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Abstract

In this dissertation, project scheduling problems with multi-skill resources are investigated. These
problems are commonly found in companies making use of human resources or multi-purpose machin-
ery equipment. The general problem consists of a single project comprising a set of activities. There
are precedence relations between the activities. Each activity requires one or several skills for being pro-
cessed and for each of these skills, more than one resource may be needed. The resources have a unitary
capacity per time unit and may master more than one skill. The resources can contribute with at most one
skill to at most one activity that requires it, in each time unit. It is usually assumed that the resources are
homogeneous, i.e., the proficiency at which each skill is performed is the same across all resources that
master that skill. Preemption is not allowed, which implies that once an activity starts being processed
it cannot be interrupted. When a resource is assigned to perform a skill for an activity, it remains in that
status for the whole processing time of the activity. The objective of the problem is to schedule all the
activities, satisfying all constraints such that the makespan of the project is minimized.

After introducing a framework to the realm of project scheduling problems with multi-skill resources
and highlighting the main objectives and contributes of this thesis, a state-of-the-art review on the topic
is presented.

The particular problem investigated in this document is then described in detail and its specific fea-
tures are discussed. To that end, a continuous-time mathematical formulation from the literature is re-
visited, an example of the problem is presented and some aspects related to the computation of feasible
solutions are discussed. This last topic is of major relevance when dealing with problems that combine
personnel staffing with project scheduling.

In order to properly assess the quality of solutions obtained by the methodological developments pro-
posed in this thesis, it became necessary to develop an instance generator to build a set of instances larger
than those existing in the literature. After formally proposing such generator, we detail the characteristics
of the two sets of instances considered for the computational experiments to be performed.

In the next sections of the document, the solution methodologies developed within the scope of this
thesis are presented and thoroughly discussed.

A wide range of mathematical formulations is studied, two of which are first proposed in this docu-
ment. From the assessment of their ability both to compute feasible and possibly optimal solutions and
to derive good lower bounds (stemming from their linear programming relaxations) to the problem, it
will become clear that the so-called discrete-time formulations yield the strongest lower bounds whereas
a continuous-time formulation from the literature proved to be the most suitable for solving instances of
the problem to optimality. This trend is observed for both sets of instances considered. Two constructive
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lower bound mechanisms proposed for the resource-constrained project scheduling problem are extended
to account for the existence of multi-skill resources and multi-skill requirements of the activities. The
results reveal that such methods improve the lower bounds achieved by the studied mathematical formu-
lations for some instances.

Real-world project scheduling problems usually involve a large number of activities, resources and
skills. Hence, the use of exact methods such as the standard techniques for tackling the aforementioned
mathematical models, is often impractical. When faced with this kind of situations, a project manager
may consider preferable to have a good feasible solution, not necessarily an optimal one, within an
admissible time, by means of an approximate method.

A close look into the problem being investigated in this thesis reveals that it has some features that are
not present in some well-studied particular cases of it, namely the notion of skill—multi-skill resources
and skill requirements of the activities. Hence, with the objective of developing approximate solution
methodologies that better exploit the specific characteristics of the problem at hand, two new concepts
are introduced: activity grouping and resource weight. The well-known parallel and serial scheduling
schemes, proposed originally for the class of resource-constrained project scheduling problems, are ex-
tended to our problem setting and the two above-mentioned concepts are incorporated into these two new
frameworks. Such frameworks use well-known activity priority rules for defining the order by which the
activities are selected to be scheduled and resource weight rules to determine a set of resources that
meets the requirements of all the activities to be scheduled at each time with the least total cost (weight).
Thereafter, two heuristic procedures making use of those schedule generation schemes are proposed,
namely a multi-pass heuristic built upon the parallel scheduling scheme and a biased random-key ge-
netic algorithm. The idea of computing a feasible solution using the so-called backward planning is also
considered in both methods.

The multi-pass heuristic retrieves the solution with the minimum makespan after performing a spe-
cific number of passes, each associated with a unique combination of the considered activity priority
rules, the developed resource weight rules and the two precedence networks: forward and backward.

The biased random-key genetic algorithm is a metaheuristic whose developed chromosome structure
encodes information related to: (i) the priority values of the activities; (ii) the weights of the resources;
(iii) how a chromosome is decoded, i.e., the scheduling scheme and precedence network scheme to be
used for computing the associated makespan. By embedding all this information into the chromosomes,
it becomes possible to take advantage of the evolutionary framework of the biased random-key genetic
algorithm, which tends to allow the evolution of such data (change in their values) over time, towards
better makespan valued solutions. Three variants of the biased random-key genetic algorithm are consid-
ered with regard to the type of scheduling generation scheme to be used for decoding its chromosomes:
(i) all chromosomes are decoded with the parallel scheduling scheme; (ii) all chromosomes are decoded
with the serial scheduling scheme; (iii) the scheduling scheme to be used for decoding each chromosome
depends on the value of the associated parameter which is embedded in the chromosome.

The computational results revealed that the proposed multi-pass heuristic is an efficient algorithm for
computing feasible solutions of acceptable quality within a small computational time whereas the biased
random-key genetic algorithm is a robust algorithm and a more competitive approximate approach for
computing feasible solutions of higher quality, especially for harder instances such as those of medium
and large dimensions.

We conclude this thesis with an overview of the work done and with some directions for further
research in terms of methodological developments and of some potentially interesting extensions of the
addressed problem.

Keywords: Project scheduling; multi-skill resources; optimization models; heuristics; lower bounds.
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Resumo

Nesta dissertação investigam-se problemas de sequenciamento de projetos com recursos limitados
e polivalentes (multi-skill), i.e., recursos capazes de desempenhar diversas funções, estando cada uma
delas associada à realização de uma competência (skill) específica. Estes problemas são habitualmente
encontrados em empresas que trabalhem com recursos humanos ou máquinas cuja utilização possa sa-
tisfazer várias finalidades distintas. Tipicamente, um problema deste tipo consiste num projeto que é
composto por um conjunto de atividades, com determinadas durações e entre as quais existem relações
de precedência. Cada atividade necessita de uma ou mais competências para ser processada e para
cada uma dessas competências poderá ser preciso recorrer à alocação de mais do que um recurso. Os
recursos têm uma capacidade unitária em cada unidade de tempo e detêm, normalmente, mais do que
uma competência. Assume-se ainda que os recursos são homogéneos, i.e., a eficiência com que cada
competência é realizada é a mesma para todos os recursos que a saibam desempenhar. Não é permitida
a suspensão da execução das atividades, o que implica que uma vez que uma atividade comece a ser
executada, não possa ser interrompida. Quando um recurso é afeto à realização de uma determinada
competência para uma atividade, ele permanece a executar essa mesma competência durante todo o
tempo de processamento da atividade. O problema tem como objetivo o sequenciamento de todas as
atividades, satisfazendo todas as restrições, de forma a que o projeto termine o mais cedo possível.

Após realizar uma breve introdução destinada ao enquadramento da área de investigação de proble-
mas de sequenciamento de projetos com recursos limitados e polivalentes e, depois de se destacarem os
principais objetivos e contributos desta tese, apresenta-se uma revisão da literatura da especialidade.

O problema particular alvo de estudo nesta tese é detalhadamente descrito sendo apresentados os
aspetos específicos que o caracterizam. Revisita-se uma formulação matemática de tempo contínuo
(continuous-time formulation), apresenta-se um exemplo do problema e discutem-se alguns aspetos rela-
cionados com a determinação de soluções admissíveis para o mesmo. Este último tópico é de uma
grande relevância quando se lida com problemas que combinam a alocação de recursos polivalentes com
o sequenciamento de atividades de um projeto.

De forma a avaliar devidamente a qualidade das soluções obtidas pelos métodos propostos nesta
tese, tornou-se necessário o desenvolvimento de um gerador de instâncias para construir um conjunto de
instâncias de dimensões maiores do que as que existiam na literatura.

Após apresentar formalmente esse gerador de instâncias, descrevem-se em detalhe as características
dos dois conjuntos de instâncias considerados nas experiências computacionais a serem realizadas.

Nas secções seguintes do documento apresentam-se e descrevem-se pormenorizadamente as meto-
dologias desenvolvidas no âmbito desta tese.
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Várias formulações matemáticas são estudadas, duas das quais são propostas pela primeira vez nesta
dissertação. Através da avaliação da capacidade das formulações estudadas em determinar tanto soluções
admissíveis e, possivelmente ótimas, como bons limites inferiores (decorrentes das suas relaxações li-
neares) para o problema, tornar-se-á claro que as formulações matemáticas de tempo discreto (discrete-
time formulations) são as que permitem obter os limites inferiores de melhor qualidade enquanto que
uma formulação matemática de tempo contínuo mostrou ser a mais adequada para resolver instâncias
do problema. Esta tendência é observada para ambos os conjuntos de instâncias considerados. Dois
métodos construtivos para obtenção de limites inferiores propostos para o problema de sequenciamento
de projetos com recursos limitados são generalizados para considerarem a presença de competências
tanto nos recursos como nos requisitos das atividades. Os resultados computacionais mostram que estes
métodos melhoram os limites inferiores obtidos pelas formulações matemáticas estudadas em algumas
instâncias.

Os problemas reais de sequenciamento de projetos envolvem geralmente um grande número de ativi-
dades e de competências. Por isso, a utilização de métodos exatos, como as técnicas comuns para lidar
com os modelos matemáticos referidos anteriormente, é frequentemente inviável. Quando confrontado
com este tipo de situações, um gestor de projetos pode considerar preferível a obtenção de uma boa
solução admissível, não necessariamente uma solução ótima, num tempo aceitável, mediante a utiliza-
ção de um método aproximado.

Uma reflexão profunda sobre o problema analisado nesta tese revela que este possui algumas caracte-
rísticas que não estão presentes em alguns casos particulares do mesmo muito estudados, nomeadamente
a noção de competência—recursos polivalentes e requisitos das atividades expressos sob a forma de
número de recursos necessário para processar cada competência requerida à sua execução.

Assim, com o objetivo de desenvolver métodos aproximados para calcular soluções admissíveis para
o problema que explorem melhor as suas características específicas, introduzem-se dois novos conceitos:
agrupamento de atividades e atribuição de pesos aos recursos. Os amplamente conhecidos esquemas
de geração de sequenciamentos em paralelo (parallel scheduling scheme) e em série (serial scheduling
scheme), propostos inicialmente para o problema de sequenciamento de projetos com recursos limitados,
são generalizados para o problema em análise, e os dois conceitos referidos anteriormente são incorpo-
rados nestes dois novos procedimentos. Estes algoritmos utilizam as conhecidas regras de prioridade
para definir a ordem pela qual as atividades são escolhidas para serem sequenciadas bem como regras
de atribuição de pesos para determinar um conjunto de recursos que satisfaça os requisitos de todas as
atividades a serem sequenciadas num dado momento com o custo (peso) total mínimo. Seguidamente,
duas heurísticas que utilizam os referidos esquemas de geração de sequenciamentos são propostas: uma
heurística multi-pass que utiliza o referido esquema de geração de sequenciamentos em paralelo e um
algoritmo genético de chaves aleatórias viciadas. O cálculo de uma solução admissível utilizando o
conceito de sequenciar o projeto do fim para o começo (backward planning) também é considerado em
ambos os métodos.

A heurística multi-pass devolve a solução associada à menor duração do projeto depois de realizar
um número específico de execuções (passes), cada uma delas associada a uma combinação única de
regras de atribuição de prioridade para as atividades, de regras de atribuição de pesos para os recursos, e
de redes de precedência (sequenciamento das atividades do começo para o fim do projeto e do fim para
o começo).

O algoritmo genético de chaves aleatórias viciadas é uma metaheurística cuja estrutura cromossómica
desenvolvida codifica informação relativa a: (i) valores de prioridade das atividades; (ii) os pesos dos re-
cursos; (iii) a forma como um cromossoma é descodificado, nomeadamente o algoritmo de geração de um
sequenciamento para o projeto e a rede de precedência a serem utilizados para calcular o tempo associado
de conclusão do projeto. Ao incorporar toda esta informação nos cromossomas, é possível tirar partido da
estrutura evolutiva do algoritmo genético de chaves aleatórias viciadas que permite a evolução desses da-
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dos (alteração nos seus valores) no decorrer da sua execução, em direção a soluções associadas a menores
durações do projeto. Consideram-se três variantes do algoritmo genético de chaves aleatórias viciadas de
acordo com o tipo de geração de sequenciamento para o projeto a ser utilizado para descodificar os seus
cromossomas: (i) todos os cromossomas são descodificados utilizando o parallel scheduling scheme;
(ii) todos os cromossomas são descodificados utilizando o serial scheduling scheme; (iii) o esquema de
geração de um sequenciamento para o projeto depende do valor do parâmetro associado.

A heurística multi-pass desenvolvida demonstrou ser um método eficiente para a obtenção de soluções
admissíveis de qualidade aceitável dentro de um tempo computacional reduzido enquanto que o algo-
ritmo genético de chaves aleatórias viciadas demonstrou ser um algoritmo robusto e uma abordagem
aproximada mais competitiva no que diz respeito à determinação de soluções admissíveis de melhor
qualidade, em particular para as instâncias mais difíceis como aquelas de média e grande dimensão.

Esta tese termina com um resumo do trabalho desenvolvido e com algumas direções onde pode ser
prosseguida a investigação nesta área tanto ao nível de desenvolvimento de metodologias como de algu-
mas generalizações potencialmente interessantes do problema estudado.

Palavras-chave: Sequenciamento de projetos; recursos polivalentes; modelos de otimização; heurís-
ticas; limites inferiores.
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CHAPTER 1

Introduction

Project scheduling is one of the most important tasks in project management. It can be defined as the
process of sequencing the activities of a project without violating any of the imposed constraints (e.g.,
precedence relations, resource capacity, skill requirements, budget) such that a predefined performance
measure is optimized. The makespan (i.e., the completion time of the project) and total cost are among
the most studied performance measures.

The first project scheduling problem studied considered a project comprising a set of activities linked
by precedence relations. Each activity, alternatively referred to as task with exactly the same meaning,
is associated with a specific processing time. The precedence relations between each pair of activities
can be depicted in an activity-on-arc (AOA) network. The goal is to find an optimal schedule by se-
quencing the activities while satisfying the precedence constraints such that the makespan of the project
is minimized. The optimal solution to this problem consists in finding the longest path between the ini-
tial and the terminal nodes in the above-mentioned precedence network, which is something that can be
achieved in polynomial time. This problem was tackled by Kelley Jr. and Walker (1959) and Malcolm
et al. (1959), who developed the well-known Critical Path Method (CPM) and Program Evaluation and
Review Technique (PERT), respectively. The main difference between such approaches relies on how the
processing times of the activities are determined. More specifically, the CPM assumes that the activities
have a deterministic processing time while the PERT uses a probability distribution for computing the
processing times of the activities. By assuming resource availability to be unconstrained, a huge draw-
back associated with the difficulty in properly handling and allocating resources to concurrent activities
was reported by Kelley Jr. and Walker (1959) in a practical application of the procedure developed
therein.

When resources and their scarceness are taken into account, we dive into a major field of research
which has been receiving an increasing attention from both researchers and practitioners that is the class
of resource-constrained project scheduling problems (RCPSP). In these problems, resources are limited.
Each resource has a specific capacity and is associated with meeting a specific need (e.g., bricks, people,
money). Each activity requires specific units of each resource type for being processed. The goal is
to find a schedule for the project such that all resource and precedence constraints are satisfied and a
predefined performance measure is optimized. Besides the makespan minimization, other objectives
have been considered, the more common being related to the presence of resources and to the cost that
they represent to the project. This combinatorial optimization problem was proved to beNP-hard in the
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strong sense by Błażewicz et al. (1983). The problem has been widely studied in the literature along with
many variants of it due to their potential for application in many real-world settings.

Scheduling problems in general have always been tied to the development of new and more powerful
computers which has made possible to take the research in this area one step further. The advances in
both Computer Science and technology provided the opportunity for developing and studying numerous
extensions of the RCPSP, with a particular emphasis to the multi-mode generalizations.

The multi-mode resource-constrained project scheduling problems assume that each activity may
be processed in one of multiple ways, the so-called “modes”. Each mode of executing a given activity
is defined by specific resource requirements and possibly by a specific processing time. The objective
is to assign a mode and a start time to each activity, ensuring that the resource requirements and the
precedence constraints are satisfied and such that a predefined performance measure is optimized. The
most frequently considered performance measures are the same ones described above for the RCPSP.

The class of RCPSP has attracted the attention of numerous researchers who have presented new vari-
ants of the basic problem and developed exact and heuristic procedures to address them. For overviews
on resource-constrained project scheduling problems, the reader should refer to Herroelen et al. (1998),
Brucker et al. (1999), Hartmann and Briskorn (2010), and Węglarz et al. (2011) as well as to the refer-
ences therein.

More recently, and with the objective of better capturing the characteristics of realistic scheduling
problems, a new class of problems emerged—the multi-skill resource-constrained project scheduling
problems (MSRCPSP). These problems extend the well-known RCPSP and hence fall into the class of
NP-hard combinatorial optimization problems. In a MSRCPSP, the resources besides being available
in limited amounts are also associated with the ability of performing a range of functions, each of which
associated with mastering a specific skill. These multi-competent resources are referred to in the liter-
ature as multi-skill or flexible resources. In this context, the activities may need several skills for their
execution, and for each one of those skills, several resource units may be required. These problems are
drawing an increasing attention of researchers and practitioners due to their numerous applications in the
real-world (e.g., software developments, civil engineering projects) particularly when human resources
are involved. In this situation, when the capacity of the resources is unitary, the resulting problem can be
formulated as a unit-capacity multi-skill resource-constrained project scheduling problem.

This is the type of problems studied in this thesis. This Ph.D. dissertation falls within the scope
of Operations Research and emerges from the need of developing effective solution methodologies for
tackling a particular unit-capacity multi-skill resource-constrained project scheduling problem, namely
instances of the problem of large dimensions. More particularly, the contributions of this work are as
follows (listed in order of appearance):

• a literature review. Due to the importance of discussing the particular problems investigated so
far as well as of highlighting the limitations of the solution methodologies adopted, the literature
considered to be the most relevant is reviewed;

• an instance generator. The development of an instance generator is of major relevance particularly
in situations where no benchmark instances are available. A set of instances of large dimensions
was built using such generator. By combining these new instances with a set of smaller instances
from the literature it was possible to assess more properly the performance of the methodologies
proposed in this thesis, than if only the smaller instances were considered;

• two optimization models. It is of particular interest to develop alternative mathematical formula-
tions for the problem being studied even though it belongs to the class of NP-hard combinatorial
optimization problems. In fact, mathematical formulations can still be used both to solve small
instances of the problem and to yield lower bounds stemming from their respective linear program-
ming relaxations. Lower bounds are especially useful to evaluate the performance of approximate

2



1. Introduction

methods;

• two methods for computing lower bounds. These methods, which require a negligible computa-
tional effort, are specifically useful when, for example, the linear programming relaxations of some
mathematical models cannot be solved to optimality within an admissible computational time;

• two schedule generation schemes. These schemes extend well-known methods proposed for the
RCPSP to our problem setting. They can be considered the backbone for developing approximate
solution methodologies to the problem and hence their development is of major relevance;

• a multi-pass heuristic. When a schedule generation scheme is available, it is possible to perform
several executions (multiple passes) of it. Each execution (pass) is associated with both a dis-
tinct set of rules (e.g., activity priority rules) among those considered and the schedule generation
scheme to be used. By performing multiple passes, instead of a single one, several and possibly
distinct makespan values are achieved. The multi-pass heuristic retrieves the best solution which
corresponds to the smallest of those makespan values;

• a metaheuristic, namely a biased random-key genetic algorithm. Schedule generation schemes
may also be embedded into more sophisticated frameworks. The main reasons for developing this
particular genetic algorithm instead of any other metaheuristic are mainly associated with both the
high-quality results it provided for resource-constrained project scheduling problems and the fact
that the chromosomes resulting from crossover operations always encode a feasible solution to
the problem, which is associated with the use of random-keys. This second aspect has a positive
impact in the running time of the algorithm since it does not require any additional computational
time to recover feasibility. Besides the aforementioned specific features, this metaheuristic also
benefits from the general characteristics of genetic algorithms which contribute to an evolution
towards better solutions, such as: (i) the ability to escape from local optima; (ii) the ability to
handle multiple solutions (under the form of chromosomes) simultaneously; (iii) the ability to
adapt problem-related values over time rather than using predefined rules for computing them.

The remainder of this thesis is organized as follows. Chapter 2 presents a literature review of the field
of research of multi-skill resource-constrained project scheduling problems. In Chapter 3, the specific
problem being studied is thoroughly described and the developed instance generator is presented in detail.
Chapter 4 is devoted to the development of mathematical formulations and lower bounds. In Chapter 5,
the proposed approximate methods are presented and comprehensively discussed. The computational
results of the proposed methodologies are also presented in this chapter. Finally, Section 6 presents some
concluding remarks and suggests some directions for further research.
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CHAPTER 2

Literature Review

In this chapter, we present a literature review on the relevant research done in the realm of project
scheduling problems with multi-skill resources. While reviewing such work, it became clear that the
references could be partitioned into two categories according to the efficiency levels at which the skills
can be performed by the resources. Such classification allowed the definition of two types of resources:
homogeneous and non-homogeneous. In Section 2.1, we present the studies that consider that each skill
is performed with the same efficiency by all the resources that master it—homogeneous resources. In
Section 2.2, we review the references that assume that the efficiency level at which each skill is performed
may not be the same for all resources that master it—non-homogeneous resources. Furthermore, these
efficiency levels may be constant or vary over time. We conclude this chapter by presenting an overview
of the analyzed research.

2.1 Homogeneous Resources

In this section, we present the studies that consider that all resources mastering a given skill perform it at
the same efficiency level. The problems investigated in those studies may be partitioned into two classes:
(i) the problems that consider that each activity requires only one resource to meet the demand of each
skill needed for its execution—unitary skill requirements; (ii) the problems that do not impose such limit
on the skill requirements of the activities—general skill requirements.

We begin by introducing the reviewed research that consider that the skill requirements of the activ-
ities are unitary. Then, we present the studies whose analyzed problems do not impose such restriction.

Unitary skill requirements
Li and Womer (2009) investigate a problem in which the activities are linked by generalized precedence
relations including minimal and maximal time lags and due dates. The minimal (maximal) time lag is
defined for a pair of activities as the least (most) amount of time that has to elapse between their start
times. Time lags are used to depict situations where the start time of one activity is constrained to a
specific state of completion of some other activity, hence generalizing the classical precedence relations
(e.g., start-to-start, finish-to-start).

In this problem, the activities require only one resource unit to fulfill the demand of each one of
the skills needed for their execution. The resources have a predefined maximum workload capacity.
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The objective is to minimize the total cost associated with the resources without violating a predefined
deadline for the project. The authors develop a hybrid Benders decomposition approach and a cut-
generating scheme, which links the master problem associated with the resource assignment, i.e., the
problem of meeting the skill requirements of the activities, and the subproblem, which deals with the
activity scheduling, i.e., the problem of finding whether a specific resource assignment corresponds to a
feasible schedule that satisfies the stipulated precedence constraints. The resource assignment problem is
formulated as a mixed-integer linear programming formulation (MILP) and solved by branch-and-bound
and branch-and-cut whereas constraint programming is applied to check the feasibility of the scheduling
problem. When performing the computational experiments, the authors assume that every resource re-
ceives the same salary. Hence, the objective of the problem reduces to minimizing the number of distinct
resources selected to perform the project. The computational results reveal that the proposed approach
appears to be competitive to tackle the specific problem studied. Nonetheless, the characteristics of the
instances considered are not fully described.

Dhib et al. (2015) study a project scheduling problem with multi-skill resources where some activities
may be preempted, i.e., the execution of some activities may be interrupted. Resources are unavailable
within some time-windows and the activities require only one resource for executing each skill needed
for their execution. The processing time of each activity is not directly stipulated. Instead, there is a fixed
duration associated with the execution of each one of the skills needed to process such activity. Moreover,
despite the start time of an activity being the same for all its required skills, in an event of preemption,
these skills may be restarted at different time instants. The resources assigned to each pair (activity, skill)
cannot be changed even in the event of a preemption of the skill they were assigned to perform. As usual,
it is only after all skills have been processed for a given activity, that its immediate successors become
eligible to be scheduled. In this problem, each pair (activity, skill) can be seen as a separate task, if we
assume that, for each activity, all its associated tasks have the same start time. The authors formulate
the problem as a discrete-time MILP optimization model and suggest a parallel scheduling scheme for
computing feasible solutions. A parallel scheduling scheme is a time-incrementing schedule generation
scheme. A general parallel scheduling scheme can be briefly summarized as follows. Initially, the activi-
ties are ranked according to some criteria and a time counter is set to zero. Then, at each time instant that
corresponds to the conclusion of some activity(ies), a set of activities whose predecessors have already
finished at that time is built—decision set. The highest ranked activity (according to the defined criteria)
from that set is iteratively scheduled and the necessary resources are assigned to it. When all activities
in that set have been scheduled or no more activities belonging to that set can be scheduled due to the
lack of resources available at that time, the time counter is incremented to the minimum finish time of all
activities already scheduled. At that time, a new decision set is then built and a new iteration starts. This
process is repeated until all the activities in the project have been scheduled. The authors noted that the
MILP model is only suitable for dealing with small instances of the problem. Regarding the proposed
approximate method, it is important to notice that, by scheduling and fulfilling the requirements of the
activities one at a time, a less efficient resource allocation may be obtained. Despite referring to solving
a min-cost flow for resource allocation, the authors present neither a cost function nor rules for cost at-
tribution. The computational experience performed is rather superficial.

