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Resumo

Um dos resultados fundamentais na teoria de probabilidades é a Lei Forte dos Grandes Números,
cujo conteúdo afirma que quanto mais repetirmos um experiência mais a média observada se aproxima
do valor médio esperado. Formalmente, sendo Xi uma sequência de variáveis aleatórias independentes e
identicamente distribuı́das cujo valor esperado é finito, tem-se

1
n
(X1 +X2 + · · ·Xn)−−−−→

n→+∞
E(X1).

Imagine-se agora um gás a mover-se livremente num contentor. O que podemos afirmar sobre o
comportamento assimptótico deste movimento? Esta pergunta normalmente é dividida em questões
menores - existe alguma periodicidade? Existem pontos de equilı́brio? Qual a natureza dos equilı́brios?
Existe algum comportamento médio observável? Estas e outras questões são objecto de estudo da teoria
de Sistemas Dinâmicos. Um dos primeiros resultados da teoria, devido a Poincaré, dá uma resposta
inicial ao problema afirmando que, se aguardarmos tempo suficiente, o sistema volta arbitrariamente
próximo da configuração inicial.

O movimento de gases e outros sistemas com grandes números de corpos e graus de liberdade é o
objecto de estudo da Mecânica Estatı́stica. No fim do século XIX, um dos pioneiros da área, Boltz-
mann, formulou uma hipótese, conhecida como Hipótese Ergódica, de teor semelhante à lei dos grandes
números segundo a qual num sistema em equilı́brio as médias temporais convergem para a média espa-
cial. Uma formulação matemática da hipótese ergódica não é clara no entanto, nos anos 30 surgiram dois
resultados nessa direcção - os teoremas ergódicos ”clássicos” de Birkhoff e von Neumann.

Tanto a lei dos grandes números como os teoremas de Birkhoff e von Neumann têm um aspecto
importante em comum - a comutatividade da operação associada. Durante a década de 50, Furstenberg
e Kesten questionaram-se quando a possı́veis generalizações deste tipo de resultados a cenários mais
gerais, nomeadamente casos em que a comutatividade falha. Como é comum, os espaços não comutativos
paradigma são GL(d,R) e os seus subgrupos. Levou até à década seguinte para os primeiros resultados
nessa direcção serem exibidos. Primeiro o Teorema de Furstenberg - Kesten sobre normas de matrizes
enquanto operadores que foi generalizado pouco depois pelo Teorema Ergódico Subaditivo de Kingman e
finalmente o Teorema Ergódico Multiplicativo de Oseledets. É comum chamar-se aos teoremas ergódicos
multiplicativos de teoremas ergódicos não comutativos.

No final da década de 80, Kaimanovich traduziu o teorema ergódico multiplicativo em linguagem
geométrica, nomeadamente, utilizando a acção isométrica de GL(d,R) sobre o espaço das matrizes
simétricas definidas positivas. Assim, o teorema ergódico multiplicativo torna-se uma afirmação so-
bre isometrias e geodésicas. No final do século XX, Karlsson e Margulis repararam que todo o grupo
com certas ”boas caracterı́sticas” actua sobre algum espaço métrico. O Teorema Ergódico Multiplicativo
de Karlsson - Margulis é então uma generalização do Teorema Multiplicativo Ergódico de Oseledets que
não só abrange grupos mais gerais como pode também ser aplicado a certos semigrupos.
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O objectivo do presente texto é apresentar todos os teoremas mencionados anteriormente, as suas
provas e a geometria subjacente ao seu estudo de forma auto-contida e simplificando notações sempre
que possı́vel. Apresentaremos também o Teorema de Karlsson - Ledrappier que generaliza o teorema de
Karlsson e Margulis em vários casos. A importância do texto reside no facto de não se conhecer uma
possı́vel formalização da versão mais geral do Teorema Ergódico Multiplicativo e na apresentação certos
resultados de uma forma mais detalhada.

No primeiro capı́tulo do texto, Ergodic Theory, apresentamos uma visão generalista do que são sis-
temas dinâmicos seguindo-se então o enunciado dos teoremas ergódicos clássicos, Furstenberg-Kesten,
Kingman, Oseledets e a decomposição ergódica. Neste capı́tulo apresentamos a prova do teorema sub-
aditivo ergódico de Kingman no caso ergódico que será um peça fundamental na prova dos teoremas
multiplicativos. Finalizamos a tese com considerações sobre extremalidade e ergodicidade.

O segundo capı́tulo, Geodesic Metric Spaces, forma grande parte do texto e tem como objectivo prin-
cipal apresentar a geometria necessária ao entendimento dos resultados. Como o tı́tulo indica, estamos
interessados em espaços métricos geodésicos e, para tal, teremos de definir curvas geodésicas em espaços
métricos arbitrários. O estudo de geodésicas está fortemente relacionado com o estudo da curvatura, que
terá um papel importante também no teorema de Karlsson - Margulis. Com este objectivo apresentamos
e relacionamos três classes importantes de espaços métricos geodésicos:

• A primeira classe de espaços métricos geodésicos que introduzimos são os espaços CAT(k). Estes
espaços já vêm equipados com uma noção de ”curvatura limitada por k”. A importância dos
espaços CAT(k) reside na intuição geométrica sendo espaços em que as construções e definição
são dadas à custa de triângulos. Em troca da intuição geométrica apresenta-se a dificuldade em
manusear tais espaços preferindo-se então, sempre que possı́vel, utilizar outros métodos para es-
tudar estes espaços;

• A segunda classe que apresentamos são os espaços métricos convexos completos. Aqui faz sen-
tido introduzir uma segunda noção de curvatura - curvatura não positiva no sentido de Busemann.
Note–se que ao longo to texto estamos especialmente interessados no caso de curvatura não posi-
tiva, tais espaços têm propriedades importantes como a unicidade de geodésicas entres quaisquer
dois pontos. É importante destacar que todo o espaço CAT(0) tem curvatura não positiva no sentido
de Busemann;

• A última classe que estudamos, e a que mais aprofundamos, são as Variedades Riemannianas
conexas e completas. Nesta secção percorremos as ideias e resultados principais da teoria: isome-
trias, conexões afim, derivada covariante, geodésicas, curvatura, o teorema de Hopf - Rinow, cam-
pos de Jacobi, o teorema de Cartan - Hadamard, e o teorema geométrico principal para o nosso
texto que relaciona a curvatura seccional de uma variedade Riemanniana com a sua curvatura
enquanto espaço métrico, nomeadamente, toda a variedade Riemannian completa, conexa, sim-
plesmente conexa de curvatura seccional negativa é um espaço CAT(0). O capitulo apresenta um
caracter mais completo nos resultados finais em que relacionamos a curvatura Riemanniana com
as anteriores.

Seguidamente temos uma secção sobre Grupos de Lie e a sua relação com a geometria. A relevância desta
secção encontra-se nas ideias originais de Kaimanovich e na apresentação da geometria hiperbólica plana
a que se refere a secção seguinte, onde calculamos a conexão de Levi - Civita, as geodésicas, as isometrias
e a distância do plano hiperbólico. Tendo estudado o plano hiperbólico podemos facilmente transportar
os resultados para o modelo do disco de Poincaré no qual a visualização é facilitada. A geometria
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hiperbólica será utilizada como meio privilegiado para apresentar exemplos. Na secção seguinte fazemos
um estudo da geometria do espaço das matrizes simétricas definidas positivas que será fundamental à
nossa apresentação do teorema ergódico multiplicativo, nomeadamente a sua curvatura. Terminamos
este capı́tulo com o conceito de horofunção e a compactificação que lhe está associada. No caso em
que trabalhamos com espaços CAT(0) as horofunções têm uma interpretação geométrica mais forte que
exploramos de forma a mostrar que nestes espaços o teorema de Karlsson - Margulis é consequência do
teorema de Karlsson - Ledrappier.

No último capı́tulo, The Noncommutative Ergodic Theorems, as construções dos capı́tulos anteriores
finalmente se materializam quando demonstramos os Teoremas Ergódicos Multiplicativos de Karlsson -
Ledrappier, Karlsson - Margulis e Oseledets. Terminamos a tese reinterpretando o teorema ergódico de
Birkhoff e estudando a acção natural do grupo livre sobre o seu grafo de Caley. Na base dos teoremas de
Karlsson-Ledrappier e Karlsson - Margulis encontra-se o teorema ergódico subaditivo assumindo assim
a sua demonstração, feita no primeiro capı́tulo, especial relevância. O teorema de Karlsson - Ledrappier
refere-se a horofunções e é independente da curvatura do espaço, sendo esta a vantagem do resultado
em relação ao Teorema de Karlsson-Margulis, no qual a noção de curvatura não positiva no sentido de
Busemann é fulcral.

Palavras-Chave: Teoria Ergódica, Teoremas Ergódicos não Comutativos, Karlsson-Margulis, Espaços
Métricos Geodésicos, Curvatura não Positiva.
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Abstract

The strong law of large numbers, surely a classical result in probability theory, says that the more
an experiment is repeated the closer the sample mean is to the expected value. The attempts at bring-
ing an analogue of this result to statistical mechanics, although hard to formulate from a mathematical
point of view, gave rise to Ergodic Theory. Ergodic theory includes itself in the study of dynamical
systems, namely it studies asymptotic behaviours of orbits from a measure theory viewpoint by looking
at averages.

The first results in ergodic theory, von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise
Ergodic Theorem as well as the strong law of large numbers all have an important aspect in common -
the commutativity of the operation at hand. In the 50’s Furstenberg and Kesten asked themselves how
could they extend such results to more general scenarios, specifically the case in which we work with
groups whose commutativity may fail. It took until the 60’s for the first answers to such problems to
be recorded. These were Furstenberg-Kesten Theorem, Kingman Subadditive Ergodic Theorem and
Oseledets Multiplicative Ergodic Theorem.

This text aims to present the noncommutative ergodic theorems from a geometrical point of view. The
first to notice the relationship between geometry and Oseledets theorem was Kaimanovich by looking at
it as a consequence of the action of GL(d,R) on the space of Symmetric Positive Definite Matrices. Later
on, Karlsson and Margulis further extended the works of Kaimanovich to semigroups of semicontractions
of more general spaces. This allows us to translate the problem into a geometric one on which we can
use different machinery.

The thesis is comprised of three chapters with the goal of presenting all the results above. The first
consists of the classical ergodic theory, the second is about the theory of geodesic metric spaces whilst
the proof for the main theorems as well as some of the classic ones are presented in the third.

Key Words: Ergodic Theory, Noncommutative Ergodic Theorems, Karlsson-Margulis, Geodesic
Metric Spaces, Nonpositive Curvature.
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Introduction

A classical result in probability theory, the strong law of large numbers, asserts that given {Xi}i∈N a
sequence of independent identically distributed (i.i.d.) random variables taking values in R such that the
mean value E(Xi) is finite, then

1
n
(X1 +X2 + · · ·Xn)−−−−→

n→+∞
E(X1).

This result goes in the direction of frequentist probability. The more we repeat an experience the closer
the sample mean is to the expected mean. There are two important aspects at play in this theorem. The
more evident one is the i.i.d. property and the second is the commutativity of the sum operation.

Whilst working on statistical mechanics Boltzmann formulated an hypothesis of similar nature to the
strong law of large numbers, according to which in a system at an equilibrium state the time averages
converge to the space average. In other words, for large periods of times, the amount of time a particle
spends in a certain region with the same energy is proportional to the volume of that region.

A solution to such hypothesis has still not been accomplished. Nonetheless, attempts at doing so in
the scope of measure theory were responsible for the birth of Ergodic Theory, yielding important results
such as the ergodic theorems of von Neumann’s and Birkhoff’s; the second of which greatly generalizes
the strong law of large numbers.

When trying to generalize the results above to noncommutative cases we tend to look at the random
variables as taking values in some group G. Although starting in the 50’s, such approach only came
to fruition in the 60’s with the first result in this direction being due to Furstenberg and Kesten for
the norm of maps taking values in GL(d,R) which, together with it’s subgroups, is the paradigmatic
noncommutative group. Later on, this theorem was generalized by Kingman in his Subadditive Ergodic
Theorem and finally by Oseledets in the Multiplicative Ergodic Theorem. It is common to call the
multiplicative ergodic theorems noncommutative ergodic theorems.

In the 80’s Kaimanovich [6] translated the multiplicative ergodic theorem of Oseledets into geometric
language, namely, Kaimanovich used the fact that GL(d,R) acts on the space of Symmetric Positive
Definite Matrices. Whence the multiplicative ergodic theorem becomes a statement on isometries and
geodesics. By the end of the 20th century, Karlsson and Margulis explored this direction by using the fact
that every group with some ”good properties” is a group of isometries. The Noncommutative Ergodic
Theorem of Karlsson - Margulis is then a generalization of Oseledets theorem that not only accepts more
general groups but can also be applied to some semigroups and reads as follows:

Theorem 0.1 (Karlsson-Margulis). Let S be a semigroup of semicontractions of some complete, uni-
formly convex, nonpositively curved in the sense of Busemann, metric space (X ,d) with a marked point
x0. Let (Ω,B,µ,T ) be an ergodic measure preserving dynamical system and g : Ω→ S a measurable
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Introduction

map. Given a right cocycle defined by g, Zn(ω) = g(ω)g(T (ω)) · · ·g(T n−1(ω)). If∫
Ω

d(x0,g(ω) · x0)dµ(ω)<+∞,

then, for µ-a.e. ω , the following limit exists

lim
n→+∞

1
n

d(x0,Zn(ω) · x0) = s.

Moreover, if s > 0, then for µ-a.e. ω there is a unique geodesic ray in X starting at x0 such that

lim
n→+∞

1
n

d(Zn(ω) · x0,γω(ns)) = 0.

As one can see right away, the theorem is highly geometric in essence. To fully grasp the content
of the theorem it is important to understand the geometry it entails. We will also study another theorem
in the same direction by Karlsson and Ledrappier [7, 8]. For this approach we need to introduce a
compactification of our space on which the boundary elements will be functions, called horofunctions.

Theorem 0.2 (Karlsson-Ledrappier). Let X be a proper metric space and Zn an integrable right cocycle
taking values in the space of isometries of X, Isom(X). Then there is an almost everywhere defined
mapping ω → Dω = D, where D is an horofunction, depending measurably on ω , such that

lim
n→∞
−1

n
D(Zn(ω) · x0) = s.

where
s = lim

n→∞

1
n

d(Zn(ω) · x0,x0) = inf
n∈N

1
n

∫
Ω

d(Zn(ω) · x0,x0)dµ(ω).

The manuscript is divided into three major chapters, Ergodic Theory, Geodesic Metric Spaces and
The Noncommutative Ergodic Theorems. In the first chapter we begin with a little introduction to Dy-
namical Systems and then proceed to present the classical ergodic theorems and ergodic decomposition.
We also present a proof for the Subadditive Ergodic Theorem in the ergodic case whose steps we will
need later in the text. We finish this chapter with the concept of extremality and its relationship with
ergodicity.

The second chapter comprises most of the thesis introducing geodesic metric spaces and presenting
three big classes in the study of such spaces:

• CAT(k) spaces which come equipped with a notion of curvature being bounded by k. These spaces
are very important from an intuition point of view as we will be working and be interested in
triangles. As a trade-off these spaces are hard to work with, whence, whenever possible, we use
other methods to study them;

• Complete convex metric spaces which are specially important to study Banach spaces. In this
section we will also introduce the notion of being nonpositively curved in the sense of Busemann.

• Riemannian manifolds whose study will be taken deeper than the other two. With that in mind
we present the main ideas in the theory: Isometries, affine connections, geodesics, curvature,
Hopf-Rinow theorem, Jacobi fields, Cartan-Hadamard theorem and our main results which relate
sectional curvature with the other curvatures above.
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Introduction

A quick presentation of Lie Groups is also done to permit a further understanding on the geometry of
homogeneous spaces. We then present the geometry of the Hyperbolic plane and the Space of Symmetric
Positive Definite Matrices. This chapter finishes with a section on horofunctions and the associated
compactification needed for the Karlsson and Ledrappier approach.

In the last chapter everything we’ve constructed so far comes together as we present the noncom-
mutative ergodic theorems, often called multiplicative ergodic theorems, and their respective proofs. We
end the thesis with some applications, namely by reinterpreting Birkhoff’s Ergodic theorem and random
walks on Cayley Graphs.

As a master’s student it was my goal to make the text as complete and self-contained as possible. With
that in mind, except for a small amount of results, every statement not addressed in a master’s course I
took is proven. The text supposes familiarity with Functional Analysis, Smooth Manifolds, General and
Algebraic Topology and Metric spaces. As a last remark, some proofs contain a bibliographic reference
at the start; this is done whenever I feel the text doesn’t add enough to the proof to call it my own.

3
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Chapter 1

Ergodic Theory

1.1 Dynamical Systems

The theory of Dynamical Systems is a big branch of mathematics that today finds applications in
most areas of scientific knowledge, particularly in its deep-rooted connection to mechanics. The first
steps in the theory are attributed to Henri Poincaré due to his finds whilst working on the three body
problem at the turn of the 19th century. Since then, the contributions from multiple mathematicians
vastly developed the theory, both in deepness and broadness; nonetheless, it is still a very active area of
research in mathematics with a large array of open problems. In simplistic terms a dynamical systems is
a mathematical structure consisting of a phase space, a notion of time and a law of evolution.

The phase space, X , displays the state of the system and its properties are related to the nature of
the problem we are trying to solve. In topological dynamics, X is a topological space, usually metric
and compact, whereas in ergodic theory it is often assumed to be a measurable space of finite measure.
A third important case is that of differentiable dynamics, on which X is a manifold, often compact and
riemannian.

Time is usually classified on a first instance by being either continuous or discrete and then by its
invertibility. Discrete dynamical systems are presented by iterations of maps, whereas continuous ones
often arise as flows of vector fields. Invertibility refers to whether we can predict both past and future or
just one of them.

The law of evolution is the rule that determines the next state of the system, it is said to be determin-
istic if the law is unchangeable, that is, we can always know the next step from knowing the state we are
in, and stochastic if there is more than one possibility for the next state. Such rule is asked to respect the
category we chose to work in upon specifying the phase space.

To put it in purely mathematical terms, a dynamical system is an action s : G× X → X , where
G is a semigroup (group in case of invertible dynamics). Studying a dynamical system consists of
understanding the orbits of this action, namely its asymptotic properties. For the remainder of this text
we will take f : X → X , some map, and study its iterates. In essence, the action we consider is

s : N×X → X

(n,x)→ f n(x)

where the power denotes composition of f .

5



1.2. Ergodic Theory

1.2 Ergodic Theory

Ergodic Theory is a way to study dynamical systems based on some notion of measure preservation.
Imagine an ideal gas moving freely inside some container, such movement can be described by an Hamil-
tonian system, which preserves Liouville measure. Sure the Hamilton equations display some existence
of solutions, however, the problem lies in obtaining them. This difficulty together with preservation of
Liouville measure brings us to employ Ergodic Theory when tackling this problem, namely we shall
focus on how the particles behave on average. The movement of a gas was one of the original settings
on which ergodic theoretical ideas came to be and, to this day, is still a great way to introduce it.

Let (X ,F ,µ) be a measure space, a map f : X→X is said to be measure preserving if it is measurable
and f∗µ = µ , in other words, for every E ∈F , f−1(E) ∈F and µ( f−1E) = µ(E). If µ(X) = 1 then X
is said to be a probability space and µ a probability measure. A measure space is said to be complete if
every subset of a set with zero measure is measurable. A topological space is said to be second countable
if it admits a countable basis for its topology; and separable if it contains some countable dense set.
In a general topological space the first always implies the later whereas on a metric space the two are
equivalent. A complete separable metric space is called a Polish space

The triple (X ,B,µ) is said to be a standard measure space if X is a Polish space, B is the Borel
σ -algebra and µ is some measure. For the remainder of this work, we will always assume that X is a
metric separable probability space, F a σ -algebra containing the Borel σ -algebra, µ is a probability
measure and f is some measure preserving transformation on X . The quadruple (X ,F ,µ, f ) is called a
measure preserving dynamical system, mpds for short.

Remark. Notice that any finite measure µ gives rise to a probability measure dividing it by µ(X). Finite
measure in ergodic theory acts as an analogue to compactness in topological dynamics, it ensures the
existence of some asymptotic structure. Completeness is not such a restrictive condition either as we can
uniquely extend µ to some complete σ -algebra.

The first big result on Ergodic Theory is that of Poincaré, stating that a system preserving measure
will return arbitrarily close to almost any given state. Philosophically the idea of ”eternal recurrence”
pre-dates Poincaré, finding its roots in ancient civilizations and being detrimental to his contemporary
Friedrich Nietzsche. Looking back at our gas, the theorem asserts that, at some point, the configuration
of the phase space will be indistinguishable from the initial state we left it on.

Theorem 1.1 (Poincaré Recurrence). Let (X ,F ,µ, f ) be a mpds such that µ(U)> 0 for every open set
U. Then µ-a.e. x returns arbitrarily close to itself infinitely often. That is,

µ
(
{x ∈ X | there is nk→ ∞ such that f nk(x)→ x}

)
= 1.

Suppose (X ,F ,µ, f ) is a mpds admitting some invariant set E ∈F , that is, f−1(E) = E, then the
dynamics can be decomposed into the action on E and X\E. We say that (X ,F ,µ, f ) is ergodic, if every
invariant set E satisfies µ(E) = 0 or µ(E) = 1. We often write (µ, f ) to say µ is an ergodic measure with
respect to f or f is an ergodic map with respect to µ; it doesn’t make sense to say one is ergodic without
the other.

Proposition 1.2. Let (X ,F ,µ, f ) be an ergodic mpds and A,B be measurable sets such that µ(A)> 0.
If f n(A)⊂ B for every n≥ 0, then µ(B) = 1.

Proof. Start by taking
Â :=

⋂
n≥0

⋃
k≥n

f−k(B)

6



Chapter 1. Ergodic Theory

and noticing it is an invariant set

f−1
(⋂

n≥0

⋃
k≥n

f−k(B)
)
=
⋂
n≥0

⋃
k≥n

f−(k+1)(B) = Â.

By ergodicity, since A⊂ Â, µ(Â) = 1. Finally, as Â⊂ B, the result follows.

Proving ergodicity of a system is still a difficult problem with various open questions. Finding ways
to imply ergodicity is thus an important step in the theory.

Proposition 1.3. Suppose (X ,F ,µ, f ) is a mpds, (µ, f ) is ergodic if and only if any measurable function
ϕ : X → R satisfying ϕ ◦ f = f µ-a.e. is constant µ-a.e.

We say some mpds (X ,F ,µ, f ) is (strongly) mixing if for all E,F ∈F ,

µ(E ∩ f−kF)−−−−→
k→+∞

µ(E)µ(F).

