder the process and outcome of reverse 

colonization? (viii) What is the impact of novel challenges, like diet change, during a 

colonization event? (ix) Is dietary adaptation age-specific? And, finally, (x) Will long-term 

adaptation to novel, harsh conditions lead to fitness loss in the ancestral environment? 
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Figure 7.1. Phylogeny of the experimental populations. Each Bi ancestor gave origin to ten small-sized (P; N ≈ 50) and four large-sized populations (G; N ≈ 1000), half of 

which were selected for starvation resistance (S) while the other half were used as controls (C). After 15 generations of forward selection, all populations were hybridized (h) 

within each combination of selection, size, and Bi ancestor; starvation resistance selection was then resumed among all the S lines, both hybridized and unhybridized. Also after 

15 generations of forward selection, derivatives of the small populations (SPBij and CPBij) were created and a reverse-selection experiment (R) was started. N: census size of 

each line; n: number of populations (lines). 
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It looks like size really matters… 

The set of experiments reported in Chapter Two, the central study of this thesis, 

responds to the first five questions through the largest-scale and highest-replication experiment 

ever done in Mendelian populations. The results are summarized in Figure 7.2. 

First, the idiosyncrasies of the forward selection protocol caused demographic 

differences between the Bi ancestors and the experimental populations, with a longer life cycle 

in the latter. These differences led to a secular increase in starvation resistance and an 

antiparallel decline in fecundity in the control lines (Figure 7.2a), a pattern previously 

observed in other experiments in the Rose lab (e.g. Service & Rose 1985; Hutchinson et al. 

1991; Rose et al. 1992). 

Second, the life-history evolution of our populations corroborated theoretical 

predictions and previous findings (e.g. Rose et al. 2004): a clear temporal increase of starvation 

resistance as a response to strong directional selection with a concomitant decline of early 

fecundity (Figure 7.2b). 

Third, and on one hand, in the absence of strong directional selection a drastic reduction 

in population size resulted in a significant decline in fecundity, showing clearly the loss of 

function caused by small Ne (Figure 7.2c). On the other hand, the direct response to said 

selection was significantly reduced in magnitude in the smaller lines (Figure 7.2d). These 

results matched the general expectations of lower fitness due to depressed Ne, as smaller 

populations are subjected to more severe inbreeding and loss of heterozygosity due to stronger 

drift, with consequently less effective selection (Woodworth et al. 2002; Willi et al. 2006; Hartl 

& Clark 2007; Hare et al. 2011; Hoffmann et al. 2017). The secular decline of early fecundity 

might be less pronounced in small lines due to the starvation-fecundity trade-off, but sharper 

due to inbreeding depression. These opposite evolutionary forces lead to unclear expectations. 

The smaller lines showed a steep decline in the trait value, due to the combination of inbreeding 

and the previously described trade-off between starvation resistance and fecundity (Figure 

7.2e). Nevertheless, the large lines raise a paradox that we are not able to disentangle. Despite 

the absolute drop in fecundity between initial and last generations (Figure 7.2e), the analysis 

of the control-corrected data showed quite inconsistent trends across replicates, which raises 

the question: if the trade-off is manifested in small lines, why is it not consistently present in 

the large lines that clearly responded with increased starvation resistance (see heterogeneity of 

the evolutionary trajectories in Figure 2.8c)?  
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Fourth, we started this experiment with multiple source populations, the six B 

populations, and we derived several replicate lines from each. At a minimum, variation among 

these B populations is expected to occur due to the secular drift among them, with a loss of 

genetic variation from individual populations. It is also expected that through time there will 

be an increase in differentiation between populations derived from the same B ancestor thanks 

to genetic drift (e.g. Hänfling & Brandl 1998). At the end of the experiment, the greater the 

strength of drift, the greater the expected divergence between populations. Our results 

corroborated these predictions, with a significantly higher variance among smaller populations 

compared to that among larger populations. Under strong directional selection, the classic 

expectation is a reduction of between-population variance, as higher fitness alleles increase in 

frequency while the least-adapted are counter selected (Lynch & Walsh 1998). Nonetheless, 

uniform selection combined with genetic drift may result in the fixation of different alleles 

causing higher divergence than drift by itself (Cohan 1984; Cohan & Hoffmann 1986). This is 

more evident when selection acts on rare alleles and/or the underlying genetic basis is polygenic 