General skill requirements
Néron (2002) studies a makespan minimization project scheduling problem with multi-skill resources.
In this problem, the activities may require more than one resource to meet the demand of each skill
needed for their execution. In that work, two methods for deriving lower bounds are proposed: one is
based on linear programming and the other one on energetic reasoning. The former is an adaptation
of a linear programming approach presented by Carlier and Néron (2003) (whose work was submitted
for publication in 2001) for the resource-constrained project scheduling problem and the latter has been
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previously applied by Baptiste et al. (1999) for the cumulative version of such problem. The cumulative
resource-constrained project scheduling problem assumes that: (i) the capacity of each resource can be
greater than one; (ii) each resource may process more than one activity at a time as long as its per period
capacity is not surpassed. The energetic reasoning aims at finding, for each time interval, whether the
available resources are enough to meet the requirements of all the activities being processed in such
interval or not. Both methods for finding lower bounds are classified as destructive since the value
of the lower bound supplied as input to the referred methods is incremented until no infeasibility on
the constructed schedule is detected. No computational experience on the proposed lower bounds is
presented.

Bellenguez-Morineau and Néron (2007) tackle a project scheduling problem with multi-skill re-
sources. The resources may be unavailable within certain time periods, which are known beforehand.
The objective is to minimize the makespan of the project. For solving this problem, the authors propose
a branch-and-bound method with a depth first branching strategy and three different branching schemes:
(i) activity with maximum slack; (ii) adaptation of the graph of compatibility lower bound proposed by
Bellenguez-Morineau and Néron (2005) to the particular case where each is skill is performed with the
same efficiency by all resources that master it; (iii) energetic reasoning lower bound proposed in Néron
(2002). At each node of the branch-and-bound, an activity is selected and its slack is updated. Each node
has two child nodes, one of which corresponds to a decrease of the latest finish time of the associated
activity (in a number of time units that corresponds to the smallest integer greater than or equal to half of
its slack) and the other to an increase of the earliest start time of that activity (in a number of time units
that corresponds to the largest integer less than or equal to half of its slack). A leaf node is reached when
all the activities have a zero slack. To assure the feasibility of that node, a fixed-job problem has to be
solved. This auxiliary problem helps checking whether the skill requirements of the activities can be met
at the designated start times. The authors present a superficial computational experience and conclude
that the proposed branching strategies have roughly the same performance. The characteristics of the
instances used are not extensively detailed. The authors do not present any indicators to measure the
degree of difficulty of the referred instances or any evidence that ensures that they are feasible instances
of the problem. In this situation, it becomes impossible to categorize the instances according to some sort
of parameter(s) and consequently to properly assess the quality of the proposed solution methodology.
The only information provided is the total number of instances considered and the ranges of their number
of activities, resources and skills.

Correia et al. (2012) propose a MILP mathematical formulation for solving a project scheduling
problem with multi-skill resources. The authors derive several valid inequalities and reduction tests with
the objective of enhancing the model by fixing some variables at their optimal values beforehand, hence
reducing the search space. Since an upper bound on the completion time of the project was required for
some of the valid inequalities above, the authors propose a simple heuristic inspired on the well-known
parallel scheduling scheme. The approximate method proposed by Correia et al. (2012) is a two-phase
heuristic. The first phase comprehends the construction of a feasible solution and the second phase
consists in applying a local search procedure to that solution, in an attempt to improve its quality. The
constructive phase is slightly different from the generic parallel scheduling scheme described previously.
The proposed constructive procedure schedules blocks of at most three activities at a time. All activities
in a block start at the same time and the completion time of a block is equal to the maximum finish time
across all activities in that block. A block is built by iteratively selecting and scheduling the unscheduled
activity with the most total successors and which has all its predecessors already scheduled and finished.
The resources are then assigned to that activity by finding a feasible flow in a specific network, without
accounting for the skill requirements of other activities that may still be scheduled at that same time.
When either the current block consists of three activities or it is not possible to schedule more activities
at that time, the time is incremented to the completion time of that block. After building a feasible

7



2.1. Homogeneous Resources

solution to the problem, the local search phase of the heuristic starts. The neighborhood of the proposed
local search procedure consists of all solutions that differ from the initial one by swapping exactly two
activities belonging to adjacent blocks. From those solutions, the algorithm selects the one associated
with the least makespan. Due to the absence of judiciously generated instances in the literature, the
authors develop a methodology to build instances for the MSRCPSP, which was inspired in the instance
generation for the RCPSP. The authors built instances with different characteristics, that caused different
degrees of difficulty to the solver. The computational results show that the proposed methodology is
competitive for solving instances of small and medium dimensions.

Montoya et al. (2014) develop a branch-and-price algorithm for tackling a multi-skill resource-
constrained project scheduling problem. The objective is to minimize the makespan of the project. A
discrete-time formulation is presented along with a column generation procedure, and combined into a
branch-and-price. The discrete-time formulation and the branch-and-price algorithm are solved using
an off-the-shelf solver. The computational results suggest that the branch-and-price procedure may be
more competitive than the discrete-time formulation regarding the number of optimal solutions achieved.
Nonetheless, it is important to note that, due to the lack of information regarding the instances consid-
ered, similarly to Bellenguez-Morineau and Néron (2007), we cannot conclude about the suitability of
the proposed branch-and-price method to tackle some properly generated and well-described instances
such as the ones built by Correia et al. (2012).

Correia and Saldanha-da-Gama (2015b) noted several inconsistencies in the formulation of Montoya
et al. (2014) and present a corrected version of such discrete-time mathematical model.

Correia and Saldanha-da-Gama (2014) study the project scheduling problem with multi-skill re-
sources investigated by Correia et al. (2012) but consider a different objective function. The objective
is to minimize the fixed and variables costs associated with the resources while assuring that the project
finishes before a stipulated deadline. More precisely, the fixed costs are associated with the selection of
a resource to participate in the project (perform a skill for at least one activity) and the variable costs
depend on the makespan value of the derived schedule. Both costs are dependent on the number of skills
mastered by each resource (i.e., resources mastering a wider range of skills are costlier). The authors
develop a mixed-integer optimization model with a non-linear objective function, which was later lin-
earized through the introduction of a set of continuous variables and additional constraints. With the
objective of improving the mixed-integer linear programming formulation, several sets of valid inequal-
ities already considered by Correia et al. (2012) were included in the developed mathematical model. In
the computational experience, the authors assess the impact of fixed and variable costs separately and
together on a comprehensive set of instances built upon those generated by Correia et al. (2012). The
numerical results reveal that the proposed approach is efficient for tackling the referred instances.

Correia and Saldanha-da-Gama (2015a) develop a general modeling framework for a project schedul-
ing problem with multi-skill resources. More precisely, the authors address modeling issues related to
the development of a MILP modeling framework that depicts the characteristics of the problems studied
by Li and Womer (2009) and by Correia et al. (2012), simultaneously. It is shown that several variables
can be fixed in a preprocessing phase and that the valid inequalities proposed by Correia et al. (2012) are
suitable to be included in the developed framework.

Alba and Chicano (2007) and Drezet and Billaut (2008) also consider homogeneous resources but
with some additional assumptions that allow to distinguish the problems studied by these authors from
the references presented previously. In the first work, a project scheduling problem faced by software de-
velopment companies is studied. The objective is to minimize a weighted average of cost and makespan
of the project. Two weights are considered (one for the makespan and other for the cost) for modeling
the relative importance of the two objectives. The authors provide a general verbal description of the
characteristics of the problem. Each multi-skill resource has a monthly salary and a maximum degree of
dedication to the project, i.e., the fraction of its working day where it may contribute to the project. Each
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activity needs a set of skills and its requirements are expressed under the form of man-hours per month.
Unlike the majority of the research on project scheduling problems with multi-skill resources, Alba and
Chicano (2007) consider that the processing times of activities are not known beforehand and also that
their requirements for being processed are not skill-specific. In fact, the processing times of the activities
depend on the number and dedication level of the assigned resources. It is understood that an activity
may be processed by only one resource. Moreover, there does not appear to be an upper limit on the
number of resources that can be assigned to each activity. The only constraint is that each skill required
by an activity must be mastered by at least one of the resources assigned to it. Hence, as long as there are
resources that master each one of the required skills, it seems possible to additionally assign resources
whose mastered skills are not required by such activity. These resources contribute to decreasing the
processing time of that activity. Since no skill-specific requirements are defined, we may conclude that
the authors assume that the resources may contribute with all the skills they master simultaneously to the
activities they are assigned to perform. From the example given by the authors, it also seems possible
to assign the same resource to concurrent activities. No mathematical formulation for the problem is
presented. A genetic algorithm is proposed to tackle the described problem. Despite stating that the
resources are available to work overtime and that a highly working resource may increase a specific error
rate, the authors appear to have neglected these factors when the proposed algorithm was developed.
From the presented computational results, it is not possible to conclude that the proposed metaheuristic
is an adequate method for tackling this problem. This is due to its inability to provide feasible solu-
tions consistently and to the fact that neither a gap nor other performance measure is presented, which
is usually considered mandatory for a proper evaluation of an approximate method. Additionally, the
computational time consumed by the proposed solution methodology is not reported. The instances were
generated by the authors using an algorithm that is not fully clear and which appears to allow the addi-
tion of precedence relations (between pairs of activities) without checking if their inclusion introduces
redundancy in the network.

In Drezet and Billaut (2008), a particular project scheduling problem faced by software companies
is studied. The requirements of the activities are not expressed as a number of resources per each skill
required. Instead, the authors determine, beforehand, the resources that are eligible to perform each ac-
tivity (possibly accounting for the skills mastered and needed, respectively). Two types of requirements
for executing each activity are defined. Both of them are time-dependent, meaning that the requirements
of an activity may not be constant throughout its execution. More specifically, the processing time of
each activity can be partitioned into unitary time intervals. Each one of these time intervals is associated
with a specific demand of resource units, which is bounded by a minimum and maximum value. Ad-
ditionally, there are also skill requirements in each time interval, but in a different setting. Similarly to
Alba and Chicano (2007), the skill requirements of each activity appear not to be skill-specific and hence
are similar to the aforementioned demand of resource units. These skill requirements are also bounded
by a minimum (maximum) value, which seem to result from aggregating the minimum (maximum) skill
requirements across all skills needed to process such activity, in each time interval. The latter means
that the pairs (resource, skill) are not determined for each pair (activity, time interval). The number of
assigned resources in each time period does not have any impact in the processing time of the activity,
which is a fixed and predefined value. The resources that can be assigned to meet each of the described
requirements have to be among the ones defined beforehand as capable of performing such activity. A
resource can be assigned to perform an activity for its whole processing time or only for a subset of the
time periods when it will be in progress. In the latter case, the two following conditions must hold: (i)
the activity cannot be preempted, which means that the resource requirements and skill requirements
have to remain satisfied (i.e., if withdrawing a resource results in a violation of any of the lower limits
for the requirements defined above, another resource will have to replace the removed one); (ii) there
is a maximum number of resource assignments/withdrawals during the execution of the activities that
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has to be respected. There is a minimal and a maximal length for the working day of each resource
as well as a maximum number of activity changes throughout each working day. The objective of the
problem is to minimize the maximum lateness. For each activity, its lateness denotes the deviation, in
time units, between the due date of such activity and its actual finish time. The authors present a mathe-
matical formulation for the problem and develop a greedy heuristic and a tabu search to compute feasible
solutions to it. From the mathematical formulation, we may conclude that the skill requirements of a
given activity in each time interval are met considering all the resources busy within such time interval
and which were defined as candidate to perform this activity (regardless if they are actually performing
this activity or other concurrent activities). The heuristic is based on a serial scheduling scheme and the
tabu search considers swap moves between resources and activities and right or left-shifts of one activ-
ity by one or several time periods. The serial scheduling scheme is an activity-incrementing schedule
generation scheme whose procedure can be briefly summarized as follows. Initially, the activities are
ranked according to some criteria. Then, according to the defined criteria, the best precedence feasible
activity is scheduled at the earliest (feasible) time possible and the necessary resources are assigned to
it. The method repeats until all activities in the project are scheduled. Both approximate methods al-
low the violation of some constraints namely the ones related to the length of the working day of each
resource, its maximum number of assignments/withdrawals and the ones associated with meeting the
skill requirements of the activities. The authors claim to have considered two criteria in the objective
function. In this objective function, the total number of violated constraints has to be minimized before
the maximal lateness. However, it is not clear how such is assured. The computational study is not fully
explained and the numerical experiments are very limited. The authors claim to have fixed the values for
some parameters of the tabu search according to the results provided by preliminary tests whose details
are not presented (e.g., the ranges of values considered for each parameter). The characteristics of the
instances considered for the computational experiments performed are not clearly described. The results
reveal that the number of violated constraints decreases after employing the tabu search. No gap measure
is computed. Furthermore, the derived solutions are associated with the violation of constraints, which
implies that they not consist of feasible solutions to the studied problem.

2.2 Non-homogeneous Resources

In this section, we review the references that consider that the efficiency level at which a given skill
is performed may vary across the resources mastering that skill. This non-uniform efficiency/exper-
tise/proficiency of performing a given skill is also referred to in the literature as hierarchical levels of
skills (see, for instance, Bellenguez-Morineau and Néron, 2005). We designate hereafter this type of
resources as non-homogeneous or alternatively, heterogeneous. Moreover, we would like to point out
that these efficiency levels may be constant or may vary over time (corresponding to their improvement
or deterioration).

We begin by presenting in Section 2.2.1, the research that considers that the efficiency at which a
resource performs a given skill remains unchanged throughout the planning horizon—static levels of
efficiency. Later, in Section 2.2.2, we review the papers that allow the possibility of these efficiencies
varying over time—dynamic levels of efficiency.

2.2.1 Static efficiency levels

Bellenguez-Morineau and Néron (2005) study a project scheduling problem with multi-skill resources
where each skill may be performed at different efficiency levels and the resources may be unavailable in
predefined time-periods. A resource can perform each one of the skills it masters at every efficiency level
equal or smaller than its top efficiency level for that skill. The objective is to minimize the makespan. The
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authors develop two lower bounds. One of the proposed lower bounds is based on finding a maximum-
weight independent set in a compatibility graph. We note that the maximum-weight independent set
problem is NP-hard and hence this approach may be improper to deal with instances of reasonable
dimensions. This specific graph is built by linking all pairs of activities that can be in progress simulta-
neously (i.e., their processing time-windows overlap and there are enough resources to process them at
the same time). The authors claim to have tried solving the maximum-weight independent set problem by
an approximate method and by a MILP formulation using an off-the-shelf solver. The other lower bound
extends the energetic reasoning lower bound proposed by Néron (2002) to account for the multi-levels
of efficiency at which a skill can be performed. No computational results are presented.

Yannibelli and Amandi (2011) investigate a multi-skill project scheduling problem where each ac-
tivity requires skills that may be performed at different efficiency levels. The objective function of the
problem regards the assignment of the set of most efficient resources to the activities underlying a soft-
ware project. No mathematical formulation for the problem is presented. The authors propose a genetic
algorithm that coordinates a serial scheduling scheme for tackling this problem. The number of genes
in each chromosome is considered to be two times the number of activities in the project. The chromo-
some structure of the genetic algorithm comprehends information defining a precedence feasible order
by which activities are selected to be scheduled and the list of the specific resources that should be as-
signed to each one of them. Hence, the information specific to each activity spans across two genes. The
proposed serial scheduling scheme is not extensively detailed. It is important to note that the absence
of a deadline on the completion of the project may allow the building of schedules where activities are
processed one after the other, each of which having always the set of most apt resources assign to it.
Such solutions appear to be optimal solutions to the problem according to the designated objective. In
the computational experiments, it assumed that the resources only master one skill. The characteristics
of the instances are not extensively detailed.

Yannibelli and Amandi (2013) extend the previous work by considering a multi-objective problem
that seeks to minimize the makespan of the project besides assigning the most effective set of human
resources to the activities. The authors propose a metaheuristic consisting of a multi-objective simu-
lated annealing algorithm embedded into a multi-objective evolutionary algorithm. In each iteration of
the evolutionary algorithm, the multi-objective simulating annealing is applied to each solution with
the objective of preventing the premature convergence of the evolutionary algorithm. The chromosome
structure of the evolutionary algorithm is the same one used in the reference presented above (Yannibelli
and Amandi, 2011). The authors state that a serial scheduling generation scheme has been employed
to decode the chromosomes. No detailed explanation of the developed methodologies, namely the em-
ployed serial scheduling scheme is given. The authors assume, similarly to what was considered by
Yannibelli and Amandi (2011), that the resources only master one skill in the computational experiments
performed. Moreover, the characteristics of the instances are not properly explained. The authors claim
to know the optimal solution of the objectives when addressed individually. Nonetheless, no source for
those values of reference is provided.

Multi-skill resources have also been considered in multi-project environments (i.e., when several
concurrent projects have to be scheduled) but with additional assumptions. We present next, some of the
research done in this direction.

Heimerl and Kolisch (2010) study a cost minimization multi-project scheduling problem with multi-
skill resources faced by a company. The authors do not consider a project selection phase, which implies
that all the available projects have to be scheduled. For each project, the sequence by which the activi-
ties are processed and consequently its makespan is known beforehand. Nonetheless, it is necessary to
determine both the start time of each project (which have to be within a predefined time-window) and
the resources that should be assigned to meet its skill requirements in each time slot where it will be in
execution. There are two kinds of resources: internal and external, which have specific costs. The inter-
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nal resources have a workload capacity that is partitioned into regular and overtime, the only difference
is the cost associated with each one. The authors stipulate a cost of hiring external resources higher than
the overtime cost of the internal resources. Additionally, a limit on the maximum proportion of the work
done by external resources is imposed. These assumptions seek to avoid outsourcing all the work. The
efficiency level at which each skill is performed may vary across all the internal resources that master
it. Conversely, each skill is performed at the same efficiency level by all external resources that master
it. A resource may be assigned to multiple projects simultaneously, possibly performing different skills
for each one of these projects. Such assumption has also been made by other authors (cf. Alba and
Chicano, 2007, Gutjahr et al., 2008 and Gutjahr et al., 2010). The time taken to perform a given skill
within a specific time-window is smaller for (internal) resources having higher efficiency levels of that
skill. Nonetheless, this only impacts the usage of the regular and overtime capacities of the resources,
since the processing time of the activities is fixed (the makespan of the project is known beforehand).
The problem is formulated as a mixed-integer linear programming model. The authors further evaluate
extensions of the problem by considering: a budget for the project; the scarceness of external resources;
the hiring of discrete quantities of external resources (multiples of a given number). The model is en-
hanced with some constraints aimed at improving the lower bound provided by its linear programming
relaxation. The computational results validate the decision of including additional constraints in terms of
the derived lower bounds. The authors also study the impact of several factors on the objective function
of the problem: the size of the time-windows for the start time of each project; the number of projects;
the number of skills mastered by the internal resources; the workload capacity. The authors also as-
sess the impact that a centralized (single pool of resources) and a de-centralized planning (resources are
spanned across several departments) have in the cost of the project. They conclude that the centralized
planning scheme is the most competitive approach since it tends to render easier problems and to allow a
greater assignment efficiency. The computational results reveal that the proposed exact approach (MILP
with a tight linear programming relaxation) provides smaller total costs than the two simple heuristic
methods already being used by the company. The effectiveness of the former is strongly dependent on
the size of the time-windows for start of the projects, which the authors state that have to be “modest”,
which may be understood as rather small, since they have a great influence in the tightness of the linear
programming relaxation of the proposed MILP. The referred approximate methods proved to be unable
to provide feasible solutions for some instances when a minimum ratio of the work to be done by internal
resources is imposed.

Kolisch and Heimerl (2012) extend the previous work by considering a disaggregated version of the
problem. In this setting, the start time of the activities involved in each project (i.e., the schedule of each
project) has to be determined. The activities have to be processed within predefined time-windows and
are linked by precedence relations with minimal and maximal time lags. These concepts were already
presented when the problem studied by Li and Womer (2009) was reviewed. Each activity has exactly one
predecessor. If some activity is selected to be outsourced then all its successors must also be outsourced.
A mixed-integer linear programming model is presented along with additional cuts. The authors partition
the problem into two subproblems: (i) the scheduling problem, which aims at determining the start times
of the activities; and (ii) the staffing problem, which is associated with meeting the skill requirements of
the activities. For the former, the authors use a metaheuristic that combines a genetic algorithm and a tabu
search and for the latter, a generalized network simplex (GNS) algorithm is used to solve the associated
generalized minimum cost network flow problem. The genetic algorithm penalizes infeasible solutions
provided by the GNS in an attempt to prevent their propagation into further generations. A tabu search
is then applied to the best solution found in each iteration. A neighborhood consisting of modifying the
start time of an activity is proposed (the authors point out the need of verifying and correcting the start
time of its successors to assure a schedule that is precedence feasible). The computational results show
that the proposed metaheuristic is more suitable for computing feasible solutions to this problem than

12



2.2. Non-homogeneous Resources

an off-the-shelf solver. In fact, the solver failed to solve the strengthen MILP formulation (within the
imposed time limit) for reasonably sized instances (i.e., 10 projects, 6 activities per project, 10 resources
and time-window size per activity of 3 time units).

2.2.2 Dynamic efficiency levels

In some real-world settings, when human resources are involved, it is reasonable to assume that task
repetitiveness, academic education and technical training may contribute positively to the development
of competences (i.e., learning), which tend to increase the efficiency at which the associated skills are
performed. Conversely, it is also true that if a resource refrains itself from performing specific skills for
a period of time, it may become less and less proficient in those skills over time (i.e., forgetting), which
causes a decrease in the efficiency at which those skills are performed.

Some research considering those aspects (although simplifying others) include Gutjahr et al. (2008)
and Gutjahr et al. (2010).

Gutjahr et al. (2008) tackle a multi-project scheduling problem with an a priori project selection
phase. The objective is to maximize a weighted average of the economic gains from the projects and
the increments in the competences of the resources. Similarly to Heimerl and Kolisch (2010), there
are no decisions regarding the start times of the activities. The skill requirements of each project are
predetermined within the predefined time-windows for processing the activities. The resources have
non-homogeneous efficiencies for each skill mastered, and those efficiencies may be dynamic, in the
sense that they may improve or deteriorate—the so-called learning and forgetting effects. Similarly to
the aforementioned studies, namely Alba and Chicano (2007), Heimerl and Kolisch (2010) and Kolisch
and Heimerl (2012), a resource can contribute with multiple skills to concurrent activities as long as its
capacity is not surpassed in each period. The authors develop a non-linear mixed-integer programming
formulation for the problem and show that the referred mathematical model can be approximate by a
MILP when specific problem settings are considered. However, unlike Heimerl and Kolisch (2010) and
Kolisch and Heimerl (2012), it is not possible to hire external resources. A two-staged approximate ap-
proach is derived. It consists of a greedy heuristic, which is used for the scheduling and staff assignment
problem, and two metaheuristics (ant colonization optimization and genetic algorithm), which are used
for project portfolio selection. The decision concerning the selection of the projects that will constitute
a certain portfolio is made at the beginning and remains unchanged in the course of the algorithm. The
start time of each project is considered to be equal to the earliest start of all its integrating activities.
Hence, we may consider that the proposed greedy heuristic does not deal directly with the scheduling of
the projects but only with meeting their requirements. Moreover, this procedure seems not to account
for the learning and forgetting of the skills mastered by the resources. Additionally, the authors claim
that this greedy heuristic may retrieve infeasible solutions and that in such event the metaheuristic selects
a different project portfolio. In the computational experience, the authors compare the performance of
their approximate method with a simplified version of the proposed MILP formulation, which is solved
using an off-the-shelf solver. It is concluded that the genetic algorithm is the most appropriate method
for project portfolio selection among the two metaheuristics tested.

Gutjahr et al. (2010) study a bi-objective generalization of the problem reviewed above. Two meta-
heuristics are proposed for selecting the projects, namely a nondominated sorting genetic algorithm and
a pareto ant colony optimization method, which consist of generalizations of the methods applied in
Gutjahr et al. (2008). After selecting a project portfolio and calculating the value of the associated ob-
jective (economic gains) a multi-objective resource assignment problem has to be solved. The authors
simplify such continuous assignment problem by considering a unique objective and formulate it as a
single objective linear programming model, which is solved using an off-the-shelf solver. The authors
evaluate the performance of the proposed metaheuristics on two different sets of instances, one of which
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consisting of real data while the other is associated with artificial created problems. None of the referred
sets of instances is described in detail. It is concluded that the pareto ant colony optimization method
achieves the best solutions for the former and the nondominated sorting genetic algorithm provides the
best results for the latter set of instances.

2.3 Conclusions

In this chapter, we have reviewed the most relevant literature on project scheduling problems with multi-
skill resources. The area of project scheduling problems with multi-skill resources is a recent field of
research. However, we observe that a lot of effort has already been put into developing methodologies
to deal with various types of these problems. This review is of particular interest since, to the best of the
author’s knowledge, no review paper focused on this specific class of problems has been published so
far.

The references were partitioned into two categories according to the type of resources involved:
homogeneous—each skill is performed with the same efficiency by all resources that master it; non-
homogeneous—the efficiency level at which a skill is performed may vary across the resources that
master it.

Let us first notice that the class of problems involving homogeneous resources has been receiving
the most attention. Nonetheless, a closer look at the proposed solution methodologies suggests that the
development of effective approximate methods has not been extensively studied for these problems. In
fact, aside from Dhib et al. (2015), which tackles a preemptive version of the problem and Alba and
Chicano (2007) and Drezet and Billaut (2008), which make additional assumptions, only Correia et al.
(2012) have proposed a constructive heuristic to the original setting of the problem. These approximate
methods are either not clearly described, with the exception of Correia et al. (2012), or seem to disregard
some fundamental features of the project scheduling problems with multi-skill resources (e.g., the notion
of skill and the possible scarceness of resources mastering certain skills). Such insights reinforce the
need to develop effective methods for computing upper bounds for these problems, which is one of the
main goals of the present thesis. Furthermore, we observe that all the reviewed references dealing with
homogeneous resources, study a problem comprising a single project.