Suppose we are dealing with a mixing system and E is some invariant set, then µ(E ∩ f−kE) −−−−→
k→+∞

µ(E)2, from which µ(E) = µ(E)2. Therefore the system is ergodic.

Example 1.4. Consider [0,1)' S1 with the Lebesgue measure and the circle rotation

Rα : [0,1)→ [0,1)

x→ x+α (mod 1).

The set of all E ∈F satisfying m(R−1
α (E)) = m(E) is a monotone class containing the algebra of finite

disjoint union of intervals. As such it is only needed to check the relation for intervals by monotone class
theorem. For any interval I we have m(R−1

α (I)) = m(I). Therefore Rα is measure preserving.
Suppose α = p/q with p,q ∈N. Then every point is q-periodic, so, for some x ∈ [0,1), choose ε > 0

small enough so that the balls of centre x+ jα , 0 ≤ j < q, are disjoint and their union is not equal to
[0,1). Then this union is an invariant set whose measure is not zero nor one.

For the case α /∈Q, let E be some invariant set and consider ϕ its indicator function, in mathematical
terms, ϕ = ϕ ◦Rα . In S1 applying the Fourier transform and its inverse is equivalent to expanding into
Fourier series,

ϕ(x) = ∑
n∈Z

ϕ̂(n)e2πinx

where

ϕ̂(n) =
∫ 1

0
ϕ(x)e2πinxdx.

However, for every x ∈ X ,
ϕ(x) = ϕ ◦Rα(x) = ∑

n∈Z
ϕ̂(n)e2πinαe2πinx.

Due to linear independence of {e2πinx}n∈N, ϕ̂(n) = ϕ̂(n)e2πinα for every n≥ 0. Since α is irrational we
must have ϕ̂(n) = 0 whenever n≥ 1, whence ϕ = ϕ̂(0) = m(E) m-a.e. Therefore m(E) = 0 or m(E) = 1,
so (m,Rα) is ergodic.

We could extend the above to translation maps on Tn and classify the ergodicity based on the vector.
Conceptually the challenge is similar, however we would need to present Fourier Analysis on locally
compact abelian groups and Pontryagin Duality [10].

7



1.2. Ergodic Theory

This simple case showcases some of the difficulties in proving ergodicity - there is no direct method
to do it! Each problem must be considered independently and often requires broad knowledge in mathe-
matics and the ability to relate various concepts.

We will now begin presenting some classical results known as the ergodic theorems. Firstly the Mean
Ergodic Theorem proved by John von Neumann.

Theorem 1.5 (Mean Ergodic Theorem). Let (X ,F ,µ, f ) be a mpds, given ϕ ∈ L2(X ,µ), the following
limit always exists

1
n

n−1

∑
j=0

ϕ ◦ f j L2

−−−−→
n→+∞

ϕ
∗.

Moreover,

1. ϕ∗ ◦ f = ϕ∗ in L2;

2.
∫

ϕ∗dµ =
∫

ϕdµ;

3. in case the system is ergodic, ϕ∗ =
∫

ϕdµ .

This theorem allows for a new classification of ergodicity, (X ,F ,µ, f ) is ergodic if and only if for
every E,F ∈F

1
n

n−1

∑
k=0

µ(E ∩ f−kF)−−−−→
n→+∞

µ(E)µ(F).

Shortly after the mean ergodic theorem came to public, Birkhoff presented his pointwise version. In
the scope of our text, this theorem is the first generalization of the law of large numbers, as we shall
discuss shortly.

Theorem 1.6 (Pointwise Ergodic Theorem). Let (X ,F ,µ, f ) be a mpds and ϕ ∈ L1(X ,µ). Then for
µ-a.e. x ∈ X the following limit exists

1
n

n−1

∑
j=0

ϕ ◦ f j(x)−−−−→
n→+∞

ϕ
∗(x).

Moreover,

1. ϕ∗ ∈ L1, ϕ∗ ◦ f = ϕ∗ in L1;

2.
∫

ϕ∗dµ =
∫

ϕdµ;

3. if the system is ergodic, ϕ∗ =
∫

ϕdµ .

Consider (R,F ,µ) some probability space and (RN,B,ν) the infinite product space with the corre-
sponding σ -algebra B and measure ν . Let (RN,B,ν ,τ) be the mpds, where τ denotes the shift, which
is ergodic. If we consider ϕ to be the projection onto the first coordinate, Birkhoff’s ergodic theorem
states

1
n

n−1

∑
j=0

ϕ ◦ τ
j(x)−−−−→

n→+∞

∫
ϕdν .

In other words, to meet the notation established in the introduction, given Xi = ϕ ◦ τ i−1 a sequence of
independent identically distributed random variables such that their mean values is finite, we have

1
n

(
X1 +X2 + · · ·+Xn

)
−−−−→
n→+∞

E(X1).

8



Chapter 1. Ergodic Theory

So we obtain the classical law of large numbers.

In this text we are interested in further generalizations, with that in mind, let (X ,F ,µ, f ) be a mpds,
G a locally compact Polish topological group, equipped with its normalized left invariant Haar measure
µG, and ϕ : X → G some map in L1(X ,G). Denote by B the Borel σ -algebra of G. The quadruple
(X×G,F ⊗B,µ⊗µG, fϕ) where

fϕ : X×G→ X×G

(x,g)→ ( f (x),ϕ(x)g).

is a mpds called the skew-product. We call f n
ϕ(x,g) = ( f n(x),ϕ( f n−1(x)) · · ·ϕ( f (x))ϕ(x)g) a cocycle on

G in general, or a random walk in the i.i.d. case. Often we are only interested on the position of the
random walk starting at the identity, that is

An(x) := ϕ( f n−1(x)) · · ·ϕ( f (x))ϕ(x).

Some texts also call An(x) a cocycle. The above defined is called a left cocycle as it naturally arises
from a left action; we define the right cocycles analogously. To make it more visible we will denote left
cocycles by An and right ones by Zn. Note that the term cocycle is used quite loosely.

If we consider G to be Rn we obtain Zn(x) = ϕ(x)+ϕ( f (x))+ ...+ϕ( f n−1(x)) whose average, by
Birkhoff’s theorem, converges for almost every x ∈ Rn. A more sophisticated example arrives when
f : M→M is some diffeomorphism on a parallelizable manifold M, then, by chain rule, we have

dx f n(v) = d f n−1(x) f ◦d f n−2(x) f ◦ · · · ◦dx f (v).

Doing the identification ϕ(x) = dx f ∈ GL(d,R) we have

An(x) = ϕ( f n−1(x))ϕ( f n−2(x)) · · ·ϕ( f (x))ϕ(x).

The above is called the derivative cocycle and its importance lies in the study of nonuniformly hyperbolic
diffeomorphisms in differentiable dynamical systems.

The behaviour of cocycles is rather convoluted, even for spaces of matrices as above. One of the first
results in that direction is due to Furstenberg and Kesten. Consider GL(d,R) with the operator norm,
that is,

||A||= max
v∈Sn−1

||Av||.

Theorem 1.7 (Furstenberg-Kesten). Let (X ,F ,µ, f ) be a mpds, suppose A : X → GL(d,R) is some
measurable map such that log+ ||A|| ∈ L1(X ,µ) and consider the cocycle An(x) = A( f n−1(x)) · · ·A(x),
then the limit

lim
n→∞

1
n

log ||An(x)||

exists µ-a.e.

In the 60s Kingman generalized both Birkhoff’s and Furstenberg-Kesten’s theorems with the subad-
ditive ergodic theorem. Let (X ,F ,µ, f ) be a mpds a : N×X → R is a subadditive cocycle or process if
for every natural m,n and x in X ,

a(n+m,x)≤ a(m,x)+a(n, f m(x))

9



1.2. Ergodic Theory

with the convention a(0,x) = 0 for every x ∈ X . Also define a+(1,x) = max{a(1,x),0}. Notice we
slightly change our notation when working with subadditive processes to highlight the fact it takes values
in R

Theorem 1.8 (Subadditive Ergodic Theorem). Let (X ,F ,µ, f ) be a mpds, and {a : N× X → R} a
subadditive process such that a+(1, ·) is in L1(X ,µ). Then

A(x) = lim
n→+∞

1
n

a(n,x)

exists almost surely. Moreover,

1. A◦ f = A µ-a.e;

2.
∫

X Adµ = limn→+∞
1
n

∫
X a(n,x)dµ(x) = infn∈N

∫
X

1
n a(n,x)dµ(x);

3. A+(x) ∈ L1(X ,µ);

4. if the system is ergodic, A = limn→+∞
1
n

∫
X a(n,x)dµ(x) = infn∈N

1
n

∫
X a(n,x)dµ(x)

The last classical ergodic result we present is the multiplicative ergodic theorem of Oseledets whose
proof is one of the goals for the text. Let (X ,F ,µ, f ) be a mpds and A : X→GL(n,R) some measurable
transformation, define the left cocycle An(x) := A( f n−1(x)) · · ·A(x) and the real function log+(z) :=
max{0, log(z)}.

Theorem 1.9 (Multiplicative Ergodic Theorem). If log+ ||A(x)±1|| is in L1(X ,µ), then there are measur-
able functions k = k(x) and −∞ < χ1(x)< χ2(x)< · · ·< χk(x)<+∞ and measurable filtration

E1(x)⊂ E2(x)⊂ ·· · ⊂ Ek(x)⊂ Rn

such that:

1) k and χi are f -invariant (K( f (x)) = k(x), χi( f (x)) = χi(x));

2) A(x)(Ei(x)) = Ei( f (x)) for every 1≤ j ≤ k;

3) for any vector v in Ei(x)\Ei−1(x)

χi(x) = lim
n→+∞

1
n

log ||An(x)v||;

4) limn→+∞
1
n log |detAn(x)|= ∑

k(x)
i=1 χi(dimEi(x)−dimEi−1(x)).

There also exists a multiplicative ergodic theorem for invertible systems which we will state but
won’t be the object of study.

Theorem 1.10 (Invertible version of the Multiplicative Ergodic Theorem). If f : X→ X is invertible and
log+ ||A(x)±1|| is in L1(X ,µ) then there are measurable functions k = k(x) and −∞ < χ1(x) < χ2(x) <
· · · < χk(x) < +∞ and a direct sum decomposition Rn =

⊕k
i=1 Ei(x) into subspaces Ei(x) depending

measurably on x such that

1) k and χi are f -invariant (K( f (x)) = k(x), χi( f (x)) = χ(x));

10



Chapter 1. Ergodic Theory

2) A(x)(Ei(x)) = Ei( f (x)) for every 1≤ j ≤ k;

3) for any vector v in Ei(x)\{0}

χi(x) = lim
n→±∞

1
n

log ||A±n(x)v||;

4) limn→+∞
1
n log |detAn(x)|= ∑

k(x)
i=1 χi dimEi(x).

Where A−n(x) = A( f−n(x))−1 · · ·A( f−1(x))−1.

Due to the first item in both versions, if the system is ergodic, then K and χi are constant. The
functions χi are known as the Lyapunov exponents and their study is an active area of research in itself.

As we’ve seen before ergodicity can be seen as a sort of measurable connectivity in the sense we
can’t break our space into smaller pieces to study their dynamics independently. It becomes quite natural
to ask how do we go around building or finding those ”ergodic components”? Or if they always exist?

Let P ⊂F be a partition of X0 where X0 = X up to a zero measure set. Consider the natural quotient
map

π : X0→P

x→ P if x ∈ P,

the σ -algebra F̂ = {Q ⊂P : π−1(Q) =
⋃

P∈Q P ∈F} and the probability measure µ̂ = π∗µ , that is,

µ̂ : F̂ → [0,1]

Q→ µ(
⋃

P∈Q
P) = ∑

P∈Q
µ(P).

Theorem 1.11 (Ergodic Decomposition Theorem). Let (X ,F ,µ, f ) be a mpds. Then there is X0 ⊂ X
with µ(X0) = 1, a partition of X0, P ⊂F and a family of probability measures {µp}P∈P such that

1) For every E ∈F the function

µ
E : P → [0,1]

P→ µP(E)

is F̂ -measurable.

2) For every E ∈F

µ(E) =
∫

P
µP(E)dµ̂(P).

3) µp are f -invariant and ergodic for µ̂-a.e. P ∈P .

Having the ergodic decomposition tool at hand we often restrict our problems to the ergodic case.
From this point on, if a result is stated in the general case and only proven for the ergodic one is because
it follows immediately from the decomposition; this will be done without mention henceforth.
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1.2. Ergodic Theory

1.2.1 Subadditive Ergodic Theorem: Ergodic Case

We are only interested in proving the result in the ergodic case. There are multiple proofs for the
subadditive ergodic theorem, we will follow very closely [9] whose proof steps we will need later. The
other advantage to this proof is that we obtain Birkhoff’s ergodic theorem along the way with no extra
effort, hence getting two theorems for the labour of one.

Lemma 1.12 (Fekete). Let {an}n∈N be a sequence of real numbers, possibly −∞ such that am+n ≤
am +an, then the following limit exists

A = lim
n→+∞

1
n

an = inf
n∈N

1
n

an.

Proof. If for some n ∈ N, an = −∞, then by subadditivity for every m greater than n am = −∞ so the
result follows. Let us now focus on the non-trivial case. For n ≥ p, by division algorithm, n = pq+ r
where 0≤ r < p,

an

n
≤

apq+r

n
≤ q

qp+ r
ap +

ar

n

≤
ap

p
+

ar

n
.

Taking the limits
limsup
n→+∞

an

n
≤ inf

ap

p
≤ liminf

n→+∞

an

n
,

so the result follows.

Let (X ,F ,µ, f ) be a mpds, and a : N×X → R a subadditive process satisfying the integrability
condition a+(1, ·) ∈ L1(X ,µ). Consider

an =
∫

X
a(n,x)dµ(x).

The subadditive condition together with the measure preservation property implies an+m ≤ an + am.
Therefore the following limit exists

A := lim
1
n

an

Let c1, ...,cn be a finite sequence of real numbers. We call ci a leader if at least one of the sums
ci,ci + ci+1, ...,ci + · · ·+ cn is negative.

Lemma 1.13. The sum of all leaders is nonpositive.

Proof. For a sequence of just one element the result is trivial as the only possible leader is c1 which
happens if and only if it is negative. With complete induction in view, suppose the result is true for
some n and every i < n. Consider the sequence c2, ...,cn+1 whose sum of all leaders, B, is nonpositive.
However all leaders of this sequence are leaders of c1,c2, ...cn+1. In case c1 is not a leader we are done.
If c1 is also a leader then there is a k ≤ n+1 such that c1 + ...+ ck < 0. Notice also that any ci which is
not a leader must be positive. Take C ≤ 0 to be the sum of all leaders of ck+1, ...,cn+1, then

c1 +B≤ c1 + ...+ ck +C ≤ 0.

12



Chapter 1. Ergodic Theory

Lemma 1.14. For every positive ε there is a positive δ such that∫
C

a+(1,x)dµ(x)< ε,

whenever µ(C)< δ .

Proof. If the result weren’t true there would be a sequence of sets An such that lim µ(An) = 0 and∫
An

a+(1,x)dµ(x)> ε.

We know 0≤ 1Ana+(1,x)≤ a+(1,x), so we can use the dominated convergence theorem to obtain

lim
∫

An

a+(1,x)dµ(x) =
∫

X
lim1Ana+(1,x)dµ(x) = 0,

hence reaching an absurd.

Lemma 1.15. Suppose that A > 0. Let E be the set of x ∈ X for which there are infinitely many n such
that

a(n,x)−a(n− k, f k(x))≥ 0

for all k, 1≤ k ≤ n. Then µ(E)> 0.

Proof. [9] For every positive natural number i define the function

bi(x) = a(i,x)−a(i−1, f (x))

and the set
Ei = {x ∈ X | ∃k : 0≤ k ≤ i and a(i,x)−a(i− k, f k(x))< 0}.

Clearly
k−1

∑
j=0

bn− j( f j(x)) = a(n,x)−a(n− k, f k(x))

as the left side is a telescopic sum.
From definition, if f k(x) ∈ En−k, then, for some t satisfying 1≤ t ≤ n− k,

a(n− k, f k(x))−a(n− (k+ t), f k+t(x))< 0.

Choosing j = k+ t−1, we obtain k ≤ j ≤ n and

bn−k( f k(x))+ · · ·+bn− j( f j(x)) = a(n− k, f k(x))−a(n− j−1, f j+1(x))< 0.

Hence, whenever f k(x) ∈ En−k, bn−k( f k(x)) is a leader. Using lemma 1.13, for every x in X and n in N

n−1

∑
k=0

f k(x)∈En−k

bn−k( f k(x))≤ 0.
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1.2. Ergodic Theory

Hence

n

∑
k=1

∫
Ek

bk(x)dµ(x) =
n−1

∑
k=0

∫
En−k

bn−k(x)dµ(x)

=
n−1

∑
k=0

∫
f−kEn−k

bn−k( f k(x))dµ(x)

=
∫

X

n−1

∑
k=0

f k(x)∈En−k

bn−k( f k(x))dµ(x)

≤0.

However, remembering our convention that a(0,x) = 0,

an =
∫

X
a(n,x)dµ(x) =

∫
X

n−1

∑
k=0

bn−k( f k(x))dµ(x)

=
n−1

∑
k=0

∫
X

bn−k( f k(x))dµ(x)

=
n−1

∑
k=0

∫
X

bn−k(x)d f k
∗µ(x)

=
n

∑
k=1

∫
X

bk(x)dµ(x)

From what we’ve seen so far and subadditivity, as an/n→ A > 0,

n

∑
k=1

∫
X\Ek

a+(1,x)dµ(x)≥
n

∑
k=1

∫
X\Ek

a(1,x)dµ(x)

≥
n

∑
k=1

∫
X\Ek

a(k,x)−a(k−1, f (x))dµ(x)

=
n

∑
k=1

∫
X\Ek

bk(x)dµ(x)

>an >
2A
3

n.

for all n greater than some N.
Consider fn = ∑

n
k=1 1X\Ek and denote by a0 the integral

∫
X a+(1,x)dµ(x) and

Bn :=
{

x ∈ X | A
3a0

n < fn(x)≤ n
}

the set of elements which are in X\Ei for at least A
3a0

n choices of i. Whenever n > N,

2A
3

n <
n

∑
k=1

∫
X\Ek

a+(1,x)dµ(x) =
∫

X
fn(x)a+(1,x)dµ(x)

=
∫

Bn

fn(x)a+(1,x)dµ(x)+
∫

X\Bn

fn(x)a+(1,x)dµ(x)
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≤n
∫

Bn

a+(1,x)dµ(x)+
A

3a0
n
∫

X\Bn

a+(1,x)dµ(x)

≤n
∫

Bn

a+(1,x)dµ(x)+
A
3

n

which in turn gives ∫
Bn

a+(1,x)dµ(x)>
A
3
.

Using the previous lemma, there is a δ such that∫
C

a+(1,x)dµ(x)<
A
3
,

whenever µ(C)< δ , so we must have µ(Bn)≥ δ .
To complete the argument, construct the sets

Cn = {x ∈ X | x ∈ X\Ei for at least
A

3a0
n positive integers i}

for which Bn ⊂Cn and Cn+1 ⊂Cn. Therefore,by monotonicity, the measure of
⋂

n≥1Cn is greater or equal
than δ > 0. The result follows as

⋂
n≥1Cn ⊂ E.

Proposition 1.16. Suppose that f is ergodic and A >−∞. For any ε > 0, let Eε be the set of x in X for
which there is an integer K = K(x) and infinitely many n such that

a(n,x)−a(n− k, f k(x))≥ (A− ε)k

for all k, K ≤ k ≤ n. Let E =
⋂

ε>0 Eε , then µ(E) = 1.

Proof. [9] For any ε > 0 let c(n,x) = a(n,x)− (A− ε)n

c(n+m,x) =a(n+m,x)− (A− ε)(n+m)

≤a(n, f m(x))− (A− ε)n+a(m,x)− (A− ε)m

=c(n, f m(x))+ c(m,x)

so c is a subadditive cocycle and by definition of A

lim
n→+∞

1
n

∫
X

c(n,x)dµ(x) = lim
n→+∞

1
n

∫
X

a(n,x)− (A− ε)ndµ(x)

=A− (A− ε)

=ε ≥ 0

Notice that

c(n,x)− c(n− k, f k(x))≥ 0

⇔ a(n,x)− (A− ε)n−a(n− k, f k(x))+(A− ε)(n− k)≥ 0

⇔ a(n,x)−a(n− k, f k(x))≥ (A− ε)k.

Applying the previous lemma to c(n,x) we obtain µ(Eε)> 0.
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By subadditivity

a(n, f j(x))−a(n− k, f k+ j(x))≥ a(n+ j,x)−a( j,x)−a((n+ j)− (k+ j), f k+ j(x)).

If f j(x) ∈ Eε there are infinite choices of n such that for all K ≤ k ≤ n

a(n+ j,x)−a((n+ j)− (k+ j), f k+ j(x))≥ (A− ε)k,

moreover, for k big enough, a( j,k)≤ εk, so f j(Eε)⊂ E2ε . By proposition 1.2, µ(E2ε) = 1.
It is immediate from definition that Eε ⊂ Eδ whenever ε < δ , so we must have µ(E) = 1

Theorem 1.17 (Subadditive Ergodic Theorem 1.8). If f is ergodic and A >−∞. Then, for almost every
x,

lim
n→∞

1
n

a(n,x) = A.

Proof. If a(n,x) is an additive cocycle simply use the proposition above to both a(n,x) and −a(n,x)
obtaining

A− ε ≤ liminf
n→∞

1
n

an ≤ limsup
n→+∞

1
n

an ≤ A+ ε

for every ε > 0. Thus the inferior and superior limit limits must coincide. In essence, we’ve proven the
ergodic case of Birkhoff’s ergodic theorem.

Let us focus on the subadditive case and notice that

liminf
n→∞

1
n

a(n,x)≥ A− ε

remains valid by the previous proposition. Consider the new cocycle

b : N×X → R

(n,x)→ a(n,x)−
n−1

∑
i=0

a(1, f i(x)).

We can easily verify

b(n+m,x) =a(n+m,x)−
n+m−1

∑
i=0

a(1, f i(x))

≤a(n,x)+a(m, f n(x))−
n−1

∑
i=0

a(1, f i(x))−
n+m−1

∑
i=n

a(1, f i(x))

=a(n,x)−
n−1

∑
i=0

a(1, f i(x))+a(m, f n(x))−
m−1

∑
i=0

a(1, f i+n(x))

=b(n,x)+b(m, f n(x)),

that is, b is subadditive. Moreover, b(1,x) = 0, so for every n we have b(n,x) ≤ 0. This reduces the
problem to nonpositive cocycles as ∑

n−1
i=0 a(1, f i(x)) forms an additive cocycle whose convergence of

averages is assured from the first step of the proof.
Let ε > 0 and, since an/n→ A, take M such that

1
M

∫
X

a(M,x)dµ(x)≤ A+ ε

16



Chapter 1. Ergodic Theory

also define

aM : N×X → R

(n,x)→ a(nM,x)−
n−1

∑
i=0

a(M, f iM(x)).

