
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Migration of networks in a multi-cloud environment

José Pedro Coelho Soares

MESTRADO EM ENGENHARIA INFORMÁTICA
Arquitetura, Sistemas e Redes de Computadores

Dissertação orientada por:
Prof. Doutor Fernando Manuel Valente Ramos

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/162046386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Agradecimentos

Quero agradecer aos meus pais por toda a motivação que sempre me deram, e pela
força que me transmitiram para ultrapassar os vários desafios que me foram surgindo.
Sem o seu apoio esta viagem teria sido mais difı́cil. Agradeço também aos meus avós
pelo apoio e carinho que sempre me transmitiram.

Não posso também deixar de agradecer aos meus colegas Joel Alcantara, Frederico
Brito e Luis Ferrolho pela disponibilidade que sempre demonstraram e pelos momentos
que partilhamos durante o curso. Partilhamos momentos de muito trabalho mas também
momentos de boa disposição.

Por fim, ao meu orientador, Prof. Doutor Fernando Manuel Valente Ramos, pelos
conhecimentos transmitidos, pelo papel fundamental que representou na minha formação
profissional e pela sua disponibilidade.

A todos muito Obrigado.

i

À minha famı́lia e amigos.

Resumo

A forma como os centros de dados e os recursos computacionais são geridos tem
vindo a mudar. O uso exclusivo de servidores fı́sicos e os complexos processos para
provisionamento de software são já passado, sendo agora possı́vel e simples usar recursos
de uma terceira parte a pedido, na nuvem (cloud).

A técnica central que permitiu esta evolução foi a virtualização, uma abstração dos
recursos computacionais que torna o software mais independente do hardware em que
é executado. Os avanços tecnológicos nesta área permitiram a migração de máquinas
virtuais, agilizando ainda mais os processos de gestão e manutenção de recursos.

A possibilidade de migrar máquinas virtuais libertou o software da infraestrutura
fı́sica, facilitando uma série de tarefas como manutenção, balanceamento de carga, tra-
tamento de faltas, entre outras. Hoje em dia a migração de máquinas virtuais é uma
ferramenta essencial para gerir clouds, tanto públicas como privadas.

Os sistemas informáticos de grande escala existentes na cloud são complexos, com-
postos por múltiplas partes que trabalham em conjunto para atingir os seus objectivos. O
facto de os sistemas estarem intimamente ligados coloca pressão nos sistemas de
comunicação e nas redes que os suportam. Esta dependência do sistema na infraestrutura
de comunicação vem limitar a flexibilidade da migração de máquinas virtuais. Isto porque
actualmente a gestão de uma rede é pouco flexı́vel, limitando por exemplo a migração
de VMs a uma subrede ou obrigando a um processo de reconfiguração de rede para a
migração, um processo difı́cil, tipicamente manual e sujeito a falhas.

Idealmente, a infraestrutura de que as máquinas virtuais necessitam para comunicar
seria também virtual, permitindo migrar tanto as máquinas virtuais como a rede virtual.
Abstrair os recursos de comunicação permitiria que todo o sistema tivesse a flexibilidade
de ser transferido para outro local.

Neste sentido foi recentemente proposta a migração de redes usando redes definidas
por software (SDN), um novo paradigma que separa a infraestrutura de encaminhamento
(plano de dados) do plano de controlo. Numa SDN a responsabilidade de tomar as de-
cisões de controlo fica delegada num elemento logicamente centralizado, o controlador,
que tem uma visão global da rede e do seu estado. Esta separação do plano de controlo
do processo de encaminhamento veio facilitar a virtualização de redes.

No entanto, as recentes propostas de virtualização de redes usando SDN apresentam

v

limitações. Nomeadamente, estas soluções estão limitadas a um único centro de dados
ou provedor de serviços. Esta dependência é um problema. Em primeiro lugar, confiar
num único provedor ou cloud limita a disponibilidade, tornando efectivamente o provedor
num ponto de falha único. Em segundo lugar, certos serviços ficam severamente limitados
por recorrerem apenas a uma cloud, devido a requisitos especiais (de privacidade, por
exemplo) ou mesmo legais (que podem obrigar a que, por exemplo, dados de utilizadores
fiquem guardados no próprio paı́s). Idealmente, seria possı́vel ter a possibilidade de tirar
partido de múltiplas clouds e poder, de forma transparente, aproveitar as vantagens de
cada uma delas (por exemplo, umas por apresentarem custos mais reduzidos, outras pela
sua localização). Tal possibilidade garantiria uma maior disponibilidade, visto que a falha
de uma cloud não comprometeria todo o sistema. Além disso, poderia permitir baixar os
custos porque seria possı́vel aproveitar a variação dos preços existente entre clouds ao
longo do tempo. Neste contexto multi-cloud um dos grandes desafios é conseguir migrar
recursos entre clouds de forma a aproveitar os recursos existentes. Num ambiente SDN,
em particular, a migração de redes é problemática porque é necessario que o controlador
comunique com os elementos fı́sicos da rede para implementar novas polı́ticas e para que
estes possam informar o controlador de novos eventos. Se a capacidade de comunicação
entre o controlador e os elementos de rede for afectada (por exemplo, devido a latências
elevadas de comunicação) o funcionamento da rede é também afectado.

O trabalho que aqui propomos tem como objectivo desenvolver algoritmos de
orquestração para migração de redes virtuais, com o objectivo de minimizar as latências
na comunicação controlador-switches, em ambientes multi-cloud. Para esse efeito foi
desenvolvida uma solução óptima, usando programação linear, e várias heurı́sticas. A
solução de programação linear, sendo óptima, resulta na menor disrupção possı́vel da
ligação ao controlador. No entanto, a complexidade computacional desta solução limita
a sua usabilidade, levando a tempos de execução elevados. Por esta razão são prospostas
heurı́sticas que visam resolver o problema em tempo útil e de forma satisfatória. Os
resultados das nossas experiências mostram que nas várias topologias testadas algumas
heurı́sticas conseguem resultados próximos da solução óptima. O objectivo é atingido
com tempos de execução consideravelmente inferiores.

Palavras-chave: virtualização, cloud, redes de computadores, migração

vi

Abstract

The way datacenters and computer resources are managed has been changing, from
bare metal servers and complex deployment processes to on-demand cloud resources and
applications.

The main technology behind this evolution was virtualization. By abstracting the
hardware, virtualization decoupled software from the hardware it runs on. Virtual ma-
chine (VM) migration further increased the flexibility of management and maintenance
procedures. Tasks like maintenance, load balancing and fault handling were made easier.

Today, the migration of virtual machines is a fundamental tool in public and private
clouds. However as VMs rarely act alone, when the VMs migrate, the virtual networks
should migrate too. Solutions to this problem using traditional networks have several
limitations: they are integrated with the devices and are hard to manage. For these reasons
the logical centralisation offered by Software-Defined Networking (SDN) architectures
has been shown recently as an enabler for transparent migration of networks.

In an SDN a controller remotely controls the network switches by installing flow
rules that implement the policies defined by the network operator. Recent proposals are a
good step forward but have problems. Namely, they are limited to a single data center or
provider. The user’s dependency on a single cloud provider is a fundamental limitation.
A large number of incidents involving accidental and malicious faults in cloud infrastruc-
tures show that relying on a single provider can lead to the creation of internet-scale single
points of failures for cloud-based services.

Furthermore, giving clients the power to choose how to use their cloud resources
and the flexibility to easily change cloud providers is of great value, enabling clients
to lower costs, tolerate cloud-wide outages and enhance security. The objective of this
dissertation is therefore to design, implement and evaluate solutions for network migration
in an environment of multiple clouds. The main goal is to schedule the migration of a
network in such a way that the migration process has the least possible impact on the
SDN controller’s ability to manage the network. This is achieved by creating a migration
plan that aims to minimize the experienced control plane latency (i.e., the latency between
the controller and the switches). We have developed an optimal solution based on a linear
program, and several heuristics. Our results show that it is possible to achieve results
close to the optimal solution, within reasonable time frames.

Keywords: virtualization, clouds, computer networks, migration

viii

x

Contents

List of figures xvi

List of tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and challenges . 3
1.3 Contributions . 3
1.4 Structure of the document . 4

2 Related Work 5
2.1 Virtualization . 5
2.2 Live Migration . 8

2.2.1 Live Migration of Virtual Machines 8
2.2.2 Live WAN migration of VMs 9
2.2.3 Migration for fault-tolerance . 10
2.2.4 Algorithms for placement of virtual machines 12

2.3 Software-defined networking . 14
2.3.1 Architecture . 14
2.3.2 OpenFlow . 15
2.3.3 Scalability . 16
2.3.4 VM migration in SDN . 17

2.4 Network virtualization . 17
2.4.1 Network Virtualization in Single-Provider Datacenters 18
2.4.2 Multi-cloud network virtualization 19

2.5 Network migration . 20
2.5.1 Scheduling for VM migration 20

2.6 Final considerations . 22

3 Design and implementation 25
3.1 Context and objectives . 27

xi

3.2 Proposed orchestration algorithms . 28
3.2.1 Network migration model . 28
3.2.2 Optimal strategy using Linear programming 29
3.2.3 Heuristics . 32
3.2.4 Baseline algorithms . 32
3.2.5 Lowest degree first . 32
3.2.6 Bring me closer . 34
3.2.7 Scoring system . 36

3.2.7.1 Boss in the middle . 37
3.2.7.2 Migration tree . 41

3.3 Summary . 44

4 Evaluation 45
4.1 Environment Setup . 45
4.2 Linear topology . 45
4.3 Random topology . 47
4.4 Ring topology . 50
4.5 Tree topology . 52
4.6 Boss in the middle comparison . 53
4.7 Execution times . 53
4.8 Summary . 54

5 Conclusion 55

Bibliography 60

xii

xiv

List of Figures

1.1 A multi-cloud solution . 2

2.1 Hypervisor based virtualization . 6
2.2 Kernel-based virtualization . 6
2.3 Nested virtualization . 7
2.4 Xen-Blanket architecture . 8
2.5 Bandwidth usage and Fault tolerance . 11
2.6 Migration strategies . 13
2.7 SDN Architecture . 15
2.8 Simplified view of Openflow handling a packet 16
2.9 H1 and H2 could communicate locally, from [17] 22
2.10 Local communication, from [17] . 22

3.1 An example of SDN . 26
3.2 Avoiding bad migration decisions . 26
3.3 Multi-cloud virtualization module inside the virtualization platform . . . 27
3.4 Lowest degree first example . 34
3.5 Bring me closer . 35
3.6 Score computation example . 37
3.7 Boss in the middle example . 38
3.8 Migration tree simple example . 41
3.9 Migration tree example . 42

4.1 Linear topology example . 45
4.2 Switch-Controller latency: Linear topology 46
4.3 Random topology example . 48
4.4 Switch-Controller latencies: Random topologies 49
4.5 Ring topology example . 50
4.6 Switch-Controller latencies: Ring topologies 51
4.7 Tree topology example . 52
4.8 Switch-Controller latencies: tree topology, the x axis represent the depth

of the perfect binary tree . 52

xv

4.9 Results for several runs of the boss in the middle heuristic for random
topologies, with varying inputs (move ratio, number of rounds) 53

4.10 Execution time graph . 54

xvi

xviii

List of Tables

3.1 Functions and variables used in the smallest degree first heuristic. 33
3.2 Smallest degrees per stage example . 34
3.3 Functions variables used in the connection heuristic. 36
3.4 Functions variables used in the algorithm. 39
3.5 Functions variables used in the algorithm. 43

xix

Chapter 1

Introduction

The management of computational resources has been changing fast. First, we had phys-
ical servers where applications were deployed. Then, virtualization was introduced [7],
with software solutions no longer tied to specific hardware. Virtualization allowed to
interchangeably run any application on any hardware, resulting in benefits like the pos-
sibility to balance load, perform maintenance, prepare for disasters and increase fault-
tolerance.

With virtualization already in place, virtual machine migration [12] was proposed and
further enhanced the way datacenters are managed, from the ability to relocate resources
to enabling zero downtime hardware maintenance. Virtual machine (VM) migration is a
fundamental tool in cloud operations nowadays. With the emergence of multiple cloud
infrastructures another opportunity arises: the possibility to leverage resources from mul-
tiple cloud operators to lower costs and improve reliability.