If we look closely at the research considering non-homogeneous resources, we observe that a lot of
effort has been put into developing methodologies to tackle a wide range of these problems, with a par-
ticular emphasis to those considering multiple projects. In these problems, each skill may be performed
and required at different levels of proficiency by the resources and by the activities, respectively. This in-
creased complexity tends to make these problems intractable at their original setting, hence the proposed
solution methodologies often end up tackling a simplified version of the initial problem.

The absence of benchmark instances and the general lack of detail and rigor in the description of the
instances considered in the computational experiments performed by some authors constitute a major
drawback in what regards the proper evaluation and comparison of the proposed methodologies, which
are also often not clearly described. Hence, it is of particular interest to develop and formally present
an instance generator and to determine a set of parameters that clearly define the characteristics of each
(sub)set of instances considered. We observe that only two references have dedicated their work to the
development of lower bounds, one of which for the problems having homogeneous resources and the
other for the problems considering heterogeneous resources.

We summarize the work developed so far in Tables 2.1 and 2.2. The references are classified accord-
ing to the characteristics and assumptions of the problems studied therein. In Table 2.1, we present the
features of the problems, objectives and methodologies proposed. In Table 2.2, we identify the funda-
mental aspects that characterize the resources and the activities involved in the investigated problems.
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Table 2.1: Literature review: characteristics of the problems and proposed methodologies.

Resources
Skill
efficiencies

Reference
Project Objective Methodology(ies)

Single Multi Selection Single Multi Function Exact Approximate LB

Homogeneous n/a Néron (2002) M
Bellenguez-Morineau and Néron (2007) M
Alba and Chicano (2007) M + C (w)
Drezet and Billaut (2008) L
Li and Womer (2009) C
Correia et al. (2012) M
Montoya et al. (2014) M
Correia and Saldanha-da-Gama (2014) C
Correia and Saldanha-da-Gama (2015a) M or C
Dhib et al. (2015)1 M

Heterogeneous static Bellenguez-Morineau and Néron (2005) M
Yannibelli and Amandi (2011) ER
Yannibelli and Amandi (2013) ER + M
Heimerl and Kolisch (2010) C
Kolisch and Heimerl (2012) C

dynamic Gutjahr et al. (2008)2 EG + RC (w)
Gutjahr et al. (2010)2 EG + RC

C: min. cost; ER: max. efficiency of assigned resources; EG: max. economic gains from projects; L: min. max. lateness; LB: Lower Bound(s); M: min. makespan; RC: max. resources’
competences; (w): weighted.

1 Preemption is allowed, moreover each skill may be preempted individually.
2 Projects are not to be explicitly scheduled, since the start time of a project is set equal to earliest start time of all its integrated activities, which is known beforehand.
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Table 2.2: Literature review: characteristics of the resources and of the activities.

Resources
Skill
efficiencies

Reference
Resources Activities

Unavailability ACA NDS GPC Outsourcing

Homogeneous n/a Néron (2002)
Bellenguez-Morineau and Néron (2007)
Alba and Chicano (2007) 3

Drezet and Billaut (2008) 3

Li and Womer (2009) 3

Correia et al. (2012)
Montoya et al. (2014)
Correia and Saldanha-da-Gama (2014)
Correia and Saldanha-da-Gama (2015a) 3

Dhib et al. (2015)1

Heterogeneous static Bellenguez-Morineau and Néron (2005)
Yannibelli and Amandi (2011)
Yannibelli and Amandi (2013)
Heimerl and Kolisch (2010)
Kolisch and Heimerl (2012)

dynamic Gutjahr et al. (2008)2

Gutjahr et al. (2010)2

ACA: Assignable to concurrent activities (i.e., in a given time period, a resource may be assigned to perform multiple activities/projects,
possibly using different skills); GPC: Generalized precedence constraints; NDS: No decision regarding the start times of the activities.

1 Preemption is allowed, moreover each skill may be preempted individually.
2 Projects are not to be explicitly scheduled, since the start time of a project is set equal to earliest start time of all its integrated activities,

which is known beforehand.
3 limited workload capacity.

16



CHAPTER 3

The studied problem

In this chapter, we present and describe in detail the multi-skill resource-constrained project scheduling
problem (MSRCPSP) being investigated in this thesis. This is the problem studied by Correia et al.
(2012) whose work constitutes the starting point for this dissertation.

We begin by verbally describing the problem and the specific assumptions that are associated with
it in Section 3.1. Then, an example is presented. In Section 3.2, the relevant notation is introduced and
a mathematical formulation from the literature is revisited. In Section 3.3, we discuss several problem-
specific properties and additional concepts of relevance for the developments to be presented in the
following chapters. In Section 3.4, we revisit the instances generated by Correia et al. (2012) and we
formally propose a new instance generator, used to build a new set of instances. These two sets of
instances will be used for evaluating the performance of the solution techniques proposed in the following
chapters. This chapter ends with Section 3.5 with some concluding remarks.

3.1 Problem description

We consider a project comprising a set of activities, a set of resources and a set of skills. The activ-
ities are linked by finish-to-start precedence relations, which force an activity not to be started before
all its predecessors have finished. Each activity is associated with a processing time and has specific
requirements for being executed. The precedence relations between pairs of activities can be depicted in
an activity-on-node (AON) network that also contains two dummy activities, i.e., activities with a null
processing time and no resource requirements, that represent the start and the conclusion of the project.
Apart from the precedence constraints, the activities are also interrelated by resource constraints, which
are more complex than the ones considered in the classical RCPSP. Each resource masters one or more
skills. The activities require several skills for their execution and, for each one of those skills, one or
more resources are needed. A resource can be involved in at most one activity at a time, to which it con-
tributes with only one skill it masters and that is required by such activity. Furthermore, once a resource
is assigned with a skill for performing some activity, it remains so for the whole processing time of the
activity. The objective of the problem is to minimize the completion time of the project. The decisions
to make comprise the start times of the activities and the pairs (resource, skill) that should be assigned to
each activity, such that the precedence and resource constraints are satisfied.

This problem belongs to the class of project scheduling problems with multi-skill resources. The
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MSRCPSP can be looked at as a specific case of the multi-mode extension of the RCPSP. In fact, if we
consider that a mode of executing an activity is defined by a set of pairs (resource, skill) that meet all
its skill requirements, the resulting problem is a multi-mode RCPSP with a very high number of modes.
Hence, by generalizing the RCPSP, the MSRCPSP being studied is anNP-hard combinatorial optimiza-
tion problem in the strong sense.

In addition to the description of the problem presented above, we also consider the following as-
sumptions:

• all precedence relations are of type finish-to-start, which means that an activity may only start after
all its predecessors have finished.

• No minimal or maximal time lags are considered.

• the processing times of the activities are fixed, positive and integer values (hence independent from
the resources assigned to it).

• the setup times are included in the processing times of the activities.

• preemption is not allowed, i.e., once an activity starts being executed, it cannot be interrupted.

• the number of resources needed to process each skill required by each activity is a fixed, positive
and integer value.

• the resources are renewable and have a unitary capacity.

• the resources are homogeneous, i.e., all the resources mastering a specific skill, perform it with the
same efficiency.

• all the information above is deterministic and known beforehand.

As a result, we can immediately conclude that the makespan of the project is a positive integer less
than or equal (when the activities are processed sequentially) to the sum of the processing times of the
activities. Typically, it is possible to parallelize the execution of some activities and thus, the minimum
makespan is usually lower than that upper limit. We discuss this and other issues later in this document.

Next, we present an example of the problem.

Example 3.1 Consider a project with 5 activities, 5 resources and 2 skills. The information associated
with the activities and the resources is presented in Tables 3.1 and 3.2, respectively. The immediate
precedence relations between pairs of activities are depicted in the directed acyclic graph presented in
Figure 3.1, which follows an AON representation.

Table 3.1 consists of 4 columns. Each row corresponds to an activity whose label is depicted in the
first column. For each activity, Column 2 indicates its processing time and Columns 3 and 4 refer to its
skill requirements in terms of the number of resources required for skill 1 and skill 2, respectively.

Table 3.2 consists of 3 columns. Each row corresponds to a resource whose label is depicted in the
first column. Columns 2 and 3 indicate whether a resource masters skill 1 and skill 2, respectively.

From the AON network depicted in Figure 3.1, we observe that activity 3 is the only activity with
more than one predecessor and more than one successor. We can already conclude that, according to
these precedence relations, activity 3 cannot be processed in parallel with any other activity. Each arc
in this network has a weight equal to the processing time of the activity it departs from. For instance,
the weight of the arc (1,3) is equal to 3—the processing time of activity 1. Activities 0 and 6 are dummy
activities associated with the beginning and the end of the project, respectively. As referred previously,
these activities have a null processing time and no skill requirements.

Given the data presented above, we conclude that the project lasts at most 9 time units—the sum
of the processing times of all the activities, and at least 6 time units, the length of the so-called critical
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Table 3.1: Example of the problem: activities.

Activity
Processing

time
Skill requirements
skill 1 skill 2

1 3 2 3
2 2 0 1
3 1 2 1
4 1 1 2
5 2 1 0

Table 3.2: Example of the problem: resources.

Resource
Skills mastered
skill 1 skill 2

1
2
3
4
5

0

1

2

3

4

5

6

0

0

3

2

1

1

1

2

Figure 3.1: Example of the problem: precedence network.
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Figure 3.2: Example of the problem: the critical path.

path—the longest path from 0 to 6 in the precedence network, see Figure 3.2 (highlighted in boldface and
consisting of activities 1, 3 and 5). In a real-world context, resources are limited, and hence the schedule
whose solution corresponds to the length of the critical path may be infeasible due to a violation of at
least one resource constraint.

Two or more activities may overlap if none of them is linked to any other of these activities by direct
or transitive precedence relations and if the resources available in the time slots where they will be in
progress are enough to meet all their skill requirements at the same time. The conditions for a set of
activities to overlap are formally presented in Section 3.3.1.

The precedence constraints are easily validated by looking at the network depicted in Figure 3.1
while the resource constraints can be checked by looking at the requirements of the activities (Columns
3 and 4 of Table 3.1) and the skills mastered by the resources (Columns 2 and 3 of Table 3.2).

In this example, we observe that the only activities that are not linked by any precedence relation are
the two pairs of activities: 1 and 2, 4 and 5. After isolating those two pairs of activities it becomes only
necessary to verify whether the available resources are enough to meet their skill requirements.

Starting with activities 4 and 5, we notice that the skill requirements of activity 4 can be met by
assigning resource 2 to perform skill 1, and resources 1 and 3 to perform skill 2. Given the decision
associated with the assignment above, we are constrained in terms of selecting resources to process
activity 5. Nonetheless, we may allocate resource 5 to perform skill 1 for activity 5, its unique skill
demand. A closer look at Tables 3.1 and 3.2 allows to conclude that other resource allocations that also
meet the skill requirements of these activities would be possible.

If we apply the same reasoning to activities 1 and 2, we quickly realize that these activities cannot

19



3.1. Problem description

overlap. In spite of not being linked by precedence relations, there are not enough resources to meet all
their skill requirements simultaneously.

We conclude that this solution is associated with a makespan of 8 time units—the sum of the process-
ing times of activities 1, 2 and 3 (processed sequentially) with the maximum of the processing times of
activities 4 and 5 (processed in parallel). Such schedule, which consists of an optimal solution to this
problem, is presented in Figure 3.3.

time
0 2 4 6 8 10

skill resource

1
2 1 3 4

3 1 3

5 5

2
1 1 2 3 4

3 4

4 1

5 1

Figure 3.3: Example of the problem: an optimal schedule.

It is possible to derive other optimal solutions from the optimal solution presented by swapping the
processing order of some activities, changing their resource assignments or both.

An alternative optimal solution to this problem may be obtained by either swapping the processing
order of activities 1 and 2 or meeting the requirements of activity 4 for skill 2 through the assignment of
resource 4 instead of resource 3 or performing both changes.

Notice that we carefully selected the resources to meet the skill requirements of activities 4 and 5
simultaneously. In fact, if the requirements of activity 4 would have been met through the assignment of
resource 2 to skill 1 and resources 3 and 5 to skill 2, activity 5 could no longer overlap activity 4, since
the resources mastering skill 1 (unique skill required by activity 5) were already assigned to activity 4.

The selection and assignment of resources play a major role in what concerns the computation of
feasible solutions for this problem, since they have a direct influence in the makespan of the project. Due
to the great relevance of this subject, we are debating this and some other issues in the following sections.
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3.2 Notation and a mathematical model

In this section, we present some of the relevant notation and terminology that will be considered in the
developments presented in the following chapters. We also revisit the MILP model introduced by Correia
et al. (2012). As far as the notation is concerned, we introduce the following:

V = {0, . . . , i, . . . , j, . . . , n + 1} : set of activities to be executed. Activities 0 and n + 1 are
dummy; they represent the beginning and the end of the
whole project, respectively. Their processing time is equal
to 0 and they do not have any skill requirements.

R = {1, . . . , k, . . . , K} : set of resources.
L = {1, . . . , l, . . . , L} : set of skills.
Lj ⊆ L : set of skills required by activity j ∈ V \ {0, n + 1}.
Lk ⊆ L : set of skills mastered by resource k ∈ R.
Succ(j) : set of immediate successors of activity j, j ∈ V \ {n + 1}.
pj : processing time of activity j ∈ V .
rjl : number of resources mastering skill l ∈ Lj required to pro-

cess activity j ∈ V .

We assume that the values of pj and rjl are positive integers, j ∈ V \ {0, n + 1}, l ∈ Lj.

Based upon the previous sets and parameters it is also possible to define the following notation:

V l = {j ∈ V : l ∈ Lj} : set of activities requiring skill l ∈ L.
Vk = {j ∈ V : Lj ∩ Lk 6= ∅} : set of activities requiring skills mastered by resource k ∈

R.
Rl = {k ∈ R : l ∈ Lk} : set of resources mastering skill l ∈ L.
Rj = {k ∈ R : Lj ∩ Lk 6= ∅} : set of resources mastering at least one skill required to pro-

cess activity j ∈ V .
Pred(j) : set of immediate predecessors of activity j, j ∈ V \ {0}.
Pred(j) : set of all predecessors of activity j (e.g., by transitivity),

j ∈ V \ {0}.
Succ(j) : set of all successors of activity j (e.g., by transitivity), j ∈

V \ {n + 1}.
E : set of pairs of activities having an immediate precedence

relation.
A : set of pairs of activities having no precedence relations.
UB : upper bound on the makespan of the project.
ESj : earliest start time of activity j, j ∈ V .
EFj : earliest finish time of activity j, j ∈ V .
LSj : latest start time of activity j, j ∈ V .
LFj : latest finish time of activity j, j ∈ V .

The methodological developments to be presented require the definition of the following additional
notation:

UV : set of unscheduled activities at some time instant during
the execution of an algorithm.

Wt : subset of UV consisting of activities whose predecessors
have all been finished at time t. This set also contains the
unscheduled activities that have no predecessors.
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ZWt : set of resources that are available at time t and that master
at least one skill required by at least one activity in Wt.

LWt =
⋃

j∈Wt
Lj : set of skills required to process all the activities in Wt.

rWtl =
∑

j∈Wt
rjl : number of resources required to fulfill the requirements of

each skill l ∈ LWt .

Given a list of immediate successors (or a list of immediate predecessors) for each activity, it is
possible to represent immediate precedence relations in a direct acyclic AON network G = (V , E) where
E is a set of arcs. Each arc in E corresponds to an immediate precedence relation between the two
activities it connects. The nodes are numerically labeled in such a way that each activity (i.e., node) is
always labeled by a number smaller than the numbers labeling its successors. Two dummy activities are
included in the precedence network to mark the beginning and the end of the project. These activities
have null processing times and no skill requirements.

For each activity j ∈ V , it is possible to compute its earliest start time, ESj, and its latest start time,
LSj, in polynomial time by using an algorithm for finding a longest path in the network G = (V , E). For
an activity j, the computation of ESj reduces to determining the earliest precedence-feasible time where
activity j can start, that is the length of the longest path connecting the dummy activity 0 with activity j.
The earliest finish time EFj is then directly obtained by adding the value of pj to the previously computed
ESj. Obviously, we observe that ES0 = 0 and ESn+1 is equal to the length of the longest path in G from
nodes 0 to n + 1 (i.e., critical path).

In order to compute the latest start LSj and finish times LFj an upper bound, UB, on the makespan of
the project is required. The values of LSj and LFj are then obtained by using backward recursion, where
LSj is given by UB minus the length of the longest path that connects activity j with the dummy activity
n + 1; then LFj can be set equal to LSj + pj.

Finally, one additional set is considered, denoted by A, representing all pairs of activities having no
direct or transitive precedence relations and that hence can overlap if there are enough resources to meet
their skill requirements simultaneously. A direct (transitive) precedence relation is represented by i ≺ j
(i ≺≺ j) if i is a direct (transitive) predecessor of j.

A = {(i, j) ∈ V × V : i 6≺ j ∧ j 6≺ i ∧ i 6≺≺ j ∧ j 6≺≺ i}

Activities are scheduled over time. It is assumed the value 0 for the origin of time. This is a common
practice in Project Scheduling since it does not remove generality from the problem. Due to the fact that
the processing times of the activities are integer numbers, the start and finish times of the activities are
also integer. Hence, hereafter whenever we refer to a “time t”, t is an integer.

A MILP model
Correia et al. (2012) proposed a mixed-integer linear programming model for the problem described in
Section 3.1. Next, we revisit such model.

Apart from the variables associated with the allocation of the resources, this model makes use of
continuous variables representing the start times of the activities as well as binary variables defining the
execution sequence for any pair of activities having no precedence relation between them. This type of
model is often referred to as a sequence-based or disjunctive model.

The decision variables are the following:
Sj : start time of activity j ∈ V .

yij =

{
1, if activity i finishes before activity j starts;

0, otherwise.
i, j ∈ V ∧ (i, j) ∈ A
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We note that variables yij are only defined for pairs (i, j) ∈ A because for all the other pairs of
activities, sequence is automatically defined by the precedence relations.

The following variables handle the multi-skill nature of the resources when they are allocated to the
activities:

xjlk =

{
1, if resource k contributes with skill l for activity j;

0, otherwise.
j ∈ V , k ∈ Rj, l ∈ Lk ∩ Lj

Considering the decision variables defined above we obtain the following model, that we denote by
PCT :

min Sn+1 (3.1)

subject to:

Sj ≥ Si + pi i, j ∈ V ∧ (i, j) ∈ E (3.2)

Sj ≥ Si + pi – M
(
1 – yij

)
i, j ∈ V ∧ (i, j) ∈ A (3.3)

yij + yji ≤ 1 i, j ∈ V ∧ (i, j) ∈ A : i < j (3.4)∑
k∈Rl

xjlk = rjl j ∈ V \ {0, n + 1}, l ∈ Lj (3.5)

∑
l∈Lk∩Lj

xjlk ≤ 1 k ∈ R, j ∈ Vk (3.6)

∑
l∈Lk∩Li

xilk +
∑

l∈Lk∩Lj

xjlk ≤ yij + yji + 1 k ∈ R, i, j ∈ Vk ∧ (i, j) ∈ A (3.7)

ESj ≤ Sj ≤ LSj j ∈ V (3.8)

xjlk ∈ {0, 1} k ∈ R, j ∈ Vk, l ∈ Lk ∩ Lj (3.9)

yij ∈ {0, 1} i, j ∈ V \ {0, n + 1} ∧ (i, j) ∈ A (3.10)

The objective function (3.1) represents the start time of dummy activity n + 1, which is equal to the
makespan of the project (to be minimized). Constraints (3.2) ensure that the precedence relations hold
for all pairs of activities (i, j) ∈ E. Constraints (3.3) relate the start times of the activities (i, j) ∈ A
(not having any precedence relation) with the variables yij. In these constraints M denotes a large value
(big-M). These constraints are only relevant to the model when yij = 1 and in that situation it imposes a
precedence relation that forces activity j not to be started before activity i is finished. Constraints (3.4)
complement constraints (3.3) by stating that for each pair of activities (i, j) ∈ A : (i < j) either i and
j overlap (yij = yji = 0) or i is finished before j starts (yij = 1 and yji = 0) or j is completed before
i starts (yji = 1 and yij = 0). Constraints (3.5) assure that the skill requirements of the activities are
fulfilled through the assignment of the necessary resources. Constraints (3.6) state that each resource
contributes with at most one skill (that it masters) to an activity (which requires it). Constraints (3.7)
limit the assignment of each resource to at most one activity at a time. This restriction implies that these
constraints should not be considered for activities having precedence relations (i, j) ∈ E, as these will
never overlap in any feasible schedule. If a resource is assigned to both activities i and j then yij + yji ≥ 1,
which together with constraints (3.4) assure that yij + yji = 1 and thus that i and j cannot overlap (either i
finishes before j starts or the other way around). Constraints (3.8) establish upper and lower bounds for
the variables Sj whereas (3.9) and (3.10) define the x- and the y-variables as binary.

We note that the original model proposed by Correia et al. (2012) includes constraints

Sj ≥ 0 j ∈ V (3.11)
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instead of constraints (3.8). Since the models we are going to present in Chapter 4 limit the start time
of each activity j ∈ V to the time-window [ESj, LSj] we decided to consider constraints (3.8) within the
continuous-time formulation, above presented.

3.3 Additional concepts and properties

In the MSRCPSP, it is not trivial to check whether two or more activities can be executed in parallel, i.e.,
can have their execution overlapping for some time. The difficulty emerges from the fact that we have
multi-skill resource constraints in addition to the usual precedence ones. This aspect is crucial for the
development of algorithms aiming at obtaining feasible solutions for the problem since, as we mentioned
above, a small makespan for the project is typically the result of executing activities in parallel. Above
all, it is important to have a mechanism, as efficient as possible, to check whether two or more activities
can overlap in time. Due to the relevance of this aspect in the general context of the problem at hand, we
discuss it here.

3.3.1 Compatibility issues

Suppose that at some time t we have already scheduled some activities. Let us denote by UV the activities
still to be scheduled and by Wt a subset of UV containing only activities (not necessarily all) such that
all their predecessors are already completed at time t (or that have no predecessors). Can we set to t the
start time of all the activities in Wt?

This query has a positive answer if all the resources available at time t can meet the skill require-
ments of all the activities in Wt at the same time. Such a set of activities with no precedence relations
between them and for which there are available resources to process all skills required for their execution
is denominated in the literature as a set of compatible activities (cf. Correia et al., 2012). Checking the
existence of a precedence relation between each pair of activities can be done straightforwardly. How-
ever, as we discuss below, this is not the case when we need to verify whether there are enough resources,
among those available at time t, to meet all the skill requirements of the activities in Wt at the same time.

We recall that ZWt is the set of resources that are available at time t and that master at least one skill
required by at least one activity in Wt. Additionally, we also defined LWt as the set of skills required to
process the activities in Wt. Checking whether the set of activities Wt is compatible, is something that
can be done in polynomial time by solving a flow feasibility problem in an appropriate network that we
denote by GWt = (VWt , EWt ), which is built as follows:

• The set of nodes VWt contains:

– a source node v0 and a sink node vs;
– a set of nodes ZWt , each of which associated with one resource that is available at time t and

that masters at least one skill required to process the activities in Wt;
– a set of nodes LWt associated with the skills required to process the activities in Wt.

• The set of arcs EWt contains:

– a set of arcs (v0, k), k ∈ ZWt with minimum throughput 0 and capacity 1;
– a set of arcs (k, l), k ∈ ZWt , l ∈ (Lk ∩ LWt ) with minimum throughput 0 and capacity 1;
– a set of arcs (l, vs), l ∈ LWt with minimum throughput and capacity equal to the number of

resources necessary to execute skill l for all activities in Wt requiring that skill.

We depict such network in Figure 3.4. If a feasible flow exists in this auxiliary network then we
know that there are enough resources to start processing all the activities in Wt, at time t. However, as we
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explain next, we can go deeper in this analysis, which, nonetheless, requires some additional concepts.
All this information will be useful for the methodological developments that we present (or revisit) in
the following sections and chapters.

v0

k

l

vs. . . . . .
(0,1)

(0,1)
(rWtl,rWtl)

ZWt LWt

Flow

( , )

min
max

Figure 3.4: A generic GWt .

3.3.2 Resource weights

Any feasible flow in the above network GWt induces an assignment of the resources in ZWt to the skills
required by the activities in Wt. Such a flow may not be unique due to the multi-skill nature of the
resources, which may render different possibilities of meeting the skill demands of Wt by varying (i) the
selected resources from the set ZWt or (ii) the skill l ∈ LWt that each selected resource is assigned to
perform, or (iii) both. In fact, each resource k masters a specific set of skills, Lk. Accordingly, by looking
into the data, we may characterize a resource as being more versatile than others (e.g., by mastering more
skills), more important (e.g., by mastering scarce or highly required skills), etc. Hence, from the point of
view of building feasible solutions to our problem, it becomes of great importance to determine the best
resource to meet each unitary skill demand, since this assignment may have impact in future iterations
and may thus compromise the quality of the derived schedule.

This fact motivated the development of a new concept: the weight of a resource. For some resource
k ∈ R, its weight is denoted by wk and represents a measure used for selecting that resource to execute a
skill mastered by it and required by at least one activity j ∈ Wt. This new concept aims at providing some
insight on the capabilities of the resources to avoid random resource selection and allocation. As seen in
the Example 3.1, it is very important to carefully select which resources are assigned to each activity as
well as the skill that they will perform.