We want to apply the previous proposition to aM, with that in mind, let’s verify the hypothesis with
respect to f M.

Subadditivity :

aM(n+m,x) =a((n+m)M,x)−
n+m−1

∑
i=0

a(M, f iM(x))

≤a(nM,x)−
n−1

∑
i=0

a(M, f iM(x))+a(mM, f nM(x))−
m−1

∑
i=0

a(M, f iM+nM(x))

=aM(n,x)+aM(m, f nM(x)).

Integrability hypothesis:

(aM)+(1,x) =
(
a(M,x)−a(M,x)

)+
= 0.

Calculating AM:

AM := lim
n→∞

1
n

∫
X

aM(n,x)dµ(x)

= lim
n→∞

1
n

∫
X

a(nM,x)dµ(x)−
n−1

∑
i=0

a(M, f iM(x))

= lim
n→∞

M
∫

X

a(nM,x)
nM

dµ(x)− 1
n

n−1

∑
i=0

∫
X

a(M, f iM(x))dµ(x)

=MA− lim
n→∞

1
n

n−1

∑
i=0

∫
X

a(M,x)dµ(x)

≥MA− (A+ ε)M

=− εM.

Ergodicity: notice (µ, f M) may not be ergodic. In that case we apply the result to an ergodic
decomposition of µ with respect to f M.

We are now in condition to apply the proposition above with k = n−1, obtaining

0≥ liminf
n→∞

1
nM

aM(n,x)

≥ liminf
n→∞

1
nM

(
aM(1,( f M)n−1(x))+(−εM− ε)(n−1)

)
=− ε

M+1
M

.

A classical consequence of Birkhoff’s ergodic theorem (proven above) is that, for every integrable
function g, limn→+∞ g( f n(x))→ 0 for µ-a.e. x. Due to the integrability hypothesis and the fact A >−∞,
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1.2. Ergodic Theory

every a(n,x) is also integrable. Writing n = qnM + rn = (qn + 1)M− sn with 0 ≤ rn < M and 0 < sn ≤
M, since sn and rn are limited we have limsupn→+∞ a(sn, f n(x))/n = limsupn→+∞ a(rn, f qnM(x))/n = 0.
Finally by subadditivity and the fact we are working with nonpositive cocycles,

limsup
n→+∞

1
n

a(n,x)− liminf
n→+∞

1
n

a(n,x)≤ limsup
n→+∞

1
qnM

a(qnM,x)+ limsup
n→+∞

1
n

a(rn, f qnM(x))

− liminf
n→+∞

1
(qn +1)M

a((qn +1)M,x)+ limsup
n→+∞

1
n

a(sn, f n(x))

= limsup
n→+∞

1
qnM

a(qnM,x)− liminf
n→+∞

1
(qn +1)M

a((qn +1)M,x)

= limsup
q→+∞

1
qM

a(qM,x)− liminf
q→+∞

1
qM

a(qM,x)

= limsup
q→+∞

1
qM

aM(q,x)− liminf
q→+∞

1
qM

aM(q,x)

≤− liminf
q→+∞

1
qM

aM(q,x)

≤ε
M+1

M
.

Since this holds for every ε > 0 and the quantity (M+1)/M is bounded we obtain the result.

1.2.2 Extremality and Ergodicity

In this subsection we present a fundamental tool in Ergodic Theory - extremality and how it relates
to ergodicity. These results concern the existence of ergodic pairs ( f ,µ). For the following set of results
(Ω,B,µ,T ) is an ergodic mpds, X is a compact Polish space and f is a map from Ω×X onto itself
preserving the dynamics of Ω.

To set notation, given any measurable space (Y,F ) and a map g : Y → Y , denote by Prob(Y ) and
Probg(Y ) respectively the space of all probability measures on Y and the space of probability measures
on Y that are g-invariant. Consider in these spaces the weak*-topology induced by the duality between
the space of continuous functions C(Y ) and the space of measures M (Y ). Recall that this duality comes
from Riez Theorem. We will make the topology more precise when we use the results.

Definition 1.18. Let K ⊂V be a convex subset of some locally convex topological vector space. A point
x∈K is said to be an extremal point of K if for every x1 6= x2 points in K and t ∈ [0,1] if x= tx1+(1−t)x2

then t = 0 or t = 1.

The are three central results in connecting extremality to ergodicity:

Proposition 1.19. If Y is compact, then Probg(Y ) is a compact convex sets in Prob(Y ).

Proposition 1.20. A pair (g,θ) is ergodic if and only if θ is an extremal point in Probg(Y ).

Theorem 1.21 (Krein-Milman). If K is compact, then it is the convex closure of its extremal points.

Let ϕ : V → R be a linear continuous function. Consider

s := max
θ∈K

ϕ(θ).

and the set Ks = {θ ∈ K | ϕ(θ) = s}.

18



Chapter 1. Ergodic Theory

Proposition 1.22. If θ is an extremal point in Ks then it is extremal in K.

Proof. Let θ = tθ0 +(1− t)θ1, with 0 < t < 1 and θ0,θ1 ∈ K. Suppose either θ0 or θ1 is not in Ks, that
is, ϕ(θ0)< s or ϕ(θ1)< s. In both cases

s = ϕ(θ) = tϕ(θ0)+(1− t)ϕ(θ1)< s.

Reaching this absurd we must have θ0,θ1 ∈ Ks. Since θ is extremal in Ks we have θ = θ0 = θ1, thus we
obtain extremality in K.

For our goals in this thesis we are specially interested in the space of measures which preserve µ , in
other words,

Prob f
µ(Ω×X) = {θ ∈ Prob f (Ω×X) | π∗θ = µ},

where π denotes the projection onto Ω. Let us start by seeing how it relates to Prob f (Ω×X).

Proposition 1.23. Any extremal point of Prob f
µ(Ω×X) is an extremal point of Prob f (Ω×X).

Proof. Let θ be an extremal point in Prob f
µ(Ω×X). Suppose θ = tθ0+(1−t)θ1 with θ0,θ1 ∈ Prob f (Ω×

X) and 0 < t < 1. Then
µ = π∗θ = tπ∗θ0 +(1− t)π∗θ1.

However, µ is ergodic, hence extremal, thus π∗θ0 = µ or π∗θ1 = µ which yields π∗θ0 = π∗θ1 = µ , that
is, θ0,θ1 ∈ Prob f

µ(Ω×X). By extremality in Prob f
µ(Ω×X) we obtain θ0 = θ1.

Proposition 1.24. The pair ( f ,θ) is ergodic whenever θ is an extremal point of Prob f (Ω×X).

Proof. This is a direct consequence of 1.20, so this proof also gives the backward implication from this
proposition. Suppose ( f ,θ) is not ergodic, then there are A and B invariant sets of positive measure such
that A∪B = Ω×X . This implies

θ = θ(A)θA +θ(B)θB,

where θA and θB are the conditional measures given by

θA(E) =
θ(E ∩A)

θ(A)
.

All that is left to prove is invariance

θA( f−1(E)) =
θ( f−1(E)∩A)

θ(A)

=
θ( f−1(E)∩ f−1(A))

θ(A)

=
θ( f−1(E ∩A))

θ(A)

=
θ(E ∩A)

θ(A)

=θA(E).

Hence θ is not extremal and we obtain the assertion.
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Chapter 2

Geodesic Metric Spaces

In this chapter we briefly present the theory of metric spaces on which every two points are joined by
some notion of line segment, called a geodesic. Just like when defining geodesics in Riemannian mani-
folds we try to extend our natural ideas from Rn. In Riemannian manifolds we define affine connections
as a way to think of second derivatives in order do introduce geodesics as curves with no acceleration. In
a general metric space we may not have access to a differentiable structure so we must make do with the
metric structure alone.

Throughout the first three sections we will present some classes of geodesic metric spaces and relate
them. In particular, we shall see Riemannian manifolds, under particular conditions, give rise to metric
spaces maintaining certain properties. From that point on we navigate through these notions using what
suits the problem better. Namely, we will use Riemannian geometry to study Hyperbolic Geometry
and the space of Symmetric Positive Definite Matrices and the theory of metric spaces to introduce
Horofunctions.

2.1 CAT(k) Spaces

Let X be a metric space. A geodesic path joining a to b in X is a curve γ : [0, l]→ X such that
γ(0) = a, γ(l) = b and, for every t,s ∈ [0, l], d(γ(t),γ(s)) = |t − s|. The image of γ in X is called a
geodesic segment between a and b, often denoted [ab]. A geodesic ray is a curve γ : [0,+∞]→ X such
that d(γ(t),γ(s)) = |t− s| for every t,s≥ 0.

A metric space in which every two points are joined by some geodesic segment is called a geodesic
space. If there is a unique geodesic segment joining any two points the space is said to be uniquely
geodesic.

We say that map f : X → X is an isometry if, for every x and y in X , d( f (x), f (y)) = d(x,y) and a
semicontraction if d( f (x), f (y))≤ d(x,y).

Example 2.1. The classical example is Rn with the euclidean metric, that is, the metric induced by the
euclidean inner product

〈x,y〉= ∑
n
i=1 xiyi for x,y ∈ Rn.

It is well known that the euclidean space is geodesic with geodesic segments of the form {at +(1− t)b :
t ∈ [0,1]}.

Another example is the n-dimensional sphere Sn which, being a subspace of Rn+1 carries a natural
metric. We will however use a different one; let x and y be two points on the sphere Sn we will consider
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2.1. CAT(k) Spaces

the metric which returns the angle between the lines containing each of the points and the origin, that is,
the unique real number in [0,π] such that

cos(dS(x,y)) = 〈x,y〉.

With this construction (Sn,dS) is a geodesic space with the geodesic lines being given by the great arcs
which arise as intersections of Sn with 2-dimensional linear subspaces of Rn+1, moreover, if dS(x,y)< π

there is a unique geodesic joining x to y.

For our last example begin by considering in Rn+1 the Lorentzian quadratic form

(x,y) =−xn+1yn+1 +
n

∑
i=1

xiyi.

The hyperbolic n-space Hn is the upper sheet of the hyperboloid {x ∈Rn : (x,x) =−1} together with the
metric

cosh(dH(x,y)) =−(x,y).

The space (Hn,dH) is geodesic being the geodesic segments uniquely defined. Just as in the case of
the sphere geodesic lines are determined by intersections of Hn with 2-dimensional linear subspaces of
Rn+1.

From these examples we shall now construct the model spaces for the theory of geodesic metric
spaces.

Definition 2.2. Given a real number k, denote by Mn
k the following metric spaces:

1. if k = 0 then (Mn
0 ,d0) is the euclidean space;

2. if k > 0 then (Mn
k ,dk) is the space (Sn,dS/

√
k);

3. if k < 0 then (Mn
k ,dk) is the space (Hn,dH/

√
−k).

The spaces defined above are called model spaces as the local study of geodesic spaces is mostly
done by comparing the space at hand to some Mn

k . One of the ways this can be done is by using the
theory of CAT(k) spaces.

Let x,y,z be three points on a metric space X . A geodesic triangle ∆xyz is the result of joining
the vertices x,y,z by a choice of geodesic segments. Notice that such choice may not exist or even be
unique. A comparison triangle in (M2

k ,dk) for the triplet (x,y,z) is a geodesic triangle ∆̄x̄ȳz̄ such that
d(x,y) = dk(x̄, ȳ), d(x,z) = dk(x̄, z̄) and d(y,z) = dk(ȳ, z̄). If we can form a geodesic triangle ∆xyz we say
that ∆̄ is a comparison triangle for the triangle ∆.

Proposition 2.3. Given three points x,y,z in a metric space X, there is a comparison triangle in M2
k if

d(x,y)+ d(y,z)+ d(x,z) < 2Dk, where Dk denotes the diameter of M2
k which is ∞ for k ≤ 0 and π/

√
k

for k > 0. Moreover, such triangles are unique up to isometry of M2
k .

A point ā on the geodesic [x̄ȳ] is called a comparison point for a in [xy] if d(x,a) = dk(x̄, ā).

Definition 2.4. Let (X ,d) be a metric space and k a real number. Let ∆ be a geodesic triangle in X
with perimeter less than twice the diameter and ∆̄ a comparison triangle for ∆ in M2

k . We say that ∆

satisfies the CAT(k) inequality if for any a,b ∈ ∆ and ā, b̄ their respective comparison points we have
d(a,b)≤ dk(ā, b̄).
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Chapter 2. Geodesic Metric Spaces

If k ≤ 0, then X is said to be a CAT(k) space if X is a geodesic space in which geodesic triangles
satisfy the CAT(k) inequality.

If k > 0, then X is called a CAT(k) space if there is a geodesic joining x to y whenever d(x,y) < Dk

and any triangle in X , whose perimeter is less than twice the diameter, satisfies the CAT(k) inequality.

z̄

x̄

ȳ

x

y z

ā

b̄

a

b

d(a,b)≤ d0(a,b)
X M2

0

Figure 2.1: Representation of X being a CAT(0) space ( d(x,y) = d(x̄, ȳ) , d(x,z) = d(x̄, z̄) , d(y,z) = d(ȳ, z̄) , d(x,a) = d(x̄, ā)
and d(x,b) = d(x̄, b̄) ).

The definition of a CAT(k), although intuitive from a geometric point of view, may be hard to work
with. At this point, the least we can do is state that Mn

k is a CAT(k) space. To delve further we need to
understand better the behaviour of triangles in Mn

k as that is what we will be comparing with. The most
fundamental result in this direction is the law of cosines.

To introduce the law of cosines we need to work with some notion of angle on a metric space, for
example, the Alexandrov angle. Here we shall look at Mn

k as Riemannian manifolds (see Section 2.3)
and define the angle between two geodesics by the angle between their tangent vectors. For a discussion
on the law of cosines and Alexandrov angles we refer to [3].

Theorem 2.5 (k-Law of cosines). Given a geodesic triangle ∆ABC in Mn
k with sides of positive length

a,b,c opposite to vertices A,B,C respectively and angle γ at C we have:

1. for k = 0, c2 = a2 +b2−2abcos(γ);

2. for k > 0, cos(
√

kc) = cos(
√

ka)cos(
√

kb)+ sin(
√

ka)sin(
√

kb)cos(γ);

3. for k < 0, cosh(
√
−kc) = cosh(

√
−ka)cosh(

√
−kb)− sinh(

√
−ka)sinh(

√
−kb)cos(γ).

Namely, c increases with γ .

We will finish this section with the notion of curvature of a metric space which later we shall relate
to the sectional curvature of a Riemannian manifold. By Hopf-Rinow Theorem complete connected Rie-
mannian manifolds are also metric spaces so we obtain an improved way of doing calculations whenever
we are able to find a suitable Riemannian structure.

Definition 2.6. A metric space is said to have its curvature bounded by k if for every x in X there is an
open neighbourhood which is a CAT(k) space for the induced metric; using the usual denomination from
topology this is also called locally CAT(k).
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2.2. Convex Metric Spaces

2.2 Convex Metric Spaces

Let (X ,d) be a metric space, a point z is called a midpoint, also denoted mxy, of x and y if

d(z,x) = d(z,y) =
1
2

d(x,y).

If any two points in X admit a midpoint we say the space is convex. The first step is clearly showing how
convex metric spaces insert themselves inside the study of geodesic spaces.

Proposition 2.7. Every complete convex metric space is geodesic.

Proof. We shall give a sketch proof for this result as a complete one goes beyond the scope of this text,
moreover, it is a quite natural argument. Let x,y ∈ X and let us define c : [0,1]→ X by starting with
c(0) = x and c(1) = y. Now proceed inductively doing

c
(a+b

2

)
= mc(a)c(b).

This defines c on the dense set of the dyadic rational numbers on [0,1]. By completeness, c is defined on
the whole interval. Finally define the geodesic between x and y as

γ : [0,d(x,y)]→ X

t→ c
( t

d(x,y)

)
.

Definition 2.8. A metric space is called uniformly convex if it is convex and there is a strictly decreasing
continuous function g : [0,1]→ [0,1] such that, for every non coincident points x,y,z ∈ X ,

d(mxy,z)
R

≤ g
(d(x,y)

2R

)
,

where R is the maximum between d(x,z) and d(y,z). In particular, d(mxy,z)≤ R.

Proposition 2.9. On any uniformly convex metric space midpoints are unique.

Proof. Let x,y be two points having at least two distinct midpoints, m1 and m2. By triangle inequality

d(m1,m2)≤ d(m1,x)+d(m2,y) = d(x,y).

Consider mk the midpoint between m1 and m2. Then, by uniform convexity

d(x,mk)

R
≤ g

(d(m1,m2)

2R

)
= g

(d(m1,m2)

d(x,y)

)
< 1

Therefore,
d(x,y) ≤ d(x,mk) + d(mk,y) < 2R = d(x,y),

from which we derive our absurd.

The following is an immediate corollary to this proposition due to the way we constructed geodesics.

Corollary 2.10. Every complete uniformly convex metric space is uniquely geodesic.
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Example 2.11. 1. The Euclidean space Mn
0 is uniformly convex considering the function g : [0,1]→ [0,1]

given by g(x) = (1− x2)
1/2 . Let x,y,z ∈Mn

0 and suppose without loss of generality that d(x,z)≥ d(y,z).
Then take the triangle ∆xmxyz and denote by θ ≥ π/2 the angle at mxy. Applying law of cosines

d(z,x)2 = d(z,mxy)
2 +d(x,mxy)

2−2cos(θ)d(z,mxy)d(x,mxy)

⇔ d(z,mxy)
2 = d(z,x)2−

(d(x,y)
2

)2
+ cos(θ)d(z,mxy)d(x,y)

⇔
d(z,mxy)

R
≤
(

1−
(d(x,y)

2R

)2) 1
2
.

2. The same function we’ve used above works for CAT(0) spaces due to the comparison being made
with the Euclidean space. Let ∆xyz be a geodesic triangle in some CAT(0) space and its Euclidean
comparison triangle ∆x̄ȳz̄. Then, considering R = max{d(x,z),d(y,z)} and R̄ = max{d(ȳ, z̄),d(x̄, z̄)},

d(mxy,z)
R

≤
d(mxy, z̄)

R̄
≤ g

(d(x̄, ȳ)
2R̄

)
= g

(d(x,y)
2R

)
.

3. Recall the Clarkson’s inequality: in Lp with 1 < p <+∞,

∣∣∣∣∣∣ f̂ + ĝ
2

∣∣∣∣∣∣p + ∣∣∣∣∣∣ f̂ − ĝ
2

∣∣∣∣∣∣p ≤ 1
2

(
|| f̂ ||p + ||ĝ||p

)
,

for every f̂ and ĝ in Lp. Let f ,g,h∈ Lp, ( f +g)/2 is the midpoint of f and g. Using Clarkson’s inequality
with f̂ = f −h and ĝ = g−h and R = max{|| f −h||, ||g−h||} we have∣∣∣∣∣∣ f +g−2h

2

∣∣∣∣∣∣p + ∣∣∣∣∣∣ f −g
2

∣∣∣∣∣∣p ≤ 1
2
(
||g−h||p + || f −h||p

)
≤ Rp

⇒
∣∣∣∣∣∣ f

2
+

g
2
−h
∣∣∣∣∣∣p ≤ Rp− || f −g||p

2p

⇔
( || f/2 +

g/2−h||
R

)p
≤ 1−

( || f −g||
2R

)p

⇔ ||
f/2 +

g/2−h||
R

≤
(

1−
( || f −g||

2R

)p) 1
p
.

So, for 1 < p < ∞ every Lp space is uniformly convex considering the function g : [0,1]→ [0,1] given
by g(x) = (1− xp)

1/p .

The next result is one we will need later on in the thesis.

Lemma 2.12. Let (X ,d) be a uniformly convex metric space. Let x,y,z ∈ X and assume

d(y,x)+d(x,z)≤ d(y,z)+δd(y,x)

where δ ∈ [0,1]. Consider w, the point on the geodesic between y and z such that d(y,w) = d(y,x), then
there is some f and function such that f (s)→ 0 as s→ 0 and

d(w,x)≤ f (δ )d(y,x).

Proof. [9] By uniform convexity

d(mxw,z)≤max{d(w,z),d(x,z)}.
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Applying the hypothesis we can replace this maximum by a more manageable quantity

d(w,z) =d(y,z)−d(y,w) = d(y,z)−d(y,x)

d(x,z)≤d(y,z)−d(y,x)+δd(y,x).

Hence
d(mxw,z)≤ d(y,z)−d(y,x)+δd(y,x).

which is equivalent to
d(y,z)−d(mxw,z)≥ d(y,x)−δd(y,x).

Applying the triangle inequality,
d(y,mxw)≥ (1−δ )d(y,x).

Using uniform convexity again, we know there is some strictly decreasing function g : [0,1]→ R such
that, for R = max{d(x,y),d(y,w)}= d(x,y),

(1−δ )≤ d(mxw,y)
d(x,y)

≤ g
( d(w,x)

2d(x,y)

)
due to g being strictly decreasing we have

g−1(1−δ )≥ d(w,x)
2d(x,y)

which yields the result for f (δ ) = 2g−1(1−δ ).

We finish this section with an extension to the notion of being CAT(0). We call nonpositively curved
(space) in the sense of Busemann any geodesic metric space (X ,d) for which, given two geodesics γ1,γ2

such that γ1(0) = γ2(0), the function

g : R→ R+

t→ 1
t

d(γ1(t),γ2(t))

is increasing.

Example 2.13. Let γ1,γ2 : R→ X be two geodesics on a CAT(0) space coinciding on 0, let s < t ∈R and
consider the points x = γ1(0), y = γ1(t), z = γ2(t), a = γ1(s) and b = γ2(s). Take the respective euclidean
comparison triangle ∆x̄ȳz̄ and comparison points ā, b̄. The triangles ∆x̄āb̄ and ∆x̄ȳz̄ are similar with ratio
s/t. Therefore

1
s

d(a,b) ≤ 1
s

d(ā, b̄) =
1
s

s
t
d(ȳ, z̄) =

1
t

d(y,z).

Another important class of examples is that of uniformly convex Banach spaces. We will introduce
a last example in the form of a subsection since it has more things to be said.