(Cohan & Hoffman 1989). While selection increased the variance among large populations, as 

predicted by Cohan (1984), that was not observed in small populations where such effect 

should have been strengthened by drift (Figure 7.2f). It is an open question what the causes of 

such contrasting patterns among populations of different sizes are. Future studies including 

genomic analysis of the underlying genetic basis of adaptation and diversification may help 

clarify this issue. 

Finally, the relative roles of history, chance, and selection in shaping evolution is a 

long-standing topic for debate among evolutionary biologists. Previous experimental work has 

shown that these factors depend on how close a trait is to Darwinian fitness, as well as the 

biological level under analysis (Travisano et al. 1995; Teotónio & Rose 2000; Teotónio et al. 

2002; Joshi et al. 2003; Blount et al. 2008; Bedhomme et al. 2013; Fragata et al. 2014a,b; Spor 

et al. 2014; Seabra et al. 2018). Besides corroborating these findings, our experiments 

combining strong selection and high replication show that history and chance play 

preponderant roles in smaller populations, but are quickly overrun by selection, particularly in 

larger populations. 
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Figure 7.2. Summary of Chapter Two main results. a) Secular increase in starvation resistance and decline in early fecundity of CGB controls; b) Temporal increase of 

starvation resistance and decline of early fecundity of SGB lines, as response to strong directional selection; c) Fitness loss in CPB lines due to small Ne (sharper temporal 

decline than CGB controls); d) Impaired response of SPB to strong directional selection due to small Ne (lower rate than SGB); e) Steep decline in early fecundity of SPB and 

paradoxical non-significant trend of SGB; and f) Diverging effect of size in control (but not in selected lines) and diverging effect of strong selection in large (but not small 

lines). In a-e) data shows average regime values for females and error bars denote standard error of mean computed as differences between history; in f) data shows variance 

of each regime standardized by the mean. sign. – significant; n.s. – not significant. 
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Hybridization: the good, the bad, and the unpredictable. 

Interpopulation hybridization has been offered as a strategy to ameliorate the effects of 

inbreeding depression, thereby increasing the fitness of declining populations, and decreasing 

extinction risk (Tallmon et al. 2004; Hedrick 2005; Edmands 2007; Frankham et al. 2011; 

Hedrick et al. 2011). Nevertheless, the complex genetic architecture of fitness-related traits, 

and the multiple factors that can interfere with the outcome of a hybridization event, make it 

extremely difficult to predict the evolutionary consequences of an interpopulation cross in any 

given scenario (Allendorf et al. 2013). The highly-replicated experimental design used in 

Chapter Three experiments was an attempt to understand the evolution of populations under 

different combinations of directional selection, population size, and gene flow. In particular, 

we were interested in analyzing how hybridization after sustained small Ne impacted the 

response to continued strong selection. 

Fifteen generations of the combined effects of drift and selection were expected to cause 

an increase in homozygosity by descent and population differentiation, with a much stronger 

effect in the small lines. Hybridization was expected to restore some lost heterozygosity, 

causing a general increase in the values of functional traits – heterosis (Falconer & Mackay 

1996; Hartl & Clark 2007). In general, most populations (except the large controls) slightly 

improved their resistance to starvation and worsened their early fecundity immediately after an 

interpopulation cross. If pervasive inbreeding depression was affecting the experimental 

populations, we would expect the general improvement of all traits. Our observations fit a 

model where a fecundity-starvation trade-off is allied to the heterosis dependence on 

directional dominance (Falconer & Mackay 1996; Roff 1997; Lynch & Walsh 1998), where 

the genes responsible for the trade-off have dominance effects in the same direction (see 

Figure 3.8). In contrast, hybrid females of the large controls showed a slight decrease in 

starvation resistance. It remains unknown whether this can be explained by means of 

outbreeding depression. The hybridization event could conceivably have broken up coadapted 

gene complexes, resulting in lower fitness of the resulting hybrids (Templeton 1986; Lynch 

1991; Fenster et al. 1997; Lynch & Walsh 1998). 