1.1 Motivation

Today’s computer applications consist of distributed components that work together
to provide a variety of services. Without stable communication the applications and the
systems that support them are rendered useless. Therefore, it’s important to ensure that
both the virtual machines (VMs) and their ability to communicate are functioning prop-
erly. One problem that limits VM migration is therefore its tight integration with the
underlying network resources. For instance, a VM cannot move to arbitrary locations due
to the coupling of network addressing with a VM’s physical location. As such, virtual
machine migration is usually limited to the same subnetwork or might require planning
due to the fact that the network needs reconfiguration, since network policies (quality of
service and isolation for example) may need the be reconfigured since they are specific to
a physical network.

Ideally, when moving the state of a particular application VM, the network inter-
connecting them should move with it. However, this tight coupling interferes with VM
migration and calls for network virtualization techniques to provide the needed flexibility

1

Chapter 1. Introduction 2

[23].
Much like the VM is itself a virtualization of computational resources, networks

should be virtualized, isolated from each other and detached from their physical infras-
tructure to facilitate network migration. By network migration we mean the ability to
migrate network state – that can include forwarding rules, metadata associated to packets,
etc. – from one switch instance to another. The separation of the control and data planes
and the logical centralization of control in a cluster of servers achieved by Software-
Defined Networking (SDN [25]) now give operators the ability to virtualize networks at
cloud scales. Recently proposed network virtualization techniques [23] use SDN to offer
full network virtualization.

Existing solution are usually restricted to a single cloud provider, limiting depend-
ability and scalability. By contrast, a flexible solution (Figure 1.1) that could leverage
cloud resources would grant users several benefits. First, compliance with privacy legis-

Figure 1.1: A multi-cloud solution

lation may demand certain customer data to remain inside a country. As such the ability
to have a network span multiple clouds (keeping user data locally) would allow to fulfill
these obligations but still leverage cloud resources to scale out. Second, as availability
is an issue (a single cloud is a single point of failure), a multi-cloud solution would be
more resilient to outages, enabling a service to withstand a datacenter and cloud outages.
Unfortunately this problem is increasingly more common [3]. Third, user costs can poten-
tially be decreased by taking advantage of pricing plans from multiple cloud providers:
a multi-cloud platform could migrate resources between clouds, to reduce operational
costs. Fourth, performance can also be enhanced by bringing services closer to clients
or by migrating VMs that at a certain point in time need to closely cooperate. As such,
creating solutions that provide more flexibility regarding the way users can leverage re-
sources from multiple clouds is considered increasingly relevant [5]. The main motivation
for this work is thus to explore on how to extend SDN-based network migration to this

Chapter 1. Introduction 3

multi-cloud environment.

1.2 Goals and challenges

In this work we aim to create solutions for migration of networks in a multi-cloud
SDN-based environment. We target a multi-cloud network virtualization platform such as
[6]. This entails two fundamental challenges:

• Working outside the boundaries of a datacenter requires the use of low bandwidth
and high latency links, representing a complicated environment when compared to
the use of fast internal datacenter connections of single cloud solutions.

• In an SDN scenario the control depends on the network controller and its interac-
tions with switches. If the communication with the controller is affected, so is the
network’s ability to react to network events and implement new policies. Therefore,
it’s important to ensure that the communication between switches and the controller
(i.e the control plane) are kept as stable as possible.

A multi-cloud network migration solution will have to face these issues to be useful
and practical. The goal of this work is thus to investigate network migration orchestration
algorithms with the goal of minimizing downtime of the control plane communications
and thus assuring a smooth migration.

1.3 Contributions

In order to ensure smooth network migration in a multi-cloud SDN the connection
between the switches and the network controller must be kept stable, particularly in terms
of reduced latency. The particular order in which network elements are migrated affects
control plane latencies, and as such it is important to plan the migration order (i.e., to
orchestrate the migration) so that any potential disruption is minimized. To address this
problem this work makes the following contributions:

• We propose an optimal solution for the network migration problem using a linear
programming formulation.

• As the optimal solution is computationally intractable, we propose heuristics to
solve the problem.

• We have performed a thorough evaluation of the proposed solutions considering a
diverse set of network topologies. The conclusion is that some heuristics achieve
solutions close to the optimal within reasonable time bounds.

Chapter 1. Introduction 4

1.4 Structure of the document

This document is organised as follows: In section 2 we present the state of the art,
including an introduction to network virtualization and live migration of virtual networks.
In section 3 we present the proposed solutions for orchestration of SDN migration. In
Section 4 we evaluate the proposed algorithms, and in section 5 we conclude this disser-
tation.

Chapter 2

Related Work

The need for more flexibility in the way computational resources are managed is not
new. Several technologies (virtualization, migration, etc.) have been developed in the
past decade for that purpose, and they have changed the way resources are used. In this
chapter, we discuss techniques that have made the process of managing resources easier,
increasing flexibility. We start by discussing virtualization: the challenges it addresses,
and several types of virtualization mechanisms and their benefits. Then, live migration
of virtual machines is introduced: we address the need for this mechanism and its main
limitations.

We then change the focus to the networking aspect we target. We present software-
defined networking (SDN), discussing the architecture, related standards and address
some challenges such as scalability. Next, we introduce network virtualization and dis-
cuss its benefits. Then, we build upon the previous section to discuss network migration.

2.1 Virtualization

Virtualization technology consists in abstracting the underlying hardware to the appli-
cations. In practice this means that the software is no longer tied to the hardware, making
the software more independent from the infrastructure it is executed on. The ability to
run virtualized operating systems and workloads provided datacenter operators with more
flexibility and efficiency in the way they manage their computational resources. Advan-
tages of virtualization include:

1. Easier deployment of applications, made possible by bundling the application inside
a virtual machine and running it on any existing physical server without having to
reconfigure it.

2. Deployment failures are also reduced as it is possible to make sure that the test-
ing environment and the production environment match, meaning less unexpected
errors when the time to deploy the software arrives.

5

Chapter 2. Related Work 6

3. Reduced hardware vendor lock-in: since the software is designed to run on a VM
any hardware that can run the Virtual Machine Manager (VMM) is suitable.

4. Resource isolation, since VMs are executed on their own instances of the operating
system and the VMM guarantees that each VM gets the resources it needs without
affecting the others.

Over the years different virtualization techniques have been developed. Some offer
full virtualization, requiring no changes in the guest OS, while others require changes in
applications or/and operating system.

Figure 2.1: Hypervisor based virtualization

Figure 2.2: Kernel-based virtualization

Another key difference is how virtualization is achieved [1]: some solutions (Figure
2.1) introduce a new software layer, called hypervisor, while others (Figure 2.2) work
at the operating system level to include mechanisms that allow for virtualization (such as
ensuring isolation). The first, full virtualization (as offered by Xen [7]), is more expensive
than the second, kernel-based virtualization (such as linux containers [1]), since in the
former a guest VM runs an entire operating system on top of the virtualized resources,
whereas on the latter there is only one operating system that hosts all the virtual machines.

Choosing between different types of virtualization requires knowing the problem well.

Chapter 2. Related Work 7

For example, a cloud provider may opt for a virtualization solution with strong guarantees
of isolation, so that clients do not interfere with each other’s resources. On the other hand,
a virtualization solution for a private cloud could be more lightweight as it would still ob-
tain the flexibility of a virtualized environment without the overhead of full virtualization.

Under a multi-cloud context as the one we target, another type of virtualization is help-
ful: nested virtualization (Figure 2.3). Nested virtualization consists of running a second
hypervisor on top of the cloud provider’s hypervisor. The end result is hypervisor level
control on third party clouds, an important tool to create multi-cloud solutions. Nested
virtualization enables the implementation of new features without provider support. For
instance, VM migration might not exist in a particular cloud solution, but by leveraging
nested virtualization such feature can be implemented by the user’s hypervisor. This flex-
ibility is valuable to solve cloud heterogeneity issues and to enable new services on top
of existing cloud offerings, such as cloud fault tolerance.

Figure 2.3: Nested virtualization

A related problem is that today’s clouds operate in isolation, have differences regard-
ing their VM format and the features they provide. All this heterogeneity makes it very
hard to create solutions that can span multiple clouds. As an example of a solution that
offers a service that spans multiple clouds is Xen-Blanket [34] (Figure 2.4). This system
provides users total control of their resources that span multiple clouds. This is achieved
by enabling a hypervisor-level of control on third-party clouds and providing a consistent
set of features in every cloud. It includes a layer responsible for hiding the heterogeneity
of clouds (Blanket layer), since different clouds provide different interfaces for accessing
resources (such as networking and disk I/O). For this purpose, this layer includes drivers

Chapter 2. Related Work 8

Figure 2.4: Xen-Blanket architecture, from [34]

for every cloud interface, called Blanket Drivers. The use of these drivers makes it possi-
ble to present a consistent interface to guests, independently of the cloud they are in.

2.2 Live Migration

Managing data centers and computer clusters is hard: there is the need to continuously
support new applications, hardware has to be replaced or upgraded periodically, and the
available resources have to be used efficiently. Traditional solutions to these problems
included planned maintenance schedules to replace hardware and administrative tasks
such as re-arranging resource allocations. These solutions usually incurred in downtimes
which could range from minutes to hours.

To address these issues it is now possible to use live virtual machine migration. With
live migration administrators are given more flexibility to manage their resources. Tasks
like maintenance, load balancing and fault-management no longer need to cause long pe-
riods of downtime, as it is possible to migrate VMs to another server live, by re-assigning
VMs to physical machines [12].

2.2.1 Live Migration of Virtual Machines

The work by Clark et al. [12] addresses the problem of implementing a live migration
mechanism. The proposed solution targets a local-area network, and it builds upon the
Xen hypervisor. By leveraging Xen’s virtualization the authors implemented a solution
that does not require any participation of the guest OS. The proposed method works in
multiple stages. First, a target machine is selected to host the VM, and as such it is nec-
essary to ensure that sufficient resources are available. Then resources are reserved at
the target machine. The second stage consists of an iterative pre-copy phase, where all
the memory pages are sent to the target machine. In every iteration only the pages that

Chapter 2. Related Work 9

have been changed since the last iteration need to be sent again. This iterative behaviour
continues until a point where the same group of memory pages are the only ones being
modified (these pages are called the writable working set). When such situation arises, we
enter the stop-and-copy phase where the VM at the original host is suspended and these
pages are transferred to the destination machine. Finally, the target machine acknowl-
edges that it received a consistent OS image, sends an ARP reply so that packets are sent
to the new location and resumes the VMs execution.

The process of determining the writable working set is rather important because a
correct decision on when to stop the iterative pre-copy phase will optimize both network
usage and total migration time. To develop heuristics to determine when to start the final
stop-and-copy phase the authors analyzed several workloads and bounded the number of
pre-copy rounds to these results. To facilitate an efficient use of network resources the
migration routine proposed also adapts its use of bandwidth. When all that is left for the
migration to finish is the working set the bandwidth use is increased to finish.

2.2.2 Live WAN migration of VMs

Just like local-area migration changed the way resources are handled in a datacenter,
WAN migration can possibly provide the same flexibility but on a global scale.

Several issues arise when trying to perform live migration on a wide-area network.
First, there are bandwidth restrictions. Second, the latency is higher. Finally, the virtual
machine changes to a different layer 3 network, which means the VM has to change its
IP address. To address these challenges, in 2010 Timothy Wood and K.K. Ramakrishnam
presented CloudNet [35], a platform for optimized WAN migration of Virtual Machines.
The authors present the notion of a Virtual Private Cloud, which represents a set of re-
sources securely and transparently connected to the existing infrastructure. To provide
transparent networking CloudNet uses a Multiprotocol Label Switching (MPLS) based
virtual private network (VPN) and Virtual Private LAN Services (VPLS [21]), creating
the abstraction that all the resources exist in the same network while in reality they reside
in different networks. With this type of network virtualization in place the IP address
problem is solved. In addition, VPLS creates a shared Ethernet broadcast domain, and by
doing so the unsolicited ARP message that is sent to update the network about the VM’s
new location [12] reaches all the sites connected through the VPN, updating the whole
network about the VM’s new location.