2.2.1 Tree Graphs

A graph is a space X obtained from a discrete countable set V , whose elements are called vertices,
by joining some pairs of points a,b by the interval Iab = (0,1), in essence a 1-dimensional CW-complex.
From here on we suppose a and b are also in Iab to simplify notation. We denote by E the set of all
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intervals Iab which we call edges. We say that there is a path between vertices a and b if there is a the set
of vertices a = v1,v2, ...,vn = b such that Ivivi+1 ∈ E for every 0 ≤ i < n. We say a graph is connected if
there is a path between any two points. Given a connected graph X define the distance between vertices
to be

d(a,b) = min
a=v1,v2,...,vn=b

Ivivi+1∈E

#{v1,v2, · · ·vn}−1,

Equivalently, attribute to each edge length one. For general points x ∈ Iab and y ∈ Icd denote by x̂, ŷ the
distance of x and y to a and c respectively.

d(x,y) =


|x̂− ŷ| if Iab = Icd ,

min{d(a,c)+ x̂+ ŷ , d(a,d)+ x̂+1− ŷ ,

d(b,c)+1− x̂+ ŷ , d(b,d)+2− x̂− ŷ} ortherwise.

Define the degree of a vertex a, deg(a) to be the number of edges at a. For the remainder of this section
all vertices of all graphs are supposed to have finite degree greater than one.

Before studying some of the geometry of connected graphs let’s present a useful proposition which
will simplify notation and we will use henceforth without mention. A metric space is said to be proper
if every closed limited set is compact.

Proposition 2.14. Every proper metric space is complete.

Proof. Let {xn}n∈N be a Cauchy sequence. Given δ > 0 there is an order p such that for all m,n greater
than p we have d(xn,xm) < δ . For every n ≥ p we know {xn} ∈ Bδ (xp) which is closed and bounded,
hence compact. Then {xn}n≥p has a convergent subsequence which is also a converging subsequence of
{xn}n∈N.

Let xnk be the converging subsequence and x its limit. Let ε > 0, then there is N such that d(xnk ,x)<
ε/2 and d(xn,xnk)< ε/2 for every k,n > N. By triangle inequality

d(xn,x)≤ d(xnk ,xn)+d(xnk ,x)< ε,

whenever k,n > N. Hence the space is complete.

Proposition 2.15. A graph (X ,d) is a proper convex metric space.

Proof. We will only prove properness as the other two statements are usually part of topological graph
theory. Let A be a closed bounded set in X . Then it contains a finite number of edges together with their
end points or portions of edges, which are given by [0,1] or by closed subsets of it. In either case A is a
finite union of compact sets whence compact.

As we’ve seen before every convex complete metric space is a geodesic metric space, this inserts
connected graphs in the study of geodesic metric spaces. We say that a graph is a tree if it is simply
connected. A quick consequence of being simply connected is the uniqueness of paths minimizing the
distance between any two vertices, whence uniqueness of geodesics.

Proposition 2.16. Every tree is uniformly convex.

Proof. Let x,y,z∈X and mxy the unique midpoint of [xy]. Since we are working on a tree mxy ∈ [xz]∪ [yz].
Suppose mxy ∈ [xz], we have R = d(x,z) and

d(z,mxy) = d(x,z)−d(x,mxy)
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⇔
d(z,mxy)

R
= 1− d(x,y)

2R
.

Hence we obtain uniform convexity with g(δ ) = 1−δ .

Proposition 2.17. Every tree is nonpositively curved in the sense of Busemann.

Proof. Let γ1 and γ2 be two geodesic rays with the same origin on some tree. Take

t0 = sup{t : γ1(t) = γ2(t)}.

Then

d(γ1(t),γ2(t)) =

{
0 if t ≤ t0,

2t−2t0 if t > t0.

Finally

1
t

d(γ1(t),γ2(t)) =

0 if t ≤ t0,

2−2
t0
t

if t > t0,

is an increasing function so we obtain the result.

2.3 Riemannian Geometry

A Riemannian manifold is a pair (M,g) in which M is a differentiable manifold and g, usually called
a Riemannian structure, is some covariant 2-tensor such that gp is nondegenerate, symmetric and positive
definite for every p in M. In other terms, gp is a choice of inner product in TpM which varies smoothly
with p, as such, one usually denotes g = 〈·, ·〉 and gp = 〈·, ·〉p

An isometry between two Riemannian manifolds (M,g) and (N,h) is a diffeomorphism f : M→ N
such that f ∗h = g, where f ∗ denotes the pullback. A smooth map f : M→ N is called a local isometry at
p ∈M if there is a neighbourhood U ⊂M such that f |U : U → f (U) is an isometry.

Given a differentiable curve c : [a,b]→M on a Riemannian manifold we can calculate the length of
c, denoted l(c), as

l(c) =
∫ b

a
|c′(t)|dt.

The definition naturally extends to piecewise differentiable curves as summing the lengths of the portions
on which c is smooth.

An important concept on the study of manifolds is how to differentiate vector fields. This doesn’t
pose any difficulty in Rn as tangent spaces are ”connected by translations”. Transporting this idea of
”connecting” tangent spaces to a smooth manifold is not as easy but we shall now make it precise.

Definition 2.18. Given a smooth manifold M an affine connection on M is a R-bilinear map

∇ : X(M)×X(M)→ X(M)

(X ,Y )→ ∇XY

satisfying C∞-linearity on the first entry and the Leibniz rule on the second; that is,

1. ∇ f X+gY Z = f ∇X Z +g∇Y Z,

2. ∇X(Y +Z) = ∇XY +∇X Z,
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3. ∇X( fY ) = f ∇XY +X · fY ,

for every X ,Y,Z ∈ X(M) and f ,g ∈C∞(M).

Given X ,Y ∈ TpM and p ∈M then ∇XY p depends only on the values of Y along a curve to which X
is tangent at p and Xp. Effectively, considering local coordinates x : U → Rn where U is an open set in
M and writing X = ∑

n
i=1 xi

∂

∂xi and Y = ∑
n
i=1 yi

∂

∂xi on U , we have

∇XY =
n

∑
i=1

(
X · yi +

n

∑
j,k=1

Γ
i
jkx jyk

)
∂

∂xi ,

where Γi
jk : U → R, known as the Christoffel Symbols, are determined by

∇ ∂

∂x j

∂

∂xk =
n

∑
i=1

Γ
i
jk

∂

∂xi .

Locally one can uniquely determine an affine connection by a choice of Christoffel Symbols, however
to define it globally such a choice must coincide whenever charts overlap. Although being an important
tool, in this text we will avoid to calculate the Christoffel Symbols for big dimensions as they are n3

which becomes a tedious computation quite quickly.

Another important concept which is related to affine connections and we also transport to manifolds
is that of covariant derivative. A vector field V along a curve c : I→M is a map V : I→ T M such that
V (t) ∈ Tc(t)M.

Definition 2.19. Let M be a manifold equipped with some affine connection ∇. We define the covariant
derivative of a vector field V along a curve c : I → M as the unique correspondence which associates
with V another a vector field along c, denoted DV

dt such that

1. D(X +Y )
dt = DX

dt + DY
dt ,

2. D f X
dt =

d f
dt X + f DY

dt ,

3. If X(t) = Z(c(t)), for every t in I, for some Z ∈ X(M), then DX
dt = ∇c′(t)Z,

for every X ,Y defined along c and f ∈C∞(M).

A vector field V defined along a curve is said to be parallel along a curve c : I→M if DV
dt (t) = 0 for

all t in I. A curve γ is said to be a geodesic of the affine connection ∇ if Dγ ′

dt (t) = 0 for all t in I.
Note that, in local coordinates, both equations above define first and second order system of ODEs

respectively, which by Picard-Lindelöf theorem have unique solutions for given initial conditions. The
unique vector field V : I→ T M parallel along a curve c : I→ R such that V (0) = v is called the parallel
transport of v along c.

Intuitively one looks at parallel vector fields as ones which do not change throughout the curve
and at geodesics as curves with no acceleration. Such concepts become more clear when one considers
Riemannian manifolds as these have a natural choice of connection with a stronger geometrical meaning.

An affine connection ∇ on a smooth manifold M is said to be symmetric if for all X ,Y ∈ X(M)

∇XY −∇Y X = [X ,Y ],
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where [·, ·] denotes the Lie bracket. Locally symmetry is given by the Christoffel symbols being sym-
metric, that is Γi

jk = Γi
k j. If M has a Riemannian structure then ∇ is said to be compatible with the metric

if for every X ,Y,Z ∈ X(M)

X · 〈Y,Z〉= 〈∇XY,Z〉+ 〈Y,∇X Z〉.

The first immediate consequences of choosing a connection compatible with the metric is that the
angle between parallel vector fields along a curve is constant, giving us a geometric interpretation to our
intuition, and the fact that |γ ′(t)| is constant for any geodesic γ : I → R. In particular, one has that if
I = [a,b] then

l(γ) =
∫ b

a
|γ ′(t)|dt = |γ ′(t)|(b−a).

If |γ ′(t)|= 1 for every t ∈ I, then γ is said to be parametrized by arclength.

Theorem 2.20 (Levi-Civita). Every Riemannian manifold (M,g) admits a unique symmetric affine con-
nection ∇ compatible with the metric, denominated the Levi-Civita connection. Such connection may be
obtained from the Kozsul Formula

2〈∇XY,Z〉= X · 〈Y,Z〉+Y · 〈X ,Z〉−Z · 〈X ,Y 〉
−〈[X ,Z],Y 〉−〈[Y,Z],X〉+ 〈[X ,Y ],Z〉.

for X ,Y,Z ∈ X(M). Moreover, given local coordinates x : U → Rn, U ⊂M the Christoffel symbols for
this connections are

Γ
i
jk =

1
2

n

∑
l=1

gil
(

∂gkl

∂x j +
∂g jl

∂xk −
∂g jk

∂xk

)
,

where gi j = g
(

∂

∂xi ,
∂

∂x j

)
and (gi j) = (gi j)

−1.

Due to the nondegeneracy of the Riemannian metric, the tangent and cotangent bundle are isomor-
phic. This allows for an identification between vector fields and differential 1-forms. Namely given
a function f : M → R we define the gradient of f denoted grad f by d f (Y ) = 〈grad f ,Y 〉. Define the
covariant Hessian of f as the covariant 2-tensor

Hess( f ) : X(M)×X(M)→ R

(X ,Y )→ 〈∇X grad f ,Y 〉

Using compatibility of the metric we now have

X · 〈grad f ,Y 〉= 〈∇X grad f ,Y 〉+ 〈grad f ,∇XY 〉.

Notice that

X · 〈grad f ,Y 〉= X ·d f (Y ) = X ·Y · f

〈grad f ,∇XY 〉= d f (∇XY ) = ∇XY · f .

Using the equalities above we finally get

∇XY · f = X ·Y · f −Hess( f )(X ,Y ).

This gives us a new way of expressing the Levi-Civita connection. Notice however that one usually does
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identifications of the tangent spaces which may lead to some sort of loss of information, that is, we may
not be able to calculate the differentiation ∇XY . This will become more evident later on.

Let p ∈ M and consider v ∈ TpM, as we remarked above the geodesic equation ∇c′(t)c′(t) = 0 is a
second order system of ODEs. This system can be transformed into a first order system of ODEs in
the tangent bundle T M as such there is U a neighbourhood of (p,v) in T M on which geodesics are
uniquely determined by γ(0, p,v) = p and γ ′(0, p,v) = v. We can now define the exponential map as the
correspondence

exp : U →M

(p,v)→ γ(1, p,v).

Often we focus on a single point obtaining the map

expp : U ∩ ({p}×TpM)→M

v→ γ(1, p,v)

The important points about the exponential is that it is a local diffeomorphism from some open set
U ⊂ TpM containing the origin onto some open set V ⊂M and the fact its differential is the identity map.
On TpM we can now consider ε > 0 small enough so that Bε(0) is contained in U and define a normal
ball of radius ε centred at p, Bε(p), as expp(Bε(0)). We are now in condition to state one of the famous
facts of geodesics, the property of locally minimizing distances.

Theorem 2.21. 1. Let (M,〈·, ·〉) be a Riemannian manifold and p ∈ M. For every q in some normal
ball centred at p there is a unique geodesic γ : I → M joining p to q. Moreover, any other piecewise
differentiable curve c : J→M joining p to q satisfies l(c)≥ l(γ) with equality only being verified in case
c is a reparametrization of γ .

2. Conversely, given p,q ∈M if γ : I→M is a piecewise differentiable curve joining p to q such that
for every other piecewise differentiable curve c : J→M verifies l(c)≥ l(γ) then γ is a geodesic.

A Riemannian manifold is said to be geodesically complete if expp is defined on all TpM for every
p in M, in which case we can write any geodesic γ starting at p as γ(t) = expp(tγ

′(0)) for all values of
t ∈ R. On any connected Riemannian manifold we can define a distance function as

d(p,q) = inf{l(c) | c : I→M is a piecewise differentiable curve joining p to q}

which makes (M,d) a metric space whose topology coincides with the original one. With this in mind
we have our first theorem relating Riemannian manifolds to geodesic spaces.

Theorem 2.22 (Hopf-Rinow). Let M be a connected Riemannian manifold and p ∈M the following are
equivalent:

1. M is geodesically complete.

2. M is complete as a metric space.

3. M is proper.

Moreover,
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1. any of the above implies that for every q ∈M there is a geodesic γ joining p to q such that l(γ) =
d(p,q).

2. M is a geodesic metric space whose geodesics are Riemannian ones parametrized by arclength.

Proof. All assertions except for the last one are part of the usual theorem. Let γ : [0, l]→M be a geodesic
parametrized by arclength, then

d(γ(t),γ(s)) =
∫ s

t
|γ ′(x)|dx = |s− t|

For the remainder of this section all Riemannian manifolds are supposed to be connected. They
are also assumed to be complete unless more than one is presented in some statement, in which case we
specify which must be complete. We shall now focus on the notion of curvature. The definition presented
here is taken from [5], some texts prefer to present the symmetric but it is all a matter of convention.

Definition 2.23. Let (M,〈·, ·〉) be a Riemannian manifold equipped with its Levi-Civita connection ∇.
The curvature R of M is a correspondence that to every pair of vector fields X ,Y ∈ X(M) associates the
map R(X ,Y ) : X(M)→ X(M) given by

R(X ,Y )Z = ∇Y ∇X Z−∇X ∇Y Z +∇[X ,Y ]Z

Perhaps more geometrically intuitive, and actually what Riemann introduced, is the notion of sec-
tional curvature which can be viewed as the Gaussian curvature of some isometrically immersed two
dimensional submanifold.

Definition 2.24. In the same conditions as above, let X and Y be two linearly independent vector fields,
that is for every p ∈M {Xp,Yp} span some 2-dimensional subspace Π of TpM. The sectional curvature
of Π is given by

K(Π) =
〈Rp(X ,Y )Xp,Yp〉
|Xp|2|Yp|2−〈Xp,Yp〉2

The model geodesic metric spaces Mn
k play an important role in Riemannian geometry, for starters

they are Riemannian manifolds of dimension n and constant sectional curvature k. However their impor-
tance goes way beyond that, interfering on a topological level. Such is the content of the Killing-Hopf
Theorem.

Theorem 2.25 (Killing-Hopf). Let M be a complete Riemannian manifold of dimension n with constant
sectional curvature k, then the universal covering of M with the canonical metric is isometric to Mn

k .

In order to relate curvature and sectional curvature any further we need the following technical result
found in do Carmo’s Riemannian geometry book [5].

Lemma 2.26. Let M be a Riemannian manifold and p ∈M. Define the map R′ : X(M)3→ X(M) by

〈R′p(X ,Y,W ),Zp〉= 〈Xp,Wp〉〈Yp,Zp〉−〈Yp,Wp〉〈Xp,Zp〉

Then M has constant sectional curvature equal to K if and only if Rp = KR′p where R is the curvature of
M.
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An important point in the study of Riemannian geometry is how curvature influences the behaviour
of geodesics or even the topology of our space. For that we will introduce the tool of Jacobi fields. Let
γ : [0,a]→M be a geodesic in M parametrized by arclength. The expression

D2J
dt

(t)+R(γ ′(t),J(t))γ ′(t) = 0

is called the Jacobi equation and any vector field J satisfying it is called a Jacobi field. The Jacobi
equation is a second order ODE so that any Jacobi field is entirely determined by its initial conditions.
Effectively, if γ ′(0) = v and DJ

dt (0) = w∈ TvTγ(0)M, there is a curve v :]−ε,ε[→ Tγ(0)M such that v(0) = v
and v′(0) = w. The Jacobi field is given by

J(t) =
∂

∂ s

∣∣∣∣
s=0

expp(tv(s))

In essence, a Jacobi field is a variation of geodesics which allows us to study how geodesics deviate from
one another based of curvature. We say that a Jacobi field is orthogonal to the geodesic if 〈γ ′(t),J(t)〉= 0
for all t in the domain of γ .

Let X ∈ X(M), by abuse of language we will still denote by X the vector Xγ(t). Due to the lemma
above, on Riemannian manifolds of constant curvature, for orthogonal Jacobi fields,

〈R(γ ′(t),J(t))γ ′(t),X〉= K
(
〈γ ′(t),γ ′(t)〉〈J(t),X〉−〈γ ′(t),J(t)〉〈γ ′(t),X〉

)
= K〈J(t),X〉.

Using nondegeneracy we can write the Jacobi equation as

D2J
dt

+KJ = 0,

which is a linear system of ODEs whose solution is

J(t) =



sin(t
√

k)√
k

W (t) if k > 0,

tW (t) if k=0

sinh(t
√
−k)√
−k

W (t) if k < 0,

where W : I→ Tγ(t)M is a parallel vector field along γ : I→M such that 〈W (t),γ(t)〉= 0 and |W (t)|= 1
for all t ∈ I.

The following lemma is a simplification of the Rauch Comparison Theorem which applies whenever
we compare with a space of constant sectional curvature. The spirit of the result remains the same; the
rate at which geodesics spread apart may be described by sectional curvature. In positively curved spaces
geodesics tend to converge whilst spreading apart in the negative case. Before the next result, recall Dk

denoted the diameter of Mn
k .

Lemma 2.27 (Rauch). Let J be an orthogonal Jacobi vector field for some geodesic γ : [0, l] → M
parametrized by arclength, denote by K(t) the sectional curvature at γ(t) for the 2-dimensional space
spanned by {J(t),γ ′(t)}, then, whenever J(t) 6= 0,

|J|′′(t)≥−K(t)|J|(t).
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Moreover, for K(t) < k considering jk the solution to the Cauchy problem j′′k (t) = −k jk(t) with initial
conditions jk(0) = 0, j′k(0) = 1, if J(0) = 0 and |DJ

dt |(0) = 1, then for every t < min{Dk, l}

|J|(t)≥ jk(t).

Proof. [3] By compatibility with the metric one has

|J|′(t) = d
dt

〈
J(t),J(t)

〉 1
2
=

〈
DJ
dt

(t),J(t)
〉
|J(t)|−1.

Proceeding with the calculations

|J|′′(t) =
〈

D2J
dt

(t),J(t)
〉
|J(t)|−1 +

〈
DJ
dt

(t),
DJ
dt

(t)
〉
|J(t)|−1−

〈
DJ
dt

(t),J(t)
〉2

|J(t)|−3

which, upon applying the Jacobi equation and rearranging some terms, gives

|J|′′(t) =−
〈

R(γ ′(t),J(t))γ ′(t),J(t)
〉
|J(t)|−1 +

(∣∣∣∣DJ
dt

(t)
∣∣∣∣2|J(t)|2−〈DJ

dt
(t),J(t)

〉2)
|J(t)|−3

By definition of sectional curvature and applying Cauchy-Schwarz inequality to the term in bracket we
get the intended result

|J|′′(t)≥−K(t)|J|(t).

If jk is in conditions above it can be written as

jk(t) =



sin(t
√

k)√
k

if k > 0,

t if k=0,

sinh(t
√
−k)√
−k

if k < 0.

Now assume that K(t) < k, J(0) = 0 and |DJ
dt |(0) = 1, taking into account the expression of jk we can

say that for 0≤ t < Dk

(|J|′(t) jk(t)−|J|(t) j′k(t))
′ =(|J|′′(t) jk(t)−|J|(t) j′′k (t))

≥(−K(t)|J|(t) jk(t)+ k|J|(t) jk(t))

≥0.

Thus |J|′(t) jk(t)− |J|(t) j′k(t) is an increasing function being zero for t = 0, from which it is always
non-negative for t in the above domain. As such, since jk(t)> 0 for 0≤ t < Dk

|J|′(t)
|J|(t)

≥ j′k(t)
jk(t)

which, by integration, yields
|J|(t)≥ jk(t)c

for some constant c ∈ R.
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All that remains is to calculate c. By l’Hôpital’s rule we have

lim
t→0

|J|(t)
jk(t)

=
|J|′(0)
j′k(0)

= lim
t→0

|J|(t)
t

= 1,

where the last equality comes from the fact the derivative of expp at zero is the identity map.

Let p,q ∈M, we say that q is conjugate point to p if it is a critical value of expp. Equivalently there
is a Jacobi field along a geodesic γ : [0, l]→M with γ(0) = p, γ(l) = q, J(0) = J(l) = 0, and J(t) 6= 0
for all 0 < t < l.

Lemma 2.28. Let M be a Riemannian manifold of non-positive sectional curvature. Then there are no
conjugate points.

Proof. Let p ∈M, γ : [0, l]→M be a geodesic such that γ(0) = p and J a Jacobi vector field satisfying
J(0) = 0. Consider f (t) = |J(t)|2, we have

f ′(t) = 2
〈

DJ
dt

(t),J(t)
〉

f ′′(t) = 2
∣∣∣∣DJ

dt

∣∣∣∣2 +2
〈

D2J
dt

(t),J(t)
〉

= 2
∣∣∣∣DJ

dt

∣∣∣∣2−2
〈

R(γ ′(t),J(t))γ ′(t),J(t)
〉

= 2
∣∣∣∣DJ

dt

∣∣∣∣2−K(t)
(
|γ ′(t)|2|J(t)|2−〈γ ′(t),J(t)〉2

)
≥ 0.

This gives that f ′ is non decreasing. However, since f ′(0) = 0 we have f ′(t)≥ 0 for all t ≥ 0. This means
that f itself is non decreasing so f (t)≥ f (0) for t ≥ 0 and so there can be no conjugate points.

Theorem 2.29. Any local isometry f : M → N, where (M,g) is a complete Riemannian manifold and
(N,h) is a Riemannian manifold, is a covering map.

Proof. Let x ∈ N, take r = r(x) > 0 small enough so that the exponential expN
x is a diffeomorphism

mapping BTxN
r (0) in TxN onto BN

r (x) = {y∈N|dN(x,y)< r}, on which geodesics are uniquely determined
by its endpoints.