The subsequent evolutionary consequences of the interpopulation cross were even less 

straightforward. Hybridization caused little to no effect on the large experimental lines under 

control conditions, which is not surprising due to the inverse relationship between 

heterozygosity loss, as well as population differentiation, and Ne (Wright 1951; Hartl & Clark 

2007). But it is somewhat unexpected in small lines, also with no apparent effect of 
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hybridization on starvation resistance. In contrast to starvation resistance, these small hybrid 

controls showed an immediate drop in early fecundity followed by a sharp temporal increase, 

reaching the parental stock value. This could be explained by means of outbreeding depression 

and further temporal alleviation of the negative effects of hybridization. Nonetheless, 

outbreeding depression is not a classical expectation when populations of small sizes under 

similar selection regimes are considered (Ralls et al. 2013). 

The contribution of hybridization to the direct response to selection in different Ne 

conditions was the subject we were most interested in. Our findings were a little puzzling: 

although all experimental populations showed the expected temporal increase in starvation 

resistance, no significant effect of hybridization was found in either large or small lines (Figure 

7.3). The loss of genetic variants for starvation resistance could have been consistent across 

populations (e.g. rare alleles), making them very similar and, thus, insensitive to hybridization. 

However, the small populations showed temporal differentiation during the forward selection 

experiment (Chapter Two), which contradicts the hypothesis stated above. Perhaps small 

populations lost environmental homeostasis due to inbreeding, increasing population 

environmental variance (Fox & Reed 2010). Such an effect might have led to higher 

interpopulation variance in small compared to large lines, without necessarily increasing 

additive variance after hybridization. Another hypothesis depends on the genomic foundations 

of life-history traits (Flatt & Heyland 2011). In particular, it is commonly found that 

experimental evolution among outbreeding Mendelian populations does not commonly lead to 

allelic fixation in genome-wide analyses (Chevin & Hospital 2008; Burke et al. 2010; Phillips 

et al. 2016; Graves et al. 2017; Seabra et al. 2018). This new paradigm of evolutionary genetics 

suggests that small Ne have less effect on evolutionary outcomes than expected in conventional 

population genetic theories. Genomic analysis on the experimental populations presented here 

could further inform us on this matter. 
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As far as we know, no comparably scaled experiments have been done by others under 

such carefully controlled conditions. We thus hypothesize that conventional theory (e.g. 

Falconer & Mackay 1996; Hartl & Clark 2007) concerning the effects of hybridization and 

population size may have survived up to this point mainly due to a lack of experiments of 

sufficiently powerful design to test its predictions. Whether a stronger bottleneck, a longer-

term experiment, or a post-cross population expansion would change the impact of 

hybridization that we report here remains unknown. More experiments may give us further 

insight on this matter. 

 

Sustained bottlenecks may shape the ability to reverse-colonize. 

Chapter Four replicated a scenario of reverse colonization, where populations with 

different selection history migrate back to their prior environment. Experiments using 

moderately large Ne previously done in the Rose lab showed that relaxing selection on 

starvation resistance leads to a clear evolutionary reversion of the character (e.g. Service et al. 

1988; Graves et al. 1992; Teotónio & Rose 2000; Passananti et al. 2004a). We wanted to 

analyze the consequences of, after forward selection, sustaining the small Ne during the first 21 

generations of reverse selection. We found that reverse evolution to B-ancestors was not 

impeded by the sustained bottleneck, but featured contingencies on character and/or 

population. We found cases where we saw: (1) rapid and complete reversion; (2) fast response 

with partial convergence; and (3) steep convergence, followed by divergence, with a superior 

outcome to that of the ancestor, three of the possibilities outlined in Teotónio & Rose (2001). 