To perform an efficient WAN migration, CloudNet proposes some changes to the stan-
dard migration routine to better fit a WAN scenario. The migration algorithm in Xen has
a set of conditions to determine when to proceed to the final migration steps. Specifically,
Xen enters this final step if one of three conditions is met: a) either there is a very small
number of pages remaining, or b) three times the VM’s memory has been sent, or c) more
than 30 iterations took place.

Chapter 2. Related Work 10

The authors of [35] found that even under an average workload the condition that
was met more commonly was the latter. Their results also shown that most of these
iterations where wasteful and only increased the migration time and bandwidth used. To
address this, they proposed a different heuristic to determine when to end the iterative
page copying stage. Their proposal tracks the number of pages remaining to be sent in a
short history. If there are fewer pages to send than any entry recorded in the history, they
enter the final iteration (in order to prevent their optimization from performing poorly, if
there is an increasing trend in the number of remaining pages the migration is terminated
early, should such trend be detected). In addition, aiming to adapt to the lower bandwidth
scenario, CloudNet uses content based redundancy using a block based scheme. Simply
put, this divides the content (RAM and disk) in fixed size blocks and calculates a hash for
every block. When sending data over the network if both the source and destination have
the hash for this block in their caches it means they can send a small 32 bit index for the
cache entry instead of sending the actual block, saving bandwidth.

A different approach to enable WAN migration is proposed in [10]. The goal is to
migrate a VM and its local storage across a WAN without losing ongoing connections.
To accomplish this goal the authors employed different solutions: dynamic DNS and
tunnelling. First, to ensure that the connections stay alive a tunnel is created between the
original physical VM host and the target VM host to relay the connections and ensure
that they are not lost. To ensure that new connections are sent to the new IP address the
authors leveraged dynamic DNS. The idea is to update a VM’s DNS entry right before it
migrates so that new connections are sent to its new location.

To ensure a faster WAN migration the authors proposed a series of techniques. First,
the use of image templates to reduce the amount of data that has to be sent across the WAN
links. When a VM migrates, the only data that needs to be transferred is the difference
between the template and the actual VM image, saving bandwidth. Second, considering
that some workloads might be write-intensive (which could delay the migration process),
a write-throttling mechanism was implemented where after a certain pre-defined threshold
is exceeded, all successive write operations are delayed. Without this mechanism some
workloads could prove to be very difficult to migrate in a timely fashion. The experimen-
tal results show that by using this technique the service disruptions caused by migration
are unnoticeable by end-users.

2.2.3 Migration for fault-tolerance

Datacenters are designed to account for faults by employing redundant architectures
that account for servers becoming unavailable. These replication solutions aim to increase
a service’s availability, as power equipment failures and other problems often make tens
to thousands of servers unavailable and downtime is expensive. [3]

Unfortunately, there is a tradeoff between fault tolerance and reducing bandwidth us-

Chapter 2. Related Work 11

Figure 2.5: Bandwidth usage and Fault tolerance, from [9]

age [9]: to lower bandwidth one can deploy the servers together but this reduces fault-
tolerance, because one fault can bring an entire service down. On the other hand, spread-
ing the servers increases their fault-tolerance but increases bandwidth usage (Figure 2.5).
The problem of optimizing fault tolerance and bandwidth usage is both NP-Hard and
hard to approximate. Considering this, the authors of [9] formulated a convex optimiza-
tion problem that incentivizes spreading machines but penalizes machine allocations that
increase bandwidth usage. For this purpose the authors examined the traffic patterns of a
real large-scale web application. This study provided important insights about communi-
cation patterns and the impact of faults. The authors discovered that:

• The network core is highly used;

• The traffic matrix is very sparse;

• Only 2% service pairs communicate at all, and the communication pattern of these
2% is very skewed;

• 1% of the services generate 64% of all the traffic;

• The median service talks to 9 other services;

• Networking and hardware failures can cause significant outages;

• Power faults domains create non-trivial patterns.

The authors leveraged these insights to design algorithms that can account for both fault
tolerance and bandwidth. The optimization framework takes into account the following
metrics: bandwidth, fault tolerance, and the number of moves (the number of servers
that would have to be relocated to move from the starting configuration to the optimized
one). They proposed the following algorithms: a) CUT+FT, where there is no penalty for
using bandwidth, b) CUT+FT+BW, where machine placements that increase bandwidth

Chapter 2. Related Work 12

usage suffer penalties. Both algorithms work in two phases. The first phase places ma-
chines minimizing bandwidth usage. Then, in the second phase, machines are swapped
around to improve fault-tolerance. The authors evaluated their algorithms and determined
CUT+FT+BW performs the best. Their solution achieved 20%-50% reduction in band-
width usage in the core of the network and still improved the average worst-case survival
by 40%-120%.

Traditional methods for making fault-tolerant applications involve undertaking the
complex task of creating complex recovery routines on otherwise simple applications,
making the process of creating and deploying such applications harder. To address this
problem Remus [13] is a mechanism that provides fault-tolerance as a service, enabling
the creation of highly available systems without modifications to the original application
and without complex fault-tolerant software. Remus works by replicating several times
per second a VM’s internal state to another physical machine (thus migrating its state to
the replica). When the original machine fails, the backup can take its place. To avoid
severe performance degradation from executing both hosts in lock-step, Remus allows
the first host to execute speculatively and replicate its state asynchronously to the backup
machine. This, however, would cause consistency issues should the primary reply to a
client with a confirmation and then crashed, as the backup machine might not had received
a snapshot with that operation. To ensure consistency some care was necessary. Namely,
Remus does not allow the outside world to view state unless such state has already been
successfully replicated. In practice, Remus buffers all network output until a confirmation
that the checkpoint has been replicated arrives. When that notification arrives the state
associated with the checkpoint is released, meaning that when a client receives a reply the
associated state has already been replicated, and by doing so ensuring consistency.

2.2.4 Algorithms for placement of virtual machines

Virtualization and live migration can incur in inefficient usage of resources if used
carelessly. Unplanned VM assignment or bad placement could lead to overloaded ma-
chines and network congestion. Properly consolidating machines is therefore beneficial.

Towards this end the authors of [4] present a heuristic for consolidating heterogeneous
VMs by considering their communication graph. They design an algorithm to place VMs
in a way that minimizes traffic between VMs hosted in different physical machines. The
proposed heuristics make the following assumptions: first, that inter-tenant VM commu-
nication is either small or non- existent. Second, that during off-peak hours it is valid to
consolidate all of a tenant’s VMs in a single machine. The proposed algorithm works in
the following way: First, it determines which machines are loaded beyond a given thresh-
old. These are considered unsuitable targets for migration. Then, it determines which
machines are loaded below a given second threshold. These are the actual migration tar-
gets. This second set of machines is sorted by load. Afterwards, a set of VMs whose

Chapter 2. Related Work 13

Figure 2.6: Migration strategies, from [4]

load can be accommodated by these physical machines is identified. Finally, using the
communication graph (of the VMs they want to migrate) they try to migrate the largest
connected groups of VMs to a single machine. At some point it will be impossible to
place an entire group of VMs in a single physical machine. When that situation arises
this group of machines is partitioned into smaller groups. For this purpose the authors
present two partitioning algorithms, a modified breadth first search and a modified Prim’s
algorithm.

One problem of traditional migration techniques is that they are insufficient when an
entire virtual cluster or multiple virtual clusters need to be migrated. Considering this, the
authors of [36] analyzed various live migration strategies for virtual clusters (VC). The
proposed VC-Migration framework is responsible for managing the VC migrations. This
solution monitors the resource usage (CPU, memory, disk I/O, and network) the address
the migration’s performance. The authors have considered 4 migration strategies: a) Con-
current migration, with a varying number of machines being migrated at the same time;
b) mutual migration, which consists of two clusters on two physical machines migrating
to each other’s physical machine simultaneously; c) homogeneous multi-VC migration
and d) heterogeneous multi-VC migration, which consists of migrating multiple clusters
of the same size, and multiple clusters with different sizes, respectively. This is shown in
Figure 2.6.

This work analyzed these migration strategies and determined their effectiveness re-
garding multiple parameters, including migration time and bandwidth usage. Their con-
clusions where the following:

• Virtual machines with more memory increase migration time. More memory results
in a longer pre-copy phase, therefore increasing the total migration time. However
the downtime is not affected, since it depends on the page dirting rate and transfer
speed [10].

• Concurrent migration of large numbers of machines severely hurts performance.
The limited network bandwidth slows the migration process for large numbers of
concurrent migrations. For the same reasons (limited bandwidth) sequential migra-
tion is better than mutual migration.

• Virtual machines belonging to the same virtual cluster should be deployed together,

Chapter 2. Related Work 14

to reduce the communication and synchronization latency across different physical
machines.

• Mutual migration should be avoided due to the long overall migration time.

• Migration order is important when multiple virtual clusters need to be migrated.

These results are very important. Although they detail strategies focused on a differ-
ent problem (migration of VM, not networks), they provide useful insights to our work,
such as the importance of migration order. This demonstrates the need for effective or-
chestration algorithms, and is thus a significant motivation for our work.

After discussing virtualization and migration of virtual machines, in the next section
we focus on networks.

2.3 Software-defined networking

The Internet has changed the way computer systems (and people!) communicate. It
has been doing so for years. Despite their undeniable success, traditional IP networks
are complex and hard to manage [25]. Indeed, correctly applying a policy into hundreds
or thousands of network devices using manual or low-level scripting methods is not an
easy task. Neither is constantly changing the network to adapt to new workloads. To
further complicate the matter, current networks are vertically integrated. Its several layers
(data, control, management) are tightly coupled inside vendor-specific, closed software
and hardware.

New standards take years to be agreed upon, and when finalized the implementations
are typically closed, which means they cannot be reused nor modified. As a result, com-
puter networks have evolved slowly.

For example, the transition from IPv4 to IPv6, despite its relevance and the fact that it
started over 20 years ago, has yet to reach completion.

2.3.1 Architecture

Software-Defined Networking (SDN) is an architecture that emerged with the aim to
fix the shortcoming of traditional networks. In an SDN the data plane and the control
plane are decoupled, meaning that they are not integrated in the same device. The data
plane functions run on switches, while the control plane logic is executed in an external
entity called controller. This separation of concerns is one of the defining characteristics
of an SDN. The network equipment (switches) takes care of forwarding the traffic and
the controller is responsible for the control plane, that is, for deciding how to forward
traffic. The control plane is executed in commodity hardware, typically in a cluster of
regular servers. This controller is usually thought of as “logically centralized” as it offers

Chapter 2. Related Work 15

Figure 2.7: SDN Architecture

a global view of the system and the ability to control it in a much more consolidated way,
but in practice its implementation can be physically distributed.

Figure 2.7 illustrates the SDN architecture. In the bottom we have the data plane. The
connection between the switches (data plane) and the controller (control plane) is referred
as the southbound API (the most common being the Openflow [28] protocol). The con-
nection between the controller and the applications is called the northbound API. In short,
network applications have a high level abstract view of the network and implement their
policies there. These policies are then translated into a set of switch rules by the control
plane, and finally these rules are applied on the actual hardware through the southbound
API. Assuming that the APIs remain the same all these parts can move independently: it’s
possible to deploy faster switches with little to no reconfiguration or without reprogram-
ming an application. To address scalability issues it is possible to distribute the controller
and use sharding techniques without changing the other components.

2.3.2 OpenFlow

As stated above the most common southbound API for an SDN is OpenFlow [28, 25].
The goal of a southbound API is to hide the heterogeneity between network devices,
and normalize the way their behaviour is controlled by means of a common interface.
In OpenFlow the way to control forwarding is by defining rules to match packets, and
actions to execute on packets which headers matched (Figure 2.8).