The advantages of considering this weight measure will be totally clear when we develop the heuris-
tics to this problem in Chapter 5.

3.3.3 Activity priorities

Likewise for the resources, when we look deeply into the activities, we realize that a sort of ranking can
be devised. In an attempt to use some rational mechanism for building that rank, a priority value pvj for
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each activity j ∈ V \ {0, n + 1} can be computed by either using the well-known activity priority rules
already proposed for the RCPSP (Kolisch, 1996a, Demeulemeester and Herroelen, 2002) or by initially
assigning a random (precedence feasible) priority value to each activity that will be adapted in the course
of an algorithm. These assumptions will be discussed in detail in Sections 5.1.1 and 5.2.2, respectively.

3.4 Instances for the MSRCPSP

The following chapters present new models and solution techniques for the problem just described. With
the objective of empirically evaluating the performance of such methods, having a comprehensive set of
instances of the problem becomes mandatory. We begin this section by identifying and characterizing
the parameters that define an instance of the problem in Section 3.4.1. The characteristics of the set
of instances generated by Correia et al. (2012) are presented in Section 3.4.2. With the purpose of
generating a more comprehensive set of instances, an instance generator was developed in the context of
the current thesis. Such generator is presented in Section 3.4.3. A new set of instances was built using it.
The characteristics of this new set of instances are described in Section 3.4.4.

3.4.1 Relevant features

Correia et al. (2012) consider three major features that influence the complexity of a MSRCPSP instance:
the network complexity (NC), the modified resource strength (MRS), and the skill factor (SF). These
parameters are similar to the ones presented in the literature for the RCPSP (see, for instance, Kolisch,
1995 and Kolisch and Sprecher, 1996). The NC can be formally defined as the average number of non-
redundant arcs in the network, i.e., it is given by the average number of direct successors of each activity
in the precedence network (as in the RCPSP). The SF measures the proportion of skills required by each
activity with regard to the total number of available skills (SFj ∈ ]0, 1], j ∈ V \{0, n+1}). This proportion
may be constant for all activities j ∈ V \ {0, n + 1} or may vary across them. More specifically, we can
generate an instance where all the activities require the same proportion of skills and hence have the same
value of SFj, j ∈ V \ {0, n + 1}. It is also possible to generate an instance where a SFj, j ∈ V \ {0, n + 1} is
randomly selected (within a specific range) for each activity and hence the proportion of skills required
may not be the same across all the activities. The MRS (MRS ∈ ]0,∞[) measures how demanding the
activities are in terms of the available resources. For a given instance, this measure is computed as the
ratio between the total number of existing resource units and the total number of resource units needed
to perform all the activities.

MRS =
K∑

j∈V
∑

l∈Lj
rjl

Higher values of MRS yield instances with more resources or less demanding activities, which, in either
case, typically leads to “easier” instances. Therefore, once the total number of activities is fixed as well
as a SF, and a MRS, it is possible to compute the number of resources needed. With the purpose of better
illustrating the computation of the MRS we present an example extracted from Correia et al. (2012).

Example 3.2 Consider a project made of 20 activities, each of which requiring 4 skills for being exe-
cuted; hence a total of 80 skills have to be processed. Let the number of resources required for processing
each of those skills be 2 (on average); hence a total of 160 resources are required. If there are 20 re-
sources in the project, the MRS is then equal to 0.1250 (20/160).

We would like to point out that the skill factor and the modified resource strength described above
were adapted (due to the multi-skill nature of the resources) from the resource factor and resource
strength, respectively, that are usually considered for the classical RCPSP (cf. Kolisch, 1995).

26



3.4. Instances for the MSRCPSP

3.4.2 Existing Instances

In this section, we present the characteristics of the instances built by Correia et al. (2012). Hereafter we
denote this set of instances by Set 1. Whenever we refer to a parameter as being randomly generated in a
set {a, . . . , b}, this means that the parameter was generated according to a discrete uniform distribution
in that set.

The parameters and their respective values considered for generating these instances are presented
below.

• n = 20 activities.

• the processing times of the activities are randomly generated in the set {1, . . . , 10}.

• the dummy activity 0 has 3 successors and the dummy activity n+1 has 3 predecessors, similarly to
the instances of the RCPSP in the PSPLIB—a repository of datasets for various types of resource-
constrained project scheduling problems (Kolisch and Sprecher, 1996).

• the number of direct successors of each activity 1, . . . , n – 3, and the number of direct predecessors
of each activity 4, . . . , n, were randomly chosen from the set {1, 2, 3}. It was assured that the
desired value of NC is met and that the final precedence network is a connected graph.

• 4 skills.

• NC ∈ {1.5, 1.8, 2.1}.

• SF ∈ {0.5, 0.75, 1, “variable”}. By “variable”, abbreviated as var., Correia et al. (2012) mean that
for each activity, the number of skills it requires was randomly generated in the set {2, 3, 4}. For
instance, SF = 1 means that each activity requires the 4 available skills.

• the number of resources varies from 10 to 30 depending on the SF and MRS of each instance. The
MRS, the SF and the corresponding number of resources are presented in Table 3.6.

• each activity requires {1, 2, 3} resources for each skill.

• each resource masters {1, 2, 3} skills among the 4 available skills.

Table 3.6: Modified resource strength, skill factor and number of resources for instances in Set 1.

SF = 1 SF = 0.75 SF = 0.5 SF = var.
MRS K MRS K MRS K MRS K

0.1250 20 0.1250 10 0.1250 10 0.1250 10
0.1563 25 0.1667 20 0.1625 13 0.1667 20
0.1875 30 0.2083 25 0.1875 15 0.2083 25

For each combination of SF, NC and MRS, 6 instances were created, resulting in a total of 216
instances.

3.4.3 An instance generator

Despite the efforts undertaken by Correia et al. (2012) to generate a good set of test instances for the
MSRCPSP, it is arguable whether that set is representative for this problem. It is worth noticing that
defining “a representative set of instances” for some problem is still a matter of debate (cf. Smith-Miles
and Bowly, 2015). However, it is relevant to have tools to rationally generate sets of instances of a
given problem in order to perform computational tests for evaluating new methodologies. Accordingly,
and with the objective of generating a new set of instances that can somehow complement the instances
generated by Correia et al. (2012), a comprehensive instance generator is proposed. Furthermore, this
generator is built in such a way that it can be easily extended to produce instances for variants and
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extensions of the studied problem. For instance, by assuming that each skill corresponds to a pair (skill,
level), an instance for a problem considering hierarchical levels of skill is generated.

The proposed methodology for generating instances of the MSRCPSP is somehow inspired by the
work developed by Kolisch (1995) for the RCPSP and consists of generating a precedence network, a
set of multi-skill resources and a set of activities. The essential algorithms/pseudocodes associated with
each phase of the instance generator are presented in this section. The algorithms whose reading can be
omitted were included in the Appendix of this thesis.

The proposed instance generator has three components:

1. precedence network generation.

2. multi-skill resource generation.

3. activity generation.

Generation of a Precedence Network
As it was already mentioned above, in a project scheduling problem, the time-dependency between
activities can be represented by an AON network G = (V , E) where V is the set of activities and E is
the set of arcs. We assume that n is the number of activities to be executed and 0 and n + 1 are dummy
activities, as discussed before. Each arc in E represents a precedence relation between the two activities
it connects. Since the network contains no cycles, we can assume that the nodes (activities) are numbered
in such a way that all pairs (i, j) ∈ E have i < j. A precedence network can be obtained by generating
precedence relations between pairs of activities. In this process, we attempt to generate a precedence
network with no redundancy. An arc (i, j) is said to be redundant if it establishes a precedence that
results by transitivity by at least two direct precedences already in the network. For instance, if activity
i precedes j and j precedes u, the insertion of the arc (i, u) in the network would introduce redundancy
since there is already a transitive precedence, i ≺≺ u assured by the arcs (i, j) and (j, u).

In order to generate a precedence network, some input data has to be provided. In addition to n and
NC, we consider the following.

nStart : number of starting activities, i.e., activities having no predecessors.
nFinish : number of concluding activities, i.e., activities having no successors.
MaxPred : maximum number of predecessors for each activity.
MaxSucc : maximum number of successors for each activity.

When generating a precedence network, we must ensure that apart from the initial dummy activity,
all the other activities have at least one predecessor. Furthermore, apart from the final dummy activity, all
activities must have at least one successor. The previous conditions ensure that the precedence network
is connected in the sense that for each j ∈ V , there is at least one path connecting the dummy node 0 with
j and at least one path connecting j with the dummy node n + 1.

One measure that is often considered when generating precedence networks is the Network Com-
plexity (NC) already described.

The procedure for generating a precedence network is summarized in Algorithm 3.1.
We discuss now the four steps itemized in the above-mentioned algorithm.

Step 0 (Initialization).

This step consists of two phases: in the first one we set the first nStart nodes (apart from 0) as the
starting activities and the last nFinish nodes (excluding n + 1) as the concluding activities.

In the second phase, arcs are created for connecting the dummy 0 to every starting activity and also
for connecting the concluding activities to the dummy n + 1 (see Figure 3.5). At the end of this
stage, the number of non-redundant arcs in the network is equal to the sum of nStart and nFinish.
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3.4. Instances for the MSRCPSP

Algorithm 3.1: A procedure for generating a precedence network.
Data: n, NC, nStart, nFinish, MaxPred, MaxSucc
Result: A precedence network

1 begin
2 Step 0 (Initialization)
3 Set nodes {1, . . . , nStart} to represent the starting activities;
4 Set nodes {n – nFinish + 1, . . . , n} to represent the concluding activities;
5 Define the arcs (0, j), j ∈ {1, . . . , nStart};
6 Define the arcs (j, n + 1), j ∈ {n – nFinish + 1, . . . , n};
7 Step 1
8 Assign one predecessor to each activity having no predecessors (apart from activity 0, n + 1 and

the starting activities);
9 Step 2

10 Assign one successor to each activity having no successors (apart from activity 0, n + 1 and the
concluding activities);

11 Step 3
12 Add/remove arcs until the desired value for NC is achieved;
13 end

0

Starting activities

. . .

Concluding activities

. . .

n+1

Figure 3.5: Precedence network after the initialization step.

Step 1.

This step is performed for each activity j ∈ {nStart + 1, . . . , n} (since activities {1, . . . , nStart}
have already the dummy 0 as a predecessor) as follows:

(i) randomly1 select one activity i ∈ {1, . . . , j – 1} such that
∣∣Succ(i)

∣∣ < MaxSucc. Note that if
j is a concluding activity, i has to be randomly selected in the set {1, . . . , n – nFinish} to avoid
redundancy in the set of concluding activities.

(ii) create the arc (i, j) and increment by one unit the number of non-redundant arcs in the network.

This step is formalized in Algorithm 7.1, presented in the Appendix of this dissertation.

Step 2.

This step excludes activities {n – nFinish + 1, . . . , n} since all these are concluding activities and
cannot have other successors than the dummy n + 1.

We start with the highest numbered activity (without successors) and proceed backwards. Denote
by j one such activity.

1all random generated/selected data are pseudo-random numbers that follow a discrete uniform distribution.
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We propose the following methodology:

(i) randomly select one activity u ∈ {j + 1, . . . , n} such that
∣∣Pred(u)

∣∣ < MaxPred and u /∈ Succ(i)
for i ∈ Pred(j) (i.e., u is not a successor of any predecessor of j). Note that if j is a starting activity,
u has to be randomly selected in the set {nStart+1, . . . , n} to avoid redundancy in the set of starting
activities.

(ii) define the new arc (j, u) and increment by one unit the number of non-redundant arcs in the
network.

We note that in (i) we are avoiding redundancy in the network because if an arc (j, u) is to be
considered and if u is already an immediate successor of i ∈ Pred(j), then arc (i, u) would become
redundant.

It is also important to point out that in this step we are not following the procedure proposed
by Kolisch (1995), which starts assigning successors to the lowest numbered activities. The rea-
son underlying such decision is associated with the fact that using the methodology proposed by
Kolisch (1995), a connected precedence network may never be obtained; thus, the procedure may
get stuck and requiring to be restarted. This is due to the fact that an upper bound on the max-
imum number of predecessors per activity, MaxPred, is imposed. We illustrate this situation in
Example 3.3.

Example 3.3 Let V = {0,1,2,3,4,5,6}. Thus, we have 5 activities to process (0 and 6 are dummy
activities). Assume now that MaxPred = 2, nStart = 1 and nFinish = 1. This means that activity 1
is the only starting activity, activity 5 is the only concluding activity and hence the other activities
2, 3 and 4 must succeed (precede) 1 (5).

Let activity 5 be an immediate successor of both activities 1 and 2. In this situation, we quickly
realize that it is not possible to assign a successor to activity 4. In fact, activity 5 has already
reached its maximum number of predecessors

∣∣Pred(5)
∣∣ = MaxPred = 2 and activity 4, being an

intermediate activity, cannot be connected to the dummy node 6.

Accordingly, the resulting network would not be connected and the process would have to start
from the beginning as suggested by Kolisch (1995).

Our proposal for Step 2 fully overcomes this situation. We formalize such step in Algorithm 7.2,
presented in the Appendix of this thesis.

Step 3.

This step aims at adding (non-redundant) arcs to the network (thus establishing new precedences)
such that the desired value for the NC is reached. If the current NC is smaller than the desired one
we add new arcs into the network by repeating the following steps:

1. randomly select two activities (nodes) i and j with i < j such that j /∈ Succ(i) (or i /∈ Pred(j)).
2. if the new arc (i, j) is not redundant and if the MaxPred of activity j and the MaxSucc of

activity i are not surpassed, then insert this arc into the precedence network and increment
the number of non-redundant arcs in the network.

For the selected nodes i and j, i < j, Kolisch (1995) identify four types of redundancy that can
emerge if the arc (i, j) is created. We identify these types of redundancy in Figure 3.6.

In addition to these types of redundancy we must also consider the ones mentioned in Steps 1 and
2, which are related respectively to having i and j both in {n – nFinish + 1, . . . , n} or both belong-
ing to the set {1, . . . , nStart}. In either case, the generated pair is again ignored since no direct
precedence can exist between activities inside those sets (otherwise we would have redundancy).
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i j

j ∈ Succ(i)

i

j

Pred(j) ∩ Pred(i) 6= ∅

i j

u

∃ u ∈ Succ(j) : Pred(u) ∩ Pred(i) 6= ∅

i

j

Succ(i) ∩ Succ(j) 6= ∅
Figure 3.6: Precedence network generation: four types of redundancy identified in Kolisch (1995).

If the existing NC is higher than the desired one (this situation may be verified for instance when
small values of NC are intended) we repeat the following step until we get the desired value:

randomly select an arc (i, j) ∈ E that can be removed from the network and remove it.

An existing arc (i, j) can be removed from the network as long as the network remains connected.
Accordingly, an arc (i, j) can be removed only if node i keeps having at least one successor and
node j remains with at least one predecessor.

We note that, again, in this step 3, we are not following exactly the procedure proposed by Kolisch
(1995). That procedure (cf. Step 4 of the instance generation algorithm proposed by Kolisch,
1995) only considers adding arcs to the network. In our case, we also consider removing them.

The Step 3 for generating a precedence network is formalized in Algorithm 7.3, presented in the
Appendix of this thesis.

Generation of Resources
In order to obtain an instance for the MSRCPSP, we need more than the precedence network generated
in the previous section; we also need to generate a set of multi-skill resources. This is the goal of the
second phase of our scheme. In addition to K =

∣∣R∣∣, this phase also requires:

maxSkills maximum number of skills a resource can master.
Obviously, it should be 1 ≤ maxSkills ≤ L.

Each resource is fully defined by the skills it masters. For each resource k ∈ Rwe propose generating
the corresponding information as follows:

1. randomly select
∣∣∣Lk
∣∣∣ number of skills in the set {1, . . . , maxSkills}.

2. randomly select
∣∣∣Lk
∣∣∣ different skills in L, thus obtaining Lk.

After generating the skills mastered by the resources, it is necessary to check if each skill is mastered
by at least one resource. If this is not the case, the above procedure is restarted.

Generation of Activities
In the MSRCPSP, each activity j ∈ V is defined by three components: (i) a processing time (pj), (ii) a set
of required skills (Lj), and (iii) a number of required resources mastering each needed skill (rjl, l ∈ Lj).
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We coordinate the process of generating the second and third components above by making use of
two measures already defined previously: the Skill Factor (SF) and the Modified Resource Strength
(MRS).

In this work we consider: (i) instances where all activities have the same skill factor and hence
SFj = SF, j ∈ V \ {0, n + 1}, and (ii) instances where activities can have different skill factors. In this case
the number of skills each activity requires is randomly generated. A skill factor of 1 for some activity
means that the activity requires at least one unit of every skill.

The MRS is an input parameter in the process of generating instances to the MSRCPSP; it makes
possible to randomly generate activity skill requirements by calculating the total demand of all activities.

The generation of the information concerning the activities in a MSRCPSP requires the following
input, in addition to SF and MRS:

minProcTime : minimum processing time.
maxProcTime : maximum processing time.
maxResAct : maximum number of resources per activity.
maxResSkill : maximum number of resources per each needed skill.

The procedure for generating the information for the activities is summarized in Algorithm 3.2.

Algorithm 3.2: A procedure for generating the information concerning the activities.
Data: V , SF, MRS, minProcTime, maxProcTime, maxResAct, maxResSkill
Result: Activities

1 begin
2 Step 1 Processing time generation;
3 Step 2 Definition of the sets Lj, j ∈ V \ {0, n + 1};
4 Step 3 Obtain the desired MRS;
5 end

We discuss now these steps.

Step 1.

This step is accomplished as follows:

1. set p0 = pn+1 = 0 (the dummy activities have null processing time).

2. for each activity j ∈ {1, . . . , n}, randomly generate its processing time, pj, in the set
{minProcTime, . . . , maxProcTime}.

Step 2.

The definition of the specific skills each activity requires is done as follows:

1. the dummy activities have no skill requirements, i.e.,
∣∣L0
∣∣ =
∣∣Ln+1

∣∣ = 0.

2. for each activity j ∈ {1, . . . , n}, we randomly select
∣∣Lj
∣∣ different skills in the set L for

defining the set Lj. For a given l ∈ L, that selection is made by setting the respective rjl to
1. In case all activities require the same number of skills,

∣∣Lj
∣∣ is always equal to dL × SFe;

otherwise, it should vary.

Since all the available skills are mastered by at least one resource, setting rjl = 1, l ∈ Lj is always
feasible. Similarly to what we discussed for the resources, it is mandatory that every skill l ∈ L is
demanded by at least one activity.

32



3.4. Instances for the MSRCPSP

We denote by ρ the number of already assigned resources. This value is initialized to 0, and it is
incremented as resources are added to the requirements of the activities. At the end of this step,
we have ρ =

∑
j∈V
∣∣Lj
∣∣.

This step is formalized in Algorithm 7.5, presented in the Appendix of this thesis.

Step 3.

After selecting the skills required by each activity, we can now focus on meeting the desired MRS
by incrementing the skill requirements of the activities. We start by computing the total number of
resources, which have to be assigned to all activities, in order to meet the MRS as follows:

total number of resources required by all activities =
⌊

K
MRS

⌋
Afterwards, we focus on incrementing the skill requirements of the activities until the sum of
their requirements equals the total number of resources required by all activities. It is essential
to respect the upper bounds on both the maximum number of resources per activity (maxResAct)
and the maximum number of resources per each skill required (maxResSkill). In every instance
generated by this procedure, the minimum number of resources required by each non-dummy
activity j is equal to

∣∣Lj
∣∣, defined in Step 2, i.e., the minimum number of resources per each skill

required is assumed to be 1.

Step 3 is illustrated below:

1. while the number of resources already assigned, ρ, is less than the total number of resources
required by all activities, randomly select an activity j ∈ {1, . . . , n} and a random skill
l ∈ Lj, then increment the corresponding value rjl by one unit if rjl < maxResSkill and∑

l′∈Lj
rjl′ < maxResAct.

2. check whether the skill requirements of activity j can be met. If so, then ρ is incremented by
one unit; otherwise rjl is decremented by one unit.

Checking whether the skill requirements of an activity j ∈ {1, . . . , n} are feasible (in the sense
that we have enough resources to perform the activity with those requirements) can be easily
done by solving a feasibility problem. In fact, and despite the MSRCPSP being an NP-hard
combinatorial optimization problem, as mentioned before, the feasibility of an instance can be
checked in polynomial time, as pointed out by Correia et al. (2012). The idea is to check whether
a feasible flow exists in the specific network depicted in Figure 3.7 for each activity individually.
If it does, we conclude that the generated instance is feasible, since there are enough resources to
process one activity at a time and hence it is possible to process all activities, at least, sequentially.

For some activity j ∈ {1, . . . , n} the corresponding network is built as follows:

• The set of nodes is defined by:

– a source node v0;
– set of nodes Rj associated with the resources that master at least one skill required by

activity j;
– a set of nodes Lj associated with the skills required to execute activity j;
– a sink node vs.

• The set of arcs contains:

– a set of arcs (v0, k), k ∈ Rj with minimum throughput 0, capacity 1 and cost 0;
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– a set of arcs (k, l), k ∈ Rj, l ∈ (Lk ∩ Lj) with minimum throughput 0, capacity 1 and
cost 0;

– a set of arcs (l, vs), l ∈ Lj with minimum throughput and capacity equal to the current
value of rjl and cost 0.

We observe that such network is a particular case of the graph presented in Figure 3.4 when a set
Wt consists of only one activity at a time and the available resources are all the existing resources
mastering at least one skill required by that activity. We depict this network below, in Figure 3.7.

v0

k

l

vs. . . . . .
(0,1)

(0,1)
(rjl,rjl)

Rj Lj

Flow

( , )

min
max

Figure 3.7: Graph for checking if an activity can be processed by the existing resources.

The arcs exiting the source node v0 and the intermediate arcs have capacity 1 to ensure that each
resource is selected at most once and thus can contribute with at most one skill to the execution of
the activity. The arcs converging to the sink node vs have minimum throughput and capacity equal
to the total number of resources necessary to perform that skill, rjl, which vary in the course of the
algorithm.

If a feasible flow can be found in the referred network, then we know that there are enough re-
sources to meet the requirements of all skills required to process activity j.

Step 3 is formalized in Algorithm 7.6, presented in the Appendix of this thesis.

All the information concerning the proposed instance generator was compiled in the technical report
by Almeida et al. (2015).

3.4.4 A new set of instances

A new set of instances for the MSRCPSP was built using the generator just described. Hereafter, this set
of instances will be referred to as Set 2.

We present below the parameters whose values differ from the ones considered for Set 1.

• n = 40 activities.

• each activity requires {1, 2, 3, 4, 5, 6, 7} resources for each skill.
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• the number of resources varies from 20 to 60 depending on the SF and MRS of each instance. The
MRS, the SF and the corresponding number of resources are presented in Table 3.10.

Table 3.10: Modified resource strength, skill factor and number of resources for instances in Set 2.

SF = 1 SF = 0.75 SF = 0.5 SF = var.
MRS K MRS K MRS K MRS K

0.0625 40 0.0625 30 0.0625 20 0.0625 30
0.0781 50 0.0792 38 0.0781 25 0.0792 38
0.0938 60 0.0938 45 0.0938 30 0.0938 45

Similarly to Set 1, for each combination of SF, NC and MRS, 6 instances were generated, resulting
in a total of 216 instances.

Below, we give as an example, the input values used to generate the subset of instances associated
with SF = 0.5, NC = 1.5 and MRS = 0.0625 as well as the aspect of one of these instances.

Table 3.11: Instance generator: an example of the input data.

Input

General Parameters: n: 40
K: 20
L: 4

Precedence Network: nStart, nFinish: 3
MaxPred, MaxSucc: 3
NC: 1.5

Resources: maxSkills: 3
Activities: MinProcTime: 1

MaxProcTime: 10
SF: 0.5
MRS: 0.0625
maxResSkill: 7
maxResAct: K (no limit on the number resources per activity is imposed)

The output from the instance generator is presented below.

Table 3.12: An instance of the problem: partial precedence network.

j Succ(j)

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
...

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The sets Succ(j), j ∈ V \ {0, n + 1}, are used to define the precedence network. For each non-dummy
activity j, we consider a boolean array with size n to represent Succ(j). Each position of that array is
associated with one activity u, hence a “1" in that position means that u is a direct successor of j.

Resources are fully defined by the skills they master. The definition of each activity j comprehends
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its processing time (pj) and the number of resources required by each skill needed for their execution:
rjl : l ∈ Lj.

Table 3.13: An instance of the problem: resources.

k l = 1 l = 2 l = 3 l = 4

1 1 0 0 1
2 0 1 1 1
3 0 1 1 1
4 0 1 1 1
5 1 0 1 1

...
15 0 1 0 0
16 0 0 1 0
17 0 0 0 1
18 1 0 1 1
19 0 1 0 0
20 1 1 1 0

Table 3.14: An instance of the problem: activities.

j pj rj1 rj2 rj3 rj4

1 10 0 3 0 4
2 9 3 3 0 0
3 2 0 0 3 5
4 8 4 0 0 3
5 9 3 0 3 0
...

35 1 5 0 0 4
36 5 0 4 0 2
37 4 0 5 2 0
38 4 0 0 4 6
39 9 0 5 3 0
40 8 0 5 0 3

3.5 Conclusions

In this chapter, we have thoroughly described the specific multi-skill resource-constrained project schedul-
ing problem being studied in this thesis, which is the problem examined by Correia et al. (2012). The
features that characterize the problem were also highlighted.