Our major findings are summarized in Figure 7.4. 

First, the rapid and complete reversion of starvation resistance was achieved by males 

(though not females) of the previously weakly selected stock, RCPB (Figure 7.4a). 

Nevertheless, there was considerable heterogeneity in the rate of the individual population 

response. This between-population variation was probably due to genetic drift fostering the 

divergence of small-sized lines, as predicted by classical population genetic theory (Falconer 

& Mackay 1996). The same pattern was seen in RCPB populations’ early fecundity, which can 

be explained by (1) the character’s direct relationship with fitness and (2) the extensively 

documented antagonistic pleiotropy between starvation resistance and early fecundity 

(Hutchinson et al. 1991; Rose et al. 1992; Leroi et al. 1994a,b; Chippindale et al. 1996; 

Passananti et al. 2004a). 
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Second, rapid reversion without reaching full convergence to the ancestor was seen in 

the starvation resistance of the previously forward-selected stock, RSPB (Figure 7.4b). One 

explanation might be that our experimental populations were not given enough time to allow 

reverse evolution to conclude the process of convergence. In fact, other experiments in the 

Rose lab, sustained for more than 100 generations, are revealing a general tendency to 

convergence (Burke et al. 2016; Graves et al. 2017), although involving other traits. 

Nevertheless, Teotónio & Rose (2000) found incomplete reversion of starvation resistance in 

other large-sized lines that were first selected for starvation resistance, and then reverse-

selected for 50 generations. The fact that, in that paper, the response of starvation-selected lines 

stalled after a dozen generations suggests that the evolutionary reversion process changes slope 

and eventually allows later convergence. We did not detect such plateauing in our study 

covering 21 generations of reverse evolution, which might be a consequence of a slower 

evolutionary process due to the small size of our populations.  

Finally, the fecundity of the RSPB group of populations not only equaled that of its B 

ancestors, but even significantly overcame it (Figure 7.4c; see also Figure 4.5). This super fly 

phenotype may be due to several non-exclusive hypotheses. On the one hand, the genetic 

architectural changes undergone during the populations’ past evolutionary history, previously 

inaccessible to the ancestor, pushed the populations to a novel adaptive peak (Wright 1977; 

Lenski 1988b; Teotónio & Rose 2001). On the other hand, the experimental lines during 

reverse selection were not subjected to the exact same environment as the ancestor, but in closer 

conditions to the assay environment, giving them an advantage comparatively to the ancestral 

B flies. Such an evolutionary impact of a genotype-by-environment interaction has been 

previously found in the Rose lab, explaining the apparent paradoxical disappearance of a trade-

off involving selection for aging (Leroi et al. 1994a,b; Rose et al. 1996). Moreover, fecundity 

could also be trading-off with other life-history characters and the visible benefit in fecundity 

is being achieved at the cost of other unseen, untested traits. 

We were not able to investigate the genetic mechanisms underlying these reverse 

evolution patterns. Further experiments involving different traits, more generations under small 

and large Ne, and genomic analysis will allow us to deepen our knowledge on the tempo and 

mode of reverse evolution. 
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Dietary challenges during colonization and reverse colonization 

According to Hamilton’s analysis of the forces of natural selection (1966), the impact 

of selection is heavy at early ages, and then falls with time, as the force of natural selection 

declines with chronological age. We can, thus, expect adaptation to a novel environment – like 

a different diet during a colonization event – to proceed very effectively at early ages, but to 

be progressively reduced at later adult ages. The Chapter Five and Chapter Six experiments 

provide an attempt to test the evolutionary effect of dietary change on age-dependent adaptation 

to a novel environment. As far as we know these were the first experimental tests of the 

“Hamiltonian wave” hypothesis for adaptation, which opened doors into a novel and important 

line of research for evolutionary biology. 

First, our results show that very small changes in diet, like switching the fruit in which 

the food is based to orange or avocado, can have significant effects both on overall longevity 

and age-specific mortality rates, which is not surprising due to the lack of adaptation to these 

novel environments (see Figure 5.3). 