Chapter 2. Related Work 16

Figure 2.8: Simplified view of Openflow handling a packet

When a packet is received, the switch looks-up a forwarding table that contains several
rules to be verified. If that packet header matches some rule, the corresponding actions
are applied to the packets for that flow. Actions include dropping the packet, forwarding it
to some port(s), sending it to the controller or to another table, among others. To perform
the matching several header fields can be used. These include TCP, IP, VLAN, Ethernet,
etc. Rules also have an associated priority, dictating the order by which they should be
evaluated. Several possible execution modes exist. In reactive mode, the first packet from
a given flow is sent to the controller as a packet-in event. The controller then installs the
in the switch the necessary rules so that subsequent packets from that flow do not leave
the data plane. In proactive mode the controller populates the switches with forwarding
rules ahead of time, not waiting to be triggered by new packets.

The OpenFlow’s flow abstraction was designed to allow for some freedom regarding
packet handling but still allow for an efficient hardware implementation. This was an
essential tradeoff because too much flexibility would make it harder to create an efficient
implementation, while the lack of flexibility would make it unsuitable for real world us-
age. Another important aspect regarding OpenFlow is that it was designed to work using
already existing hardware, making its adoption simpler [28].

2.3.3 Scalability

The ability to control the network as a whole and the concept of “logical centraliza-
tion” often leads one to believe that SDN implies a centralized architecture. That is not
true, and indeed several distributed controllers already exist.

Considering that networks can have hundreds or thousands of network elements and

Chapter 2. Related Work 17

that the network is an essential infrastructure, relying on a centralized architecture would
indeed be impractical. First, it would be a single point of failure, one that could compro-
mise the entire network’s ability to function properly. Second, managing a whole network
is a resource intensive task, as such a single node wouldn’t be able to scale to large net-
works. Several works (e.g, [24]) have shown that it is possible to distribute the control
plane of an SDN, and by doing so achieve the necessary fault tolerance and scalability
requirements to handle large networks.

2.3.4 VM migration in SDN

The flexibility of control offered by an SDN has been leveraged to enable novel strate-
gies for VM migration. For instance, the work by Huandong Wang et al. [30] addresses
this problem of scheduling migrations allocating network resources for migration, in a
scenario where multiple VMs need to be migrated at the same time. Migrating multiple
VMs at the same time sets different requirements on the network, when compared to a
single VM per-step migration. For example, if two VMs migrate using the same path then
the total migration time is increased as they compete for resources. Planning is thus nec-
essary to avoid these negative interactions between different migration tasks. This work
leverages parallel migration and multiple routing paths which help reduce total migration
time. The authors adopt the network’s perspective, aiming to reduce total migration time
by maximizing the effective transmission rate in the network.

They formulate this as a mixed integer programming (MIP) problem, and propose an
approximated algorithm (fully polynomial time approximation, FPTA) that aims to solve
the problem in a more scalable way. By addressing this problem in an SDN environment
the authors leverage the flexibility to install forwarding rules in order to provide multipath
forwarding for migrations. They have shown that the one-by-one migration scheme was
outperformed by all other solutions, with respect to total migration time. The approxi-
mated solution is considerably more scalable than the optimal, as the computation time is
at most a polynomial function of the number of the migrations, taking significantly less
time than solving the MIP problem.

The work by Xibo Yao et al. [31] also addresses multiple VM migration with the goal
to reduce the total migration time and the downtime, by fully utilizing network bandwidth
resources. In this case the algorithm maximizes the migration bandwidth by minimizing
the correlations between different migration schemes of VMs. As a result the performance
of this scheme improves over FPTA.

2.4 Network virtualization

Similarly to computational resources, network resources have also been target for
virtualization. Well known examples include VPNs and VLANs. Unfortunately, these

Chapter 2. Related Work 18

traditional forms of network virtualization lack the flexibility and scalability to offer full
virtualization, at cloud scales, of topology, addressing, and service models.

The lack of full network virtualization hinders several aspects of datacenter manage-
ment. For example, without it the workloads that depend on a specific topology require
network changes for their deployment. Other issues include the address space. If the
substrate network is IPv4 the user is restricted to this particular addressing scheme [23].

Ideally, the network should work much like a virtualized computer works: any net-
work topology and addressing scheme would be valid and attainable to be deployed on a
single physical network. This section presents works that aim to achieve this goal.

2.4.1 Network Virtualization in Single-Provider Datacenters

Recently, VMware has presented its SDN-based network virtualization platform, NVP
[23]. NVP’s architecture is based around a network hypervisor that provides network vir-
tualization abstractions to tenants. Namely: a control abstraction, meaning that the tenants
are able to create network elements (called logical datapaths) and configure them as they
would in a physical network; and a packet abstraction, which means that any packet sent
should be given the same treatment (i.e the same switching, routing and filtering service)
they would have if this virtual network was the tenant’s own physical network. The plat-
form implements the logical datapaths entirely on the software virtual switches present
in every host, leveraging tunnels between every pair of host-hypervisors for connectivity
and isolation. As a result, the underlying physical network only sees regular IP traffic and
no special infrastructure nor special network feature is needed.

To implement multicast features NVP constructs a multicast overlay using additional
nodes, called service nodes. Because NVP targets enterprise customers some tenants will
want to connect their virtual networks with existing physical networks. For this purpose
NVP uses special nodes called gateways.

Due to NVP’s reliance on software switching and the fact that a centralized SDN
controller cluster configures all the virtual software switches, some problems need to be
addressed. Namely, ensuring that the software switches can provide sufficient throughput,
and that the controller can scale. To improve forwarding performance several techniques
were used. First, NVP explores traffic locality by installing flow rules in the kernel (for
faster matching). Second, STT (Stateless Transport Tunneling) is used for encapsulation,
since STT places a fake standard TCP header to make possible the use of NIC hard-
ware offloading mechanisms, improving forwarding performance. As the computations
performed by the controller are complex, there was the need to allow for incremental
computation. To accomplish this goal, a domain specific language was created, called
nlog. Finally, NVP addresses scalability and availability. Since the forwarding state com-
putation is parallelizable NVP divides such computation into multiple tasks that execute
independently in different servers. Availability is achieved by having hot standbys that

Chapter 2. Related Work 19

come into action as soon a failure is detected.

2.4.2 Multi-cloud network virtualization

Whereas NVP [23] focused on a single cloud with full control of the hardware, the au-
thors of [6] extend the idea to span multiple clouds, both public and private, with differing
levels of control regarding the physical infrastructure.

The ability to use multiple clouds provides several benefits such as reduced costs
(by moving some workloads to cheaper clouds) or improving performance (by bring-
ing services closer together). To fulfill its requirements the platform leverages the SDN
paradigm, using Open vSwitch (OvS) [29] as a software switch for virtualized environ-
ments). Given the lack of flexibility in public clouds (i.e., no access to the network hyper-
visor) the authors opt for a container-based virtualization[1] solution running on top of the
substrate VM. To achieve full network virtualization, the platform’s hypervisor translates
the virtual events to physical events (and vice-versa) and performs flow translation at the
edge.

Another related approach is XenFlow [27], a network virtualization system that pro-
vides isolation between virtual networks, preventing one network from disrupting other
network’s performance and providing intra-network and inter-network QoS provisioning
using a resource controller. XenFlow’s architecture consists of three main elements: the
virtual routers, the XenFlow Server, and a packet forwarding module. It runs on com-
modity hardware using Xen and a packet forwarding module compliant with OpenFlow
[28] (the packet forwarding can be handled by Open vSwitch [29]).

Virtual routers run the XenFlow client module. Its function is to monitor the routing
table and ARP table for updates, and to collect this information. Then, the XenFlow server
module gathers all information from all the xenflow clients, creating the Routing Infor-
mation Base to be sent to the server for every virtual router. To ensure isolation between
networks XenFlow uses the VLAN tag. By associating virtual routers with queues in
Open vSwitch, XenFlow achieves resource isolation (memory isolation is accomplished
using standard Xen primitives). The difference between standard OpenFlow queue control
and XenFlow is that XenFlow redistributes the idle capacity to maximize link utilization.
Quality of service is also achieved by mapping flows to queues.

VirtualWires [33] presents an abstraction that facilitates multiple-cloud network vir-
tualization. The authors proprose a connect/disconnect primitive that allows the user to
connect vNICs with a point-to-point tunnel. It’s implementation guarantees that when
two vNIC are connected, they will stay connected even if one machine is migrated away
(even to another network, across clouds). The links between two vNIC are provided by
connectors layer-2-in-layer-3 network tunnels. To allow connectors to work across clouds
the authors propose another component, called the extender, that maintains a permanent
VPN connection with all other clouds. These are invisible to the VMs and are only used if

Chapter 2. Related Work 20

packets need to transverse cloud boundaries. The management of the vNIC’s connections
is implemented at the hypervisor level and tied with the live migration mechanisms, so
that the connection between two vNICs always remains connected. VirtualWires was im-
plemented in Xen and leveraged Xen-Blanket [34] to deploy VirtualWires across multiple
clouds.

2.5 Network migration

The work discussed in section 2.2 argued that migration of VMs grants benefits, lower-
ing costs and improving efficiency. This section focus on a related, but more complicated
problem: the migration of an entire network.

2.5.1 Scheduling for VM migration

VROOM [32] was probably the first solution to migrate networks. Specifically, VROOM
is a network management primitive that allows virtual routers to freely move between their
physical counterparts. It can help in tasks like planned maintenance and service deploy-
ment, and solves new problems such as reducing energy consumption. VROOM detaches
the control plane of routers from the physical equipment, allowing both to be independent.

The solution requires the ability to migrate links and having the capability to migrate
the control plane. To address link migration, advances in transport-layer technology were
leveraged, allowing VROOM to change the physical links between physical routers just
by signaling the transport network. To address the router control plane virtualization
VROOM partitions the resources of a physical router into several virtual routers that run
independently, each with its own control plane (i.e., configurations, routing protocol in-
stances). To enable router migration, VROOM’s virtual routers can dynamically change
their binding with the router’s physical interfaces.

The migration process consists of the following steps: First, a tunnel is setup between
the two routers, so that the new location can start receiving routing messages (before link
migration is completed). It’s important to note that the data plane can keep forwarding
packets during control plane migration, as they are separated. After the control plane is
migrated the data plane is cloned. This process is done by the control plane, that recreates
the data plane state using a unified interface that hides the heterogeneity between different
data planes. After the control plane is migrated the links are migrated asynchronously,
until all links are migrated. When that occurs the tunnel is torn down and the migration is
complete.

The authors of [26] address a different problem, the scheduling a virtual network
migration. This problem is similar to VM placement as different migration plans can
affect the traffic, incurring in more/less overhead and increasing/lowering migration time.
The proposal leverages on previous work on live migration of a single router without

Chapter 2. Related Work 21

disruption to present algorithms to find optimal single-node at a time sequence of moves
to minimize network overhead.

In addition they proposed algorithms that migrate multiple nodes simultaneously. To
address the scheduling problem the authors designed 3 algorithms. The Local Minimum
Cost First (LMCF) algorithm attempts to minimize the migration cost and moves only
one node at a time. The Maximal Independent Set-Size Sequence algorithms tries to min-
imize the migration time by migrating multiple nodes simultaneously. Finally, Maximal
Independent Set-Local Minimum Cost First (MIS-LMCF) tries to minimize both migra-
tion time and cost. Their experimentation show that no algorithm consistently provides
the lowest cost but they all generate migrations with reasonable costs and lengths.

In VROOM the temporary cloning of routers creates network correctness problems,
an issue addressed by LIME [17]. In this paper, the authors first define transparent mi-
gration. Under this definition, a migration is transparent if the events that happen during
a migration can also be observed when there is no migration. For example, networks can
lose packets, therefore packet loss during migration does not break transparency. The sys-
tem, proposed in the context of an SDN, is capable of efficiently migrating an ensemble
(a collection of virtual machines and virtual switches), transparently for any given SDN
controller and end-host applications.

The authors start from a move primitive that works in the following way. When it is
necessary to move a switch, the original rules are copied to the new switch. When the new
switch has a complete copy of the rule set, the old switch is ”frozen” (a high priority drop
rule is installed in the switch) and tunnels are established between the connected hosts,
from the old switch to the new switch. As a result, hosts connected to the old switch
have their data sent to the new switch through a tunnel, while hosts connected to the new
switch use it directly. This primitive ensures that transparency is preserved, but it is costly.
For instance, if two local hosts want to communicate after the tunnel is setup, they have
to use the tunnels twice, incurring huge latency (Figure 2.9). Also while the switch is
”frozen” it is unresponsive leading to high rates of packet loss. To avoid this problem,
a different solution is proposed. Instead of having only one working switch at a time,
there are multiple clones of a switch executing on multiple physical switches (similar to
VROOM).