With the purpose of better depicting some aspects of relevance, an example of the problem was
presented and solved, a continuous-time formulation from the literature was revisited and some issues
related to determining whether a set of activities can be executed in parallel at a particular moment in
time were discussed. We analyzed this last topic in more depth due to its inherent importance in the
developments to be presented in the following chapters. Such discussion led us to revisit the well-known
activity priority rules and motivated the development of the concept of resource weight with the purpose
of devising a sort of ranking for the resources.

To the best of the author’s knowledge, no benchmark or well-documented instances for the problem
exist in the literature, aside from the ones built by Correia et al. (2012). Moreover, a properly generated
set of instances is a mandatory requirement for an adequate evaluation of methodologies. These facts
motivated the development of the instance generator formally proposed in this chapter. Using such
generator, a set of instances of larger dimensions than the ones referred previously was built. We have
discussed the major features that influence the complexity of an instance of the problem and throughly
described the characteristics of the two sets of instances considered for the computational experiments to
be performed. We noted that the proposed instance generator can be easily adapted to generate instances
of extensions of the problem being investigated.

Due to the combinatorial nature of the problem that makes itNP-hard, the methodology proposed by
Correia et al. (2012) turned out to be effective only for small-sized instances. In the following chapters,
we develop new and possibly more competitive solution methodologies for tackling the specific problem
at hand, with a particular emphasis to medium and large-sized instances of it.
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CHAPTER 4

Mathematical models and lower bounds

Many mathematical programming formulations can be found in the literature for different project
scheduling and management problems. These are usually classified as either discrete or continuous-
time formulations, according to the considered time representation. In discrete-time formulations, often
referred to as time-indexed formulations, the planning horizon is split into smaller portions, each of
which representing a time unit (day, week,..). This type of mathematical models is known for usually
requiring a large number of binary variables, each of which being associated with some event that may
occur at a specific moment in time. The events are usually related to the status of the activities: start,
finish, or in progress. The number of binary variables involved in this type of models renders heavy
mathematical programming formulations that easily become intractable to solve medium or large-sized
instances to optimality using an optimization solver. Nevertheless, these formulations are known to yield
sharp linear programming relaxation bounds.

Another kind of formulations that have been proposed for project scheduling problems are the so-
called continuous-time formulations. These mathematical formulations consider continuous variables
to represent the start times of the activities involved in the project. These formulations require less
variables than the time-indexed models. However, typically the optimal values of their corresponding
linear programming relaxations are poor.

Next, we are going to give an overview of some mathematical models that have already been pro-
posed for the RCPSP. The basic discrete-time formulation was proposed by Pritsker et al. (1969) who
study a multi-project RCPSP. Later, Christofides et al. (1987) proposed a discrete-time mathematical
model featuring disaggregated precedence relations. This formulation, referred to in the literature as
DDT—see for instance Schwindt and Zimmermann (2015), short for disaggregated discrete-time formu-
lation, is among those yielding the strongest linear programming relaxation bounds. It differs from the
one of Pritsker et al. (1969) only in how the precedence constraints are formulated. Mingozzi et al. (1998)
proposed a discrete-time formulation where it is assumed that all feasible sets of activities are known. A
feasible set of activities contains all the activities that may be processed simultaneously without violating
precedence or resource constraints. One of the disadvantages of this formulation is associated with the
number of feasible sets of activities, which can be exponential. An opposite approach was followed by
Alvarez-Valdés and Tamarit (1993), who presented a continuous-time formulation for the RCPSP along-
side with a set of valid inequalities assuming that all minimal forbidden sets of activities are known. A
forbidden set of activities comprehends the activities that despite not being linked by any kind of prece-
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dence relations, cannot be processed in parallel due to resource limitations. A forbidden set is said to
be minimal, when none of its subsets is a forbidden set. The main objective is to introduce additional
disjunctive precedence relations in the precedence network. For comprehensive reviews on mathematical
formulations for resource-constrained project scheduling problems the reader should refer to the work of
Demassey (2008), Koné et al. (2011), and Artigues et al. (2015). More recently, in a paper by Artigues
(2017) the strength of some discrete-time formulations for the RCPSP is deeply analyzed.

Although large-scale instances of the MSRCPSP are expected to be tackled only by approximate
procedures, the development of adequate formulations is of great relevance since, often, they are a means
for obtaining lower bounds that, in turn, are crucial for evaluating the quality of heuristic solutions.
Moreover, the use of an off-the-shelf solver for tackling a model is often the only tool available to
practitioners who do not master advanced optimization and computational techniques. Hence, the choice
of an adequate model may render a successful resolution of a problem.

The remainder of this chapter is organized as follows. In Section 4.1, we revisit the reduction test
and other inequalities proposed by Correia et al. (2012) for the continuous-time formulation developed
therein. In Section 4.2, which is devoted to the study of discrete-time formulations, we revisit the model
of Montoya et al. (2014) with the corrections made by Correia and Saldanha-da-Gama (2015b), and we
propose two new mathematical formulations. Section 4.3 presents two new methods for computing lower
bounds for the problem being studied. This chapter ends with some concluding remarks in Section 4.4.

A good upper bound on the makespan of the project is required to both load some valid inequalities
and tighten the start time-windows of the activities (particularly for the discrete-time formulations). The
methods for computing such upper bounds are only presented in Chapter 5. Hence, we opted to report in
Section 5.3.3, the results associated with the developments proposed in this chapter, after the heuristics
for the problem have been formally described and their respective results presented.

4.1 Enhancements for a continuous-time model

We recall that Correia et al. (2012) proposed the MILP formulation already revisited in page 23 for
the particular problem being investigated. Aside from that mathematical formulation, such paper also
introduces a reduction test and other additional inequalities with the purpose of fixing some variables at
their optimal values, which may contribute to increase the number of instances successfully solved (cf.
Correia et al., 2012). Since these additional developments were considered for the numerical experiments
to be performed and with the objective of keeping this thesis self-contained, we opted to include them
in this section. We begin by defining the concept of pairs of incompatible activities (in opposition to the
notion of pairs of compatible activities introduced in Section 3.3.1). Then, we revisit the developments
proposed by Correia et al. (2012), namely the derived reduction test, in Section 4.1.1, and the other
inequalities proposed, in Section 4.1.2.

The definition of pairs of incompatible activities is mandatory for the proper comprehension of the
developments presented in the following sections, therefore we present it here.

Definition 4.1 (cf. Correia et al., 2012) Two activities i, j ∈ V , i, j /∈ {0, n+1} are said to be incompatible
if there is never a slot in time in which they can be executed simultaneously. Activities i and j are said to
be compatible (see Section 3.3.1) if they are not incompatible.

The previous incompatibility definition has already been proposed for the RCPSP (cf. Alvarez-Valdés
and Tamarit, 1993 or Klein and Scholl, 1999) but their extension to the MSRCPSP entails an increased
complexity associated with verifying whether there are enough multi-skill resources to process those two
activities simultaneously.

Consider two activities i, j ∈ V . If at least one of the following conditions hold, then these activities
are incompatible.
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1. There is a precedence relation between i and j;

2. LSi + pi ≤ ESj;

3. LSj + pj ≤ ESi;

4. No feasible flow exists in the auxiliary network GWt = (VWt , EWt ) depicted in Figure 3.4. To
build such network, the set Wt is considered to be made by exclusively activities i and j (refer to
Section 3.3.1 for a detailed description regarding the construction of GWt ).

4.1.1 Reduction tests

After determining all pairs of incompatible activities, it is possible to set the values of some variables in
the model PCT . Correia et al. (2012) developed a reduction test with the objective of fixing the values of
some variables yij (i, j ∈ V) at their optimal values. In this section, we present such reduction test.

Consider two activities i and j and assume that they are compatible, i.e., that the value of yij can still
be chosen. Assume additionally that activity i cannot finish before j. Given these assumptions, we know
that yij cannot have the value of 1 and hence we can set it to 0. If we consider that the same two activities
are now incompatible with no precedence relation existing between them, we know that activity i must
be executed before j or j must be processed before i, i.e., that the value of yij can still be chosen.

In some situations, it is possible to determine this processing order beforehand. In that case, we
may realize that activity i has to be processed before activity j and in such situation it is clear that all
successors of the j become successors of i, by transitivity.

We now formalize the reduction test proposed by Correia et al. (2012) in Algorithm 4.1. We note
that lines 8–20 of Algorithm 4.1 consist of an adaptation to the MSRCPSP of the well-known pair test
proposed by Carlier and Pinson (1989) for the job-shop scheduling problem.

Algorithm 4.1: Reduction test proposed by Correia et al. (2012).
Data: V; Pred(j), j ∈ V; Succ(j), j ∈ V; rjl, j ∈ V , l ∈ Lj
Result: Fixing some variables yij at their optimal values

1 begin
2 Consider two activities i and j;
3 if i and j are compatible then
4 if ESi + pi > LSj then
5 yij = 0;
6 end
7 end
8 if i and j are incompatible with no precedence relation between them then
9 if ESi + pi > LSj then

10 yji = 1, yij = 0;
11 yjs = 1, ysj = 0, for all successors s of i;
12 ypi = 1, yip = 0, for all predecessors p of j;
13 yps = 1, ysp = 0, for all predecessors p of j and for all successors s of i;
14 else if ESj + pj > LSi then
15 yij = 1, yji = 0;
16 yis = 1, ysi = 0, for all successors s of j;
17 ypj = 1, yjp = 0, for all predecessors p of i;
18 yps = 1, ysp = 0, for all predecessors p of i and for all successors s of j;
19 end
20 end
21 end
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4.1.2 Other inequalities

Correia et al. (2012) derived several sets of valid inequalities by investigating the relationship between
incompatible activities and the selection of disjunction variables. In this section, we revisit such valid
inequalities whose development is strongly related to the well-known notion of forbidden sets widely
used in the context of the RCPSP.

The information concerning the sets of incompatible activities can be easily introduced into model
PCT . As discussed previously, when two activities i and j are incompatible, either i is executed before
j or the other way around. Accordingly, if the constraint yij + yji ≤ 1 exists in the model then it can be
replaced by

yij + yji = 1, (4.1)

since in this case we know beforehand that it is not possible to have yij = yji = 0.
Any pair of compatible activities {i, j} can be extended to a triplet of incompatible activities {i, j, u}

if both {i, u} and {j, u} are pairs of compatible activities and the three activities i, j and u cannot be
processed simultaneously. Checking if three activities can be executed simultaneously reduces to deter-
mining whether a feasible flow exists in an auxiliary directed network GWt = (VWt , EWt ) built as before,
but now including the skill requirements of the three activities and the resources that may perform them.

The information regarding these triplets of incompatible activities can also be used to introduce new
inequalities into model PCT . For each triplet of incompatible activities {i, j, u}, we add the following
valid inequality to PCT :

yij + yji + yiu + yui + yju + yuj ≥ 1. (4.2)

In fact, if the three activities i, j, u are incompatible, then at least one of the disjunction variables
involved in the inequality presented above has to be equal to 1, i.e., at most two of those activities may
be in progress at the same time.

Naturally, the logic followed to derive inequality (4.2) could be used to obtain inequalities for sets
of more than three incompatible activities. Obviously, a trade-off between the benefits of introducing
such inequalities into the model and the computational effort required to derive them must be reached.
Correia et al. (2012) did not determined the sets of four incompatible activities such that all its triplets
are compatible due to the associated increase in the computational effort.

Correia et al. (2012) investigated other inequalities already existing for project scheduling problems,
and presented the following two results whose proofs are straightforward. We recall that the yij (i, j ∈ V)
variables are only necessary for pairs of activities having no precedence relations between them.

Result 4.1 (cf. Correia et al., 2012) Let u, i, j ∈ V be such that no precedence relation exists between
them.

If
u and j are not incompatible

or
If

i) u and j are incompatible and
ii) u and i are incompatible and
iii) i and j are incompatible

Then it must be

yuj ≥ yui + yij – 1. (4.3)
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Result 4.2 (cf. Correia et al., 2012) Let u, i, j ∈ V be such that no precedence relation exists between
them.

1. If

i) u precedes i, according to the reduction test presented and

ii) u and j are not incompatible

or

If

i) u precedes i, according to the reduction test presented and

ii) u and j are incompatible and

iii) i and j are incompatible

Then it must be

yuj ≥ yij. (4.4)

2. If

i) i precedes j, according to the reduction test presented and

ii) u and j are not incompatible

or

If

i) i precedes j, according to the reduction test presented and

ii) u and j are incompatible and

iii) i and u are incompatible

Then it must be

yuj ≥ yui. (4.5)

In addition to the previous sets of inequalities, it is possible to derive other valid inequalities for the
MSRCPSP by, for instance, making use of the binary variables associated with the assignment of the
resources. In fact, when we have an upper bound UB on the optimal makespan of the project (i.e., the
optimal value of the problem) we conclude immediately that, in an optimal solution to the problem, no
resource k ∈ R spends, in total, more time than UB for processing the activities that it is assigned to
perform. Hence, we can write:∑

j∈Vk

∑
l∈Lk∩Lj

pj xjlk ≤ UB, k ∈ R. (4.6)

Considering that in the previous constraints we have binary variables in the left term, we can divide
both members of 4.6 by an integer value q ∈ {1, . . . , maxj∈Vk{pj}}, obtaining:

∑
j∈Vk

∑
l∈Lk∩Lj

pj

q
xjlk ≤

UB
q

, k ∈ R, q ∈ {1, . . . , maxj∈Vk{pj}}.
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By rounding down each coefficient in the left-hand side of the constraints just presented and then by
performing the same to the right-hand side, we obtain a new set of additional inequalities that can be
added to model PCT :

∑
j∈Vk

∑
l∈Lk∩Lj

⌊
pj

q

⌋
xjlk ≤

⌊
UB
q

⌋
, k ∈ R, q ∈ {1, . . . , maxj∈Vk{pj}}. (4.7)

A deeper analysis reveals that some of the inequalities (4.7) may have the same right hand-side, and
in that case there may be inequalities that dominate others. Hence, for each distinct right-hand side, we
only need to add to model PCT the inequality with the “strongest” left-hand side.

4.2 Discrete-time models

Discrete-time, often referred to as time-indexed formulations have been widely applied to the RCPSP
and its variants. Therefore, it is natural to develop such kind of formulations also to the MSRCPSP.
The formulations we are presenting next include time-indexed binary variables that are equal to one
for a particular time t if the corresponding activity starts at that time and zero otherwise. To consider
such variables, we assume a planning horizon T = {0, . . . , UB} where UB is an upper bound previously
found for the makespan. In addition to those binary variables, these formulations also consider time-
indexed variables associated with the resources. In this type of formulations, the number of variables
and constraints can be huge. In fact, they depend on length of the planning horizon that, in turn, strongly
depends on several factors such as the magnitude of the processing times of the activities and their skill
requirements, the network complexity of the precedence network and the number of resources that master
each skill.

This section is organized as follows. In Section 4.2.1, we revisit a mathematical model from the
literature. In Section 4.2.2, we develop two new discrete-time formulations. We conclude this part by
presenting some additional inequalities for the discrete-time formulations based on the work developed
by Correia et al. (2012), presented in the previous section.

4.2.1 A model from the literature

We start this section by revisiting the discrete-time formulation by Montoya et al. (2014) with the changes
proposed by Correia and Saldanha-da-Gama (2015b). We denote this model by PM . It requires the
following sets of decision variables:

Sjt =

{
1, if activity j starts at time instant t;

0, otherwise.
j ∈ V , t ∈ {ESj, . . . , LSj}

xjkt =

{
1, if resource k starts processing activity j at time t;

0, otherwise.
k ∈ R, j ∈ Vk, t ∈ {ESj, . . . , LSj}

yjlk =

{
1, if resource k is assigned to perform skill l for activity j;

0, otherwise.
k ∈ R, j ∈ Vk, l ∈ Lk ∩ Lj
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4.2. Discrete-time models

The formulation of PM is as follows.

min
LSn+1∑

t=ESn+1

t Sn+1,t (4.8)

subject to:
LSj∑

t=ESj

t Sjt ≥
LSi∑

t=ESi

t Sit + pi i, j ∈ V ∧ (i, j) ∈ E (4.9)

LSj∑
t=ESj

xjkt ≤ 1 k ∈ R, j ∈ Vk (4.10)

∑
j∈Vk

min{LSj,t}∑
τ=max{ESj,t–pj+1}

xjkτ ≤ 1 k ∈ R, t ∈ T (4.11)

xjkt ≤ Sjt j ∈ V \ {0, n + 1}, k ∈ Rj, t ∈ {ESj, . . . , LSj} (4.12)

xjkt + 1 ≥ Sjt +
∑

l∈Lk∩Lj

yjlk j ∈ V \ {0, n + 1}, k ∈ Rj, t ∈ {ESj, . . . , LSj} (4.13)

∑
k∈Rl

yjlk = rjl j ∈ V \ {0, n + 1}, l ∈ Lj (4.14)

LSj∑
t=ESj

xjkt =
∑

l∈Lk∩Lj

yjlk j ∈ V \ {0, n + 1}, k ∈ Rj (4.15)

Sjt ∈ {0, 1} j ∈ V , t ∈ {ESj, . . . , LSj} (4.16)

xjkt ∈ {0, 1} k ∈ R, j ∈ Vk, t ∈ {ESj, . . . , LSj} (4.17)

yjlk ∈ {0, 1} k ∈ R, j ∈ Vk, l ∈ Lk ∩ Lj (4.18)

The objective function (4.8) represents the makespan (to be minimized). Constraints (4.9) assure
that the precedence relations between each pair of activities (i, j) belonging to the precedence network
hold. Constraints (4.10) guarantee that a resource can only start performing an activity within its start
time-window. Constraints (4.11) restrict the allocation of a resource to at most one activity at each time
instant. Constraints (4.12) and (4.13) ensure the consistency of the start times of the activities with their
assigned resources. More precisely, from constraints (4.12), if resource k starts performing activity j at
time t (xjkt = 1) then activity j must start at time t (Sjt = 1). The presence of constraints (4.13) together
with the sets of constraints (4.10), (4.14) and (4.15) prevent an activity j′ from being associated with
two start times, i.e., it is not possible to have Sj′t1 = 1 and Sj′t2 = 1 for t1 6= t2. Therefore, the widely

used constraints
∑LSj

t=ESj
Sjt = 1, j ∈ V \ {0, n + 1} (e.g., Pritsker et al., 1969 for the RCPSP and the two

formulations proposed next) are implicitly assured in this model. Constraints (4.14) assure that the skill
requirements of each activity are met through the assignment of the necessary resources to each skill
needed for its execution. Constraints (4.15) restrict the contribution of a resource to one skill for each
activity it is assigned to perform. Constraints (4.16)–(4.18) define the variables as being binary.

Christofides et al. (1987) proposed the well-known disaggregated discrete-time (DDT) formulation
for the RCPSP whose linear programming relaxation renders better lower bounds than the DT model
proposed by Pritsker et al. (1969). We recall that the difference between models DT and DDT concerns
the way in which precedence constraints are modeled—the latter considers a disaggregated version of
the precedence constraints that appear in the former.
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Using a similar reasoning to the one adopted by Christofides et al. (1987), we can derive an alternative
model for the MSRCPSP—PMDDT . To that end, we have to replace constraints (4.9) in model PM with
the following disaggregated set of precedence constraints:

LSi∑
τ=t

Siτ +
min{LSj,t+pi–1}∑

τ=ESj

Sjτ ≤ 1, (i, j) ∈ E, t ∈ {ESi, . . . , LSi} (4.19)

Constraints (4.19) state that if activity i is a predecessor of activity j then the execution of activities i
and j cannot overlap in any time t.

However, if we solve the model immediately after performing this replacement, the resulting optimal
value, for any instance of the problem, is always zero since all the variables Sn+1 t, t ∈ {ESn+1, ..., LSn+1}
are zero. This is explained by the fact that there is no constraint in model PM forcing the execution of
the dummy activity n + 1 other than the standard precedence constraints (4.9), which were replaced by
constraints (4.19). In fact, the remaining constraints featuring the start time variables of the activities are
used to ensure that the skill requirements of the activities are met through the assignment of the necessary
resources, and hence they are not applicable to activity n + 1, which has null skill requirements. For all
pairs of activities consisting of an activity with no non-dummy successors (i.e., whose only successor is
activity n + 1) and the activity n + 1, the constraints (4.19) only imply that the former activity cannot be
executed at the same time as the dummy activity n + 1, and hence they do not assure that activity n + 1
is processed. Thus, we added the set of constraints

∑LSj
t=ESj

Sjt = 1, j ∈ V into the model, obtaining
PMDDT . We note that it would only be mandatory to add such constraint for activity n + 1 but since all
the optimization models to be presented in the following sections (and considered in the computational
experiments to be performed) include this constraint for all activities, we decided to supply that same
information to model PMDDT .

4.2.2 New models

In this section, we present two new discrete-time formulations for the MSRCPSP.

Model PDT

We start by introducing a new formulation for the MSRCPSP that results from adapting to our problem
the well-known discrete-time formulation for the RCPSP proposed by Pritsker et al. (1969).

This new model makes use of the following variables:

Sjt =

{
1, if activity j starts at time instant t;

0, otherwise.
j ∈ V , t ∈ T

zjlkt =

{
1, if resource k starts performing skill l for activity j at time instant t;

0, otherwise.
k ∈ R, j ∈ Vk, l ∈ Lk ∩ Lj, t ∈ T
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Considering the previous decision variables, model PDT establishes a new time-indexed formulation to
the MSRCPSP. We define model PDT as follows.

min
LSn+1∑

t=ESn+1

t Sn+1,t (4.20)

subject to:
LSj∑

t=ESj

Sjt = 1 j ∈ V (4.21)

LSj∑
t=ESj

t Sjt ≥
LSi∑

t=ESi

t Sit + pi i, j ∈ V ∧ (i, j) ∈ E (4.22)

LSj∑
t=ESj

∑
k∈Rl

zjlkt = rjl j ∈ V \ {0, n + 1}, l ∈ Lj (4.23)

∑
l∈Lk∩Lj

zjlkt ≤ Sjt k ∈ R, j ∈ Vk, t ∈ {ESj, . . . , LSj} (4.24)

∑
j∈Vk

min{LSj,t}∑
τ=max{ESj,t–pj+1}

∑
l∈Lk∩Lj

zjlkτ ≤ 1 k ∈ R, t ∈ T (4.25)

Sjt ∈ {0, 1} j ∈ V , t ∈ {ESj, . . . , LSj} (4.26)

zjlkt ∈ {0, 1} k ∈ R, j ∈ Vk, l ∈ Lk ∩ Lj,

t ∈ {ESj, . . . , LSj} (4.27)

The objective function (4.20) represents the start time of the final dummy activity, which is equivalent
to the completion time of the entire project (that is to be minimized). Constraints (4.21) state that every
activity starts exactly once. Constraints (4.22) ensure that precedence relations hold for every pair of
activities (i, j) ∈ E. Constraints (4.23) guarantee that the skill requirements of all activities are fulfilled
through the assignment of the adequate resources. Constraints (4.24) impose that if a resource is per-
forming a skill l for an activity j it has to start performing that skill at the start time of j. Constraints
(4.25) assure that each resource is not assigned to more than one activity at a time. Constraints (4.26)
and (4.27) define the domain of the decision variables.

Unlike PMDDT , model PDDT is obtained straightforwardly by replacing only the precedence con-
straints (4.22) by the disaggregated precedence relations (4.19).
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Model PN

A new discrete-time model for the MSRCPSP can be obtained by combining the structures of the formu-
lations PM and PDT . Let us denote by PN this new model. This new formulation uses the variables Sjt,
xjkt, and yjlk already used in model PM , and is defined as follows.

min
LSn+1∑

t=ESn+1

t Sn+1,t (4.28)

subject to:
LSj∑

t=ESj

Sjt = 1 j ∈ V (4.29)

LSj∑
t=ESj

t Sjt ≥
LSi∑

t=ESi

t Sit + pi i, j ∈ V ∧ (i, j) ∈ E (4.30)

xjkt ≤ Sjt j ∈ V \ {0, n + 1}, k ∈ Rj, t ∈ {ESj, . . . , LSj} (4.31)
LSj∑

t=ESj

xjkt =
∑

l∈Lk∩Lj

yjlk j ∈ V \ {0, n + 1}, k ∈ Rj (4.32)

∑
k∈Rl

yjlk = rjl j ∈ V \ {0, n + 1}, l ∈ Lj (4.33)

∑
j∈Vk

min{LSj,t}∑
τ=max{ESj,t–pj+1}

xjkτ ≤ 1 k ∈ R, t ∈ T (4.34)

Sjt ∈ {0, 1} j ∈ V , t ∈ {ESj, . . . , LSj} (4.35)

xjkt ∈ {0, 1} k ∈ R, j ∈ Vk, t ∈ {ESj, . . . , LSj} (4.36)

yjlk ∈ {0, 1} k ∈ R, j ∈ Vk, l ∈ Lk ∩ Lj (4.37)

The objective function (4.28) accounts for the start time of the dummy n + 1 (to be minimized), i.e, the
makespan. Constraints (4.29) assure that every activity starts exactly once. Constraints (4.30) express
the precedence relations of every pair of activities (i, j) ∈ E. Constraints (4.31) ensure that if a resource
k ∈ Rj starts executing activity j at time t, then activity j starts its execution at time t. Constraints (4.32)
impose that a resource k ∈ Rj contributes with one skill l ∈ Lj ∩ Lk to activity j if it has been assigned
to perform that activity. Constraints (4.33) ensure that the skill requirements of all activities are fulfilled.
Constraints (4.34) ensure that a resource is not assigned to more than one activity at a time. Constraints
(4.35)–(4.37) are domain constraints.

Likewise to the substitution performed to PDT in order to obtain PDDT , PNDDT is obtained by re-
placing the constraints (4.30) in model PN by the disaggregated precedence constraints (4.19).