Second, and following the Hamiltonian reasoning, a change of diet should have a 

stronger effect the earlier the switch occurred. Our results did not corroborate this expectation 

but indicated that the amount of time with the new nutrient was the main factor increasing 
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mortality rates (e.g. see Figure 5.12a and f). In this experiment, there was a direct association 

between how early the switch of nutrient occurred and how long it was imposed, because after 

the switch the diet remained the same for the rest of the cohort’s life. This feature prevented us 

from accurately testing whether age, per se, affects how flies survive on a novel diet. To do so 

we would have needed more age-dependent diet-switch combinations, with diets differing in 

the age of the change and the amount of time under different nutrients. 

Third, and to further investigate the Hamiltonian age-specificity of diet adaptation, we 

took advantage of a Drosophila stock system created by Mueller and collaborators which 

consisted of a replicated stock of flies that were exposed to urea (UX) for hundreds of 

generations, but only at young ages, and their matched controls (AUC), never exposed to the 

nitrogenous waste. The establishment of these stocks provided an accidental experiment in 

early-life adaptation to a relatively toxic diet. Our results showed that exposure to 

environmental urea increased longevity, in an age-independent manner and regardless of the 

evolutionary history of the populations (see Figure 6.3). We further showed that the urea-

adapted populations, when exposed to urea, had lower mortality levels than their matched 

controls. Both findings were consistent with those of Joshi et al. (1996a, 1998). On the 

hypothesis of age-specific Hamiltonian waves of natural selection, we would expect a loss of 

differentiation of mortality rates with age between urea-adapted and non-adapted populations, 

when exposed to urea. Although we did not find the predicted age-specific decrease in 

differentiation (Figures 6.6a and 6.7a), this doesn’t mean this hypothesis is not verified for 

some other type of life-history character, such as age-specific fecundity (e.g. Burke et al. 2016), 

that we were not able to adequately characterize. 

Finally, our last question concerned another possible scenario of reverse colonization, 

where large populations long-selected for more than 200 generations to novel stressful 

conditions (presence of urea) returned to their ancestral nutritional environment (absence of 

urea). Here the UX-AUC system has proven very useful, considering urea-supplemented food 

the novel diet and the regular banana medium the ancestral one. In a Hamiltonian scenario, and 

if costs of adaptation are involved (Kassen 2002, Kawecki & Ebert 2004), we would expect 

that urea adaptation would lead to reduced fitness of the UX populations in the ancestral 

environment, particularly at early life. Conversely, at older ages, the performance may improve 

when returning to the ancestral environment. Our results showed that, irrespective of dietary 

environment and age, urea-adapted populations had reduced mortality rates when compared to 

the banana-adapted controls (Figures 6.6a,b and 6.7a,b), providing no support for Hamilton’s 
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(1966) expectations (or for costs of adaptation, for that matter). Once again, this does not 

preclude the possibility that other life-history characters behave in accordance with the age-

specificity of adaptation, where greater adaptation should occur at early ages due to stronger 

forces of selection. 

 

Future research endeavors 

The large and complex set of experiments presented in this thesis were an attempt to 

respond to some fundamental evolutionary questions that are relevant in a colonization 

scenario, particularly targeting the impact of population size. Despite the high replication and 

intricate experimental design, many questions remain unanswered and are worthy of further 

research. The natural next step will be to use high-throughput next-generation sequencing to 

analyze frozen samples collected from the laboratory populations subjected to starvation 

selection. Analyzing the genomic changes that underlie forward and reverse evolution, with 

and without gene flow, will give us a better understanding of how history, selection, and 

effective population size shape evolution during colonization. Finally, we are aware that the 

experimental tests of the Hamiltonian wave of adaptation presented here were undeniably 

basic. Experiments involving more traits, other diets, allowing food switches every few 

hundreds of generations, and going deep on the metabolomics will, most likely, provide crucial 

knowledge on the tempo and mode of age-specific adaptation. 
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