Let γ : [a,b]→M be a geodesic in M

l( f ◦ γ) =
∫ b

a
| f ◦ γ(t)′|dt

=
∫ b

a
|dγ(t) f (γ ′(t))|dt

=
∫ b

a
|γ ′(t))|dt = l(γ)

so f preserves lengths. Moreover, we can break γ into smaller curves which are still geodesics and get
mapped to geodesics in N since f is smooth upon glueing all these parts together we still get a smooth
curve which is a geodesic. In other words, f maps geodesics to geodesics.
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Let p ∈ f−1(x), note that f−1(x) has to be discrete as f is a local diffeomorphism. Due to Hopf-
Rinow theorem, since M is complete, we can say that expM

p (B
TpM
r ) = BM

r (p). With this in mind, build the
following commutative diagram

BTpM
r (0) BM

r (p)

BTxN
r (0) BN

r (x).

expM
p

dp f f

expN
x

The diagram gives f ◦ expM
p = expN

x ◦dp f where the second is a diffeomorphism, in particular injective,
hence expM

p is a diffeomorphism. Therefore f restricted to BM
r (p) is a diffeomorphism.

We now claim that f−1(BN
r (x)) = {q ∈ M | d(q, f−1(x)) < r}. If d( f (q),x) < r we can choose a

geodesic between x and f (q) of length bounded by r, which lifts to a geodesic starting at some point p
in f−1(x) and ending at q. Since f preserves distances which is given by geodesics, d(q, f−1(x)) < r.
For the other inclusion take q such that d(q, f−1(x)) < r, then there is some p in f−1(x) such that, as f
preserves lengths, d( f (q),x) = d(q, p)< r.

Let p1, p2 be two pre-images of x and suppose BM
r (p1)∩BM

r (p2) 6= /0. Take q in this intersection and
the geodesics joining p1 and p2 to q. These would have to project into two different geodesics in BN

r (x)
which is absurd. As such f−1(BN

r (x)) is the disjoint union ∪p∈ f−1(x)BM
r (p).

We finish the study of how curvature affects the behaviour of geodesics with the next two results.
The first is a classical theorem relating topology and geometry based on the previous lemma, the second
is an important immediate consequence of the first.

Theorem 2.30 (Cartan-Hadamard for Riemannian manifolds). Let (M,g) be a complete Riemannian
manifold with non-positive sectional curvature and p ∈M. Then expp : TpM→M is a covering map. In
particular, if M is simply connected, then expp is a diffeomorphism.

Proof. Since M has non-positive curvature no two points are conjugate, so expp is an immersion, it is
also surjective as M is complete. Consider in TpM the Riemannian structure h = expp ∗ g, making the
exponential a local isometry. In (TpM,h) lines through the origin are geodesics which means they are
globally defined so that (TpM,h) is complete. From the previous theorem if follows that the expp is a
covering map.

Corollary 2.31. On any complete, simply connected Riemannian manifold M of non-positive curvature
there is a unique geodesic, up to reparametrization, joining any two points.

Proof. Let γ1 : [0,1]→M, γ2 : [0,1]→M be two geodesics from p to q. That is, for some v1,v2 ∈ TpM,
γ1(t) = expp(tv1) and γ2(t) = expp(tv2). Clearly

expp(v1) = γ1(1) = q = γ2(1) = expp(v2).

Since the exponential is a diffeomorphism we get v1 = v2, which in turn implies γ1 = γ2.

The strength of both Hopf-Rinow and Cartan-Hadamard theorems, albeit the second is a consequence
of the first, is the ability to establish global properties from local ones. These theorems have counterparts
in the theory of geodesic metric spaces although we will only have a need for the metric Cartan-Hadamard
in a weaker version that we shall prove later.

Theorem 2.32 (Cartan-Hadamard for geodesic metric spaces). Let X be a complete, simply connected
geodesic metric space. If X has its curvature bounded by k ≤ 0 then X is CAT(k).
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Note that once again we are going from local to global. We are saying that being locally CAT(k)
implies that the space is globally CAT(k). We will finish this section by relating the sectional curvature
of a complete connected Riemannian manifold to its curvature as a geodesic metric space.

Lemma 2.33. Fix some x in Mn
k and let p ∈ M. Suppose that for some positive ε < Dk there exists a

diffeomorphism ϕ from Bε(x) onto some open set U ⊂M such that ϕ(x) = p, for which

1. ∀y ∈ Bε(x) and v ∈ TyM we have |dyϕ(v)| ≥ |v|,

2. |dyϕ(v)|= |v| if v is tangent to the geodesic joining x to y,

then

a. U = Bε(p),

b. ∀y,z ∈ B ε/2(x), d(ϕ(y),ϕ(z))≥ d(y,z).

Proof. [3] Let c : [0, l]→M be a piecewise differentiable curve totally contained in Bε(x) starting from
x. Clearly ϕ ◦ c is a curve in M with initial point p. Moreover, due to 1. we have,

l(ϕ ◦ c) =
∫ l

0
|ϕ ◦ c(t)′|dt

=
∫ b

a
|dc(t)ϕ(c

′(t))|dt

≥
∫ b

a
|c′(t)|dt = l(c)

with 2. implying that the equality holds if c is a geodesic. This proves that U = Bε(p).
Let y,z be in B ε/2(x). Then d(y,z) ≤ d(y,x)+ d(z,x) < ε < Dk. As such there is a unique geodesic

between y and z in the metric sense which is also a Riemannian one. By the inequality given above we
have the assertion d(ϕ(y),ϕ(z))≥ d(y,z).

Lemma 2.34. Let M be a complete Riemannian manifold of dimension n whose sectional curvature is
bounded by k and p some point in M. There is V , a neighbourhood of p, and ε > 0 so small that for
every q ∈V there exists a map ϕq : Bε(x)→M satisfying the hypothesis of Lemma 2.33.

Proof. [3] Given a small enough compact neighbourhood V of p, one can find ε > 0 such that expq :

BTqM
ε (0)→ BM

ε (q) is a diffeomorphism for every q in V . Take some linear isometry φ : TxMn
k → TqM and

define ϕq = expq ◦φ ◦ expx
−1 so that the following diagram commutes

BTxMn
k

ε (0) BTqM
ε (0)

BMn
k

ε (x) BM
ε (q).

φ

expx expq

ϕq

Let w be a vector tangent to the geodesic joining x to some y in BMn
k

ε (x)

|dyϕq(w)|= |dφ(expx
−1(y))expq

(
dexpx

−1(y)φ
(
dyexp−1

x (w)
))
|= |w|.

Lastly, let u,v ∈ TxMn
k be such that |u|= |v|= 1 and 〈u,v〉= 0. Construct, the following Jacobi fields

Jk(t) =
∂

∂ s

∣∣∣∣
s=0

expx(t(u+ sv))
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2.4. Lie Groups

J(t) =
∂

∂ s

∣∣∣∣
s=0

expq(t(φ(u)+ sφ(v)))

where s ∈]− δ ,δ [ for some small δ . By construction, applying Rauch Lemma 2.27 and the expression
of orthogonal Jacobi fields on Mn

k one has

|dexpx(tu)ϕq(Jk(t))|= |J(t)| ≥ jk(t) = |Jk(t)|.

Theorem 2.35. A complete connected Riemannian manifold is of curvature bounded by k as a geodesic
metric space if its sectional curvature is bounded by k.

Proof. Let M be a Riemannian manifold of sectional curvature bounded by k and p ∈ M. By the pre-
vious lemma we can find ε small enough so that for any q ∈ B ε/4(p) there is ϕq : Bε(x)→M satisfying
conditions from Lemma 2.33.

Let a,b,c ∈ B = B ε/4(p). Then we have

d(a,b)+d(a,c)+d(b,c)≤ 3ε

2
< 2Dk,

so there exist comparison triangles in Mn
k for the triangle ∆abc. Take ϕa : Bε(x)→ Bε(a). We can

construct the comparison triangle so that ā = ϕ−1
a (a), b̄ = ϕ−1

a (b) and c̄ is any point making ∆̄āb̄c̄ a
comparison triangle for ∆abc. Let i ∈ [ab], j ∈ [ac] and consider ī ∈ [āb̄] and j̄ ∈ [āb̄] their respective
comparison points. Take also d̄ = ϕ−1

a (c) and denote by k̄ the point ϕ−1
a ( j).

Notice
dk(d̄, b̄) ≤ d(ϕa(d̄),ϕa(b̄)) = d(c,b) = dk(c̄, b̄).

By the k-law of cosines ∠d̄āb̄ < ∠c̄āb̄. Using the k-law of cosines again

d(i, j) ≤ d(ϕa(i),ϕa( j)) = dk(ī, k̄) ≤ dk(ī, j̄),

that is, B is CAT(k). Therefore M is of curvature bounded by k as a metric space.

The converse to this theorem, although true, goes beyond our goals in this text. The equivalence is
however quite important from an intuition standpoint as it gives us a more geometrical interpretation to
sectional curvature since triangles are conceptually more natural than affine connections.

Theorem 2.36. Let M be a complete, connected, simply connected Riemannian manifold of nonpositive
sectional curvature, then M is a CAT(0) space.

This follows with little effort from the corollary to Cartan-Hadamard on Riemannian manifolds and
repeating the argument presented at the end of the previous proof.

2.4 Lie Groups

Lie Groups arise naturally as groups of isometries of Riemannian manifolds. Another important
aspect of Lie Groups is the idea that the global object can be studied by some local linearisation, the Lie
Algebra. In the present text we won’t be interested in the Lie Algebras but rather on the whole group,
both acting as isometries and as Riemannian manifolds themselves. A Lie Group G is a group with some
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Chapter 2. Geodesic Metric Spaces

smooth structure such that the two agree, that is, the group operation and inverse maps are smooth. In
fact, one needs only to check that the map

q : G×G→ G

(g,h)→ gh−1

is smooth.
On any Lie Group G the translations from the left

Lg : G→ G

h→ gh

and translations from the right Rx given analogously are diffeomorphisms.

Example 2.37. Classical examples of Lie Groups include (R,+) and (S,×) where we identify S with the
complex numbers of modulus one whilst × is the usual operation. Another important class of examples
are groups of matrices such as:

O(n) ={A ∈Mn×n(R) : AAT = I},
GL(n,R) ={A ∈Mn×n(R) : det(A) 6= 0},
SL(n,R) ={A ∈Mn×n(R) : det(A) = 1}.

A Riemannian structure on G for which Lx are isometries is said to be left invariant. Analogously
we define right invariant if Rx are isometries and bi-invariant in the case we have both. Without loss of
generality, suppose we are give some inner product 〈·, ·〉e on TeG, where e denotes the identity, then we
can extend this inner product easily to a left invariant Riemannian structure by taking at g ∈ G

〈u,v〉g = 〈dgLg−1(u),dgLg−1(v)〉e, ∀u,v ∈ TgG.

Let G be a group and M any set. We say that G acts on M if there is a mapping µ : G×M→ M,
usually denoting µ(g,x) = g · x, such that e · p = p for all p in M and g · (h · p) = (gh) · p for all g,h in G
and p in M.

Given a p ∈ M define the orbit of p as G · p = {g · p | g ∈ G}. If the orbit G · p consist of only p
then p is said to be a fixed point of the action. If for some p ∈M the orbit of p is the whole M then the
action is said to be transitive. The stabilizer Gp is the group formed by the elements which fix p, that is
Gp = {g ∈ G | g · p = p}. The action is called free if every stabilizer contains only the identity. Finally
an action is said to be proper if the map

G×M→M×M

(g, p)→ (g · p , p)

is proper.
If G is a Lie Group and M is a smooth manifold we say that G acts smoothly on M if the action

µ : G×M→M is smooth. From this point we work with such actions even if the definitions/concepts at
hand are easily extended to topological or general groups.

The space of all orbits, called orbit space is denoted M/G. This notation is motivated from the fact
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that p∼ q⇔ q ∈ G ·q defines a equivalence relation for which orbits are equivalence classes.

Theorem 2.38. Let M be a smooth manifold and G a Lie group acting freely and properly on M. Then
M/G is a smooth manifold of dimension dimM−dimG. Moreover, the quotient map π : M→M/G is a
submersion.

The theorem above is already interesting when G is a discrete group (trivially a Lie Group). In this
setting, the quotient map is a local diffeomorphism, moreover, it is in fact a covering map and G is the
group of deck transformations of M. Recall that a diffeomorphism f : M→M is a deck transformation
if π ◦ f = π and the group of all deck transformations is isomorphic to the fundamental group of M/G.

As an example consider Sn for n ≥ 2 and the action given by G = {id,−id}. This action is clearly
proper and free, thus Sn/G is a n-dimensional manifold, known as the real projective space RPn, whose
fundamental group is Z2.

Suppose now that M is a Riemannian manifold and G some discrete subgroup of the group of isome-
tries, Isom(X), acting properly and freely on M. Since π is a local diffeomorphism its differential at any
point is in fact a linear isomorphism. Now define on M/G the Riemannian structure that makes π a local
isometry, that is, given p ∈M/G choose p̄ in the pre-image of p and define

〈u,v〉p = 〈(dp̄π)−1(u),(dp̄π)−1(v)〉p̄.

for all u,v in Tp(M/G). From construction G is transitive on π−1(p), that is, given some other q̄∈ π−1(p)
there is g in G such that g(q̄) = p. Consequently, as G is the group of deck transformations, the definition
above is independent of the p̄ chosen.

We finish this section with a result on homogeneous spaces which we will need later. A homogeneous
space is simply a manifold M with some Lie group G acting transitively on it.

Theorem 2.39. Let G be a Lie Group and M some set such that G acts on M transitively. If for some
p ∈M the stabilizer of p, Gp, is closed in G, then there is a unique smooth structure on M with respect
to which the action is smooth. Moreover, M is diffeomorphic to the quotient G/Gp.

2.5 Hyperbolic Plane Geometry

2.5.1 Upper-Half Plane Model

Throughout the text, the content of this section will be used as a privileged medium of showcasing
examples. Hyperbolic geometry is a classical and heavily studied topic in mathematics, its advent in-
scribes itself in the thought revolution of the 19th century which spread through all areas of knowledge.
Hyperbolic geometry appeared as a breakthrough from the shackles of Euclid’s parallel postulate, even
though the first semblances of hyperbolic geometry had appeared earlier due to attempts of proving the
Euclid statement. Any attempt to prove the Euclid’s axiom was in fact doomed to fail as it was later
proved to be independent of the other axioms. The fundamental ideals behind hyperbolic geometry and
the surface studies of Gauss were validated and came to their full form by the work of Riemann which
we presented in a previous section. We choose to make a presentation based on what we’ve seen so far,
however hyperbolic geometry can be introduced in independent fashion, we refer to [2] for a beautiful
approach to the matter.

Consider the set H = {(x,y)∈R2 | y> 0}which we identify with the invertible affine maps h :R→R
given by h(t) = yt + x and transport the operation coming from composition and the corresponding
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inverse, that is

m : H×H→ H i : H → H(
(x,y),(z,w)

)
→ (yz+ x , yw)

(
x,y)→

(
− x

y
,

1
y

)
.

H is an open set of R2 so it inherits a differentiable structure for which both these maps are smooth,
that is, H is a Lie Group.

The left translations L(x,y) : H → H are given by L(x,y)(z,w) = (yz + x , yw), thus, in the natural
coordinates,

d(z0,w0)L(x,y) =

∂yz+ x
∂ z

∂yw
∂ z

∂yz+ x
∂w

∂yw
∂w


(z0,w0)

=

[
y 0
0 y

]
= yI

Consider the euclidean norm on T(0,1)H, the left invariant metric on H can be given by

〈u,v〉(x,y) =〈d(x,y)L(− x
y ,

1
y )
(u) , d(x,y)L(− x

y ,
1
y )
(v)〉(0,1)

=
〈1

y
u,

1
y

v
〉
(0,1)

=
1
y2 〈u,v〉(0,1),

in tensor notation, g = 1
y2

(
dx⊗dx+dy⊗dy

)
.

Using the Levi-Civita theorem to calculate the Christoffel symbols, Γ2
11 = 1/y, Γ1

12 = Γ1
21 = Γ2

22 =

−1/y and Γ1
11 = Γ1

22 = Γ2
12 = Γ2

21 = 0 and applying the symbols to the geodesic equations

d2xi

dt2 +
2

∑
j,k=1

Γ
i
jk

dx j

dt
dxk

dt
= 0, i = 1,2,

we get the following system of ODEs
d2x
dt2 −

2
y

dx
dt

dy
dt

= 0,

d2y
dt2 +

1
y

[(dx
dt

)2
−
(dy

dt

)2]
= 0.

Gladly the geodesics we are looking for are well known which will facilitate solving the system above.
Start by exploring the case dx/dt = 0, for which we can rewrite the system as

d2x
dt2 = 0,

d2y
dt2 −

1
y

(dy
dt

)2
= 0.

The solutions are of the form (a,bet) where a and b are some constants. These solutions correspond to
vertical lines. For the other case consider the expression

y
dy
dt

(dx
dt

)−1
+ x.
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Differentiating the above and using the system,

(dy
dt

)2(dx
dt

)−1
+ y

d2y
dt2

(dx
dt

)−1
− y

dy
dt

d2x
dt2

(dx
dt

)−2
+

dx
dt

=
(dy

dt

)2(dx
dt

)−1
− y

1
y

[(dx
dt

)2
−
(dy

dt

)2](dx
dt

)−1
+ y

dy
dt

[2
y

dx
dt

dy
dt

](dx
dt

)−2
+

dx
dt

=
(dy

dt

)2(dx
dt

)−1
− dx

dt
+
(dy

dt

)2(dx
dt

)−1
+2
(dy

dt

)2(dx
dt

)−1
+

dx
dt

=0.

Therefore
y

dy
dt

+ x
dx
dt

= c1
dx
dt

,

so the solutions must verify the circle equation (x− c)2 + y2 = k2, for some constants c and k. These
semicircles shall be parametrized by (c+ k tanh(t), k

cosh(t)).
When working with hyperbolic geometry it is natural to work in a complex setting, namely we do a

natural identification between H and H= {x+ iy | y > 0},

f : H→ H

z→
(z+ z̄

2
,

z− z̄
2i

)
.

Doing the pullback h = f ∗g we obtain h = −4
dzdz̄

(z− z̄)2 . We will only focus on the real part without

further mention or changing the notation as that is where our tensor lies.
Let a,b,c,d ∈ R, any complex map of the form,

f (z) =
az+b
cz+d

,

where ad−bc 6= 0 is called a Möbius transformation; it is customary to extend the map to the Riemann
sphere C∪{∞}, by setting x/0 = ∞. For the next arguments we could only ask for ad−bc to be positive,
however we will assume ad−bc = 1 for simplicity. This is possible, as we can divide each entry in the
expression above by

√
ad−bc. Notice

2Im( f (z)) = f (z)− f (z)

=
az+b
cz+d

− az̄+b
cz̄+d

=
z− z̄
|cz+d|2

=2
Im(z)
|cz+d|2

.

As such f maps H onto itself, moreover, it does so bijectively and allows us to extend the domain to
∂H= R∪{∞} in the natural way. Finally notice

h(dz f (u),dz f (v)) =−4
f ′(z) f ′(z)dz(u)dz̄(v)

( f (z)− f (z))2
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=−4

dz(u)dz̄(v)
|cz+d|4( z− z̄
|cz+d|2

)2

=−4
dz(u)dz̄(v)
(z− z̄)2

=h(u,v),

that is, f is an isometry. In fact, all isometries preserving orientation are of this form, which leads to an
identification between Isom+(H) typically called Möbius transformations, Möb(H), and PSL(2,R) =
SL(2,R)/∼ where A∼ B⇔ A =−B. To obtain all isometries we just need to add some reflection on a
geodesic.

Consider now points of the form ia and ib in H, then the geodesic joining them is given by γ(t) = iet ,
t ∈ [log(a), log(b)].

d(ia, ib) =
∫ log(b)

log(a)
h(γ ′(t),γ ′(t))dt

=
∫ log(b)

log(a)
−4

iet(−iet)

(iet + iet)2 dt

=
∫ log(b)

log(a)
1dt

= log(b/a)

To find the distance between two arbitrary points simply take an isometry that sends the geodesic
containing them to the imaginary axis and use the above. Effectively if two points are in some vertical
line Re(z) = a then use the transformation f (z) = z−a. If we consider a semi-circle with real end points
a < b, then we use the map

f (z) =
z−a
z−b

together with the easily verifiable expression, | f (z)− f (w)|= |z−w|| f ′(z)|1/2 | f ′(w)|1/2 to get

coshd(z,w) = 1+
|z−w|2

2Im(z)Im(w)
.

2.5.2 Poincaré Disk Model

Up until this point we’ve studied the upper half-plane model. We will now be interested in another
model for the same geometry; or goal is to be able to visualize the entire space without any loss of
information. To do so consider the complex open disk of radius 1, D = {z ∈ C | |z| < 1}, and its usual
boundary ∂D = {z ∈ C | |z| = 1}. One could do an independent study of hyperbolic geometry on the
disk, however, it makes for a more concise presentation to consider the diffeomorphisms

i : D→H i−1 :H→ D

z→ z+1
iz− i

z → iz+1
iz−1

and transport all the information to D via the pullback i∗h, hence making these maps isometries. The
pair (D, i∗h) is called the Poincaré Disk Model.

43



2.6. Symmetric Positive Definite Matrices

Geodesics in this model are the arcs of circles meeting ∂D orthogonally and its diameters. The
isometries preserving orientation, Möb(D), are given by maps of the form

ϕ : D→ D

z→ αz+β

β̄ z+ ᾱ

such that α,β ∈ C and |α|2− |β |2 > 0, which again we can normalize to be one. Finally the distance
can be computed, for a point in the real axis

d(0,x) = log
(1+ x

1− x

)
and for generic points

d(z,w) = log
( |1− z̄w|+ |z−w|
|1− z̄w|− |z−w|

)
.

Figure 2.2: On the left we have the upper half plane and on the right we have the Poincaré Disk, both with their respective
geodesics

Both the upper-half plane and the Poincaré disk models are simply connected spaces of curvature
minus one, a third model of plane hyperbolic geometry was presented before, M2

k . It can be proven
that discrete subgroups of Möb(H), equivalently Möb(D), called Fuchsian Groups, act properly and
freely by isometries, which, due to considerations from the previous section, gives us a way to look at
Killing-Hopf theorem in the 2-dimensional case for constant negative curvature.

2.6 Symmetric Positive Definite Matrices

The space of symmetric positive definite matrices is a classical example in the study of symmetric
spaces. All the results presented in this section are fairly known however we do a independent presenta-
tion using all the results obtained previously. We are specially interested in constructing the space above
by studying its geodesics and curvature. With that in mind the section is divided in three subsections
regarding each topic. The later two subsections rely heavily on calculations which unfortunately were
unavoidable.