4.2.3 Valid inequalities for the discrete-time models

Similarly to what was observed for the RCPSP, we also expect that the substitution of the classical prece-
dence constraints by the disaggregated ones (inequalities 4.19) in the discrete-time models presented in
the previous sections will contribute to the enhancement of the lower bound values stemming from their
corresponding linear programming relaxations.
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Still with the objective of both strengthening the linear programming relaxation of such models and
improving their performance in integer solving, we discretized the set of constraints (4.7) introduced by
Correia et al. (2012) for the continuous-time formulation developed therein (cf. Section 4.1.2).

For the mathematical model PDT such discretization is straightforward.

∑
j∈Vk

∑
l∈Lj∩Lk

LSj∑
t=ESj

⌊
pj

q

⌋
zjlkt ≤

⌊
UB
q

⌋
, k ∈ R, q ∈ {1, . . . , maxj∈Vk{pj}} (4.38)

Due to the type of variables involved in models PM and PN , two sets of valid inequalities are derived
for these formulations.∑

j∈Vk

∑
l∈Lj∩Lk

⌊
pj

q

⌋
yjlk ≤

⌊
UB
q

⌋
, k ∈ R, q ∈ {1, . . . , maxj∈Vk{pj}} (4.39)

∑
j∈Vk

LSj∑
t=ESj

⌊
pj

q

⌋
xjkt ≤

⌊
UB
q

⌋
, k ∈ R, q ∈ {1, . . . , maxj∈Vk{pj}} (4.40)

4.3 Lower bounds

The most obvious lower bound for project scheduling problems with scarce resources is obtained by
discarding the resource constraints. The resulting problem corresponds to finding the longest path be-
tween the dummy nodes 0 and n + 1 in the precedence network—the critical path. The length of the
critical path is known to be a poor lower bound when multi-skill resources are involved, as discussed
previously. Typically, in such situation we have to rely on other methods for computing better lower
bounds. Throughout this section, it is assumed that we are dealing with an optimization problem with a
minimization objective function, such as the particular project scheduling problem being studied.

A lower bound D on the optimal value of a specific instance of the MSRCPSP indicates that the
project lasts at least D time units in the optimal solution of the referred instance. The higher the value of
a lower bound, the better its quality. In the absence of optimal values, lower bounds become particularly
useful to evaluate the performance of approximate methods and to be incorporated into both optimization
models, such as the ones presented previously, and exact methods, in an attempt to reduce the search
space. The quality of a feasible solution derived by a heuristic is generally evaluated by computing a
so-called gap between the associated objective value and a lower bound. When good lower and upper
bounds are used in a branch-and-bound framework, the number of nodes in the tree may be substantially
reduced.

The development of good techniques for computing lower bounds for complex optimization prob-
lems is hence of great importance, namely when dealing with instances of large dimensions whose op-
timal values are often unachievable even when a high limit on the computational time is imposed (cf.
Tables 5.8 and 5.10).

We observe that a lot of effort has been put into developing this type of algorithms for the class of
resource-constrained project scheduling problems. Lower bound computing methods are usually clas-
sified as constructive or destructive. A constructive procedure solves a relaxed version of the original
problem. On the other hand, a destructive method, also referred to as destructive improvement tech-
niques (cf. Klein, 2000) is based upon setting a value D on the objective function of the problem (usually
provided by a constructive lower bound method) and in incrementing such value until no infeasibilities
are detected (i.e., it cannot be proved that the objective function value D is not associated with a fea-
sible solution). The largest value of D that corresponds to a solution whose infeasibility can be proved
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is then the best lower bound. Binary search can also be applied within destructive methods, consider-
ing additionally a value for the upper bound, which can be provided, for instance, by a heuristic. For
a comprehensive description and review of the work done in terms of the development of lower bound
procedures for the RCPSP, the reader should refer to Klein (2000) and to Schwindt and Zimmermann
(2015).

From the literature reviewed in Chapter 2, we observe that only a modest amount of effort has been
put into developing lower bound procedures for project scheduling problems with multi-skilled resources.
The mechanisms proposed consist of destructive improvement techniques adapted from the RCPSP.

In this section, we present two new simple constructive lower bounds for the specific problem at hand
(described in Section 3.1). More particularly, we extend two well-known procedures originally proposed
for the RCPSP: the Capacity Bound (see, for instance Klein, 2000) and the Critical Sequence Lower
Bound (cf. Stinson et al., 1978), to cope with the existence of skills in this problem setting.

The motivation to adapt such methods to the MSRCPSP is threefold: (i) these are classical lower
bound methods for the RCPSP whose extension to the MSRCPSP has not been attempted before, to the
best of the author’s knowledge; (ii) they are very efficient regarding the computational time necessary
for their computation; (iii) their extension to the MSRCPSP may open directions for the development
of other constructive lower bounds that only make sense when multi-skill resources are involved in the
project.

We present below the extensions of those two mechanisms to our problem setting and describe in
detail the assumptions made for their generalization.

Skill-based Capacity Bound — SbCB
The Skill-based Capacity Bound (SbCB) consists of an adaptation of the capacity bound proposed for
the RCPSP (see, for instance Klein, 2000). Conversely to the lower bound provided by the length of the
critical path, the SbCB discards precedence relations between pairs of activities. The SbCB determines
a lower bound on the objective value of the problem by computing, for each skill, the amount of time
(rounded up to the nearest integer whenever its fractional part is greater than 01) that would be required by
the resources mastering that skill to process all the requirements of such skill over the whole processing
times of all the activities that require it. After performing these operations, we will have L numbers, one
for each skill. Since a project is only concluded after the requirements of all skills have been fulfilled,
the SbCB retrieves the maximum among these values.

We compute this bound as follows:

SbCB = max

{⌈∑
j∈V l(pj × rjl)∣∣Rl

∣∣
⌉ ∣∣∣∣ l = 1, . . . , L

}
,

where Rl is the set of resources mastering skill l ∈ L and set V l contains all activities that require skill
l ∈ L for their execution.

Besides discarding precedence relations between pairs of activities, this bound also allows a contin-
uous resource allocation, i.e., it allows resources to be assigned fractionally to the requirements of the
activities. In fact, it computes the quotient of the sum of all the requirements for a given skill across
all the activities that needed it and the number of resources that master that skill. Moreover, the SbCB
disregards that an activity has to be in progress for its whole processing time. By computing the product
of the processing time of an activity and its requirements for a given skill, the SbCB assumes that those
requirements could all be met at the expense of, at the limit, 1 time unit, when the number of resources
is sufficiently large. To better illustrate this fact, we present an example below.

1we recall that in our problem the processing times of the activities and consequently the makespan are positive integers.
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Example 4.1 Consider one activity with processing time of 2 time units and a requirement of 3 resource
units for a given skill. If we assume that there are 6 resources mastering that skill, the SbCB would
output the value of 1 time unit, hence violating the condition that imposes that every activity has to be in
progress for its whole processing time (which is 2 time units, in this case). Furthermore, the SbCB does
not verify whether there are enough resources to process an activity. In order to illustrate that statement,
let us now consider that there are only 2 resources (instead of 6) mastering the skill needed by such
activity. In this situation, the SbCB would retrieve the value of 3 time units. Note that, in this case, the
instance would be infeasible, since activity 2 still requires 3 resources to meet its demand for the only
skill it needs for being executed.

Using the data from the example of the problem (Example 3.1) presented in Section 3.1, we compute
this bound (using information from Tables 3.1 and 3.2) as follows.

SbCBl=1 =
⌈

3×2+1×2+1×1+2×1
3

⌉
= d3, 667e = 4

SbCBl=2 =
⌈

3×3+2×1+1×1+1×2
4

⌉
= d3, 5e = 4

SbCB = max{SbCBl=1, SbCBl=2} = 4

The value provided by SbCB assures that the project associated with Example 3.1 lasts 4 or more
time units.

Skill-based Critical Sequence Lower Bound — SbCSLB
By combining both the notion of critical path with the limited availability of the resources, Stinson et al.
(1978) developed the so-called Critical Sequence Lower Bound (CSLB) for the RCPSP.

We denote the extension of this procedure to MSRCPSP as Skill-based Critical Sequence Lower
Bound, abbreviated as SbCSLB. The main difference between the SbCSLB and the original method relies
on the procedure for checking the compatibility of a pair of activities.

The SbCSLB begins by scheduling only the activities in the critical path, sequentially, without vio-
lating precedence constraints. At this point, we do not assign any resources to meet the skill demands of
these activities. Nonetheless, we know that a feasible resource assignment to that schedule exists since,
as discussed in Section 3.4.3, a fundamental condition for an instance of the MSRCPSP (and also to the
RCPSP) to be feasible is the existence of resources to process each activity individually.

Then, we iteratively select one activity j not belonging to the critical path and insert it into the
schedule consisting uniquely of the activities in the critical path. More specifically, for each time t ∈
{ESj, . . . , LFj}, an auxiliary graph analogous to the one presented in Figure 3.4 is built. In such graph,
the set of nodes ZWt contains all the existing resources that may process at least one skill required by
either j or the activity in the critical path in progress at that time; the set of nodes LWt contains the unique
skills required by those activities and the arcs (l, vs), l ∈ LWt have minimum throughput and capacity
equal to the number of resources necessary to execute those two activities simultaneously. If a solution
to that problem does not exist for at least pj consecutive time units (we recall that activity j cannot be
preempted) within the processing time-window of activity j (i.e., t ∈ {ESj, . . . , LFj}), the difference
between the processing time of j and the maximum number of consecutive periods where it can be in
progress along with the activities in the critical path is stored in deltaj. After performing these operations
to all activities not belonging to the critical path, one at a time, the lower bound provided SbCSLB is
given by the critical path length added to the maximum value of deltaj, j ∈ V \ {0, n + 1}.
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4.4 Conclusions

In this chapter, we presented several mathematical formulations for the problem being investigated. More
particularly, we revisited two optimization models from the literature and proposed two new discrete-
time formulations. The main motivation for developing such mathematical models emerged essentially
from the need of improving the lower bounds provided by the critical path length, which are usually
poor. In fact, from the research concerning the RCPSP, we observed that the discrete-time formulations
dominate continuous-time formulations in terms of the optimal value of their corresponding linear pro-
gramming relaxations. We expect a similar behavior for the MSRCPSP. We revisited several sets of valid
inequalities and a reduction test already proposed in the literature for a continuous-time formulation. By
substituting the standard precedence constraints (in the discrete-time formulations) by the well-known
disaggregated discrete-time precedence constraints, three new discrete-time mathematical models were
obtained. One of the aforementioned valid inequalities was discretized in order to be incorporated into
the presented discrete-time formulations. Still associated with the need of developing alternative mecha-
nisms to compute lower bounds for the problem being studied, two simple lower bound methods initially
proposed for the RCPSP were extended to our problem setting.
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CHAPTER 5

Heuristic Algorithms

The multi-skill resource-constrained project scheduling problems can, in theory, be solved by exhaus-
tive search. Nonetheless, such solution technique becomes impracticable due to the enormous computa-
tional time required even for small- and medium-sized instances. Despite algorithms performing faster
than exhaustive search been already designed for solving the RCPSP, such as the specific branch-and-
bound method proposed by Demeulemeester and Herroelen (1997), some reasonably sized instances
of that problem remain unsolved. Hence, there is an increased motivation for developing efficient ap-
proximate methods for the MSRCPSP being studied, which is a generalized version of the unit-capacity
RCPSP.

The most obvious upper bound for any project scheduling problem is
∑

j∈V pj. This is the time
necessary to execute all the activities in the most adverse case, which corresponds to the full sequential
processing of all activities—no activity overlapping exists. Note that this bound is in general also very
weak unless, a lower level of parallelization exists in the optimal solution, for instance, due to a high
degree of resource scarceness. Correia et al. (2012) propose a simple procedure for obtaining upper
bounds on the optimal value of the problem. Although such procedure represents a major improvement
over the trivial upper bound mentioned above, the results portrayed by Correia et al. (2012) show that
there is much room for improvement in terms of developing efficient procedures for computing tighter
upper bounds.

This chapter is devoted to the development of new and more promising approaches to compute fea-
sible solutions to the problem being analyzed. More particularly, two scheduling generation schemes, a
multi-pass heuristic and one metaheuristic are proposed.

This chapter is organized as follows. In Section 5.1, the well-known Parallel Scheduling Scheme
is extended to our problem setting and a multi-pass constructive heuristic built upon the referred proce-
dure is proposed. In Section 5.2, we extend the well-known Serial Scheduling Scheme to our problem
setting and develop a biased random-key genetic algorithm (BRKGA) for the MSRCPSP. The compu-
tational tests performed to evaluate the methodological developments proposed in the previous sections
along with the mathematical formulations and lower bounds presented in Chapter 4 are reported in Sec-
tion 5.3.2. This chapter ends with Section 5.4, where an overview of the work done is presented.
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5.1 A multi-pass heuristic

One of the most popular constructive heuristics for the RCPSP is the Parallel Scheduling Scheme (PSS)
(Brooks and White 1965). This is an iterative algorithm whose maximum number of iterations is equal
to the number of activities in the project. In each iteration, and for an appropriate moment in time,
a decision set is considered. This set contains all the activities that are eligible to be scheduled, i.e.,
the activities whose predecessors have had their execution finished, and for which there are available
resources to process them. The inclusion of activities in the decision set is performed using the so-called
activity priority values, such concept was already introduced in Section 3.3.3. These values are assigned
to the activities by means of an activity priority rule that, in turn, is a criterion defined for ranking the
activities.

The PSS starts by setting a time counter t to zero. Throughout the execution of the algorithm, t will
move forward by taking values that depend on the completion times of already scheduled activities. For
each value of this counter, a decision set containing all activities that are eligible to be scheduled must
be built. The overall procedure can be briefly summarized as follows.

While there are activities in the current decision set remaining to be scheduled, the best ranked
activity is selected. That activity is then scheduled to start at time t and the necessary resources are
allocated to it. When the decision set at time t is empty or although not empty it is not possible to schedule
more activities belonging to this set due to resource constraints, the time counter t is incremented to the
minimum completion time of all activities already scheduled; the decision set is then updated, and a new
iteration starts. This process is repeated until all the activities in the project have been scheduled. The
makespan is computed as the maximum completion time among all activities that do not precede any
other.

In this work, we propose a PSS for the MSRCPSP. Since the MSRCPSP is much more complex
than the RCPSP due to the multi-skill nature of the resources, a PSS heuristic for the former is more
evolved and complex than the one summarized above. In order to cope with that increased complexity,
we develop two new features:

i The first feature has the purpose of avoiding iterative activity scheduling and resource assignment.
It consists in grouping all the activities that can be scheduled at a specific time t in a set Wt and
checking if their skill requirements can be met at once by the available resources.

ii The second feature aims at avoiding random resource selection and allocation. At a specific time
t, and given a subset of activities Wt such that there are enough resources to process them simul-
taneously, there may be more than one subset of resources that meets the requirements of those
activities. Hence, it makes sense to determine the best subset of resources with regard to some pre-
defined measure and to efficiently assign these resources to the activities in Wt. With this purpose,
we introduce a weight wk for each resource k ∈ R, as discussed in Section 3.3.2. We recall that a
larger weight indicates a more valuable resource (e.g., masters more skills, masters skills scarcely
mastered by the other resources).

In the remainder of this section, we present and discuss in detail the several components of our
heuristic. We begin by revisiting the concept of activity priority rules in Section 5.1.1, along with those
included in the developed procedure. We proceed analogously for the weights of the resources, whose
weight functions considered are presented in Section 5.1.2. Then, in Section 5.1.3, a parallel scheduling
scheme heuristic for the MSRCPSP at hand is formally presented. In Section 5.1.4, we discuss the use
of the two precedence networks schemes. Finally, in Section 5.1.5, we present the multi-pass version of
the referred heuristic.
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5.1.1 Priority rules

The use of priority rules is far from new in the area of project scheduling. Furthermore, many rules can
be devised. In this work, we considered several well-known rules (Kolisch 1996a, and Demeulemeester
and Herroelen 2002) as a starting point for our heuristic.

Table 5.1 summarizes the rules used.

Table 5.1: Activity priority rules.

Abbv. Rule Activities sorted by:

LFT Latest Finish Time non-decreasing order of their latest finish times
LPT Longest Processing Time non-increasing order of their processing times
LST Latest Start Time non-decreasing order of their latest start times
GRPW Greatest Rank Positional Weight non-increasing order of the sum of their processing times with

the processing times of their immediate successors
GRPW∗ Greatest Rank Positional Weight* non-increasing order of the sum of their processing times with

the processing times of all their successors
MIS Most Immediate Successors non-increasing order of their number of immediate successors
MTS Most Total Successors non-increasing order of their total number of successors (imme-

diate and transitive)
SPT Shortest Processing Time non-decreasing order of their processing times

Rules LST and LFT require, respectively, the computation of LSj and of LFj of each activity j ∈ V
(cf. Section 3.2 for details regarding their computation). The upper bound used when working with these
rules is simply the sum of the processing times of all activities. Regarding for instance, the LST rule,
the activity with the smallest latest start time receives the best priority value while the activity with the
largest latest start time is associated with the worst priority value. In an event of a tie, the activity with
the smallest label is selected first. In addition to the “single" activity priority rules just presented, we
also consider multi-priority rules. In particular, we consider sequences of two activity priority rules such
that the second rule is applied for breaking ties (when they occur). Since we have eight single-priority
rules, many multi-priority rules can be defined. In order to keep our analysis more focused, we decided
to restrict the number of multi-priority rules considered to LST + GRPW∗, LST + LFT , and LST + MTS.
The reason for this choice will be totally clear in the computational results section and has to do with the
fact that these rules yield smaller makespan values.

5.1.2 Resource weights

We introduced the concept of resource weight in Section 3.3. As mentioned in such section, we associate
weights to the resources in an attempt to avoid random resource selection and allocation.

We developed three different rules for defining the weight of a resource. The first one, denominated
by Resource weight rule 0, is a trivial one that consists in setting the weight of each resource to 0 (wk = 0,
k ∈ R).

The second rule, designated by Resource weight rule 1, sets the weight of each resource to the number
of skills it masters:

wk =
∣∣∣Lk
∣∣∣ , k ∈ R.

The third rule, called Resource weight rule 2, computes a weight of a resource according to the
number of skills it masters, the scarceness of each of those skills as well as the aggregated “demand” for
that skill. The associated weight function is defined as follows:

wk =
∣∣∣Lk
∣∣∣×maxl∈Lk

 K∣∣Rl
∣∣ ×∑

j∈V l

(pj × rjl)

 , k ∈ R,
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where set V l contains the activities requiring skill l (l ∈ L) and set Rl contains the resources mastering
skill l (l ∈ L).

We note that the proposed alternatives for associating a weight to the resources are “static” in the
sense that the weight associated with each resource can be computed beforehand and remains unchanged
during the execution of the heuristic.

5.1.3 Parallel Scheduling Scheme — PSS

As discussed previously, the PSS is an iterative method requiring a number of iterations that in the worst
case is equal to the number of activities to be executed in the project. Initially, a time counter is set to 0.
During the execution of the procedure, the counter will move forward assuming values that result from
the completion times of the activities that are already scheduled.

We begin by discussing the two features introduced at the beginning of Section 5.1 and then we
present the developed parallel scheduling scheme heuristic.

Meeting the skill requirements of a set of compatible activities at time t
During the process of building a feasible schedule for the MSRCPSP, when we consider some specific
moment in time, the activities can be partitioned into three disjoint sets:

(i) activities already executed.

(ii) activities scheduled but not yet completed.

(iii) unscheduled activities.

Accordingly, at some time t, we can include in a set Wt the unscheduled activities whose prede-
cessors have already been terminated along with those (if there are any still unscheduled) that have no
predecessors. If the activities included in Wt are compatible, then they can be processed simultaneously.
This occurs if (a) there is no precedence relation between any pair of such activities, and (b) the available
resources at time t (resources not assigned to activities with their execution in progress) are enough to
fulfill the skill requirements of all activities in Wt simultaneously (at time t).

Since the activities in Wt have no unscheduled predecessors, checking whether Wt is a set of com-
patible activities reduces to validating condition (b). That is something that can be done in polynomial
time by finding whether there is a feasible flow in a specific network GWt = (VWt , EWt ), as discussed in
Section 3.3.1.

It is very important to carefully select the resources, by determining the skills that each of which will
be performing and the activity to which they will be assigned. In fact, a proper resource allocation tends
to maximize the number of activities that can be started (scheduled) at a given time t.

The proposed procedure goes one step further and, besides verifying whether the resources available
at that time are enough to meet all the skill requirements of Wt simultaneously, it associates a weight to
each of those resources.

More specifically, the resources are assigned to the skills required by Wt by solving a min-cost flow
problem in a network G̃Wt = (VWt , EWt ) obtained from GWt = (VWt , EWt ) by replacing the weight of
each arc (v0, k), k ∈ ZWt , by the corresponding resource weight, wk. That problem is denoted by
MCNFP(G̃Wt ). We depict the associated graph in Figure 5.1.

Arcs connecting the source node v0 with each resource node k and the intermediate arcs (k, l) have
capacity equal to 1 to ensure that each resource is selected at most once and thus can contribute with at
most one skill.

If no feasible flow exists between v0 and vs in the above network, then it is necessary to reduce the
cardinality of Wt in order to obtain a compatible set of activities. In this case, we propose removing
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Figure 5.1: A generic G̃Wt .

from Wt the worst ranked activity, according to the predefined activity priority rule. A decrease in the
cardinality of Wt should proceed until the remaining activities in Wt are compatible.

Is is particularly relevant to notice that if the skill requirements of the activities in Wt were to be
fulfilled iteratively (i.e., one activity at a time) without accounting for the skill demands of the other
activities in Wt, the number of activities scheduled at that time would be potentially smaller and, con-
sequently, the quality of the solution derived could be compromised (as discussed in Example 3.1). By
associating weights to the resources (even when they are not considered in the problem data) we are
providing some insight regarding their characteristics to the flow problem and hence we are selecting
those that, according to our criteria, are the “cheapest” that together fulfill the skill requirements of Wt.

After addressing the problem of determining the resources that fulfill the skill requirements of Wt,
we only need to determine the specific activities for which they will be performing the assigned skill. We
discuss this topic below.

Resource assignment
Obviously, a feasible flow between v0 and vs in G̃Wt indicates that Wt is a set of compatible activities.

However, an optimal solution to MCNFP(G̃Wt ) only provides an assignment of the resources k ∈ ZWt

to the skills l ∈ (Lk ∩ LWt ), which is the best one with respect to the resources’ weights; it does not
indicate the activity each resource is allocated to. In particular, for every l ∈ LWt we obtain a set
XWtl ⊆ ZWt —the set of resources assigned to perform skill l ∈ LWt in the solution to the MCNFP(G̃Wt ).

We propose a procedure that heuristically assigns the resources with larger weights to the activities
with smaller processing times (as much as possible) in an attempt to make those resources (looked as
valuable) free as soon as possible and thus available to be assigned to other activities that may need them.
Algorithm 5.1 formalizes the allocation of resources to the (compatible) activities in Wt.

The algorithm determines the assignment of resources k ∈ XWtl to the activities in Wt according
to the skills they were assigned to perform in the solution of the corresponding problem MCNFP(G̃Wt ).
In each step of this algorithm, the activity j∗ in Wt associated with the smallest processing time pj∗ ,
is selected and its corresponding start time, Sj∗ is set to t (lines 2–4). Afterwards, the requirements of
each skill l ∈ Lj∗ are fulfilled through the assignment of the rj∗l resources with the largest weight val-
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ues among the ones that belong to XWtl—the set of resources assigned to l in the optimal solution of
MCNFP(G̃Wt ), and which have not been allocated yet (lines 5–13). After meeting all the skill require-
ments of j∗, this activity is removed from Wt and UV (lines 14–15). The algorithm proceeds until Wt
becomes empty.

Algorithm 5.1: Resource assignment
Data: UV , Wt,XWtl,Lj, pj, rjl, wk j ∈ Wt, l ∈ Lj, k ∈ XWtl
Result: Resources are assigned to the compatible activities in Wt

1 begin
2 while Wt 6= ∅ do
3 Find j∗ : pj∗ = min {pj : j ∈ Wt};
4 Sj∗ ←− t;
5 for l ∈ Lj∗ do
6 nra←− 0 // counter for the number of resources already assigned to perform skill l for activity j∗;
7 while nra < rj∗l do
8 Find k∗ : wk∗ = max {wk : k ∈ XWtl};
9 Assign resource k∗ to perform skill l for activity j∗ and set it busy within

{Sj∗ , . . . , Sj∗ + pj∗ – 1};
10 nra = nra + 1;
11 XWtl ←− XWtl \ {k∗};
12 end
13 end
14 Wt ←− Wt \ {j∗};
15 UV ←− UV \ {j∗};
16 end
17 end

A PSS for the MSRCPSP
After having introduced the elements of the new heuristic approach that we propose for the MSRCPSP,
we can now formalize it.

In Algorithm 5.2 we present the pseudo-code of the proposed parallel scheduling scheme. The weight
of each resource should be computed according to the chosen resource weight rule and the priority value
of each activity should be computed according to the selected activity priority rule. We note that such
calculations are performed beforehand and consist of some of the input data required by the developed
PSS heuristic.

The proposed PSS starts with the initialization of the relevant parameters (lines 2–5). The set of
unscheduled activities, UV , is initialized with all activities (apart from the dummies). The main step of
the PSS (lines 6–27) is executed while there are unscheduled activities.