This avoids packet loss, and allows two hosts to communicate locally (Figure 2.10).
This cloning solution has, however, a problem: it might cause incorrect SDN applica-
tion behavior. To prevent this problem LIME merges events and statistics from all the
running instances of a switch, in order to preserve the single switch view a controller
application expects. This means merging packet-in events, traffic statistics, links failures
and rule timeouts. It is important to note that this merging process cannot preserve the
order of events, due to the variable delays in receiving control messages. Fortunately, this
does not hinder transparency, because even a single switch does not preserve the order of

Chapter 2. Related Work 22

events (packets arriving on different linecards could trigger events in any order) and the
OpenFlow specifications does not require it so no special care was needed.

Finally, LIME addressed the problem of updates during a migration. Because switches
can’t be updated at the same time (i.e. atomically), some application’s inter-packet depen-
dencies may be broken, leading to incorrect application behaviour [16]. To address this
issue LIME proposes two solutions: The first solution works by installing a drop rule, and
only when both switches notify that this rule has been installed does the controller install
the updated rule. The end result is that packets are either dropped or processed by the
new rule. The other solution relies on the fact that one switch can be updated atomically,
while the other one simple detours the affected traffic to this first switch.

Figure 2.9: H1 and H2 could communicate locally, from [17]

Figure 2.10: Local communication, from [17]

2.6 Final considerations

The study of the state of the art presented in this chapter was illuminating with re-
spect to our problem. For instance, various techniques employed in the context of virtual
machine migration can be leveraged and modified for the context of network migration.
It was also clear that the affinity between certain system components (i.e. the amount of
traffic exchange between entities) can be explored to build effective and efficient algo-

Chapter 2. Related Work 23

rithms.
This analysis survey also helped in understanding the challenges of network migra-

tion, particularly in the SDN-based multi-cloud network virtualization scenario we target.
Specifically, the high latency and low throughput of cross cloud links, along with the fact
that in an SDN the control plane is physically separated from the data plane, makes the
problem more challenging.

Finally, to the best of our knowledge the problem of scheduling the migration of a
software-defined network to fulfill the requirements of a multi-cloud scenario has not yet
been addressed.

Chapter 2. Related Work 24

Chapter 3

Design and implementation

In the previous chapter we presented recent work that enables network migration for cloud
environments. Unfortunately, none of these solutions addresses the challenges of a multi-
cloud environment. In particular, no proposal to date has considered the problem of min-
imizing network disruption during migration across clouds.

For this reason, in this work we investigate and propose novel migration scheduling
algorithms (also known as orchestration algorithms). The goal of these algorithms is to
determine the order in which the set of nodes that compose a network should be migrated
from one cloud to another. In particular, we address the problem of migrating a Software
defined Network (SDN).

An SDN is different from a traditional network due to the fact that decisions of how
to forward packets are not the responsibility of the devices that perform the forwarding
(the switches). These decisions are made by a logically centralized element, the network
controller.

In a reactive SDN (Figure 3.1), the most common type, the network elements have to
communicate with the controller, to deliver network events for processing. The controller
is then responsible for making the actual forwarding decisions, and then mandating the
setup of flow state in network elements to implement these decisions. The communication
between the network elements and the controller is typically done using the OpenFlow
protocol [28], which runs on top of TCP or TLS. While this separation of control and data
planes brings flexibility in networking, it poses some challenges.

The problem lies with the fact that the network switches are not independent to take
decisions, relying on the controller for that purpose. Tasks like updating the network
policy or reacting to new unspecified network events require communication with the
controller. For this reason, it is of utter importance to maintain an as-stable-as-possible
connection between switches and controller(s), avoiding disruption. Our multi-cloud en-
vironment is challenging in that respect, as it involves high-latency links. For this reason,
a good migration plan is crucial, as the connection between the switches and the controller
should be the least affected with the migration. In particular, the latencies should be kept

25

Chapter 3. Design and implementation 26

Figure 3.1: In an SDN all switches need stable connectivity with the network controller.

to a minimum, as otherwise there is the risk of breaking the TCP connections between
controller and switches. If the ability to communicate with the controller is affected, so
is network operation. In the setting of a single datacenter this problem is less urgent,
due to the high-speed, low latency nature of the environment. By contrast, in a multiple
cloud scenario, where the latency between datacenters is high, the problem gains a new
dimension. A poorly assigned migration order can result in part of the network elements
having to wait long periods to both receive messages from the network controller and
taking longer to deliver network events to the controller, or even breaking the TCP/TLS
sessions. Figure 3.2 shows an example of how a poor migration plan can affect the expe-
rienced latency significantly. The reader should note that in this figure, and in the rest of
the chapter, when we represent the controller we are effectively representing the switch
to which the controller is connected.

Figure 3.2: Avoiding bad migration decisions can result in less impact of control latencies

Chapter 3. Design and implementation 27

This figure assumes, for simplicity, a linear topology with three network elements: two
switches and one controller. In this example, a bad migration plan (on the right) would
consist in moving the middle switch first, resulting in the highest possible communication
latency for the other switch (during the migration process): the edge switch would need
two trips across a high latency link to reach the controller.

A different migration order, such as migrating the edge first (left figure) would result in
an overall smaller impact on control communications (as it involves using the expensive
inter-cloud links less often). This example clearly shows that the migration plan can
mitigate disruptions during the migration process. The algorithms we propose next aim
to find a migration order which minimizes control plane latency.

3.1 Context and objectives

After presenting the problem, we can now contextualize it. We start by describing the
multi-cloud virtualization platform that will incorporate our solution. Figure 3.3 shows
the architecture of this platform.

Figure 3.3: Multi-cloud virtualization platform and the network migration module

Chapter 3. Design and implementation 28

This platform (described in [5]) offers network virtualization to tenants across mul-
tiple public and private clouds. On the top we have the virtual network as seen by the
user. This virtual network is then mapped by the virtualization platform into the substrate
physical network. This is handled by the virtual network embedding module. To achieve
several of its goals the platform requires migration capabilities. Amongst these, we high-
light reducing costs (by migrating the network to a cheaper cloud), increase dependability
(by migrating to a more resilient cloud service), or improving performance (by bringing
network elements closer to each other and/or closer to users).

The implementation of these features requires a fundamental primitive: virtual net-
work migration between clouds. We seek to contribute with this thesis with a sub-module
of the migration module: migration planning (colored box).

The function of the migration planning module is to define the order of migration of
every network element. The follow-up problem (its execution) can be solved by means
of techniques as those proposed in [17]. As explained, our goal is to minimize control
latency. Unlike optimizing for other metrics, such as bandwidth, to reduce control la-
tency we can not rely on traditional techniques such as compression, since the network
is unlikely to be significantly affected by the small control messages that are exchanged
between the controller and switches. In contrast, migrating virtual machines and all their
associated state is a good candidate for using compression techniques, and in fact has
been considered in the past [13].

For our problem, however, orchestrating a good migration plan is key. A poorly de-
signed plan can affect the latency significantly and lead to disruption in control plane
communications by, for example, migrating nodes in a way that forces multiple round
trips between clouds for an event to reach the controller, as explained before.

Next, we describe the several algorithms we propose to address the goal of minimizing
control latency during network migration.

3.2 Proposed orchestration algorithms

This section describes solutions for the problem of finding a good migration plan.
We start by presenting an optimal solution based on a linear programming formulation
(MILP). As solutions based on mathematical programming have scaling limitations we
present several heuristics that aim to achieve results as close as possible to the optimal
while maintaining low execution times in larger networks.

3.2.1 Network migration model

Our network migration model is the following. For a given network with n nodes we
consider that the migration process will take n stages, with one network element migrating
at every stage, sequentially, with no delay between stages, until all the network elements

Chapter 3. Design and implementation 29

have been migrated. We do not consider the problem of migrating the virtual machines
themselves – we consider these to be migrated by existing techniques [12].

3.2.2 Optimal strategy using Linear programming

In this section we propose a MILP formulation as an optimal solution for the problem.
The goal is to minimize the average control plane latency. As such, the cost function
can be represented as the sum of the network latency between the switches and their
controllers at each stage (as we assume the number of elements does not change).

The formulation takes three inputs. The first consists of a n ∗ n matrix (n being the
number of nodes in the network), containing the costs of links between every node. The
second is the latency cost incurred in using links between clouds. Finally a matrix defining
the edges make up the path each node takes to reach its controller.

The main variable that guides the search is xij , which holds the value 1 if the node n

has been migrated at stage j of the migration process. Then, several constrains are added
to ensure the variables only hold valid values (such as: a node can only migrate once).

We define the following parameters:
S - Set of nodes to be migrated.
n - size of set S (equal to the number of stages)
xij - Binary variable which holds the value 1 if the node i was migrated at stage j.
c(i, j) - The cost associated with switch i at stage j. The cost is the latency between a

switch i and the controller in stage j.
pi - The set of edges that form the path from i to its controller.
path(i, j, k) - binary parameter that takes the value 1 if the link between i, j is part of

the path that k follows to reach its controller, takes the value 0 otherwise.
not same network(a, b, j) - binary variable which takes the value 1 if the nodes a

and b are not in the same cloud at stage j; 0 otherwise.
normal path latency(a, b) - The cost that the path between a and b incurs when a

and b are in the same cloud.
tunnel path latency(a, b) - The cost that the path between a and b incurs when a and

b are in different clouds.
has migrated at stage(c, j) - This variable holds the value 1 if network element c

has been migrated at stage j.
The variable has migrated at stage(c, j) is defined using xij:

j∑
i=0

xij (3.1)

In other words, a network element has migrated at stage j if it has migrated in any previous
stage.

Chapter 3. Design and implementation 30

The objective function is the following:

min

n∑
j

S∑
i

c(i, j) (3.2)

The objective function aims to minimize the sum of every stage’s sum of cost (latency)
between switches and the controller. In other words, the objective function is to minimize
the aggregated cost of every node to its controller at every stage of the migration pro-
cess. As we assume only one node (switch or controller) is migrated at every stage, the
following restrictions apply. First, each node is only migrated once:

n∑
j=0

xsj = 1,∀s ∈ S (3.3)

Second, at every stage only 1 node migrates:

S∑
s=1

xsj = 1,∀1 ≤ j ≤ n (3.4)

c(i, j) consists of the sum of the latency of every link in the path from i to its controller
at step j. This cost function has two main components: intra-cloud latency and inter-cloud
latency (given by the input parameters). Whether two network elements are in the same
cloud or not is given by not same network(a, b, j). The input parameter path(i, j, k)
defines which links make up the path each network element has to follow to reach the
controller.

The cost of a given network element i at stage j is calculated as follows. For every pair
of network elements. If this pair forms a link that i uses to reach the controller and the two
elements in this pair are in the same network (given by 1−not same network) we incur
in the intra-cloud latency cost (given by normal path latency) if this pair forms a link
used by the network element i to reach the controller and the two elements of this pair are
in different clouds then we incur in the inter-cloud cost (given by tunnel path lantency).
If the pair does not make up a link that is used by the network element i to reach the
controller then it is not necessary to add any cost.

Using these parameters we can define the function c (the cost of a given node at a
given stage). The cost of the node at a given stage is the sum of the latency incurred in
that node’s path to reach the controller. It’s defined as follows:

c(i, j) =
S∑
a

S∑
b

(not same network(a, nb, j) ∗ path(a, b, i) ∗ tunnel path latency(a, b)

+

(1− not same network(a, b, j)) ∗ path(a, b, i) ∗ normal path latency(a, b))
(3.5)

Chapter 3. Design and implementation 31

In other words, the cost of a node at a given stage, is calculated by considering every
pair of nodes, removing those which the current node does not use to reach the controller
(this is given by multiplying with path, which holds the value 0 if the given pair is not
used by the node to reach it’s controller), and then incurring on the necessary latency cost
depending on whether the link goes across cloud boundaries or not.