2.6.1 Construction of a Riemannian Structure

Denote by Sym+(n) the set of real symmetric positive definite n× n matrices. In a comprehensive
way Sym+(n) consists of the real matrices such that X = XT and 〈Xv,v〉 is positive for all non-zero
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v ∈Mn×1(R), where 〈·, ·〉 denotes the euclidean product. Before starting with a proper construction for
the Riemannian structure we present a first result in the direction of using Cartan-Hadamard results.

Theorem 2.40. Sym+(n) is convex, hence simply connected.

Proof. Let X ,Y ∈ Sym+(n), v ∈ Rn\{0} and t ∈ [0,1], then〈
(tX +(1− t)Y )v,v

〉
=
〈
tXv+(1− t)Y v,v

〉
=t
〈
Xv,v

〉
+(1− t)

〈
Y v,v

〉
≥0.

It is well known that S ∈ Sym+(n) if and only if it admits an orthonormal basis of eigenvectors with
corresponding real positive eigenvalues. One usually writes this as S = QDQT where Q ∈ O(n) and
D ∈ Diag(n,R+). The following proposition will give us another way to express a matrix in Sym+(n).

Proposition 2.41. A matrix S is in Sym+(n) if and only if it is of the form AAT for some A ∈ GL(n,R).

Proof. Let S ∈ Sym+(n), then S = QDQT in the conditions above. Consider the diagonal matrix D
1/2

whose entries are the square roots of the entries of D. We get that S = QD
1/2(QD

1/2)T . Conversely, a
matrix of the form AAT , with A invertible, is symmetric so it admits orthonormal basis of eigenvectors
with corresponding real eigenvalues which remain to be proven positive. Now QDQT = AAT , implies
D = QT A(QT A)T which yields that all entries of D can’t be negative. They can’t be zero since A is
invertible.

Now let A ∈ GL(n,R) and S ∈ Sym+(n), as S = BBT for some B ∈ GL(n,R), we have that ASAT =

AB(AB)T which is still in Sym+(n). This tells us that the action

∗ : GL(n,R)×Sym+(n)→ Sym+(n)

(A,S)→ A∗S := ASAT

is well defined.

Proposition 2.42. There is a unique smooth structure on Sym+(n,R) that makes the action ∗ smooth.

Proof. By theorem 2.39 we need only to show that the action is transitive and some stabilizer is closed.
Let S ∈ Sym+(n), consider the invertible matrix S

1/2 = QD
1/2QT . We have that (S

1/2)−1 ∗ S = I so the
action is transitive. The stabilizer of the identity is clearly given by the set of orthogonal matrices O(n)
which is closed in GL(n,R), so we get our result.

We could have obtained a smooth structure on Sym+(n) in a simpler way by noticing that it is an open
set of Sym(n); however, this action will now allow us to endow Sym+(n) with a Riemannian Structure
and describe its isometries.

For the following computations start by noting that the map

ϕA : Sym+(n)→ Sym+(n)

S→ A∗S
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for A ∈ GL(n,R) is linear, meaning we can identify its differential at any point with itself,

ϕA : Sym(n)→ Sym(n)

S→ A∗S

having in mind Sym(n) are identifications for the tangent spaces of Sym+(n).
Next consider the Frobenius inner product 〈A,B〉I = tr(AT B) = tr(AB) on Sym(n)' TISym+(n). Let

A ∈ Sym+(n), we have A = A
1/2 ∗ I, so we can transport the Frobenius inner product across the manifold

by defining directly on TASym+(n) the inner product

〈X ,Y 〉A := 〈A−1/2 ∗X ,A−
1/2 ∗Y 〉I =

= tr(A−
1/2XA−

1/2A−
1/2YA−

1/2) =

= tr(A−1XA−1Y )

Proposition 2.43. The inner product 〈·, ·〉 defined above gives a Riemannian structure for Sym+(n),
moreover, ϕA and the map given by i(S) = S−1 are isometries of (Sym+(n),〈·, ·〉) .

Proof. Note first that 〈·, ·〉I is invariant by O(n), for M ∈ O(n), we have, for all X ,Y ∈ Sym(n)

〈M ∗X ,M ∗Y 〉I = tr((MXMT )T MY MT )

= tr(MXMT MY MT )

= tr(MXY MT )

= tr(MT MXY )

= tr(XY ) =

= 〈X ,Y 〉I

Suppose there is some C ∈ GL(n,R), other than A
1/2 such that C ∗ I = A, then C−1A

1
2 ∈ O(n) and, since

〈·, ·〉I is invariant by O(n), we have that 〈·, ·〉 is independent of the choice of transport, that is, it is well
defined. Smoothness also follows directly as the trace is linear and A−1XA−1Y depends smoothly on A.

It remains to show the statement about the isometries. For ϕA

ϕA
∗〈X ,Y 〉B = 〈A∗X ,A∗Y 〉A∗B

= 〈AXAT ,AYAT 〉ABAT

= tr((ABAT )−1AXAT (ABAT )−1AYAT )

= tr((AT )−1B−1A−1AXAT (AT )−1B−1A−1AYAT )

= tr(B−1XB−1Y )

= 〈X ,Y 〉B

The differential of i at a matrix B ∈ Sym+(n) is the map

dBi : Sym(n)→ Sym(n)

X →−B−1XB−1

This follows from the fact that I = id(A)i(A). Differentiating both sides at B we have, for every X ∈
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TBSym+(n)
0 = dBid(X)i(B)+ id(B)dBi(X),

which can be rewritten as dBi(X) =−i(B)dBid(X)i(B) =−B−1XB−1.
Going back to the problem at hand, a straightforward computation gives

i∗〈X ,Y 〉B = 〈dBi(X),dBi(Y )〉i(B)
= 〈B−1XB−1,B−1Y B−1〉B−1

= tr(BB−1XB−1BB−1Y B−1)

= tr(B−1XB−1Y )

= 〈X ,Y 〉B.

Remark. This construction can be done whenever we have a transitive action of a Lie Group G with
some compact stabilizer H. The homogeneous space G/H is a Riemannian Manifold with the action of
G describing its isometries. Compactness of H ensures the existence of an invariant inner product so that
the argument above can be used.

2.6.2 Connection, Geodesics and Metric

The first step into analysing the geometry of Sym+(n) is to find the Levi-Civita connection so we
can then proceed to find the geodesics and geodesic distance. To do so, use the Koszul Formula; for
X ,Y,Z ∈ X(Sym+(n)), and to ease notation write XA = X , YA = Y and ZA = Z,

2〈∇XY,Z〉= X · 〈Y,Z〉+Y · 〈X ,Z〉−Z · 〈X ,Y 〉
−〈[X ,Z],Y 〉−〈[Y,Z],X〉+ 〈[X ,Y ],Z〉.

Denoting by · the derivation associated with a vector field,

X · 〈Y,Z〉A =tr(−A−1XA−1YA−1Z + A−1X ·YA−1Z

−A−1YA−1XA−1Z + A−1YA−1X ·Z)
Y · 〈X ,Z〉A =tr(−A−1YA−1XA−1Z + A−1Y ·XA−1Z

−A−1XA−1YA−1Z + A−1XA−1Y ·Z)
−Z · 〈X ,Y 〉A =tr(A−1ZA−1XA−1Y − A−1Z ·XA−1Y

+A−1XA−1ZA−1Y − A−1XA−1Z ·Y )

and

−〈[X ,Z],Y 〉A = tr(−A−1X ·ZA−1Y + A−1Z ·XA−1Y )

−〈[Y,Z],X〉A = tr(−A−1Y ·ZA−1X + A−1Z ·YA−1X)

〈[X ,Y ],Z〉A = tr(A−1X ·YA−1Z − A−1Y ·XA−1Z).
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Putting these together we get

〈∇XY,Z〉A =tr(A−1X ·YA−1Z− 1
2

A−1XA−1YA−1Z

− 1
2

A−1YA−1XA−1Z)

=tr
(

A−1(X ·Y − XA−1Y +YA−1X
2

)
A−1Z

)
.

Finally, the nondegeneracy of 〈·, ·〉 gives

(∇XY )A = X ·Y − XA−1Y +YA−1X
2

.

To study the geodesics of our space start by considering the problem of joining I to some other matrix
A in Sym+(n) by a geodesic which we claim to be γ(t) = At , t ∈ [0,1]. Note that, since A is symmetric
positive definite, log(A) is well defined. Proceeding with the calculation one has

∇γ ′(t)γ
′(t) = γ

′′(t)− γ
′(t)γ(t)−1

γ
′(t)

= At log(A)2−At log(A)A−tAt log(A)

= At log(A)2−At log(A)2 = 0.

For the general case joining P to Q in Sym+(n) simply take the isometry that sends P to I, that is, ϕP− 1/2
,

note that it sends Q to P−
1/2QP−

1/2 . As such, the curve γ(t) = P
1/2(P−

1/2QP−
1/2)tP

1/2 , t ∈ [0,1] is a
geodesic joining P to Q. We shall prove later that there are no other geodesics.

As γ(t) is a geodesic for the Levi-Civita connection we have that |γ ′(t)| is constant. This facilitates
the calculations associated with the distance.

d(P,Q) =
∫ 1

0
|γ ′(t)|dt =

= |γ ′(0)|=

= | d
dt

∣∣∣
t=0

(P
1/2(P−

1/2QP−
1/2)tP

1/2)|

= |(P1/2 log(P−
1/2QP−

1/2)P
1/2)|

= tr
1/2(log2(P−

1/2QP−
1/2))

=

[ n

∑
i=1

log2(λi(P−1Q))

]1/2

, (2.1)

where λi(P−1Q) are the eigenvalues of P−1Q. From these calculations we can also assert that geodesics
parametrized by arclength joining I to A are given by

γ(t) = At/tr
1/2 (log2(A)).

It is customary to write the geodesics emanating from I as γ(t) = etS, where S is a symmetric matrix with
tr(S2) = 1.
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2.6.3 Curvature

The next step in the study of our space is giving an expression for the curvature and sectional curva-
ture of Sym+(n). Let X ,Y,Z ∈ X(Sym+(n)) and A ∈ Sym+(n), remember

R(X ,Y )Z = ∇Y ∇X Z−∇X ∇Y Z +∇[X ,Y ]Z,

and again write XA = X , YA = Y and ZA = Z,

∇Y ∇X Z =∇Y

(
X ·Z− XA−1Z +ZA−1X

2

)
=Y ·

(
X ·Z− XA−1Z +ZA−1X

2

)
− 1

2
YA−1

(
X ·Z− XA−1Z +ZA−1X

2

)
− 1

2

(
X ·Z− XA−1Z +ZA−1X

2

)
A−1Y

=Y ·X ·Z− Y · (XA−1Z)+Y · (ZA−1X)+YA−1X ·Z +X ·ZA−1Y
2

+
YA−1XA−1Z +YA−1ZA−1X +XA−1ZA−1Y +ZA−1XA−1Y

4

=Y ·X ·Z− Y ·XA−1Z−XA−1YA−1Z +XA−1Y ·Z +Y ·ZA−1X
2

− −YA−1ZA−1X +YA−1Z ·X +YA−1X ·Z +X ·ZA−1Y
2

+
YA−1XA−1Z +YA−1ZA−1X +XA−1ZA−1Y +ZA−1XA−1Y

4
.

Analogously

−∇X ∇Y Z =−X ·Y ·Z +
X ·YA−1Z−YA−1XA−1Z +YA−1X ·Z +X ·ZA−1Y

2

+
−XA−1ZA−1Y +XA−1Z ·Y +XA−1Y ·Z +Y ·ZA−1X

2

− XA−1YA−1Z +XA−1ZA−1Y +YA−1ZA−1X +ZA−1YA−1X
4

.

Finally

−∇[X ,Y ]Z =− [X ,Y ]Z +
[X ,Y ]A−1Z +ZA−1[X ,Y ]

2
=

=−X ·Y ·Z +Y ·X ·Z +
X ·YA−1Z−Y ·XA−1Z +ZA−1X ·Y −ZA−1Y ·X

2
,

and, after tedious calculations, we end up with a neat expression for the curvature,

2R(X ,Y )Z = XA−1YA−1Z +ZA−1YA−1X−YA−1XA−1Z−ZA−1XA−1Y.

For X and Y , orthonormal vectors in TASym+(n) spanning some 2-dimensional subspace Π,

K(Π) =〈R(X ,Y )X ,Y 〉
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=
1
2

〈
(XA−1YA−1X +XA−1YA−1X−YA−1XA−1X−XA−1XA−1Y ),Y

〉
=

1
2

tr(A−1XA−1YA−1XA−1Y )+
1
2

tr(A−1XA−1YA−1XA−1Y )−

− 1
2

tr(A−1YA−1XA−1XA−1Y )− 1
2

tr(A−1XA−1XA−1YA−1Y )

=tr
(
(A−

1/2XA−
1/2A−

1/2YA−
1/2)2)− tr

(
(A−

1/2XA−
1/2)2(A−

1/2YA−
1/2)2)

Simplifying the expression using the properties of the trace we finally arrive at

K(Π) = tr
(
(A−1XA−1Y )2)− tr

(
(A−1X)2(A−1Y )2).

Theorem 2.44. All sectional curvatures of Sym+(n) are nonpositive, hence it is a CAT(0) space.

Proof. All that is left to show is

tr
(
(A−1XA−1Y )2)− tr

(
(A−1X)2(A−1Y )2)≤ 0.

Start by rewriting the curvature formula obtaining

tr
(
(A−

1/2XA−1YA−
1/2)2)− tr

(
(A−

1/2XA−
1/2)2(A−

1/2YA−
1/2)2)≤ 0.

Applying the change P = A−
1/2XA−

1/2 and Q = A−
1/2YA−

1/2 we have that both P and Q are symmetric
matrices and we soften our notation to

tr
(
(PQ)2)− tr(P2Q2)≤ 0.

Consider the matrix (PQ−QP)2/2, we can readily check that

tr
((PQ−QP)2

2

)
= tr

(
(PQ)2)− tr(P2Q2).

However X = PQ−QP is antisymmetric so tr(X2) = tr(−XT X) =−tr(XT X)≤ 0 which concludes our
proof.

The uniqueness of geodesics between any two points now also follows from the corollary to Cartan-
Hadamard Theorem. This concludes our treatment of the space of symmetric positive definite matrices.

2.7 Horofunctions

Suppose X is a non-compact complete proper metric space. Our goal in this section is to give a com-
pactification for X based on how geodesic rays behave towards ”infinity”. Such a compactification will
have nice properties and geometric interpretation for CAT(0) spaces. Horofunctions can be introduced
in various ways, however the core idea remains the same; geodesics displaying the same asymptotic be-
haviour are identified, that is, two geodesic rays c,c′ : [0,+∞[→ X are equivalent if d(c(t),c′(t))≤ k for
all t ≥ 0.

The geometrical intuition given before is of major importance, we will however take a different
approach to horofunctions so we can use powerful results to lessen the hardships along the road. To do
so we will closely follow [11] and [3], focusing mainly on the first. Fix an ”origin” x0 in X and define,
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for every x in X the continuous map

Dx : X → R

z→ d(z,x)−d(z,x0),

and the map

i : X →C(X)

x→ Dx

where C(X) denotes the space of continuous maps from X to R.

Let us start by noticing that for every x ∈ X , Dx(x0) = 0, that is, i(X) is contained in the set of
continuous functions such that f (x0) = 0, which is homeomorphic to C(X)/R, where functions differing
by a constant are identified. This gives us a resemblance to the asymptotic geodesics.

Notice also that

d(Dx(y),Dx(z)) = |d(y,x)−d(x0,x)−d(z,x)+d(x0,x)|
= |d(y,x)−d(z,x)|
≤ d(y,z),

that is, Dx is 1-Lipschitz.

Definition 2.45. Let F= { fα : X→Y}α∈A be a family of continuous maps between metric spaces. Then
F is said to be:

1. pointwise precompact if for every x in X the set { fα(x) : α ∈ A} is compact;

2. equicontinuous if for every x in X and δ > 0 there is some positive ε such that for all α in A,
whenever dX(x,y)< ε one has dY ( fα(x), fα(y)< δ ;

3. uniformly equicontinuous if for every δ > 0 there is some positive ε such that for all α in A, for
all x,y ∈ X verifying dX(x,y)< ε , one has dY ( fα(x), fα(y))< δ ;

4. uniformly bounded if there is some x0 ∈ X and M some constant such that for every x ∈ X and
α ∈ A one has dx(x0, fα(x))< M.

Theorem 2.46 (Ascoli-Arzelà). Let X be a compact metric space, Y a metric space and F= { fα : X →
Y}α∈A a family of continuous functions. Then the following are equivalent:

1. { fa : a ∈ A} is precompact in C(X ,Y );

2. F is pointwise precompact and equicontinuous;

3. F is pointwise precompact and uniformly equicontinuous;

As each Dx is 1-Lipschitz we have that {Dx : x ∈ X} is equicontinuous and uniformly bounded on
compact sets of X . Since X is proper, bounded closed sets are compact, whence by Ascoli-Arzelà every
sequence {Dxn} has a subsequence which converges uniformly on compact sets. Consider X̂ = i(X) with
the topology of uniform convergence on compact sets. We have seen so far that X̂ is compact.
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Proposition 2.47. The space of continuous functions C(X) with the topology of uniform convergence on
compact sets is metrizable.

Proof. Consider the following map

d : C(X)×C(X)→ R

( f ,g)→
+∞

∑
i=1

1
2i arctan

(
max

x∈Bi(x0)
| f (x)−g(x)|

)
.

Since arctan is bounded it is well defined. The fact that d is positive definite and symmetric are trivial
while the triangle inequality follows directly from

arctan(x+ y)≤ arctan(x)+ arctan(y)

whenever x and y are positive numbers, whence d is a metric.
Let { fα}α∈A be a net converging uniformly on compact sets to some f , that is, for every compact set

K and δ > 0, there is some β ∈ A such that for every γ � β we have, for every x in K, | fα(x)− f (x)|< δ .
Let ε > 0 and choose δ = tan(ε) then we have,

d( fγ , f ) =
+∞

∑
i=1

1
2i arctan

(
max

x∈Bi(x0)
| fγ(x)− f (x)|

)
≤

+∞

∑
i=1

1
2i arctan (tan(ε))

=
+∞

∑
i=1

ε

2i

= ε

Therefore uniform convergence on compact sets implies convergence on the metric.
For the converse, let { fn}n∈N be a sequence converging to some f in (C(X),d) and suppose there is

a compact set K ⊂ Bm(x0) such that for some x ∈ K one can take some positive ε making it so for every
p ∈ N there is a q greater than p for which d( fq, f )> ε . Then

d( fq, f ) =
+∞

∑
i=1

1
2i arctan

(
max

x∈Bi(x0)
| fq(x)− f (x)|

)
≥ 1

2m arctan(ε)

> 0.

Hence reaching an absurd, so { fn}n∈N converges to f uniformly on compact sets.

Proposition 2.48. Let X be a proper geodesic space, then i : X → i(X) is a homeomorphism.

Proof. Start by noticing that given z ∈ X one has

Dx(z) = d(x,z)−d(x,x0)≥−d(x0,x) = Dx(x)

with equality only for z = x, that is, x is the only point minimizing Dx. Clearly this implies injectivity.
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For continuity, let xn −−−−→
n→+∞

x, then

|Dxn(z)−Dx(z)|= |d(xn,z)−d(xn,x0)−d(x,z)+d(x,x0)|
≤ |d(xn,z)−d(x,z)|+ |d(xn,x0)−d(x,x0)|
≤ 2d(xn,x)

which goes to zero as n grows.
For continuity of the inverse, i−1, let Dxn −−−−→n→+∞

Dx uniformly on compact sets. Suppose there is some

subsequence nk for which d(xnk ,x)≥ ε . Take ynk on the geodesic segment [xxnk ] such that d(x,ynk) =
ε/2.

Then

Dxnk
(ynk) = d(xnk ,ynk)−d(xnk ,x0)

= d(x,xnk)−d(x,ynk)−d(xnk ,x0)

= Dxnk
(x)− ε/2.

Form construction, ynk belong to some compact set, so there is some converging subsequence ynl . Taking
it to the limit we get Dx(y) = Dx(x)− ε/2 < Dx(x) which is absurd as x is the minimum of Dx.

Definition 2.49. The elements in X̂ \ i(X) are called horofunctions. Given some horofunction D the level
sets D−1(r) are called horospheres and D−1(]−∞,r]) are called closed horoballs.

Given a geodesic ray γ : [0,+∞[→ X with γ(0) = x0, note that, by triangle inequality, for t < s we
have

d(γ(t),z)−d(γ(t),x0)≥ d(γ(s),z)−d(γ(s),γ(t))−d(γ(t),x0)

= d(γ(s),z)− (s− t)− t

= d(γ(s),z)− s

= d(γ(s),z)−d(γ(s),x0)

and d(γ(t),z)−d(γ(t),x0)≥−d(x0,z). This discussion gives that the following is indeed well defined.

Definition 2.50. For any geodesic ray γ : [0,+∞[→ X such that γ(0) = x0, define the Busemann function,
Bγ : X → R, associated with the geodesic ray γ as

Bγ(z;x0) = lim
t→+∞

d(γ(t),z)−d(γ(t),x0).

The pointwise existence of this monotone limit implies uniform convergence on compact sets, as
such Bγ ∈ X̂ . Moreover,

Bγ(γ(s);x0) = lim
t→+∞

d(γ(t),γ(s))−d(γ(t),x0)

= lim
t→+∞

|t− s|− t

=−s

which tends towards −∞ as s→ +∞, but elements in i(X) attain a minimum somewhere so Bγ is a
horofunction.
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Busemann functions are a classical tool for the study of geodesics in spaces with non-positive curva-
ture.

Proposition 2.51. Let X be a proper geodesic CAT(0) space, then every horofunction is a Busemann
function.

Proof. [11] Let D be some horofunction and write it as limk→+∞ Dxk . Notice xk must leave every compact
set, otherwise there would be some converging subsequence xkl → x which, due to continuity, implies
that Dxkl

→ Dx some element which is not a horofunction.
The proof of this result follows a very clear guideline, first we must construct a ”good” geodesic ray

and then we prove that D is the Busemann function given by that geodesic.
Let γn denote the geodesic ray starting at x0 and going through xn. Since xk leaves any compact set

and Dxk converges to D on compact sets, given some positive ε and t, choose N ∈N large enough so that
whenever d(z,x0)≤ t one has d(xk,x0)> t and |Dxk(z)−D(z)|< ε . Finally take the sequence yk = γk(t).

Consider some m,n > N and the geodesic triangle ∆xmynx0. Construct in M2
0 its comparison triangle

∆̄x̄mȳnx̄0 on which we take ȳm the comparison point of ym. We are now allowed to work with simple
euclidean geometry; drop the height from ȳn onto some point z̄ in [x̄mx̄0] and take w̄ on the line going
through x̄m and x̄0 such that d0(x̄0, w̄) = t and d0(ȳm, w̄) = 2t (figure 2.3).

x̄m ȳm z̄ x̄0 t w̄

ȳn

θ

Figure 2.3: Geometrical construction to prove yn is a Cauchy sequence.