In each iteration, which is associated with a specific moment in time, t, the set Wt is loaded with
all the activities that either have no predecessors or whose all predecessors have already finished at that
time. If Wt is empty, the value of t is incremented to the next moment in time in which some activity
becomes available for execution due to the completion of all its predecessors. Otherwise, either there are
enough resources among those available at time t to meet all the skill requirements of the activities in Wt,
and hence, all these activities start being processed at time t, or this is not the case and thus the activity
with the worst priority value is successively removed from Wt until the resulting set is either empty or all
the skill requirements of its activities can be met. When Wt is a set of compatible activities, the former
case, Algorithm 5.1 is executed in order to assign the resources in the optimal solution of MCNFP(G̃Wt )
to these activities. A value for the makespan is retrieved after all activities have been scheduled.
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Algorithm 5.2: A Parallel Scheduling Scheme (PSS) for the MSRCPSP
Data: V , E, Pred(j), Succ(j),R,L,Lj,Lk, pj, rjl, pvj, wk : j ∈ V , k ∈ R, l ∈ Lj
Result: makespan

1 begin
2 UV ←− V \ {0, n + 1};
3 t←− 0;
4 S0 ←− 0;
5 Sj ←−∞, j ∈ UV;
6 while UV 6= ∅ do
7 Wt ←− ∅;
8 for j ∈ UV do
9 if t ≥ max{Si + pi : i ∈ Pred(j)} then

10 Wt ←− Wt ∪ {j}
11 end
12 end
13 while Wt 6= ∅ do
14 Build sets ZWt and LWt and solve the MCNFP(G̃Wt );
15 if a feasible solution to the MCNFP(G̃Wt ) exists (Wt is a set of compatible activities) then
16 for l ∈ LWt do
17 get XWtl;
18 end
19 Execute Algorithm 5.1 to meet the skill requirements of activities j ∈ Wt

20 else
21 Find j′ ∈ Wt : pvj′ is the worst activity priority value;
22 Wt ←− Wt \ {j′}
23 end
24 end
25 t←− min{Sj + pj : j ∈ V ∧ j /∈ UV};
26 end
27 makespan←− max{Sj + pj : j ∈ V}
28 end

5.1.4 Precedence network schemes

The PSS just presented can also be applied to the problem obtained by reversing all the arcs in the
original (AON) precedence network, hereafter denoted by reversed precedence network. This prob-
lem is equivalent to planning the project backwards starting at the end and moving regressively to the
beginning—backward planning. This is accomplished by considering the last activities as the first ones
to be scheduled. Naturally, the problem to be solved is the same but the order by which each activity is
scheduled may be different, and hence a different resource selection and assignment may occur, which
results in a schedule with, possibly, a different makespan. This concept of backward planning has al-
ready been applied to the RCPSP by Li and Willis (1992), Özdamar (1999), Klein (2000), and Alcaraz
and Maroto (2001), to mention a few.

5.1.5 The heuristic

The heuristic formalized above is a single-pass heuristic since it is only executed once. An execution
of the referred single-pass heuristic is associated with one activity priority rule, one resource weight
rule and one precedence network scheme. Nonetheless, we can execute the proposed procedure multiple
times. By combining each one of the 11 activity priority rules presented in Section 5.1.1 with each one of
the 3 developed resource weight rules introduced in Section 5.1.2 and with each one of the 2 precedence
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network schemes described in the previous section, a total of 66 schedules can be computed. Among the
solutions obtained, the one with minimum makespan can be chosen. This process originates a so-called
multi-pass heuristic. We formalize such procedure in Algorithm 5.3. The associated computational re-
sults are reported in Section 5.3.1.

Algorithm 5.3: A multi-pass PSS heuristic
Data: V , E, Pred(j), Succ(j),R,L,Lj,Lk, pj, rjl j ∈ V , l ∈ Lj, k ∈ R
Result: makespan∗

1 makespan∗ ←−∞;
2 for each resource weight rule do
3 for k ∈ R do
4 Compute wk according to the resource weight rule adopted;
5 end
6 for each activity priority rule do
7 for j ∈ V do
8 Compute pvj according to the predefined activity priority rule;
9 end

10 for each precedence network scheme do
11 if reversed precedence scheme then
12 Reverse arcs in the precedence network;
13 end
14 Execute Algorithm 5.2 (PSS);
15 if makespan < makespan∗ then
16 makespan∗ ←− makespan;
17 end
18 end
19 end
20 end

This multi-pass heuristic was published in Almeida et al. (2016b).

5.2 A Biased Random-key Genetic Algorithm — BRKGA

Despite the significant advances represented by the work presented in the previous section, much work
still remains to be done namely in terms of improving the quality of the feasible solutions obtained.
The work presented in the current section emerges in this context. In particular, the new contributions
are twofold: (i) we propose a constructive heuristic for the MSRCPSP based on the well-known serial
scheduling scheme; (ii) we develop a biased random-key genetic algorithm (BRKGA) to coordinate the
approximate method referred in (i) and the parallel scheduling scheme already proposed in Section 5.1.3.

A BRKGA is a population based metaheuristic where each individual is represented by an array of
real numbers (the keys) in the interval [0, 1] (Gonçalves and Resende, 2011). This method has many sim-
ilarities with classical genetic algorithms but it uses some different strategies which aim at overcoming
a major drawback found in those algorithms. In particular, depending on the way a solution is coded
as well as on the crossover operator considered, a genetic algorithm does not necessarily guarantee the
feasibility of an offspring when crossing two feasible solutions. In the context of BRKGA, a “child”
solution is feasible if the “parents” are feasible. To the best of the author’s knowledge, a BRKGA has
never been proposed for a multi-skill resource-constrained project scheduling problem although it has
been applied successfully to resource-constrained project scheduling problems (see Gonçalves et al.,
2008, Mendes et al., 2009, and Gonçalves et al., 2011). BRKGA algorithms have also been successfully
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applied to other optimization problems such as packing (Gonçalves and Resende, 2013), facility layout
(Gonçalves and Resende, 2015), capacitated minimum spanning trees (Ruiz et al., 2015), among others.

The remainder of this section is organized as follows. In Section 5.2.1, we introduce a generic
BRKGA framework and its proprieties. Then, in Section 5.2.2, the problem-dependent components of
the BRKGA are presented and discussed in detail. These include the definition of the chromosome
structure and the decoding mechanisms.

5.2.1 Preliminaries

A Genetic Algorithm (GA) (Holland, 1975, and Goldberg, 1989) is a metaheuristic that uses concepts
of evolution and hereditary to look for good feasible solutions to optimization problems. In a GA,
a population of individuals evolves over a number of iterations, called generations, until the defined
stopping criteria are met. Each individual is represented by a so-called chromosome and encodes a
solution to the problem. A chromosome is represented by an m-dimensional vector of genes (m being
a problem-specific number) whose values are referred to as alleles. By using a deterministic problem-
dependent algorithm called decoder each chromosome is converted into a solution to the optimization
problem and its fitness value can be computed. The quality of the solution a chromosome encodes
is given by that value. In each iteration, or generation, the chromosomes that represent the current
population produce offspring by means of so-called crossover and mutation operators.

In spite of the large success of GAs, finding the best (or a good) encoding for a particular problem
can be a very difficult task. Moreover, crossing two chromosomes (inducing feasible solutions) does
not lead necessarily to a feasible offspring. That calls for (possibly much) additional computational
effort in order to recover feasibility. With the purpose of overcoming these drawbacks, Bean (1994)
introduced the random-key genetic algorithms (RKGA) in the context of sequencing problems. In a
RKGA, independently from the optimization problem to be solved, a chromosome is represented by
an m-dimensional vector of real numbers in the interval [0, 1]—the random keys. In other words, in a
RKGA, each allele becomes a random number in interval [0, 1].

Apart from the differences just presented, the RKGA differs from the classical GA in the way the
population evolves, namely: (i) it follows an elitist strategy where the chromosomes associated with the
best fitness values in one iteration (elite population) are copied unchanged to the next iteration; (ii) it
introduces the concept of immigration, associated with the inclusion, in each iteration, of a percentage
of new randomly generated chromosomes, called mutants, instead of applying the classical mutation
operator; (iii) in order to generate a new chromosome, two parents are randomly selected from the whole
population, and are then combined using parameterized uniform crossover (see Spears and Jong, 1991
for further details).

A Biased Random-Key Genetic Algorithm (BRKGA) (Gonçalves and Resende, 2011) differs from
a RKGA in the way parents are selected for generating new individuals. In a BRKGA, one parent is
selected from the set of elite solutions while the other is selected from the set of non-elite solutions.
The process can be described as follows. Let ρe > 0.5 denote the probability of a descendant inhering
an allele from its elite parent. Let c1, c2, c3 be m-dimensional vectors representing, an elite parent, a
non-elite parent, and an offspring, respectively. After randomly generating m numbers ui (i = 1, . . . , m)
according to a uniform distribution in the [0, 1], each allele c3[i] takes the value c1[i] if ui < ρe and takes
the value c2[i] otherwise.

Algorithm 5.4 depicts a generic BRKGA. In this algorithm, p denotes the number of chromosomes in
the population; m is the number of genes in each chromosome; pe is the percentage of elite chromosomes
in the population; pm denotes the percentage of mutants introduced in each generation; ρe represents the
probability of a descendant inheriting an allele from its elite parent; U[0, 1] represents a number ran-
domly generated according to a continuous uniform distribution in the interval [0, 1]; g is a generation

59



5.2. A Biased Random-key Genetic Algorithm — BRKGA

counter; finally c∗ and f ∗ denote, respectively, the best chromosome and its corresponding fitness value.
Some examples of stopping criteria often considered are: a predefined number of generations, a pre-
defined time limit, a predetermined number of generations after the generation where the current best
fitness value was found, etc.

Algorithm 5.4: Biased Random-Key Generic Algorithm (BRKGA)
Data: p, pe, pm, m, ρe
Result: c∗, f ∗

1 begin
2 Generate initial population P1 with p chromosomes where each allele is U[0, 1];
3 Compute the fitness of the p chromosomes using the decoder;
4 Initialize f ∗ and c∗;
5 g←− 1;
6 while the stoping criteria are not satisfied do
7 Save in the set Pe

g the dpe × pe most fit chromosomes of Pg ;
8 Copy Pe

g into Pg+1;
9 Generate dpm × pe mutants, compute their fitness using the decoder, and copy them to Pg+1;

10 for j = 1 to (p – dpe × pe – dpm × pe) do
11 Randomly select parent c1 from Pe

g;
12 Randomly select parent c2 from Pg \ Pe

g;
13 for i = 1 to m do
14 u = U[0, 1];
15 if u < ρe then
16 c3[i]←− c1[i];
17 else
18 c3[i]←− c2[i];
19 end
20 end
21 Compute the fitness of c3, using the decoder, and copy c3 to Pg+1;
22 end
23 g←− g + 1;
24 if a better chromosome was found then
25 Update f ∗ and c∗;
26 end
27 end
28 end

The size of elite and mutant populations in Algorithm 5.4 are dpe × pe and dpm × pe, respectively.
The values taken by pe and pm together with all the values taken by the other considered parameters
need to be fine-tuned for the particular problem at hand. We note that, despite the size of the elite and
mutant populations being rounded up, the summation of the values considered for both of them in the
computational experiments will always be smaller than the size of the whole population.

5.2.2 Extension to the MSRCPSP

In order to apply Algorithm 5.4 to the MSRCPSP we only need to define the components of the algo-
rithm that are specific to our problem namely, the structure of the chromosomes and the decoders. Since
the chromosomes also contain decoder related information, we begin by introducing the decoder mech-
anisms to be used and then we concentrate on describing the structure of the chromosomes.

Decoders (constructive heuristics)
Being the MSRCPSP an extension of the RCPSP, two natural constructive heuristics for the former
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emerge from extending the well-known parallel and serial scheduling schemes designated by PSS and
SSS, respectively (cf. Kolisch, 1996b). Although the PSS and the SSS can be looked at as simple
heuristic strategies for the RCPSP, their extension to our problem entails an increased complexity that
is mainly related to the selection and assignment of the multi-skill resources to the activities comprising
the project.

Since we have already proposed an extension of the PSS to the MSRCPSP in Section 5.1.3, we now
focus on extending the SSS to our setting. These two schedule generation schemes render important
mechanisms for the success of the new heuristic proposed in this section.

Serial Scheduling Scheme — SSS
The SSS that we propose for the MSRCPSP is also an iterative method that starts by setting to 0 the
time counter, again denoted by t. In each iteration, the activity j∗ with the best priority value and whose
predecessors have already been executed is selected to be scheduled. The time counter, t, is then set to
the maximum completion time across all the predecessors of j∗. Activity j∗ is scheduled to start at time
t if the resources available from time t to time t + pj∗ – 1 are enough to fulfill all its skill requirements;
otherwise, t, is moved forward to the next completion time of the activities already scheduled. Again,
the availability of resources is checked. This process repeats until eventually activity j∗ is scheduled. In
the SSS, the set Wt contains only one (unscheduled) activity: the activity selected to be scheduled next.

The scheme we propose is detailed in Algorithm 5.5. After the initialization of the algorithm (lines
2–5), the main loop starts. Next, the activity j∗ with the best priority value among the ones that either
have no predecessors or have all their predecessors already scheduled is chosen (line 7). The time t
is then set to the earliest precedence feasible start time of activity j∗ (lines 8–13). Afterwards, several
operations are performed to include in ZWt all the resources available in every time {t, . . . , t + pj∗ – 1}
that master at least one skill required by j∗ (lines 17–22). Only these resources are eligible to perform
a given skill during the whole processing time of j∗. After solving the induced problem MCNFP(G̃Wt ),
two situations may arise: an optimal solution is found or no feasible flow exists. In the former case, the
unique activity j∗ in Wt is scheduled to start at time t (line 25) and the set XWtl, (l ∈ Lj∗) indicates which
resources are assigned to skill l ∈ Lj∗ (line 26). In the latter situation, t is incremented to the minimum
completion time across all the activities that are already scheduled (line 30).

In contrast to the PSS, in the SSS that we have just proposed, it is possible to have already scheduled
activities that start after t. In fact, when an activity, say j∗, is selected to be scheduled, the time t is
moved to the maximum completion time of all predecessors of j∗. Therefore, it is possible to have other
already scheduled activities which have the necessary resources allocated and their start times higher
than t. Hence, for a given time t, deciding whether activity j∗ can start being processed at that time
requires checking if the resources available in every time slot where j∗ will be in progress, i.e., from t to
its provisional finish time t + pj∗ – 1, can fulfill all its skill requirements.

Chromosome
The structure of the chromosomes that we propose is inspired on the chromosomes considered by
Gonçalves et al. (2008), Mendes et al. (2009) and Gonçalves et al. (2011) for resource-constrained project
scheduling problems, which encode only activity-related information.

We define a chromosome as having m = n + K + 2 genes, where n is the number of non-dummy ac-
tivities in the project and K is the number of resources. In this chromosome, the alleles, ui, i = 1, . . . , m,
are random numbers generated in the interval [0, 1]. The last 2 genes are associated with the decoding
mechanism to be used for transforming a chromosome into a feasible solution to the problem. In partic-
ular, one of these genes indicates the scheduling generation scheme to be employed (parallel or serial)
while the other refers to the precedence network scheme to be considered (original or reversed)—already
discussed in Section 5.1.4. The chromosome structure we are proposing is illustrated in Figure 5.2.
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Algorithm 5.5: A Serial Scheduling Scheme (SSS) for the MSRCPSP
Data: V , E, Pred(j), Succ(j),R,L,Lj,Lk, pj, rjl, pvj, wk : j ∈ V , k ∈ R, l ∈ Lj
Result: makespan

1 begin
2 UV ←− V \ {0, n + 1};
3 t←− 0;
4 S0 ←− 0;
5 Sj ←−∞, j ∈ UV;
6 while UV 6= ∅ do
7 Find j∗ ∈ UV : Pred(j∗) ∩UV = ∅ ∧ pvj∗ is the best activity priority value across all unscheduled

activities;
8 if Pred(j∗) = ∅ then
9 t←− 0;

10 else
11 t←− max{Si + pi : i ∈ Pred(j∗)};
12 end
13 ComputeRj∗ = {k ∈ R : Lk ∩ Lj∗ 6= ∅} // resources with skills required by activity j∗;
14 Wt ←− {j∗};
15 while j∗ unscheduled do
16 ZWt ←− ∅;
17 for k ∈ Rj∗ do
18 if k is available in every time instant {t, ..., t + pj∗ – 1} then
19 ZWt ←− ZWt ∪ {k};
20 end
21 end
22 Solve the MCNFP(G̃Wt );
23 if MCNFP(G̃Wt ) has an optimal solution then
24 Sj∗ ←− t;
25 For each skill l ∈ Lj∗ , assign the resources k ∈ XWtl and set them busy within

t ∈ {Sj∗ , . . . , Sj∗ + pj∗ – 1};
26 UV ←− UV \ {j∗} ;
27 else
28 t←− min{Su + pu : u /∈ UV ∧ Su + pu > t} // increment t;
29 end
30 end
31 end
32 makespan←− max{Sj + pj : j ∈ V} ;
33 end

It is worth noticing that a chromosome structure with a gene indicating whether a parallel or a serial
scheduling scheme is used has already been considered for the RCPSP by Hartmann (2002). Further-
more, the solution encoding proposed by Alcaraz and Maroto (2001) also includes one additional gene
for determining whether the original or reversed precedence network is used. To the best of the author’s
knowledge, a chromosome structure that includes genes associated with the resources along with a gene
for decoder selection and a gene for encoding the precedence network scheme has never been attempted
before.

We recall that we have already presented a parallel scheduling scheme and a serial scheduling scheme
for computing feasible solutions to the MSRCPSP. Similarly to the PSS proposed previously, the SSS can
also be applied to either the original or the reversed precedence network (cf. Section 5.1.4). Nevertheless,
these heuristics also require the assignment of a priority value, pvj, for each activity j ∈ V \ {0, n + 1} as
well as a weight value, wk, to each resource k ∈ R. In our BRKGA, this information will be embedded in
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u1 u2 . . . un un+1 un+2 . . . un+K un+K+1 un+K+2

activities : n genes resources : K genes decoder : 2 genes

chromosome length : m genes

Figure 5.2: A generic chromosome for the BRKGA.

the chromosomes since it seemed more advantageous to rely on the evolutive framework of the algorithm
for adapting this data throughout its execution, instead of using static predefined values. In particular,
the value of each one of the first n genes will give the priority value of the corresponding activity, that is:
pvi = ui, i = 1, . . . , n. Additionally, the values of the next K following genes will give the weights of the
resources, i.e., wk = un+k, k = 1, . . . , K.

The last 2 genes of a chromosome are associated with the decoder. The information provided by
these genes is summarized in Table 5.2.

Table 5.2: Decoder parameters.

gene number parameter 0 ≤ ui < 0.5 0.5 ≤ ui ≤ 1

n + K + 1 scheduling scheme SSS PSS
n + K + 2 precedence network original reversed

Figure 5.3 illustrates a chromosome within our BRKGA. For the first n+K genes of the chromosome,
we assume that the larger the values taken by the alleles, the higher the priorities or weights, depending
on whether they refer to activities or to resources, respectively. From the first n genes of the chromosome
depicted in Figure 5.3, we observe that the priority value of activity 1 is higher than the priority value of
activity 2. With regard to the resources, we observe that if resources 1 and 2 are involved in a solution
to a min-cost flow problem MCNFP(G̃Wt ) and are both assigned to the same skill l ∈ LWt , resource 1 is
first attempted to be assigned to the activities j ∈ Wt with shorter processing times, since it is associated
with a larger weight than resource 2. The alleles n + K + 1 and n + K + 2, indicate, respectively, that the
parallel scheduling scheme should be considered and applied to the reversed precedence network.

0.412 0.125 . . . 0.851 0.743 0.257 . . . 0.021 0.741 0.584

activities : n genes resources : K genes decoder : 2 genes

chromosome length : m genes

Figure 5.3: Chromosome: example

With this chromosome structure, the same priority values (obtained from the first n genes) and the
same weight values (obtained from the following K genes) may originate four different feasible solutions
to the MSRCPSP (two possible precedence network schemes—original and reversed, combined with two
decoders—PSS and SSS). This kind of structure may help diversifying the exploration of the solution
space. Another positive feature of this representation is its versatility. In fact, if the values of the last
two genes are fixed for all the chromosomes, this means that all the chromosomes will be decoded with
the same algorithm. Accordingly, we may adjust the values of one or both of these genes, if we want to
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analyze (or impose) some specific configuration.
The work developed in this section was included in the working paper by Almeida et al. (2016a),

which is currently submitted for publication.

5.3 Computational experiments and results

In this section, we report the numerical experiments performed on the developments presented in this
thesis. The multi-pass heuristic and the BRKGA were coded in C++ programming language. The math-
ematical formulations and the min-cost flow problems were solved by integrating IBM ILOG CPLEX
12.6 with C++ through Concert Technology. Regarding the mathematical models, apart from the time
limit (that we specify later in this section), all other CPLEX parameters were kept at their default values.
All computational experiments were performed on a machine running an Intel Core i7 4770K with 32GB
of RAM.

The computational experiments were performed on two different sets of instances from the literature:
Set 1 (see Section 3.4.2) and Set 2 (see Section 3.4.4).

This section is organized as follows. In Section 5.3.1, we present the computational results of the
proposed multi-pass heuristic. In the following section, Section 5.3.2, we discuss the methodology for
selecting the values for the parameters of the developed BRKGA, thus fine-tunning the algorithm. Then,
we report the numerical results of the BRKGA according to values derived for its parameters. The
results provided by the mathematical formulations and lower bound methods (presented in Chapter 4)
are reported in Section 5.3.3.

5.3.1 Multi-pass heuristic

A thorough computational study of the multi-pass heuristic presented in Section 5.1 was performed on
two sets of instances: Set 1 and Set 2. The corresponding results are presented and discussed in this
section. We first concentrate on the small instances and then we move to the larger ones.

Set 1
As we have mentioned before, the instances in Set 1 were generated and worked out by Correia et al.
(2012). In particular, for these instances and due to that work, we know the optimal value for 203 out of
the 216 instances and for the other ones we have a lower bound, which is the best one found by Correia
et al. (2012). These optimal values and lower bounds can be used to compute the percentage gap (or
an upper bound on that gap) of the solution values obtained by the multi-pass heuristic proposed in this
thesis. This is done according to

gap =
ZH – ZLB

ZLB × 100%,

where ZH denotes the upper bound provided by the heuristic and ZLB denotes the optimal value or the
best known lower bound obtained by Correia et al. (2012).

We start by analyzing separately the behavior of the different activity priority rules studied. In addi-
tion to the single-priority rules summarized in Table 5.1, we also considered three multi-priority rules,
namely LST + GRPW∗, LST + LFT , and LST + MTS. The choice made in terms of multi-priority rules
resulted from a few preliminary tests conducted. The preliminary tests made it clear that, on average, the
rule LST has the best performance, followed by GRPW∗, LFT , and MTS, which were respectively the
second, third and fourth rules that performed best (on average). Accordingly, since it was not reasonable
to present results for all possible multi-priority rules, we focused the analysis on combining the one that
performed best in the preliminary tests with the second, third and fourth best in terms of average perfor-
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mance. Table 5.3 contains the results obtained. In this table, the instances are grouped according to SF,
NC, and MRS. Each row in the table refers to average results for 6 instances.

Table 5.3: Multi-pass heuristic — Set 1: average gaps for the activity priority rules studied.

SF NC MRS LFT LPT LST MIS MTS SPT GRPW GRPW* LST + GRPW* LST + LFT LST+ MTS Average

1 1.5 0.1250 13.03 16.78 11.82 15.31 11.47 21.39 19.14 10.79 11.82 11.17 11.82 9.47
0.1563 5.36 6.87 4.77 4.97 5.56 11.48 5.71 4.37 4.77 4.77 4.77 4.37
0.1875 0.00 1.71 0.46 1.25 0.32 1.85 1.57 0.78 0.46 0.46 0.46 0.00

1.8 0.1250 3.14 7.17 2.86 5.34 3.21 9.75 4.69 1.57 2.50 2.86 2.50 1.57
0.1563 2.68 6.39 3.08 3.45 3.11 11.67 6.44 3.41 2.70 3.08 2.70 1.92
0.1875 0.46 0.93 0.93 0.93 0.93 4.23 1.69 0.93 0.93 0.46 0.46 0.46

2.1 0.1250 2.87 4.84 1.07 3.03 1.51 7.94 3.83 1.07 1.07 1.07 1.07 1.07
0.1563 0.62 0.00 0.00 1.21 0.00 2.17 0.96 0.29 0.00 0.00 0.00 0.00
0.1875 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00

0.75 1.5 0.1250 8.38 13.15 7.25 11.49 10.40 11.48 10.17 7.48 7.25 8.11 7.48 3.98
0.1667 3.15 9.42 3.04 4.68 5.26 13.53 4.57 2.16 3.04 2.70 3.04 0.90
0.2083 4.33 10.37 4.31 5.77 6.26 4.11 5.80 4.33 4.31 4.31 4.31 3.84

1.8 0.1250 9.52 14.27 8.02 11.93 10.94 16.68 12.71 9.11 9.21 7.70 8.92 6.47
0.1667 3.50 7.76 2.93 3.86 3.80 9.03 3.50 3.84 2.93 2.93 2.93 2.93
0.2083 0.00 0.32 0.00 0.00 0.00 0.94 0.32 0.00 0.00 0.00 0.00 0.00

2.1 0.1250 5.62 9.79 5.61 10.04 5.74 12.24 9.71 5.03 5.25 4.64 5.25 3.99
0.1667 1.20 3.34 0.00 2.19 0.33 7.26 3.03 1.96 0.73 0.33 0.73 0.00
0.2083 0.79 2.73 0.79 2.35 1.59 1.19 2.35 0.79 0.79 0.79 0.79 0.79

0.5
1.5

0.1250 10.58 21.48 12.06 13.40 12.70 17.04 15.62 13.35 12.50 13.02 12.50 6.17
0.1625 5.13 13.63 5.29 10.97 6.10 13.44 16.97 5.29 5.29 4.95 5.29 4.27
0.1875 3.03 5.43 0.88 5.45 4.80 7.47 2.53 2.02 1.26 1.77 1.26 0.88

1.8 0.1250 7.73 18.42 8.78 9.98 9.57 15.84 13.24 9.70 8.78 8.44 8.44 5.19
0.1625 7.13 13.36 3.66 8.42 5.64 11.46 8.31 2.42 3.66 3.66 3.66 2.42
0.1875 0.36 4.85 0.71 4.15 2.86 9.97 4.01 1.44 0.71 0.71 0.71 0.36

2.1 0.1250 7.52 16.02 8.59 7.08 6.93 15.56 13.15 6.80 6.79 8.59 6.79 5.00
0.1625 1.19 3.45 1.25 3.55 3.67 2.76 2.64 2.33 1.25 1.25 1.25 0.93
0.1875 0.28 0.98 0.42 2.65 0.39 1.91 0.56 0.00 0.42 0.42 0.42 0.00

var. 1.5 0.1250 11.88 21.35 10.61 18.75 15.89 22.59 19.90 10.95 10.61 10.30 10.61 7.55
0.1667 9.47 10.37 8.62 8.25 10.58 12.77 10.48 8.62 8.62 8.62 8.62 7.41
0.2083 1.91 2.49 1.42 6.02 1.96 4.55 3.47 1.42 1.42 1.42 1.42 1.42

1.8 0.1250 7.62 14.43 6.81 8.77 9.03 17.67 9.75 6.13 6.10 6.10 6.10 5.16
0.1667 4.85 10.17 4.88 5.84 6.90 12.65 10.75 5.30 5.30 4.02 5.30 4.02
0.2083 1.01 2.34 0.00 2.94 2.44 4.37 2.38 1.43 0.00 0.00 0.00 0.00

2.1 0.1250 4.91 6.28 4.99 10.21 6.79 10.43 6.34 4.96 4.71 4.99 4.71 2.46
0.1667 1.81 7.81 1.29 5.18 2.13 7.05 2.24 1.61 1.29 1.29 1.29 0.33
0.2083 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 4.20 8.02 3.81 6.09 4.97 9.31 6.63 3.94 3.79 3.75 3.77 2.65

For each activity priority rule, the gap computed for each instance considered the minimum makespan
obtained after running the heuristic with each distinct pair of resource weight rule and precedence net-
work scheme, resulting in a total of 6 passes.