As explained above, not same network(a, b, j) is a variable that has the value 1 if
a and b are not in the same network at stage j, 0 in case they are. The definition of
not same network is the following:

not same network(a, b, j) = |has migrated at stage(a, j)− has migrated at stage(b, j)|
(3.6)

In other words, two network elements are not in the same network/cloud if their
migration status is different. If both network elements have yet to be migrated then
has migrated at stage holds the value 0 for both network elements.

This definition of not same network has a problem: the absolute value function is
not linear, therefore it’s necessary to work around it so that it can be used in a MILP for-
mulation. Solving this issue is done at the expense of aditional constraints. Our solution
added four additional constraints. The first two are:

not same network(a, b, j) >=

j∑
i=1

(xa,i)−
j∑

i=1

(xb,i) (3.7)

not same network(a, b, j) >=

j∑
i=1

(xb,i)−
j∑

i=1

(xa,i) (3.8)

These two constrains (3.7, 3.8) force the variable to hold the largest value of the two
possible values of the differences between a and b. These constraints alone, however do
not solve the problem. If different values are assigned to a and b the outcome is correct,
as both pairs (1,0) and (0,1) result in 1. However, when a and b are equal the result is not
guaranteed to be correct. For example, with both variables set to 0 the previous constraints
only forces the value to be larger than 0. As such, the result could be set to the incorrect
value of 1 if it helps lowering the cost.

To address these issues, the following constraints where put in place:

not same side(a, b, j) >= 2− (xa,s + xb,s) (3.9)

not same side(a, b, j) >= xa,s + xb,s (3.10)

The last constraint is variable x, which is binary variable:

xa,b ∈ {0, 1},∀a, b ∈ S (3.11)

Chapter 3. Design and implementation 32

3.2.3 Heuristics

A linear programming solution as the one just proposed achieves optimal results, but
has have an important problem: it does not scale. We indeed show this in the evaluation
of our proposals in Chapter 4. As the size of the problem increases the time to find its
solution increases exponentially. Obtaining a solution to a problem in practice has a time
limit, after which the solution is of no use. As it is important that our solution is viable
in larger networks, it is necessary to develop heuristics: solutions that are not necessarily
optimal, but that have acceptable execution time far lower than the optimal solution. Of
course, a good heuristic should reach solutions close to the optimal. By analyzing the
results obtained by our linear programming solution, we have attempted to deduce some
intuition about the optimal migration orders orchestrated, with the aim to create heuristics
that leverage this knowledge to reach a good solution, within a reasonable time frame.

3.2.4 Baseline algorithms

We first considered four algorithms that can be considered as baselines.
Random - A random migration order.
Controller first - Consists of sending the controller first, then randomly sending the

switches.
Controller last - Consists of randomly sending the switches, and then the controller.
Controller in the middle - Consists of randomly sending half of the switches, then

the controller, followed by the other half.
The purpose of testing baseline solutions is to provide an upper bound for the others,

while the linear programming solution provides the lower bound (optimal result).

3.2.5 Lowest degree first

One important factor that is responsible for the increase in cost of a given migration
plan is when a node (or group of nodes) is forced to follow a path to the controller that
bounces between clouds several times (as seen in Figure 3.2). Nodes that are more likely
to cause this problem are those that are connected to many other nodes (i.e, the high degree
nodes). An example of such node would be a firewall, as it is a mandatory passage point
in most networks. Migrating these nodes first is likely to cause a large disruption in the
network, as several connections will have to cross between clouds to reach these nodes,
and bounce back to reach its destination, greatly increasing the cost of the migration. As
such, the first heuristic we propose works by migrating the nodes with lowest degree first,
therefore trying to minimize the problem described above. Note that in our heuristic when
a node is migrated it ceases to be considered as a neighbor for the degree calculations
(lowering the effective degree for the remaining nodes). Our expectation is that nodes
with high degree initially will see its degree decrease to the average as their neighbors are

Chapter 3. Design and implementation 33

migrated, thus reducing the impact of their future migration.
In case of a tie nodes that have a connection to a previously migrated node are priori-

tized. In other words, if two nodes have the same degree, but one of them has a connection
to the previously migrated node, then the node with such connection is chosen first. The
idea is to prefer migrating intermediate nodes that we are sure will entail a long commu-
nication path.

Definitions
nodes Set containing all network elements
calculate degrees(topology) Returns a list of nodes sorted by degree
topology Structure containing the whole topology
degree(x) Returns the degree of a node x
exists(t, set) True if t exist in set
connected(a) Returns a list of a’s neighbors

Table 3.1: Functions and variables used in the smallest degree first heuristic.

Algorithm 1 Lowest degree first
1: order =< emptylist >
2: dangling nodes =< emptylist >
3: while #nodes > 0 do

Find the network element with the lowest degree
4: targets = calculate degrees(topology)
5: target = targets[0]

Within the network elements with the same degree find one who has a connection with the
previously migrated element.

6: for node in targets do
7: if degree(node) == degree(target) and exists(target, dangling nodes) then
8: target = node
9: break

10: end if
11: end for
12: dangling nodes =< emptylist >
13: order.append(target)
14: nodes.remove(target)

Keep track of the network elements that target node is connected to so that we can in the next
iteration verify if some low degree node has connections to the previously migrated node.

15: for each node n in connected(target) do
16: dangling.append(n)
17: end for
18: end while

Algorithm 1 works as follows (Table 3.2 shows how the degree changes every stage as
nodes are migrated for the example topology). First, find the node with the lowest degree.
Then, search for all the nodes with the same degree. If we find a node with the same
degree and that also had its neighbor migrated in the previous step, then that node is the
one to be migrated. The process repeats itself until there are no nodes left to be migrated.

Chapter 3. Design and implementation 34

Stage A B C D E F G Migrated
1 1 4 2 4 3 2 2 A
2 X 3 2 4 3 2 2 G
3 X 3 2 3 3 1 X F
4 X 3 2 3 2 X X E
5 X 2 2 2 X X X B
6 X X 2 2 X X X D
7 X X 2 X X X X C

Table 3.2: This table shows how the calculated degree for each node evolves as the mi-
gration process progresses. For the example topology, entries marked with a cross mean
that that node is no longer a candidate for migration

Figure 3.4 shows an example of this heuristic. First, node A is migrated, due to its low
degree of 1. Then, node G is migrated, due to its degree of 2 (could also be F). Afterwards
node F is migrated. Node E is then migrated due to its degree and because it’s a neighbour
of F. And so on.

Figure 3.4: The migration order chosen by the lowest degree first heuristic. The numbers
represent the migration order.

3.2.6 Bring me closer

This greedy heuristic seeks to minimize quickly the expensive cross-cloud links. For
this purpose, when deciding to migrate a node it will favor nodes that, when migrated, will
create the highest number of local (intra-cloud) links. Figure 3.5 shows an example of how
a node is chosen for migration. Depicted in orange are the network elements that have
already been migrated, in green the next element to be migrated according to this heuristic.
For example in the top right figure the green switch is connected to two elements already
migrated (controller and top-left switch) while the switches at the bottom are connected
to only one or none.

Chapter 3. Design and implementation 35

Figure 3.5: Bring me closer example. The green elements correspond to the next element
being migrated

The heuristic is detailed in Algorithm 2. It works as follows: To determine which node
to migrate we determine the node with the highest number of inter-cloud connections. To
do so we iterate over every node and add one for every inter-cloud connection the node
has. Then, we choose the node with the highest number of inter-cloud links to migrate.
The process repeats itself until there are no nodes left to migrate.

Chapter 3. Design and implementation 36

Definitions
nodes Set containing all network elements
dict() Key-value collection
link(a, b) True if a has a link to b
sort(x) Sorts a collection

Table 3.3: Functions variables used in the connection heuristic.

Algorithm 2 Bring me closer
migration order =< emptylist >
nodes to migrate = nodes
while #nodes to migrate > 0 do

inter cloud links = dict()
for node t in nodes to migrate do

for node d in migration order do
if link(t, d) and d exists in order then

inter cloud links[t] += 1
end if

end for
end for
targets = sort(inter cloud links)
order.append(targets[0])

end while

3.2.7 Scoring system

The last two heuristics we develop both rely on the same scoring system, so this sec-
tion provides insight into how are the scores attributed. The idea is that some nodes are
more important than others with respect to the network control plane. For instance, the
controller is the most important element, as all control plane packets are sent to the con-
troller. In a similar way, some switches are more important than others. A core switch,
one that is topologically located in the center of the network and makes it possible for
other switches to reach the controller, is more important than a leaf switch that no control
packet traverses (except the control packets it generates). The idea behind this scoring
system is the notion that the element importance (relative to others) might help the migra-
tion scheduling.

The scoring system works as follows. Every element in the network is given a score
(including the controller). The score of an element (switch or controller) is given by
the number of connections to the controller that stand on (transverse) this element. For
example, the controller is always given a score equal to the number of nodes, since the
controller handles all the switches. As should be clear, this score is not equivalent to the
degree, as shown in Figure 3.6.

Figure 3.6: The red colored lines indicate the paths used by the switches to reach the
controller. These are the ones taken into consideration when assigning the score to each
network element. The number of each element represents its score. The score consists of
the number of connections to the controller a given element supports (including itself)

Consider Figure 3.6, that shows an example of how to compute the score. The algo-
rithm assumes shortest path routing to be used in the network, and the routing information
to be available to the algorithm. As can be seen the controller receives control packets
from all switches, and as a consequence is the element with the highest score: 5. The
leaf switches only support themselves as such their score is the lowest possible. The core
switches support both themselves and the leaf switches, hence have a score of two.

3.2.7.1 Boss in the middle

Testing all the candidate solutions isn’t feasible considering real world time constraints.
As such, we have considered scenarios such as migrating the controller as the first/last
element, but quickly realized that such strategies produce poor results, as they would
maximize the number of inter-cloud links right from the start of the process. Analysis of

Chapter 3. Design and implementation 38

the migration orders generated by the MILP solution showed that sending the controller
somewhere around the middle of the process to be a good strategy. This offered some
insight into how to reduce the search space.

The heuristic builds upon the score system explained above. The main idea is that the
higher a node’s score is, the closer to the middle of the migration process it should be.
The controller (who has the highest score) should be migrated close to the the middle of
the process (matching the intuition) and the leaf nodes who have the lowest score, should
be amongst the first and/or last nodes to be migrated. In addition to this, we added some
randomness to the process, as will be explained shortly. Figure 3.7 shows an example
topology with the respective scores for the nodes.

Figure 3.7: Core in the middle example. In red and crossed are the position pairs calcu-
lated for the labeled elements.

As explained above the intuition is that the controller should be migrated closer to
the middle, hence it has a higher probability of being placed in the middle positions.
By contrast, the controller has a lower probability of being placed at the start or at the
end of the migration process. We thus start by placing nodes in their “right” migration

Chapter 3. Design and implementation 39

location, according to their score. However, we then include randomness to the process,
by allowing nodes to be slightly displaced from their original positions. In figure 3.7, the
initial position of D is in the center (given its high score) and of A in the edges (given
its low score). But then these nodes can be slightly displaced, as is shown to A in the
figure. This whole process is repeated multiple times and the solution with the best score
is chosen.

The heuristic, in more detail, works as follows (required definitions in Table 3.4):
First, we calculate the two possible positions for a given element (given by its score). To
do so we determine the middle point of the migration order (line 2). Then, we calculate
how many positions exist between the start and the middle point , d left, and the end and
the middle point, d right (lines 4-5). Note that we assume integer division. To determine
the first position, we convert the score of the node, which ranges from 1 to #nodes to the
range of 0 to d right. The first position is then given by #nodes − adjusted1. For the
second position we do the same for the range 0 to d left.

After obtaining the positions for all elements in the network, according to this scheme,
we pick one of the positions randomly, and then randomly skew it (up to a given maximum
ratio, mr). That is, for every node we affect its score randomly up to a maximum number
of places it can be moved (the “displacement“). The ratio is a number, between 0 and 1.
The smaller the ratio the smaller the distance a node is allowed to be displaced to.