Denoting θ = ∠ȳnȳmx̄0 and considering the right triangles we have
cos(θ) = d0(ȳm, z̄)

d0(ȳm, ȳn)

cos(θ) = d0(ȳm, ȳn)
d0(ȳm, w̄)

=
d0(ȳm, ȳn)

2t

The above yields d(ym,yn)≤ d0(ȳm, ȳn) =
√

2td0(ȳm, z̄), so it remains to show that d0(ȳm, z̄) tends to
zero. To do so, use CAT(0) and notice that [x̄mȳn] is the hypotenuse of ∆̄x̄mȳnz̄ so

d0(ȳm, z̄) = d0(x̄m, z̄)−d0(x̄m, ȳm)
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≤ d0(x̄m, ȳn)−d0(x̄m, ȳm)

= d(xm,yn)−d(xm,ym)

= d(xm,yn)−d(xm,x0)+d(xm,x0)−d(xm,ym)

= d(xm,yn)−d(xm,x0)− t

= d(xm,yn)−d(xm,x0)+d(xn,x0)−d(xn,yn)

= Dxm(yn)−Dxn(yn)

≤ sup
d(y,x0)≤t

|Dxm(y)−Dxn(y)|.

Since Dxk is a convergent sequence, it is a Cauchy sequence, so we can choose m,n large enough to
make the above as small as we want. Therefore yn is a Cauchy sequence, which, since X is complete,
converges. Notice that our argument holds for a choice of t on compact subsets of t ∈ [0,∞[ so define
γ(t) = limγn(t).

We must show γ is a geodesic. Let t,s > 0, given the convergence proven so far, there is p such that,
for all n > p,

max{d(γn(t),γ(t)),d(γn(s),γ(s))}<
ε

2
Therefore

d(γ(t),γ(s)) =d(γ(t),γn(t))+d(γn(t),γn(s))+d(γn(s),γ(s))

≤ε

2
+ |s− t|+ ε

2
=|s− t|+ ε.

Repeating the calculations with d(γn(t),γn(s)), we obtain

|s− t|− ε ≤ d(γ(t),γ(s))

which, since ε is arbitrary, implies that γ is a geodesic.

It remains to show that D(z) = Bγ(z;x0), for that let tn = d(xn,x0) and consider

zn =

{
γ(tn) if n is odd

xn if n is even

note that Dz2n(z) converges to D(z) whilst Dz2n+1(z) goes towards Bγ(z;x0). To finish the proof we are
going to prove |Dzn−Dzn+1 | → 0.

Let ε > 0, consider r > ρ > 0, and suppose d(z,x0) < ρ which later are chosen to be as large as
needed for the argument, and take wn the point on the segment [zn,x0] at distance r from x0.

|Dzn(z)−Dzn+1(z)|= |d(zn,z)−d(zn,x0)−d(zn+1,z)+d(zn+1,x0)|
= |d(zn,z)−

(
d(zn,wn)+ r

)
−d(zn+1,z)+

(
d(zn+1,wn+1)+ r

)
|

= |d(zn,z)−d(zn,wn)−d(zn+1,z)+d(zn+1,wn+1)|
≤ |d(zn,z)−d(zn,wn)−d(wn,z)|

+ |d(wn+1,z)+d(zn+1,wn+1)−d(zn+1,z)|
+ |d(wn,z)+d(wn+1,z)|.
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The last term tends to zero as wn→ γ(r). Construct ∆̄z̄nx̄0z̄ in M2
0 the comparison triangle for ∆znx0z,

w̄n the comparison point of wn and z̄∗ the orthogonal projection of z̄ onto the line going through w̄n and
x0. Notice we are assuming that n is large enough so that d(zn,x0)> r and d0(z̄n, z̄∗)> r (see figure 2.4).

x̄0

z̄

z̄∗z̄n w̄n

ρ

r

Figure 2.4: Geometrical construction to prove that every Horofunction is a Busemann function.

By the CAT(0) inequality, we have d(wn,z)≤ d0(w̄n, z̄) which in turn implies that

d(wn,z)+d(zn,wn)−d(zn,z)≤ d0(w̄n, z̄)+d0(z̄n, w̄n)−d(z̄n, z̄)

= d0(w̄n, z̄)−d0(w̄n, z̄∗)+d0(z̄n, z̄∗)−d(z̄n, z̄).

The triangles ∆̄z̄nz̄∗z̄ and ∆̄w̄nz̄∗z̄ are right at z̄∗, so, by Pythagoras theorem.

d0(w̄n, z̄)2 = d0(w̄n, z̄∗)2 +d0(z̄, z̄∗)2

⇔ d0(w̄n, z̄)2−d0(w̄n, z̄∗)2 = d0(z̄, z̄∗)2

⇔
(

d0(w̄n, z̄)−d0(w̄n, z̄∗)
)(

d0(w̄n, z̄)+d0(w̄n, z̄∗)
)
= d0(z̄, z̄∗)2

⇔ d0(w̄n, z̄)−d0(w̄n, z̄∗) =
d0(z̄, z̄∗)2

d0(w̄n, z̄)+d0(w̄n, z̄∗)
≤ ρ

2

r
.

Analogously d0(w̄n, z̄)−d0(w̄n, z̄∗)≤ ρ2

r . Therefore

d(zn,wn)+d(wn,z)−d(zn,z)≤
2ρ

2

r
.

The same inequality holds for d(zn+1,wn+1)+d(wn+1,z)−d(zn+1,z). Choosing r > 6ρ2/ε we see that
all the terms can be made smaller than ε/3, so we get our result.

Consider an increasing sequence tn, two geodesic rays γ1, γ2 giving rise to the same Busemann
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function and define

xn =

{
γ1(tn) if n odd,

γ2(tn) if n even.

Both Dx2n and Dx2n+1 converge to Bγ1(·,x0) = Bγ2(·,x0) so limDxn exists. The argument from previous
proof shows that the segments [x0xn] converge to a single geodesic ray, so we must have γ1 = γ2, that is,
Busemann functions are in fact uniquely determined by the geodesic ray, provided γ1(0) = γ2(0) = x0.

Theorem 2.52. Let X be a proper CAT(0) space and xn a sequence such that limd(xn,x0)/n→ s > 0.
Let D be a horofunction. Then 1

n D(xn)→−s if and only if D = Bγ(·,x0) and 1
n d(xn,γ(sn)) = 0 for some

geodesic ray γ starting at x0.

Proof. [11] Suppose we have the second. Since Bγ(z,x0) is the decreasing limit of d(γ(sn),z)− sn we
have Bγ(z;x0)≤ d(γ(sn),z)− sn. However, we also have

d(γ(t),z)− t =d(γ(t),z)−d(γ(t),x0)

≥ d(γ(t),z)−d(γ(t),z)−d(z,x0)

=−d(z,x0)

Thus
−d(xn,x0)

n
≤

Bγ(xn;x0)

n
≤ d(γ(sn),xn)− sn

n
,

where both the left and right side tend to −s.

For the forward implication let γ be the geodesic ray defining Bγ(·;x0)=D and 0< n< t large enough
for the arguments at hand. Consider also ∆xnx0γ(st), ∆̄x̄nx̄0γ̄(st) its comparison triangle in M2

0 and γ̄(sn)
the comparison point of γ̄(sn). Take wt the point on the segment [γ̄(st)x̄0] such that d0(γ̄(st), x̄n) =

d0(γ̄(st), w̄t) and z̄ the point in [x̄0γ̄(st)] closest to x̄n (see figure 2.5).
We will start by showing z̄ is in fact an orthogonal projection onto the segment. Notice that if z̄ = x̄0,

then d0(γ̄(st), x̄n)≥ d0(γ̄(st), x̄0), so

Bγ(xn;x0) = lim
t→+∞

d(γ(st),xn)−d(γ(st),x0)

= lim
t→+∞

d0(γ̄(st), x̄n)−d0(γ̄(st), x̄0)

≥ lim
t→+∞

d0(γ̄(st), x̄0)−d0(γ̄(st), x̄0)

=0,

which is absurd by hypothesis. On the other hand if z̄ = γ̄(st) we can choose a bigger t so that z̄ is the
orthogonal projection of x̄n onto the segment [x̄0γ̄(st)].

Now d0(w̄t , γ̄(sn)) = |d0(γ̄(st), w̄t)+d0(γ̄(sn), x̄0)−d0(γ̄(st), x̄0)|= |d(γ(st),wt)+sn−st| which, as
t tends to +∞, converges to D(xn)+ sn, so, applying our hypothesis,

lim
d0(w̄t ,γ(sn))

n
= 0.

We have

αt = ∠x̄nγ̄(st)z̄ = sin−1
( d0(x̄n, z̄)

d0(γ̄(st), x̄0)

)
,

where the last tends to zero as t increases which means that so does d0(z̄, w̄t) = d0(x̄n, z̄)tan(αt/2).
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γ̄(st) z̄ w̄t x̄0γ̄(sn)

x̄n

αt

αt
2

Figure 2.5: Geometrical construction for the proof of theorem 2.52

Consequently, there is some Tn for which whenever t > Tn

lim
n→+∞

d0(z̄, w̄t)

n
= 0.

Putting together what we have so far,

lim
n→+∞

1
n

d0(x̄0, z̄) = lim
n→+∞

1
n

(
d0(x̄0, γ̄(sn))±d0(w̄t , γ̄(sn))±d0(z̄, w̄t)

)
= s,

where the sign depend solely on the position of γ̄(st) relatively to z̄ and w̄t .
By Pythagoras Theorem

lim
n→+∞

1
n

d0(x̄n, z̄) = lim
n→+∞

√
d0(x̄n, x̄0)

2−d0(z̄, x̄0)
2

n2 = 0.

Finally for t > Tn, applying the CAT(0) property, we have

0≤ 1
n

d(xn,γ(sn))≤1
n

d0(x̄n, γ̄(sn))

=

√
d0(x̄n, z̄)2 +d0(z̄, γ̄(sn))2

n2 −−−−→
n→+∞

0

Example 2.53. Let γ : [0,+∞[→Mn
0 be a geodesic ray, write it as γ(t) = x0 + tv where v is a vector in

Sn−1. Consider z the orthogonal projection of x onto the line x0 + tv with t ∈ R and {wt}t≥0 on the same
line such that d0(γ(t),wt) = d0(γ(t),x). The following relation holds

0≤ ∠xγ(t)z =arctan
( d(x,z)

d(γ(t),z)

)
≤arctan

( d(x,z)
d(γ(t),x0)+d(x0,z)

)
−−−→
t→+∞

0.

As such d0(wt ,z) = d(x,z) tan(∠xγ(y)z
2 ), which tends to zero.
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Therefore the associated Busemann function Bγ is given by

Bγ(x;x0) = lim
t→∞

d(γ(t),x)−d(γ(t),x0)

= lim
t→∞

d(γ(t),wt)−d(γ(t),x0)

= lim
t→∞

d(x0,z)−d(wt ,z)

=±d(x0,z)

where the sign is given by whether the projection belongs to the geodesic ray or not, in a simpler notation,
Bγ(x;x0) = 〈x0− x,v〉. In this simple case the horospheres are precisely hyperplanes orthogonal to the
line.

Example 2.54. Let us consider the Poincaré disk model D and suppose that our origin point x0 is in fact
the origin. Remember cH(t) = iet is a geodesic for the upper half plane and transport it to the Poincaré
disk via de isometries constructed in the hyperbolic geometry section, obtaining

c(t) =
et −1
et +1

.

Geometrically, complex multiplication is simply a rotation and some dilation or contraction, as such,
given ξ in ∂D, γ(t) = ξ c(t), t ∈ [0,+∞[ is the geodesic ray with origin in 0 and endpoint ξ . Then

Bγ(z;0) = lim
t→+∞

d(γ(t),z)−d(γ(t),0)

= lim
t→+∞

d(γ(t),z)− t

= lim
t→+∞

log
( |1− γ(t)z|+ |z− γ(t)|
|1− γ(t)z|− |z− γ(t)|

)
− log(et)

= lim
t→+∞

log
( 1

et
|1− γ(t)z|+ |z− γ(t)|
|1− γ(t)z|− |z− γ(t)|

)
= lim

t→+∞
log
( 1

et
(|1− γ(t)z|+ |z− γ(t)|)2

|1− γ(t)z|2−|z− γ(t)|2
)

= lim
t→+∞

log
( 1

et
(|1− γ(t)z|+ |z− γ(t)|)2

(1− γ(t)2)(1−|z|2)

)
= lim

t→+∞
log
( 1

et
(|1− γ(t)z|+ |z− γ(t)|)2

4et(et +1)−2(1−|z|2)

)
= log

((|1−ξ z|+ |z−ξ |)2

4(1−|z|2)

)
= log

( |ξ − z|2

1−|z|2
)
.

Suppose we are now given some arbitrary x0. Use the Möbius transformation

f : D→ D

z→ z− x0

−x0z+1

to transport x0 to 0 and making any geodesic through x0 of the form γ for some ξ . Making use of the
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Figure 2.6: Horospheres on the Poincaré disk model

Busemann function we obtained in the case x0 = 0 we have,

Bγ(z;x0) = log
( |ξ − z|2

1−|z|2
)
− log

( |ξ − x0|2

1−|x0|2
)
.

At the start of this section we gave emphasis to the geometrical ideas behind the horofunction com-
pactification. Notice how in both examples the Busemann functions were determined by the asymptotic
behaviour of the geodesics alone. For the euclidean space, asymptotic geodesic rays are exactly the
parallel ones, whereas in the Poincaré disk the asymptotic behaviour of geodesics is decided by their
endpoint alone. The last point we make is that since Busemann functions defined by asymptotic rays
differ by a constant their associated horospheres are the same.

Next chapter we will shift our interest to the action of Isom(X). To go in that direction we finish with
a result that may, on one hand, seem displaced, but on the other hand natural.

Proposition 2.55. The action of Isom(X) on X extends continuously to an action of X̂ .

Proof. The elements of X̂ are either of the form Dx for some x ∈ X or limDxn , for some {xn}n≥1 ⊂ X .
Start by defining g ·Dx = Dg(x) for the first case. To extend it to the second, take D = limDxn and extend
the action by

g ·D(z) = limg ·Dxn(z)

= limDg(xn)(z)

= limd(g(xn),z)−d(g(xn),x0)

= limd(xn,g−1(z))−d(xn,g−1(x0))

= limd(xn,g−1(z))−d(xn,x0)+d(xn,x0)−d(xn,g−1(x0))

= limDxn(g
−1(z))−Dxn(g

−1(x0))

=D(g−1(z))−D(g−1(x0)).
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Notice that the end result is independent of our choice of xn, that is, the extension is well defined.
Moreover, our construction was made exactly to make this extension continuous.
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Chapter 3

The Noncommutative Ergodic Theorems

As we’ve asserted in the first chapter, one natural way to extend the average behaviour from the
law of large numbers to the noncommutative case is by considering a random walk on a group. Another
reason to do this extension is the fact every (locally compact Hausdorff) group acts by isometries on some
metric space. The first to notice this geometric interpretation to the multiplicative ergodic theorem was
Kaimanovich [6]. The main result we will focus on is an extension due to Anders Karlsson and Grigory
Margulis [9] however we will start with a more elegant approach by Karlsson and François Ledrappier
[7, 8].

So far we’ve denoted both probability and geodesic metric spaces by X as we were studying them
independently. Now that we put them together we shall denote probability spaces by Ω and keep the X
for geodesic spaces.

3.1 Karlsson-Ledrappier: The Proper Case

Keeping the notation from previous chapters, let (X ,d) be a proper Polish space with a ”marked
point” point x0 and G a topological group acting on X by isometries. Consider (Ω,B,µ,T ) some stan-
dard probability space , where T : Ω→ Ω is ergodic with respect to µ and g : Ω→ G is a measurable
map.

Consider the right random walk

Zn(ω) := g(ω)g(T (ω)) · · ·g(T n−1(ω))

and the process d(Zn(ω) · x0,x0). The important fact to note is that this process is subadditive:

d(Zn+m(ω) · x0,x0)≤d(Zn+m(ω) · x0,Zn(ω) · x0)+d(Zn(ω) · x0,x0)

=d(Zm(T n(ω)) · x0,x0)+d(Zn(ω) · x0,x0).

Notice that the above is also true for semicontractions, which we will need next section. Assume∫
d(g(ω) · x0,x0)dµ < ∞, so the subadditive ergodic theorem implies that the linear drift

s = lim
n→∞

1
n

d(Zn(ω) · x0,x0) = inf
n∈N

1
n

∫
Ω

d(Zn(ω) · x0,x0)dµ(ω)

exists for µ-a.e where the second equality is due to ergodicity. Whenever the assumption above is verified
we say Zn is integrable.
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Before delving into the theorems it is important to assert the independence of the marked point. With
that in mind, let x1 be another point in X then

d(g(ω) · x1,x1)≤d(g(ω) · x1,g(ω) · x0)+d(g(ω) · x0,x0)+d(x1,x0)

=2d(x0,x1)+d(g(ω) · x0,x0).

Hence d(Zn(ω)x1,x1) verifies the integrability hypothesis. As for s, doing an analogous calculation

lim
n→+∞

d(Zn(ω) · x1,x1)

n
≤ lim

n→+∞

2d(x0,x1)+d(Zn(ω) · x0,x0)

n
= lim

n→+∞

d(Zn(ω) · x0,x0)

n
.

Since we can revert the inequality we have the equality.

Theorem 3.1 (Karlsson-Ledrappier). Let X be a proper metric space and Zn an integrable right cocycle
taking values in Isom(X). Then there is an almost everywhere defined mapping ω → Dω = D, where D
is an horofunction, depending measurably on ω , such that

lim
n→∞
−1

n
D(Zn(ω) · x0) = s,

where s is defined above.

Proof. The proof of this theorem will be divided into multiple subsections with specific roles. On the first
one we construct a dynamical system whose ergodic sums are −D(Zn(ω) · x0)/n, followed by creating
a measure with some ”good” properties and then completing the proof. During the proof there are two
technicalities which we shall assume in the present manuscript, although giving reference to where one
could find a discussion on the matter. In light of∣∣∣1

n
D(Zn(ω) · x0)

∣∣∣≤ 1
n

d(Zn(ω) · x0,x0)

we can focus the case s > 0 as the statement becomes trivial for s = 0.

Constructing a Dynamical System

Recall that proposition 2.55 tells us the action of G on X extends naturally to X̂ by

g ·D(z) = D(g−1 · z)−D(g−1 · x0).

For the elements in X we can see the action in both ways, as g · x = g(x) or g ·Dx(z) = Dg(x)(z).
Define

F : Ω× X̂ → R

(ω,D)→−D(g(ω) · x0).

Since for every x ∈ X ,

Dx(g(ω) · x0) =d(g(ω) · x0,x)−d(x,x0)

≥−d(x0,g(ω) · x0),
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with equality in the case x = g(ω) · x0, we get

max
D∈X̂

F(ω,D) = d(x0,g(ω) · x0).

Consider also the skew-product

Tg : Ω× X̂ →Ω× X̂

(ω,D)→ (T (ω),g(ω)−1 ·D)

Using the fact T k
g (ω,D) = (T k(ω),Zk(ω)−1 ·D) we can see

Fn(ω,D) :=
n−1

∑
k=0

F(T k
g (ω,D))

=
n−1

∑
k=0

F(T k(ω),Zk(ω)−1 ·D)

=
n−1

∑
k=0
−(Zk(ω)−1 ·D)(g(T k(ω)) · x0)

=
n−1

∑
k=0
−D(Zk+1(ω) · x0)+D(Zk(ω) · x0)

=−D(Zn(ω) · x0)+D(x0)

=−D(Zn(ω) · x0).

From this equality and the discussion we’ve done for F we obtain maxD∈X̂ Fn(ω,D) = d(x0,Zn(ω) · x0),
whence

s = inf
n∈N

1
n

∫
Ω

d(Zn(ω) · x0,x0)dµ(ω) = inf
n∈N

1
n

∫
Ω

max
D∈X̂

Fn(ω,D).dµ(ω)

Constructing a Measure

Take C(X̂) the Banach space of bounded continuous functions f : X̂ → R with the supremum norm
|| · ||b. Denote by L1(Ω,C(X̂)) the space of measurable maps f : Ω→C(X̂) for which∫

Ω

sup
D∈X̂
| f (ω)(D)|dµ(ω)< ∞.

Finally, consider the space of probability measure ν on Ω× X̂ such that ν(B× X̂) = µ(B) for every
measurable set B, in other words, ν projects onto µ . We shall denote this space by Probµ(Ω× X̂).

For every ν ∈ Probµ(Ω× X̂) introduce the map

ν : L1(Ω,C(X̂))→ R

f →
∫

Ω×X̂
f dν .

We have that f → ν( f ) is linear and |ν( f )| ≤ || f ||b. Therefore the dual of Probµ(Ω× X̂) is contained
in the dual of L1(Ω,C(X̂)), on which we shall consider the weak topology coming from this duality, that
is, the finest topology for which the linear functionals f → ν( f ) is continuous. The space Probµ(Ω× X̂)
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is weakly sequentially compact, whence compact, as the given topology on Probµ(Ω× X̂) is metrizable.
This is the first technicality we avoid; the details are mostly found in chapter 4 of [4].

Recall Zn(ω) · x0 ∈ X ⊂ X̂ . For each n, consider measures νn on X̂ defined by the disintegration
νn

ω = δZn(ω)·x0 , that is,

a) νn
ω depends measurably on ω , meaning for every A ∈P(X̂) the map ω → νn

ω(A) is measurable;

b) νn
ω is a probability measure for µ-a.e. ω;

c) For every A ∈F ⊗B(X̂)

νn(A) =
∫

Ω

∫
X̂

1A(ω,x)dν
n
ω(x)dµ(ω)

=
∫

Ω

δZn(ω)x0(Aω)dµ(ω)

where Aω = {h | (ω,h) ∈ A}, the usual section.

Let

ηn =
1
n

n−1

∑
i=0

(T i
g)∗νn

and take η to be a weak limit of these measures.

Completing the Proof

Let’s start by putting together the dynamical system and the measure we constructed. We suppose ηn

is already a converging sequence, otherwise just pass to the converging sublimit. First notice that being
a weak limit η still projects onto µ; secondly

η(T−1
g A) = lim

n→+∞

1
n

n−1

∑
i=0

(T−i
g )∗νn(T−1

g A)

= lim
n→+∞

1
n

n

∑
i=1

(T−i
g )∗νn(A)

= lim
n→+∞

1
n

n−1

∑
i=0

(T−i
g )∗νn(A)−

1
n

(
νn(A)−νn(T n

g (A))
)

=η(A),

so η is Tg invariant; thirdly, start by noticing,

∫
Ω×X̂

Fdηn =
∫

Ω×X̂
Fd
(1

n

n−1

∑
i=0

(T i
g)∗νn

)
=

1
n

∫
Ω×X̂

n−1

∑
i=0

F ◦T i
gdνn

=
1
n

∫
Ω×X̂

Fndνn.

Being careful with the identification of elements in X with elements of X̂ ,

1
n

∫
Ω×X̂

Fndνn =
1
n

∫
Ω×X̂
−D(Zn(ω) · x0)dνn(ω,D)
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=
1
n

∫
Ω

∫
X̂
−D(Zn(ω) · x0)dν

n
ω(D)dµ(ω)

=
1
n

∫
Ω

−D(Zn(ω)·x0)(Zn(ω) · x0)dµ(ω)

=
1
n

∫
Ω

d(Zn(ω) · x0,x0)dµ(ω)

≥s.

On the other hand, for any θ ∈ ProbTg
µ (Ω×X)

∫
Ω×X̂

F(ω,D)dθ(ω,D) =
∫

Ω×X̂

1
n

Fn(ω,D)dθ(ω,D)

≤
∫

Ω

1
n

max
D∈X̂

Fn(ω,D)dµ(ω)

=
1
n

∫
Ω

d(x0,Zn(ω) · x0)dµ(ω).

Taking the respective limit we obtain
∫

Ω×X̂ Fdη = s. Notice we can take the limits as we have F ∈
L1(Ω,C(X̂)).

In fact, η might not be the measure we want yet as ergodicity may fail. To take care of this problem
we appeal to subsection 1.2.2. Consider Probs

µ(Ω× X̂) the subspace of Probµ(Ω× X̂) given by the Tg

invariant elements satisfying the equality above. We’ve proven this set is non empty as it contains η , it
is also easily seen to be closed and convex. By Krein-Milman theorem it admits an extremal point η0

which we’ve proven to be an extremal point of ProbTg(Ω× X̂) whence ergodic.
Finally we apply Birkhoff’s Ergodic Theorem: there is a full measure set E in Ω× X̂ , with respect to

η0, such that for every (ω,D) ∈ E

lim
n→+∞

−1
n

D(Zn(ω) · x0) = lim
n→+∞

1
n

n−1

∑
i=0

F(T i
g(ω),D)) =

∫
Ω×X

Fdη0 = s.

Due to the projection property, for µ-a.e. ω there is a set E = Eω of horofunctions D satisfying the
properties we were seeking.

This is where the second technicality appears. We could be satisfied with simply picking a pair in
E and obtain a theorem that way; however, the statement is stronger than that, the choice of Dω is done
measurably. To do so we refer to the measurable choice theorem by Robert Aumann [1].

Theorem 3.2 (Measurable Choice Theorem). Let (Ω,µ) be a probability space, X a standard measur-
able space and E a measurable set in Ω×X whose projection onto Ω has full measure. Then there is a
measurable function g : Ω→ X such that (ω,g(ω)) ∈ E for almost every ω in Ω.

As we’ve seen in Chapter 2, horofunctions are quite well behaved for CAT(0) spaces on which the
previous theorem has a stronger geometrical meaning.

Theorem 3.3 (Karlsson - Margulis). Let (Ω,B,µ,T ) be a mpds, X a proper complete CAT(0) space and
g : Ω→ Isom(X) a measurable map. If∫

Ω

d(x0,g(ω) · x0)dµ(ω)<+∞
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then, for µ-a.e. ω ∈ Ω, 1
n d(Zn(ω) · x0,x0)→ s and if s > 0 there exists a geodesic ray emanating from

x0, γω , such that

lim
n→+∞

1
n

d(Zn(ω) · x0,γω(ns)) = 0.

Proof. Applying Karlsson-Ledrappier result one knows that, for almost every ω , there is an horofunction
D for which

lim
n→+∞

−1
n

D(Zn(ω) · x0) = s.

Since X is CAT(0) we know, by theorem 2.52, there is a unique geodesic γ for which

lim
n→+∞

1
n

d(Zn(ω) · x0,γω(ns)) = 0.

3.2 Karlsson-Margulis: The Nonproper Case

In the previous section we presented Karlsson-Margulis theorem for proper spaces by using Karlsson-
Ledrappier. In fact, the original statement included this class of spaces and was less restrictive on the
action working with a semigroup of semicontractions rather then a group of isometries. On the other
hand, this approach won’t allow us to obtain an analogue to Karlsson-Ledrappier. The importance of
considering the proper case (Karlsson-Ledrappier) is that it can be applied regardless of curvature, even
if its geometrical meaning isn’t as clear for such cases.

Theorem 3.4 (Karlsson-Margulis). Let S be a semigroup of semicontractions of some complete, uni-
formly convex, nonpositively curved in the sense of Busemann, metric space (X ,d) with an origin point
x0. Just like before, let (Ω,B,µ,T ) be an ergodic mpds and g : Ω→ S a measurable map. Define Zn a
right cocycle just like in the isometry case. If Zn is integrable. then for µ-a.e. ω the following limit exists

lim
n→+∞

1
n

d(x0,Zn(ω) · x0) = s.

Moreover, if s > 0, then for µ-a.e. ω there is a unique geodesic ray in X starting at x0 such that

lim
n→+∞

1
n

d(Zn(ω) · x0,γω(ns)) = 0.

Proof. [9] The first part of the proof is analogous to the proper case, a(n,ω) = d(x0,Zn(ω) · x0) is
subadditive, so applying subadditive ergodic theorem the limit

lim
n→+∞

1
n

d(x0,Zn(ω) · x0) = s. (3.1)

exists for almost every ω .

Prep Work

We now tackle the part of the statement about s > 0. Let f be the function arising from lemma 2.12.
Since f (t) goes to zero as t does, pick {εi}i≥0 small enough so that

f
( 2εi

s− εi

)
≤ 2−i.
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We shall refer to the quantity 2εi/(s− εi) as δi.
Define E as in proposition 1.16. From now on we will both assume ω is in E and satisfies the

limit 3.1. From that proposition and the subadditive ergodic theorem, for every integer i there is Ki and
infinitely many ni such that, for all Ki ≤ k ≤ ni,

a(n,ω)−a(n− k,T k
ω)≥ (s− εi)k

and
(s− εi)k ≤ a(k,ω)≤ (s+ εi)k.

Pick a strictly increasing sequence {ni}i≥0 such that ni > ni+1 and the inequalities above hold. Then

a(ni,ω)−a(ni− k,T k(ω))+(s+ εi)k ≥ (s− εi)k+a(k,ω),

that is,
a(k,ω)+a(ni− k,T k(ω))≤ a(ni,ω)+2εik.

Hence,

d(x0,Zk(ω) · x0)+d(Zk(ω) · x0,Zni(ω) · x0)≤d(x0,Zk(ω) · x0)+d(x0,Zni−k(T k(ω)) · x0)

=a(k,ω)+a(ni− k,T k(ω))

≤a(ni,ω)+2εik

≤d(x0,Zn(ω) · x0)+
2εi

s− εi
d(x0,Zk(ω) · x0).

Choose now a sequence of geodesics emanating from x0 passing through Zni(ω) ·x0. Applying lemma
2.12 to the inequality above

d(γi(rk),Zk(ω) · x0)≤ f (δi)rk,

with rk = d(x0,Zk(ω)).

Convergence of Geodesics

The idea is very similar to what we’ve done before for CAT(0) spaces: show that for every t > 0 the
sequence {γi(t)}i≥0 is Cauchy and then define the limit geodesic at t by the limit. Due to the construction
of the ni’s

d(γi+1(rni),γi(rni)) = d(γi+1(rni),Zni(ω) · x0) ≤ f (δn+1)rni

Using the definition of being nonpositively curved in the sense of Busemann, for rni > t

1
t

d(γi+1(t),γi(t)) ≤
1
rni

d(γi+1(rni),γi(rni)) ≤ f (δi+1)

rearranging we obtain d(γi+1(t),γi(t))≤ f (δi+1)t. Using triangle inequality

d(γi+m(t),γi(t))≤
m

∑
j=1

d(γi+ j−1(t),γi+ j(t))

≤
m

∑
j=1

f (δi+ j)t
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≤
m

∑
j=1

2−(i+ j)t

≤2−it

Hence, {γi(t)}i≥0 is Cauchy. The argument for γ being a geodesic is the same that was done for propo-
sition 2.51. It now remains to complete the proof

Completing the Proof

Given any k we can choose i such that Ki ≤ k ≤ ni.

d(γ(sk),Zk(ω) · x0)≤d(γ(sk),γi(sk))+d(γi(sk),γi(rk))+d(γi(rk),Zk(ω) · x0)

≤2−isk+ |sk− rk|+ f (δi)rk

≤2−isk+ |sk− sk− εik|+ f (δi)(s+ εi)k

≤2−isk+ εik+ f (δi)(s+ εi)k

≤2−isk+ εik+2−i(s+ εi)k

≤2−i+1sk+2εik.

Therefore
limsup
n→+∞

1
n

d(γ(ns),Zn(ω) · x0)≤ 0,

and the uniqueness of the geodesic follows from 2.10.

3.3 Multiplicative Ergodic Theorem

The first space we shall apply Karlsson-Margulis theorem to is Sym+(n). Remember GL(n,R) acts
by isometries on the space of symmetric positive definite matrices. Our goal will be to obtain the multi-
plicative ergodic theorem stated in the first chapter.

Lemma 3.5. Let A ∈ GL(n,R) then

max{log+ ||A||, log+ ||A−1||} ≤ d(I,A∗ I)≤ 2
√

nmax{log+ ||A||, log+ ||A−1||}

Proof. The matrix (A ∗ I)T = AT A is symmetric and positive definite, as such there is an orthonormal
basis v1, ...,vn of eigenvectors with associated real eigenvalues λ1, ...,λn. Let v ∈ Rn and write it as
v = ∑

n
i=1 aivi

||Av||2 =〈Av,Av〉
=〈AT Av,v〉

=〈
n

∑
i=1

λiaivi,
n

∑
i=1

aivi〉

=
n

∑
i=1

λia2
i

Denoting by λmax and λmin the maximum and minimum of the singular values of A we have ||A||= λmax

and ||A−1||−1 = λmin.
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Now, using the distance in Sym+(n) (2.1),

d(I,A∗ I) =

√
n

∑
i=1

log2(λ 2
i ) = 2

√
n

∑
i=1

log2(λi).

However

max{log+ ||A||, log+ ||A−1||} ≤ 2

√
n

∑
i=1

log2(λi)≤ 2
√

nmax{log+ ||A||, log+ ||A−1||}.

Before tackling the multiplicative ergodic theorem we need another little lemma.

Lemma 3.6. Let M ∈M(d,R), then ||M||= ||MT ||.

Proof. We have ||Mv||2 = vT MT Mv and ||MT v||2 = vT MMT v so ||M||2 and ||MT ||2 are both equal to the
largest eigenvalue of MT M and MMT respectively. Since a matrix has the same singular values as its
transpose we get the equality.

Theorem 3.7 (Multiplicative Ergodic Theorem). Let (Ω,B,µ,T ) be a mdps, A : Ω→ GL(d,R) a mea-
surable map such that log+(||A±1||) is integrable. Consider An(ω) = A(T n−1ω) · · ·A(ω) the left cocycle
given by A. Then the limits

Λ(ω) := lim
n→+∞

(An(ω)T An(ω))
1
2n

and
lim

n→+∞

1
n

log ||An(ω)Λ−n(ω)|| = lim
n→+∞

1
n

log ||Λn(ω)A−1
n (ω)||= 0

exist for µ-a.e. ω .

Before proving the theorem let’s see why this is the same as the version presented in Chapter 1 (1.9).
The Lyapunov exponents χi(ω) are the logarithms of the eigenvalues λi(ω) of Λ(ω) in increasing order
(λi(ω)< λ j(ω) whenever i < j). For every i let Ui(ω) be the eigenspace associated with the eigenvalue
λi. The filtration is given by Ei(ω) =⊕ j≤iU j(ω).

Let us explore why. Clearly χi(ω) appear in increasing order as the logarithm is an increasing
function, moreover, Ei(ω) form a flag. Now let v ∈ Ei(ω)\Ei−1(ω), then,

lim
n→+∞

1
n

log ||An(ω)v||= lim
1
n

log ||λ n
i (ω)An(ω)Λ(ω)−nv||

= lim
1
n

(
log(λi(ω)n)+ log ||An(ω)Λ(ω)−nv||

)
= lim

1
n

log(λi(ω)n)+
1
n

log ||An(ω)Λ(ω)−nv||

= log(λi(ω))

=χi(ω).

The above also implies that A(ω)Ei(ω) = Ei(T (ω)) as

lim
n→+∞

1
n

log ||An(T (ω))A(ω)v||= lim
n→+∞

1
n

log ||An(ω)v||.
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For the last point we need the property that log(det(A)) = tr(log(A)). Then

1
n

log
(

det(An(ω))
)
=

1
n

log
(

det(An(ω)T An(ω))
1
2
)

= log
(

det(An(ω)T An(ω))
1

2n
)

→ log
(

det(Λ(ω))
)

=tr
(

log(Λ(ω))
)

=
k(ω)

∑
i=1

χi(ω)
(

dimEi(ω)−dimEi−1(ω)
)

Proof. By lemma 3.5, d(I,A(ω)T ∗ I) is integrable so we are allowed to use Karlsson-Margulis theorem
to the right cocycle Zn(ω) = An(ω)T . Doing so, for µ-a.e. ω there is

s(ω) := lim
n→+∞

1
n

d(I,Zn(ω)∗ I)

and, due to the geodesic approximation property, there is a symmetric matrix S(ω) such that

lim
n→+∞

1
n

d(Zn(ω)∗ I,es(ω)nS(ω)) = 0

We now write Λ(ω) as the positive definite symmetric matrix es(ω)S(ω)/2, the above limit tells us the limit
of d(Zn(ω)∗ I,Λ(ω)2n)/n is also zero. However, we also have the equalities

d(Zn(ω)∗ I,Λ(ω)2n) = d(Zn(ω)∗ I,Λ(ω)n ∗ I) = d(I,Zn(ω)−n
Λ(ω)n ∗ I) = d(Λ(ω)−nZn(ω)∗ I, I),

which, using lemma 3.5, imply the limits

lim
n→+∞

1
n

log ||Λ−n(ω)Zn(ω)|| = lim
n→+∞

1
n

log ||Z−1
n (ω)Λn(ω)||= 0.

Using lemma 3.6, we obtain the limits from the theorem:

lim
n→+∞

1
n

log ||An(ω)Λ−n(ω)|| = lim
n→+∞

1
n

log ||Λn(ω)A−1
n (ω)||= 0.

It remains to show Λ(ω) is the limit of (Zn(ω)Zn(ω)T )
1
2n . To do so we shall consider two cases,

effectively Λ 6= I and Λ = I. For the first case consider γn, the sequence of geodesics joining I to Zn(ω),
as well as γ , the one joining I to Λ. We want to prove

lim
n→+∞

γn(t) = γ(t).

Let t > 0 and take Ī,Zn ∗ I,Λn ∗ I forming a comparison triangle to the geodesic triangle given by
I,Zn(ω)∗ I and Λ(ω)n ∗ I. Also take γn(t), γ(t) the comparison points for γn(t) and γ(t). Last points we
will be taking are kn and ln the orthogonal projections of γn(t) and Zn ∗ I (see figure 3.1).

Notice
d(Zn ∗ I, ln)

n
≤ d(Zn ∗ I,Λ∗ I)

n
−−−−→
n→+∞

0
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Ī γ(t)

γn(t)

kn ln Λ∗ I

Zn ∗ I

αt

αt
2

Figure 3.1: Geometrical construction used for the proof of the multiplicative ergodic theorem

which yields

d(Ī, ln)
n

=

√
d(Zn ∗ I, Ī)2

n2 − d(Zn ∗ I, ln)2

n2 −−−−→
n→+∞

s.

By triangle similarity,

d(γn(t),kn) =
d(Ī,kn)

d(Ī, ln)
d(Zn ∗ I, ln)

≤ nt
d(Ī, ln)

d(Zn ∗ I, ln)
n

−−−−→
n→+∞

0.

Using the law of cosines we know αt =∠γ(t)Īγn(t)→ 0. From this d(kn,γ(t)) = tan(αt/2)d(γn(t),kn)→
0. Therefore

d(γn(t),γ(t))≤d(γn(t),γ(t))

=

√
d(kn,γ(t))2 +d(kn,γn(t))2 −−−−→

n→+∞
0,

that is, γn(t)→ γ(t).
In particular, we have

log(Zn(ω)Zn(ω)T )

tr1/2
(

log2(Zn(ω)Zn(ω)T )
) = log

(
γn(1)

)
−−−−→
n→+∞

log
(
γ(1)

)
=

log(Λ2)

tr1/2
(

log2(Λ2)
) .

Let us first focus on relating the denominators starting with the equality tr
1/2
(

log2(Zn(ω)Zn(ω)T )
)
=

d(I,Zn(ω)∗ I) and proceeding with

d(I,Λ(ω)n ∗ I)
n

− d(Zn(ω)∗ I,Λ(ω)n ∗ I)
n

≤ d(I,Zn(ω)∗ I)
n

≤ d(I,Λ(ω)n ∗ I)
n

+
d(Zn(ω)∗ I,Λn ∗ I)

n

from which, taking the limits, we obtain

tr
1/2
(

log2(Zn(ω)Zn(ω)T )
)

n
−−−−→
n→+∞

tr
1/2
(

log2(Λ2)
)
.

Having taken care of the denominators, we have log(Zn(ω)Zn(ω)T )/n → log(Λ(ω)2), equivalently,
log(Zn(ω)Zn(ω)T )/2n→ log(Λ(ω)). Taking the exponential we obtain the wanted result.
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It remains to tackle the case Λ(ω) = I. Writing Zn(ω)Zn(ω)T = QT
n DnQn where Qn are orthogo-

nal and Dn is a diagonal matrix comprised of the eigenvalues λi(n). Notice we must have d(Zn(ω) ∗
I,Λ(ω)2)/n→ 0, in other words, log

(
||(Zn(ω)Zn(ω)T )±1||

)
/n→ 0. Hence, for every i≤ d, λi(n)

1/n →
1, that is, D

1
2n
n → I. Finally

d((Zn(ω)Zn(ω)T )
1
2n , I) = d(QT

n D
1

2n
n Qn, I)

= d(QT
n D

1
2n
n Qn,QT

n Qn)

= d(D
1

2n
n , I)−−−−→

n→+∞
0,

hence obtaining the the wanted result.

3.4 Further Applications

Birkhoff’s Ergodic Theorem

Let (Ω,B,µ,T ) be an ergodic mpds. Consider R acting on itself by isometries through the map
g : Ω→ R. By Karlsson-Ledrappier there is a horofunction D such that

lim−1
n

D
( n−1

∑
k=0

g(T k(ω))
)
= s,

where s = |
∫

Ω
g(ω)dµ(ω)|. The only horofunctions of R are D1(x) = x and D−1(x) =−x. Using D1 if∫

Ω
g(ω)dµ(ω)< 0 and D−1 if

∫
Ω

g(ω)dµ(ω)> 0 we obtain Birkhoff’s Ergodic Theorem.
In this case one can actually find the geodesic to be γω(t) = x0 + sgn(

∫
Ω

gdµ)ts as

lim
1
n

d
(

x0 +
n−1

∑
k=0

g(T k(ω)),x0 + sgn
(∫

Ω

gdµ
)
sn
)
= lim

1
n

( n−1

∑
k=0

g(T k(ω))−n
∫

Ω

g(ω)dµ(ω)
)
= 0.

Cayley Graphs of Free Groups

Let p be a natural number greater than one, Fp be the free group on p generators, S the set of
generators and S−1 the set of their inverses. We define the Cayley graph of Fp to be the graph whose
set of vertices is Fp and two elements g and h are connected if and only if g ∈ h(S∪ S−1), that is, they
differ by an element on the right. Notice that the left action of Fp onto itself is an isometry. Moreover,
the Cayley graph is a tree.

Let us consider the Bernoulli shift σ on the space of sequences over the space of 2p symbols, Ω =

[2p]N, which is ergodic. Take T : Ω→ [2p] the projection of the first coordinate. List the generators of
and their inverses S∪S−1 = {a1,a2, ...,a2p} and take the measurable map

g : Ω→ Fp

x→ aT (x).

We will work with the cocycle Zn(x) = g(x)g(σ(x)) · · ·g(σn−1(x)). Fix the origin of the graph to be the
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identity element e. Notice that, denoting ki(x) the last element of Zn(x), we have

d(Zn(x),e) =
n−1

∑
i=0

(−1)δ

(
ki(x)−1,g(σ i(x))

)
,

where δ denotes the Kronecker symbol. Since∫
Ω

(−1)δ (e,g(x))dµ =
∫
[0,1)

1dµ = 1,

the first part of Karlsson-Margulis asserts that

1
n

d(Zn(x),e)→ s.

We will want to show that s > 0 so we can use the second part of the statement, in fact we will try to
calculate s. Start by noticing∫

Ω

(−1)δ

(
ki(x)−1,g(σ i(x))

)
dµ = µ{x | σ i(x) 6= ki(x)}−µ{x | σ i(x) = ki(x)}.

However, the two sets above are complementary so we have to look at

1−2µ{x | σ i(x) = ki(x)}=1−2 ∑
h∈S∪S−1

µ{x | σ i(x) = h∧ ki(x) = h}

≥1−2 ∑
h∈S∪S−1

µ{x | σ i(x) = h}µ{x | ki(x) = h}

=1− 1
p ∑

h∈S∪S−1

µ{x | ki(x) = h}

=1− 1
p
(1−µ{x | ki(x) = e}).

Since the space has finite measure, pointwise almost everywhere convergence implies convergence in
measure. Hence, for ε < 1, we have

µ{ω ∈Ω | ki = e}= µ{ω ∈Ω | 1
i
d(Zi(ω),e) = 0}

≤ µ{ω ∈Ω | |1
i
d(Zi(ω),e)− s|> sε} −−−→

i→+∞
0.

Therefore

s = lim
n→+∞

1
n

n−1

∑
i=0

∫
Ω

(−1)δ

(
ki(x)−1,g(σ i(x))

)
dµ =

p−1
p

.

The second statement of Karlsson-Margulis Theorem asserts that, for almost every x, there is a unique
geodesic γ on Fp such that

1
n

d
(
γ
( p−1

p
n
)
,Zn(x)

)
−−−−→
n→+∞

0.

Intuitively we can look at the geodesic as the one that ultimately goes through the same vertices as Zn(x).
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