We perform this process a given k amount of times, and pick the best solution found.
The metric we use to calculate the best solution is the migration cost, that is given by
the sum of the control plane latencies from all switches to the controller, for all migration
steps. Our assumption is that simply positioning the nodes based on their score may
not be enough to achieve a good solution. As such, it is our expectation that by adding
randomness and evaluating several candidate solutions the final result will improve.

Definitions
nodes Set containing all network elements
sort(list, valueFunction) Sort list with the values derived from valueFunction
dict() A dictionary type (key-value table)
scores A dictionary containing the key value pair of node-

score.
migration cost(order) Returns a numeric value of how good the given mi-

gration order is (lower is better)
displace(number, ratio, n) returns number randomly moved up to either side to

a max of ratio*n
choice(list) returns one randomly chosen element of the list

Table 3.4: Functions variables used in the algorithm.

Chapter 3. Design and implementation 40

Algorithm 3 Weighted sample
1: n = #nodes
2: middle = n/2 + 1
3: values = dict()
4: d right = n - middle
5: d left = middle
6: for node n in nodes do
7: score = scores[n]
8: maxNewRange1 = d right
9: adjusted1 = (score ∗maxNewRange1)/n

10: maxNewRange2 = d left
11: adjusted2 = (score ∗maxNewRange2)/n
12: pos1 = n− adjusted1
13: pos2 = adjusted2
14: values[n] = (pos1, pos2)
15: end for
16: LastOrder = []
17: LastScore =< verylargepositivevalue >
18: for int i in 1..k do
19: order = sort(nodes, sortingfunc = displace(choice(values[n]), r, n)
20: score = migration cost(order)
21: if score < LastScore then
22: LastOrder = order
23: LastScore = score
24: end if
25: end for

3.2.7.2 Migration tree

The intuition behind the last heuristic we have developed is explained with the help of
Figure 3.8. In this example, the migration plan that minimizes the latency is to migrate
one of the switches first, then the controller, and finally the other switch.

Figure 3.8: Migration tree simple example.

The migration tree heuristic works using the scoring system described in Section 3.2.7.
The score system works on a virtual graph that includes only the edges that are used for
control plane communication between the switches and the controller. Using this virtual
graph and the principle explained above (Figure 3.8) this heuristic does the following.
To migrate a certain node A we look at the neighbors (from the virtual topology) and
divide them into two groups. The groups are defined in such a way that the sum of the
scores of the node in each group should be as similar as possible. Then we migrate one
of the groups, then node A, and finally the other group. By applying this idea recursively
we reduce the problem of migrating a node with several neighbors down to the scenario
shown in Figure 3.8, which consisted of only one controller and two neighbors.

Figure 3.9 shows how the heuristic works recursively on a larger topology. The heuris-
tic begins at the controller, and divides its neighbors into two groups whose sum of scores
are as similar as possible. The resulting two groups are the top-most element in the or-
ange section, and the two top-most elements in the green section. Migrating the top-most
element in the orange section requires the same process to be applied again. The process
is applied recursively, ending when we reach a node that has no valid neighbors (i.e., no
neighbors or all neighbors have already been migrated).

Chapter 3. Design and implementation 42

Figure 3.9: Migration tree. this figure shows how the heuristic recursively returns to the
simple case shown in Figure 3.8. The color scheme represents how the recursion evolves
(migrate one group, migrate node, migrate other group) until reaching the base.

The heuristic is presented as algorithm 5, and works as follows. In the first call of the
recursion, visited is an empty list, and lst contains only the controller. Firstly, all nodes
are added to the visited list, since they will be processed. Then, for every node in lst (the
list of nodes we must process), we divide its neighbors into two groups, making sure the
sum of scores of the nodes in these two groups is as similar as possible (algorithm 4). The
migration order is then one of the groups, followed by the central element, then the other
group of neighbors. The process repeats recursively.

Algorithm 4 is the function used to split the group of neighbors into two of similar
weight. The chosen algorithm to perform this splitting is the following: The input is the
set of nodes and their scores. If there are only 2 elements then splitting is trivial, the split
returns 2 groups each with one node. When there are more than 2 elements we first sort
the list of nodes by score. Then, we iterate the list, and when we have a sum greater or
equal to half of the sum of scores of all the nodes in the original list, we have the first set.
The second set being the remainder.

Chapter 3. Design and implementation 43

Definitions
nodes Set containing all network elements
split(x) Splits x into two groups with similar score sum
sortBy(l, k) Sorts collection l using k to determine values, de-

scending order
get neighbors(node) Returns the neighbors using the virtual graph

Table 3.5: Functions variables used in the algorithm.

Algorithm 4 Splitting function
Split(elements):
if length(elements) == 2 then

return (list(elements[0], list(elements[1]) . Trivial case
else

currentSum = 0
firstList = set()
secondList = set()
for node n in elements do

currentSum = currentSum + n.value
if currentSum < sum(elements) then

firstList.add(n)
end if
if currentSum >= sum(elements) then

secondList.add(n)
end if

end for
return (firstList, secondList)

end if

Chapter 3. Design and implementation 44

Algorithm 5 migration tree
migrate(visited, lst, scores) :
if lst == [] then

The base case for the recursion
return []

else
Mark all these nodes as visited

for node n in lst do
visited.add(n)

end for
migrate order = []
for node n in lst do

Obtain the neighbours for the given node
neighbors = get neighbors(node)

Split them into two groups whose sum of scores is as close as possible
part1, part2 = split(neighbors)
part1 = sortBy(part1, scores)
part2 = sortBy(part2, scores)

Apply recursion
order1 = migrate(visited, part1)
order2 = migrate(visited, part2)

Define the migration order
migrate order+ = order1 + node+ order2

end for
return migrate order

end if

3.3 Summary

In this chapter we proposed several solutions to the problem of scheduling migrations
in an SDN-based, multi-cloud network virtualization platform. We presented a linear
programming approach which will find the optimal solution for the problem. We also
presented several heuristics that aim to solve the same problem within reasonable time.
For each of the heuristics we’ve described the intuition idea behind it, and its design and
implementation.

Chapter 4

Evaluation

In this chapter we evaluate our solutions for planning the migration process in the context
of multi-cloud network virtualization. We have compared the different algorithms using
different topologies – linear, ring, random, and tree – to understand the trade-offs involved
in each.

4.1 Environment Setup

The linear, ring and tree topologies were generated through python scripts using the
default pseudo-random generator to assign latencies to the edges (numbers between 1 and
20, with connections that go across a cloud incurring an extra cost of 20) and to decide
which element is the controller. The random topologies where generated with the gt-
itm [2] tool. Each test run for a given topology with a given size was ran 200 times.
The graphs presented in the next section show the average and the standard deviation of
these 200 executions. The boss in middle heuristic is configured for 1000 rounds and a
displacement of 0.1. We vary these parameters in section 4.6.

4.2 Linear topology

Figure 4.1: Example of a linear topology

A linear topology consist of n nodes arranged in a line. In our SDN setting one of the
nodes is the controller (as shown in Figure 4.1). This node is randomly chosen.

Figure 4.2 shows the results for the various heuristics and the linear programming
solution, when planing the migration of a network on a linear topology. Note that we only

45

Chapter 4. Evaluation 46

show results for the optimal solution for networks up to 10 nodes, as the solution does not
scale further.

Figure 4.2: Switch-Controller latency: Linear topology

As expected, the random solution achieves very poor average latency to the controller

Chapter 4. Evaluation 47

during the migration process. Sending the controller first or last is also a poor solution.
These algorithms only work well enough when the controller is at one of the edges of the
network. When the controller is not at the edge the number of cross-cloud connections
increases significantly. In fact, by analyzing the migration sequences produced by the
linear programming solution we found that only around 10% of the run the controller was
migrated in either the first or the last step. If the optimal linear programming solution
almost never adopts this strategy, then it is clearly a poor heuristic.

All other heuristics with the exception of the boss in the middle one, perform nearly as
good as the linear programming solution and present an average switch-controller latency
that is half that of the baselines. The lowest degree heuristic always chooses a good
starting node: one of the edges, since they have the lowest degree. Also, the fact that
this heuristic then prefers to migrate nodes that shared a connection to the previous node,
make it perform well in a linear topology. The bring me closer heuristic ends up acting
in a similar fashion, as it will try to migrate nodes that create the most local connections.
Due to the fact that the topology is linear, attempting to create more local connections
will migrate the nodes in a linear fashion. The migration tree heuristic performs along
the same lines.

The boss in the middle solution performs worse in these topologies, due to the fact
that this heuristic favors having the controller closer to the middle. In the cases when the
controller is close to the edges, the heuristic will still try to have the controller around the
middle of the migration order, which in these topologies is a poor fit.

In conclusion, the linear topologies are relatively simple to migrate therefore most
heuristics we developed perform well.

4.3 Random topology

Random topologies (example in Figure 4.3) have no predefined shape. We generated
them using the gt-itm [2] tool. These topologies should provide better insight to our
solutions as many real world networks have this characteristic. Their random nature is
challenging as the heuristics can’t easily leverage the network structure to create a good
migration order.

Chapter 4. Evaluation 48

Figure 4.3: Example of a random topology

Figure 4.4 shows the results for all our solutions, considering random topologies. Sim-
ilarly to the case with linear topologies, random heuristics perform poorly. As anticipated,
sending the controller as first/last is not a good strategy. Interestingly, the strategy that
places the controller at the middle of the migration is the best of the baseline solutions for
random topologies.

The lowest degree heuristic performs better than the baseline solutions. Having a
higher degree is shown to have some importance. This is common for various graph-
based problems, as the degree if often a measure of the “importance“ of a node. Again, our
more sophisticated heuristics that take control plane latencies into account perform better
than the others. In particular, the migration tree heuristic presents the best performance.
The reason is mainly the fact that the lowest degree heuristic and the bring me closer
heuristic are based on local actions and lack a “global“ strategy to migrate the topology
as a whole. The metrics these heuristics consider when calculating if a node should be
migrated provide a good idea of the value of the given node , but the result of employing
these decisions does not necessarily add up to a good overall strategy. On the other hand
the migration tree heuristic works more “globally“. The boss in the middle heuristic
performs better than most heuristics (except for the migration tree). Both heuristics use
the scoring system described above, demonstrating the value of this metric. The reason
why boss in the middle is always consistently behind the migration tree is because it
consistently attempts to place the controller in the middle, which is not always the best
strategy.

Chapter 4. Evaluation 49

Figure 4.4: Switch-Controller latencies: Random topologies

Chapter 4. Evaluation 50

4.4 Ring topology

Figure 4.5 shows an example of a ring topology. This topology is similar to the linear
topology, with the difference that the first node is connected to the last. The results for
this topology are presented in Figure 4.6. All heuristics perform similarly to the linear
topologies. The baseline heuristics such as controller first/middle, perform again poorly,
strengthening the conclusion that the position of the controller alone in the migration
sequence isn’t enough to reduce the overall experienced control latency.

Figure 4.5: Example of a ring topology

The reason why the boss in the middle heuristic falls behind is due to this heuristic
placing the controller in the middle. The intuition behind this heuristic that nodes with a
low score should be placed close to the edges is mostly wrong in a ring topology (and in
linear topologies as well).

The lowest degree first, bring me closer and migration tree heuristics all perform well
and close to the optimal, for the same reasons as for the linear topologies.

Chapter 4. Evaluation 51

Figure 4.6: Switch-Controller latencies: Ring topologies

Chapter 4. Evaluation 52

4.5 Tree topology

The last topology on which we evaluate our algorithms is the tree. Figure 4.7 shows
an example of a tree topology. Note that the controller is chosen randomly it is not always
the top-most element in the tree. The topologies generated consist of perfect binary trees
(all interior nodes have two children and all leaves have the same depth or same level) of
a given depth.

Figure 4.7: Example of a tree topology

Figure 4.8 shows the results for the tree topologies with n depth (in other words,
perfect binary trees with n depth). Two algorithms stand out: the lowest degree first and
the migration tree achieve results closer to the optimum. The former is good because in
a tree it is a good strategy to start with the leaf nodes — which are the ones with lowest
degree. The latter is naturally favoured by the tree structure.

Figure 4.8: Switch-Controller latencies: tree topology, the x axis represent the depth of
the perfect binary tree

Chapter 4. Evaluation 53

4.6 Boss in the middle comparison

The boss in the middle heuristic has two input parameters: the move ratio and number
of rounds. The move ratio is the maximum displacement. In other words, it is the maxi-
mum a node can have its position in the migration order moved. The number of rounds is
the number of migration orders that are generated and evaluated before the best is chosen.

Figure 4.9 presents the results for random topologies using the boss in the middle
heuristic with different input parameters. As expected, when using a lower number of
rounds, the quality of the results decreases, since a smaller number of solutions are eval-
uated, the results are worse. Regarding the move ratio, running the boss in the middle
heuristic with smaller move ratios provided better results, for the same number of rounds.
This is an interesting result: The initial guess only improves with small displacements.
Otherwise, an initial good choice is lost and the results become close to random.

Figure 4.9: Results for several runs of the boss in the middle heuristic for random topolo-
gies, with varying inputs (move ratio, number of rounds)

4.7 Execution times

The execution time for the several algorithms are shown in Figure 4.10. As expected,
the linear programming solution is orders of magnitude slower than the other heuristics.
The execution time of the boss in the middle heuristic is also higher than the others be-
cause it needs to perform several rounds to chose the best result. The other algorithms
are 10x to 100x slower than the baseline algorithms. Still, they are fast enough to remain
competitive.

Chapter 4. Evaluation 54

Figure 4.10: Execution time graph.The Y axis’s scale is logarithmic.

4.8 Summary

In this chapter we evaluated the proposed solutions under several topologies – linear,
ring, random, and tree. We analyzed the performance of these heuristics in the different
topologies and how far the results were from the optimal solution. Overall, the baseline
heuristics performed poorly. We also observed that some heuristics where favored by cer-
tain topologies, as seen by the results of the lowest degree first heuristic, which achieved
good results for the linear topology but fell behind in the random topology. As main con-
clusion, the migration tree heuristic seems to be the best solution. Not only does it gives
the best results for all topologies, achieving results several orders of magnitude better than
the baselines and very close to the optimum, with very favorable execution times.

Chapter 5

Conclusion

Recent advances in networking, namely with the emergence of Software-Defined Net-
works, have led to the development of production-level network virtualization platforms.
A central point of these platforms is to promote elasticity, flexibility, efficiency, and the
ability to migrate workloads, including both the compute nodes and the networks that
interconnect them. So far, existing SDN-based solutions have targeted a single provider,
single cloud environment. As such, they are limited with respect to scalability and de-
pendability, leading us to explore a solution that leverages multiple clouds for network
virtualization.

To be able to perform network migration in a multi-cloud, SDN-based network setting,
it is important to make sure that the connection to the controller is maintained stable
during the migration. If the connectivity to the controller is affected, the network may
take longer to respond to events, to implement network policies and, in the worst case,
the connection between controller and switches can break. Therefore, it is crucial to
orchestrate the way networks are migrated to ensure proper network operation. In this
thesis we address this problem, proposing a linear programming formulation and several
heuristics.

The goal of our algorithms was to minimize the control plane latencies, in order to
avoid network disruptions. We have evaluated our solutions considering a range of typ-
ical network topologies. The main conclusion was that the solutions that considered the
importance of a node, defined by the amount of control plane that traverses it, and that
placed these nodes towards the middle of the migration, performed better.

There are several lines for future work. First, the algorithms we proposed could be
implemented in a real multi-cloud network hypervisor (e.g., Sirius [6]). Second, the solu-
tions could extend their goals from control plane latencies alone, to consider also the data
plane traffic between compute instances to avoid bottlenecks.

55

Chapter 5. Conclusion 56

Bibliography

[1] Linux containers: Why they’re in your future and what has to happen first.
http://www.cisco.com/c/dam/en/us/solutions/collateral/

data-center-virtualization/openstack-at-cisco/

linux-containers-white-paper-cisco-red-hat.pdf.

[2] Modeling topology of large internetworks. http://www.cc.gatech.edu/

projects/gtitm/.

[3] Massive amazon cloud service outage disrupts sites, 2017 (accessed 20 April,
2017). https://www.usatoday.com/story/tech/news/2017/

02/28/amazons-cloud-service-goes-down-sites-scramble/

98530914/.

[4] Geetha Sowjanya Akula and Anupama Potluri. Heuristics for migration with consol-
idation of ensembles of virtual machines. In Communication Systems and Networks
(COMSNETS), 2014 Sixth International Conference on. IEEE, 2014.

[5] M. Alaluna, F. M. V. Ramos, and N. Neves. (Literally) above the clouds: virtualizing
the network over multiple clouds. IEEE NetSoft, December 2015.

[6] Max Alaluna, Eric Vial, Nuno Ferreira Neves, and Fernando Ramos. Secure and
dependable multi-cloud network virtualization. In 1st International Workshop on
Security and Dependability of Multi-Domain Infrastructures (XDOM0), April 2017.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
SIGOPS Oper. Syst. Rev., 37(5), October 2003.

[8] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. The tur-
tles project: Design and implementation of nested virtualization. In 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 10).

57

http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/openstack-at-cisco/linux-containers-white-paper-cisco-red-hat.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/openstack-at-cisco/linux-containers-white-paper-cisco-red-hat.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/openstack-at-cisco/linux-containers-white-paper-cisco-red-hat.pdf
http://www.cc.gatech.edu/projects/gtitm/
http://www.cc.gatech.edu/projects/gtitm/
https://www.usatoday.com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/98530914/
https://www.usatoday.com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/98530914/
https://www.usatoday.com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/98530914/

Bibliography 58

[9] Peter Bodı́k, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani, David A
Maltz, and Ion Stoica. Surviving failures in bandwidth-constrained datacenters. In
SIGCOMM, 2012.

[10] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald Schiöberg.
Live wide-area migration of virtual machines including local persistent state. In
Proceedings of the 3rd International Conference on Virtual Execution Environments,
VEE ’07, 2007.

[11] Martı́n Casado, Teemu Koponen, Rajiv Ramanathan, and Scott Shenker. Virtu-
alizing the network forwarding plane. In Proceedings of the Workshop on Pro-
grammable Routers for Extensible Services of Tomorrow. PRESTO, 2010.

[12] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines.
In Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation-Volume 2. NSDI, 2005.

[13] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. Remus: High availability via asynchronous virtual machine
replication. NSDI, 2008.

[14] J. Agogbua M. O’Dell J. McManus D. Awduche, J. Malcolm. Requirements for
traffic engineering over mpls, 1999. RFC 2702.

[15] Soudeh Ghorbani and Matthew Caesar. Walk the line: consistent network updates
with bandwidth guarantees. In Proceedings of the first workshop on Hot topics in
software defined networks. HotSDN, 2012.

[16] Soudeh Ghorbani and Brighten Godfrey. Towards correct network virtualization.
In Proceedings of the third workshop on Hot topics in software defined networking.
HotSDN, 2014.

[17] Soudeh Ghorbani, Cole Schlesinger, Matthew Monaco, Eric Keller, Matthew Cae-
sar, Jennifer Rexford, and David Walker. Transparent, live migration of a software-
defined network. In Proceedings of the ACM Symposium on Cloud Computing.
SoCC, 2014.

[18] Fang Hao, TV Lakshman, Sarit Mukherjee, and Haoyu Song. Enhancing dynamic
cloud-based services using network virtualization. In Proceedings of the 1st ACM
workshop on Virtualized infrastructure systems and architectures, 2009.

[19] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven

Bibliography 59

wan. In ACM SIGCOMM Computer Communication Review, volume 43. ACM,
2013.

[20] Qin Jia, Zhiming Shen, Weijia Song, Robbert van Renesse, and Hakim Weather-
spoon. Supercloud: Opportunities and challenges. ACM SIGOPS Operating Systems
Review, 49(1), 2015.

[21] Y. Rekhter K. Kompella. Virtual private lan service (vpls) using bgp for auto-
discovery and signaling, 2007. RFC 4761.

[22] Eric Keller, Soudeh Ghorbani, Matt Caesar, and Jennifer Rexford. Live migration
of an entire network (and its hosts). In Proceedings of the 11th ACM WoXrkshop on
Hot Topics in Networks. HotNets, 2012.

[23] Teemu Koponen, Keith Amidon, Peter Balland, Martı́n Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul Ingram, et al. Net-
work virtualization in multi-tenant datacenters. NSDI, 2015.

[24] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al.
Onix: A distributed control platform for large-scale production networks. OSDI,
2010.

[25] Diego Kreutz, Fernando MV Ramos, P Esteves Verissimo, Christian Esteve Rothen-
berg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A com-
prehensive survey. Proceedings of the IEEE, 103(1), 2015.

[26] Shihmin Lo, Moataz Ammar, and Ellen Zegura. Design and analysis of schedules
for virtual network migration. In IFIP Networking Conference, 2013.

[27] Ferrazani Mattos, Diogo Menezez, and Otto Carlos Muniz Bandeira Duarte. Xen-
flow: Seamless migration primitive and quality of service for virtual networks. In
Global Communications Conference (GLOBECOM), 2014 IEEE.

[28] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling inno-
vation in campus networks. ACM SIGCOMM Computer Communication Review,
38(2), 2008.

[29] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon,
and Martı́n Casado. The design and implementation of open vswitch. In Proceedings
of the 12th USENIX Conference on Networked Systems Design and Implementation,
NSDI’15.

Bibliography 60

[30] H. Wang, Y. Li, Y. Zhang, and D. Jin. Virtual machine migration planning in
software-defined networks. In 2015 IEEE Conference on Computer Communica-
tions (INFOCOM), April 2015.

[31] H. Wang, Y. Li, Y. Zhang, and D. Jin. Virtual machine migration planning in
software-defined networks. In 2015 IEEE Conference on Computer Communica-
tions (INFOCOM), April 2015.

[32] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus van der Merwe, and Jennifer Rex-
ford. Virtual routers on the move: live router migration as a network-management
primitive. ACM SIGCOMM Computer Communication Review, 38(4), 2008.

[33] Dan Williams, Hani Jamjoom, Zhefu Jiang, and Hakim Weatherspoon. Virtualwires
for live migrating virtual networks across clouds. Technical report.

[34] Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. The xen-blanket: virtual-
ize once, run everywhere. In Proceedings of the 7th ACM european conference on
Computer Systems. EuroSys, 2012.

[35] T. Wood, K. K. Ramakrishnan, P. Shenoy, J. Van der Merwe, J. Hwang, G. Liu,
and L. Chaufournier. Cloudnet: Dynamic pooling of cloud resources by live wan
migration of virtual machines. IEEE/ACM Transactions on Networking, 23(5), Oct
2015.

[36] Kejiang Ye, Xiaohong Jiang, Ran Ma, and Fengxi Yan. Vc-migration: Live migra-
tion of virtual clusters in the cloud. In Grid Computing (GRID), 2012 ACM/IEEE
13th International Conference on. IEEE, 2012.

	List of figures
	List of tables
	Introduction
	Motivation
	Goals and challenges
	Contributions
	Structure of the document

	Related Work
	Virtualization
	Live Migration
	Live Migration of Virtual Machines
	Live WAN migration of VMs
	Migration for fault-tolerance
	Algorithms for placement of virtual machines

	Software-defined networking
	Architecture
	OpenFlow
	Scalability
	VM migration in SDN

	Network virtualization
	Network Virtualization in Single-Provider Datacenters
	Multi-cloud network virtualization

	Network migration
	Scheduling for VM migration

	Final considerations

	Design and implementation
	Context and objectives
	Proposed orchestration algorithms
	Network migration model
	Optimal strategy using Linear programming
	Heuristics
	Baseline algorithms
	Lowest degree first
	Bring me closer
	Scoring system
	Boss in the middle
	Migration tree

	Summary

	Evaluation
	Environment Setup
	Linear topology
	Random topology
	Ring topology
	Tree topology
	Boss in the middle comparison
	Execution times
	Summary

	Conclusion
	Bibliography