The last column of this table contains the best average gaps obtained after running each instance
with all possible combinations of the 11 activity priority rules with the 3 resource weight rules and
with 2 precedence schemes: original and reversed networks. Therefore, the gap of each instance was
computed considering the best makespan obtained after the 66 passes of the heuristic.

Observing Table 5.3 we conclude that there is no activity priority rule performing always better than
any other. However, considering the average gaps displayed in the last row, it is possible to identify the
single-priority rule SPT as the one performing the worst and the multi-priority rule LST + LFT as the
best.

We deepen our analysis by focusing on the resource weight rule used and also on the use of a forward
(original precedence network) or backward (reversed precedence network) mechanism for scheduling the
activities. For comparison purposes, we consider the heuristic for the MSRCPSP developed by Correia
et al. (2012), which, to the best of the author’s knowledge, is the only heuristic that can be found in the
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literature for the problem at hand. It is important to note that Correia et al. (2012) put the emphasis of their
work on a new mixed-integer linear programming optimization model. Nevertheless, since the authors
needed an upper bound on the optimal value of the problem, in order to load some valid inequalities, a
very simple heuristic was introduced for generating such upper bound.

The results are presented in Table 5.4. Similarly to the previous table, the instances are grouped
according to SF, NC, and MRS and each row in the table refers to the average results for 6 instances. In
this table, we find the results organized according to 5 sets of columns: (i) Columns 4–8 for resource
weight rule 0, (ii) Columns 9–13 for resource weight rule 1, (iii) Columns 14–18 for resource weight
rule 2, (iv) Columns 19 and 20 reflecting the minimum makespan obtained by the multi-pass heuristic
consisting of all the combinations of the 3 developed resource weight rules, the 11 activity priority rules
and the 2 precedence network schemes (original and reversed), and (v) Columns 21 and 22 for the results
associated with the heuristic proposed by Correia et al. (2012).

The first two columns associated with each resource weight rule refer to the results obtained with the
multi-pass version of the heuristic when a single precedence network scheme is considered, i.e., for each
instance, and each precedence network scheme, the makespan considered (for calculating the associated
gap) is the minimum achieved after running the heuristic with the 11 activity priority rules (8 single-
priority and 3 multi-priority). More specifically, in Columns 4, 9 and 14, we observe the results of when
a forward scheme (original precedence network) is employed whereas Columns 5, 10, and 15 depict the
results of when a backward scheme (reversed precedence network) is used.

The third to fifth columns of each resource weight rule (Columns 6–8 for resource weight rule 0,
Columns 11–13 for resource weight rule 1 and Columns 16–18 for resource weight rule 2) consider the 11
activity priority rules together with the 2 schemes for scheduling the activities (forward and backward).
The gaps were computed using the minimum makespan among 22 values (some possibly equal) obtained.
Regarding the CPU time (CPU (sec)) and the time for solving the minimum cost network flow problems
(MCNFP (sec)) we consider the sum of the 22 values corresponding to each pass of the heuristic.

All the activity priority rules and resources weight rules were then applied to the original and to the
reversed precedence networks and the lowest makespan value was retrieved. The gaps associated with
these results are presented in Column 19 and the total average time spent computing all these values is
presented in Column 20. The last two columns refer to the average gaps and to the corresponding CPU
time provided by the heuristic proposed by Correia et al. (2012).

Finally, the last row of Table 5.4 reports the average values over all the instances in Set 1.
A closer look at this table indicates that, on average, resource weight rule 2 outperforms the other

two resource weight rules in terms of gap. On the other hand, resource weight rule 0 is the one producing
the worst average gaps. The results further reveal that using the reversed precedence network besides the
original one allowed small improvements on the average gaps of the resource weight rules. However, it is
worth considering both structures (original and reversed) within a heuristic scheme. In fact, the average
results obtained for instances with SF = 1, NC = 1.5, and MRS = 0.1875 are examples of where, for
resource weight rules 1 and 2, the use of the two precedence network schemes yielded a 0% gap but
neither the original network nor the reversed provided a gap of 0% when used alone.

Regarding the average CPU time spent in solving the minimum cost network flow problems, we can
observe that it consumes approximately 36% of the total CPU time of the heuristic.

From columns 19 and 20 of Table 5.4, we can observe that by running the 3 resource weight rules, it
was possible to get an average gap of 2.65% in less than one second (CPU time). These results represent
a considerable improvement when compared to the results provided by the heuristic proposed by Correia
et al. (2012), which are depicted in the last two columns of the table.

In order to analyze the influence of SF, NC and MRS on the performance of the heuristic and, in
particular, on the behavior of each activity priority rule and resource weight rule, the results presented
in Tables 5.3 and 5.4 were grouped according to the values of these parameters and are displayed in
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Tables 5.5 and 5.6, respectively.
In both tables and for each parameter value, the best average gap provided by each activity priority

rule (Table 5.5) and by each resource weight rule (Table 5.6) is highlighted by boldface.
The results reported in Table 5.5 show that GRPW∗ and LST + MTS were the best activity priority

rules for instances with SF = 1 and SF = 0.5, respectively. For the other values of this parameter
LST + LFT produced the best average gaps. For NC = 1.5, 1.8 and 2.1 the best priority rules were,
respectively, LST , LST + LFT , and LST + GRPW∗ (or LST + MTS). In terms of MRS, the multi-priority
rules LST + MTS, LST + LFT and LST + GRPW∗ attained the best average gaps in 4, 3 and 2 different
values of MRS, respectively.

In Table 5.6, we observe that resource weight rule 2 yields the best average gaps for (i) 3 out of 4 skill
factor values (0.5, 0.75 and var.); (ii) 2 out of 3 network complexity values (1.5 and 2.1); and (iii) 4 out
of 6 modified resource strength values (0.1250, 0.1625, 0.1667 and 0.2083). The best average gap for the
instances associated with either SF = 1 or NC = 1.8 or MRS = 0.1563 were obtained by resource weight
rule 0. Resource weight rule 1 produced the best average gaps for MRS = 0.1875 and MRS = 0.2083, the
latter tied with resource weight rule 2. We observe that a decrease of either the SF or the NC leads to an
increase of the average gaps of the multi-pass heuristic proposed. Finally, the value of MRS associated
with the smallest gap was 0.1875 followed by the values 0.2083 and 0.1563.

67



5.3.
C

om
putationalexperim

ents
and

results
Table 5.4: Multi-pass heuristic — Set 1: average gaps for each resource weight rule.

Resource Weight Rule 0 - R0 Resource Weight 1 Rule - R1 Resource Weight Rule 2 - R2 Best Correia et
al. (2012)

SF NC MRS
OPN RPN min(OPN,RPN) OPN RPN min(OPN,RPN) OPN RPN min(OPN,RPN)

min(R0, R1,
R2)

Gap
(%)

Gap
(%)

Gap
(%)

CPU
(sec)

MCNFP
(sec)

Gap
(%)

Gap
(%)

Gap
(%)

CPU
(sec)

MCNFP
(sec)

Gap
(%)

Gap
(%)

Gap
(%)

CPU
(sec)

MCNFP
(sec)

Gap
(%)

CPU
(sec)

Gap
(%)

CPU
(sec)

1 1.5 0.1250 11.47 13.51 9.47 0.390 0.146 12.11 11.70 9.47 0.354 0.125 12.11 11.70 9.47 0.352 0.120 9.47 1.096 35.25 1.159
0.1563 4.37 4.37 4.37 0.403 0.159 4.37 4.37 4.37 0.372 0.169 4.37 4.37 4.37 0.370 0.136 4.37 1.145 32.35 0.772
0.1875 0.83 0.32 0.32 0.466 0.161 0.51 0.32 0.00 0.461 0.164 1.62 0.32 0.00 0.448 0.179 0.00 1.374 21.63 0.326

1.8 0.1250 1.57 2.70 1.57 0.377 0.125 1.57 2.70 1.57 0.348 0.161 1.57 2.70 1.57 0.326 0.135 1.57 1.051 22.28 0.648
0.1563 3.35 1.92 1.92 0.370 0.140 3.35 2.30 2.30 0.440 0.169 3.79 2.28 2.28 0.386 0.164 1.92 1.195 33.25 0.462
0.1875 0.93 0.46 0.46 0.476 0.172 0.93 0.46 0.46 0.448 0.170 0.93 0.46 0.46 0.409 0.165 0.46 1.333 23.05 0.206

2.1 0.1250 2.39 1.96 1.07 0.385 0.116 1.07 1.07 1.07 0.361 0.132 1.07 1.07 1.07 0.357 0.145 1.07 1.103 18.95 0.365
0.1563 1.40 0.00 0.00 0.387 0.141 1.40 0.71 0.00 0.352 0.133 1.40 0.00 0.00 0.377 0.158 0.00 1.116 16.15 0.240
0.1875 0.00 0.00 0.00 0.461 0.146 0.00 0.00 0.00 0.450 0.190 0.00 0.00 0.00 0.394 0.169 0.00 1.304 11.49 0.117

0.75 1.5 0.1250 8.58 7.24 6.94 0.338 0.102 7.13 4.59 3.98 0.336 0.107 8.23 4.85 4.25 0.302 0.101 3.98 0.976 31.16 0.956
0.1667 1.95 3.09 1.28 0.333 0.107 3.06 2.37 1.27 0.323 0.124 2.68 2.37 1.27 0.344 0.148 0.90 1.000 35.54 0.536
0.2083 4.61 4.82 3.84 0.390 0.137 4.61 4.33 3.84 0.367 0.133 4.31 4.33 3.84 0.388 0.151 3.84 1.145 32.54 0.307

1.8 0.1250 8.00 8.89 7.46 0.325 0.130 9.49 10.15 8.45 0.305 0.104 9.03 10.52 8.68 0.286 0.117 6.47 0.916 21.14 0.682
0.1667 2.93 4.97 2.93 0.320 0.118 3.50 4.40 3.50 0.336 0.116 3.50 3.82 2.93 0.297 0.099 2.93 0.952 23.86 0.471
0.2083 0.77 0.30 0.00 0.375 0.133 1.22 1.80 0.90 0.370 0.122 0.90 1.80 0.90 0.372 0.112 0.00 1.117 20.10 0.253

2.1 0.1250 4.29 6.16 3.99 0.289 0.076 4.29 5.08 3.99 0.283 0.109 4.87 5.08 3.99 0.295 0.135 3.99 0.867 16.90 0.365
0.1667 1.19 1.48 0.40 0.362 0.158 1.71 1.13 0.40 0.336 0.113 0.44 2.45 0.44 0.286 0.135 0.00 0.984 36.51 0.234
0.2083 1.19 2.73 0.79 0.364 0.145 0.79 2.73 0.79 0.377 0.133 0.79 2.73 0.79 0.396 0.167 0.79 1.137 29.86 0.154

0.5 1.5 0.1250 8.01 11.82 7.40 0.268 0.083 8.58 10.66 7.44 0.239 0.068 8.31 8.30 6.80 0.242 0.086 6.17 0.749 18.79 0.464
0.1625 6.90 6.94 5.27 0.278 0.088 6.53 5.94 5.27 0.255 0.068 5.53 5.94 4.27 0.263 0.109 4.27 0.796 22.27 0.487
0.1875 2.90 3.41 2.90 0.310 0.115 1.64 2.53 1.26 0.284 0.078 2.40 2.15 1.64 0.297 0.093 0.88 0.890 32.35 0.352

1.8 0.1250 7.79 10.58 6.24 0.216 0.083 8.44 9.86 6.40 0.234 0.081 7.76 9.86 6.06 0.208 0.060 5.19 0.658 21.51 0.297
0.1625 7.72 4.59 3.35 0.304 0.071 5.46 4.69 3.15 0.307 0.094 5.46 2.73 2.42 0.260 0.068 2.42 0.872 22.86 0.339
0.1875 4.40 2.06 0.75 0.289 0.102 3.20 2.49 0.71 0.276 0.088 3.59 2.49 1.06 0.281 0.096 0.36 0.846 32.59 0.354

2.1 0.1250 7.86 8.07 6.77 0.232 0.110 7.82 6.24 5.99 0.257 0.094 7.13 5.00 5.00 0.224 0.055 5.00 0.713 13.45 0.204
0.1625 2.78 1.25 1.25 0.263 0.071 2.47 0.93 0.93 0.255 0.083 1.96 0.93 0.93 0.291 0.086 0.93 0.809 21.11 0.208
0.1875 2.23 2.20 0.97 0.265 0.083 1.91 1.06 0.28 0.258 0.089 1.10 1.06 0.00 0.260 0.071 0.00 0.783 19.28 0.152

var. 1.5 0.1250 12.69 15.53 10.41 0.255 0.091 11.69 11.65 7.55 0.271 0.122 11.07 10.21 7.86 0.239 0.101 7.55 0.765 28.75 0.834
0.1667 8.25 10.84 8.25 0.341 0.112 8.20 10.36 7.41 0.304 0.092 8.57 11.21 7.78 0.294 0.089 7.41 0.939 34.13 0.624
0.2083 3.27 1.42 1.42 0.356 0.120 2.73 1.42 1.42 0.359 0.117 2.73 1.42 1.42 0.333 0.104 1.42 1.049 34.49 0.415

1.8 0.1250 8.07 5.52 5.52 0.297 0.076 8.51 6.51 6.19 0.289 0.102 8.51 5.48 5.48 0.286 0.088 5.16 0.872 24.47 0.766
0.1667 5.77 6.25 4.02 0.328 0.109 5.36 6.54 4.30 0.341 0.138 5.36 6.54 4.30 0.334 0.086 4.02 1.002 24.52 0.417
0.2083 2.90 1.74 1.39 0.361 0.143 1.41 0.00 0.00 0.381 0.169 1.91 0.00 0.00 0.351 0.138 0.00 1.093 32.20 0.304

2.1 0.1250 4.17 4.90 2.78 0.313 0.104 4.16 5.14 3.68 0.310 0.114 4.63 5.14 3.37 0.294 0.144 2.46 0.916 21.04 0.324
0.1667 4.17 2.72 2.13 0.317 0.153 3.18 1.50 0.33 0.297 0.099 3.18 1.50 0.33 0.297 0.104 0.33 0.911 26.43 0.393
0.2083 1.00 0.00 0.00 0.346 0.145 1.00 0.00 0.00 0.362 0.136 1.00 0.00 0.00 0.325 0.114 0.00 1.033 19.26 0.164

Average 4.46 4.58 3.27 0.337 0.119 4.26 4.10 3.02 0.330 0.120 4.22 3.91 2.92 0.318 0.117 2.65 0.986 25.32 0.426

OPN (RPN): Original (Reversed) Precedence Network; CPU: Total CPU time; MCNFP: Total CPU time spent in solving minimum cost network flow problems.
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Table 5.5: Multi-pass heuristic — Set 1: average gaps for each activity priority rule, summary.

LFT LPT LST MIS MTS SPT GRPW GRPW* LST + GRPW* LST + LFT LST+ MTS Average

SF 1 3.13 4.96 2.78 3.94 2.90 7.92 4.89 2.58 2.69 2.65 2.64 2.10
0.75 4.05 7.91 3.55 5.81 4.92 8.50 5.80 3.86 3.72 3.50 3.72 2.55
0.5 4.77 10.85 4.63 7.29 5.85 10.61 8.56 4.82 4.52 4.76 4.48 2.80
var. 4.83 8.36 4.29 7.33 6.19 10.23 7.26 4.49 4.23 4.08 4.23 3.15

NC 1.5 6.35 11.09 5.88 8.86 7.61 11.81 9.66 5.96 5.95 5.97 5.97 4.19
1.8 4.00 8.37 3.55 5.47 4.87 10.36 6.48 3.77 3.57 3.33 3.48 2.54
2.1 2.23 4.60 2.00 3.96 2.42 5.78 3.74 2.07 1.86 1.95 1.86 1.21

MRS 0.1250 7.73 13.66 7.37 10.44 8.68 14.88 11.52 7.25 7.22 7.25 7.18 4.84
0.1563 2.89 4.42 2.62 3.21 2.89 8.44 4.37 2.69 2.49 2.62 2.49 2.10
0.1625 4.49 10.14 3.40 7.65 5.14 9.22 9.31 3.35 3.40 3.29 3.40 2.54
0.1667 4.00 8.15 3.46 5.00 4.83 10.38 5.76 3.91 3.65 3.32 3.65 2.60
0.1875 0.69 2.32 0.57 2.40 1.55 4.37 1.73 0.86 0.63 0.64 0.55 0.28
0.2083 1.34 3.04 1.09 2.85 2.04 2.53 2.39 1.33 1.09 1.09 1.09 1.01

Average 4.20 8.02 3.81 6.09 4.97 9.31 6.63 3.94 3.79 3.75 3.77 2.65

Table 5.6: Multi-pass heuristic — Set 1: average gaps for each resource weight rule, summary.

Resource Weight Rule 0 - R0 Resource Weight Rule 1 - R1 Resource Weight Rule 2 - R2 Best Correia et
al. (2012)

OPN RPN min(OPN,RPN) OPN RPN min(OPN,RPN) OPN RPN min(OPN,RPN)
min(R0, R1,

R2)
Gap
(%)

Gap
(%)

Gap
(%)

CPU
(sec)

MCNFP
(sec)

Gap
(%)

Gap
(%)

Gap
(%)

CPU
(sec)

MCNFP
(sec)

Gap
(%)

Gap
(%)

Gap
(%)

CPU
(sec)

MCNFP
(sec)

Gap
(%)

CPU
(sec)

Gap
(%)

CPU
(sec)

SF 1 2.92 2.81 2.13 0.413 0.145 2.81 2.63 2.14 0.398 0.157 2.98 2.54 2.14 0.380 0.152 2.10 1.191 23.82 0.477
0.75 3.72 4.41 3.07 0.344 0.123 3.98 4.06 3.01 0.337 0.118 3.86 4.22 3.01 0.330 0.130 2.55 1.010 27.51 0.440
0.5 5.62 5.66 3.88 0.269 0.089 5.12 4.93 3.49 0.263 0.082 4.80 4.27 3.13 0.259 0.080 2.80 0.791 22.69 0.317
var. 5.59 5.43 3.99 0.324 0.117 5.14 4.79 3.43 0.324 0.121 5.22 4.61 3.39 0.306 0.107 3.15 0.953 27.25 0.471

NC 1.5 6.15 6.94 5.16 0.344 0.118 5.93 5.85 4.44 0.327 0.114 5.99 5.60 4.41 0.323 0.118 4.19 0.994 29.94 0.603
1.8 4.52 4.16 2.97 0.336 0.117 4.37 4.33 3.16 0.339 0.126 4.36 4.06 3.01 0.316 0.111 2.54 0.992 25.15 0.433
2.1 2.72 2.62 1.68 0.332 0.121 2.48 2.13 1.46 0.325 0.119 2.30 2.08 1.33 0.316 0.124 1.21 0.973 20.87 0.243

MRS 0.1250 7.07 8.07 5.80 0.307 0.103 7.07 7.11 5.48 0.299 0.110 7.02 6.66 5.30 0.284 0.107 4.84 0.890 22.81 0.589
0.1563 3.04 2.10 2.10 0.387 0.146 3.04 2.46 2.22 0.388 0.157 3.19 2.22 2.22 0.378 0.153 2.10 1.152 27.25 0.491
0.1625 5.80 4.26 3.29 0.282 0.076 4.82 3.85 3.12 0.272 0.082 4.31 3.20 2.54 0.272 0.088 2.54 0.826 22.08 0.345
0.1667 4.04 4.89 3.17 0.333 0.126 4.17 4.38 2.87 0.323 0.114 3.95 4.65 2.84 0.309 0.110 2.60 0.965 30.17 0.446
0.1875 1.88 1.41 0.90 0.378 0.130 1.36 1.14 0.45 0.363 0.130 1.61 1.08 0.53 0.348 0.129 0.28 1.088 23.40 0.251
0.2083 2.29 1.83 1.24 0.365 0.137 1.96 1.71 1.16 0.369 0.135 1.94 1.71 1.16 0.361 0.131 1.01 1.096 28.08 0.266

Average 4.46 4.58 3.27 0.337 0.119 4.26 4.10 3.02 0.330 0.120 4.22 3.91 2.92 0.318 0.117 2.65 0.986 25.32 0.426

OPN (RPN): Original (Reversed) Precedence Network; CPU: Total CPU time; MCNFP: Total CPU time spent in solving minimum cost network flow problems.
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Set 2
We recall that Set 2 corresponds to 216 larger instances of the MSRCPSP created using the generator de-
veloped in Section 3.4.3 and for which no information is available concerning their optimal values. This
is the type of instances for which a good heuristic is of great relevance since hardly an exact approach
can be considered (as our results presented next make clear).

We follow the same reasoning that we adopted for Set 1 and start by analyzing separately the behavior
of the different activity priority rules. In addition to the single-priority rules summarized in Table 5.1 we
study again the behavior of the three multi-priority rules also considered for Set 1, namely LST +GRPW∗,
LST + LFT and LST + MTS. This choice followed a reasoning similar to the one already discussed for
the smaller instances.

Table 5.7 displays the number of best solutions achieved by each activity priority rule for each class
of test instances. For a given instance, the best solution was obtained by running the selected activity
priority rule with the 3 resource weight rules and with the original and reversed precedence networks,
choosing at the end the minimum of these 6 makespan values.

The best performing activity priority rule was the multi-priority rule LST + GRPW∗, which reached
the best upper bounds in 63 instances. The single-priority rule LST appears in the second position in this
ranking followed by the multi-priority rules LST + MTS and LST + LFT . As in the instances in Set 1,
again, the worst results were obtained with the SPT activity priority rule.

These results show some consistency when looked at together with the results obtained for Set 1.
Accordingly, the heuristic reveals some robustness, which is an important feature for an approximate
approach.

The previous analysis does not give an indication about the performance of the heuristic. In order
to get such indication, we computed the gaps (in percentage) of both the proposed heuristic and the one
developed by Correia et al. (2012) in relation to the length of the critical path as

gap =
ZH – ZCP

ZCP × 100%,

where ZH denotes the upper bound provided by the heuristic and ZCP denotes the length of the critical
path. We note that despite being a typically weak lower bound, the length of the critical path has been
widely used to evaluate the performance of approximate methods for the RCPSP (cf. Kolisch, 1996b,
Kolisch and Hartmann, 2006).

Regarding the developed multi-pass heuristic, the upper bound considered for each instance was the
best solution obtained after running this heuristic with each distinct combination of the 3 resource weight
rules with the 11 activity priority rules and with the 2 precedence networks (original and reversed), thus
totalizing 66 passes. Additionally, we measured the CPU time required by the general solver CPLEX
to reach a feasible solution at least as good as the one provided by the multi-pass heuristic. With this
purpose, we implemented the continuous-time model PCT presented in Section 3.2. The upper bound
considered for computing the windows for the start times of the activities was the sum of their processing
times. A time limit of 36000 seconds (10 hours) of CPU time was set for each instance and all the other
CPLEX parameters were used with default settings.

Table 5.8 summarizes the output of these experiments. This table contains 11 columns. Each row is
associated with a distinct combination of SF, NC, and MRS, and hence refers to the average results for
6 instances. The results associated with the proposed multi-pass heuristic are displayed in Columns 4,
5 and 6. Column 4 presents the gap; Columns 5 and 6 refer to the average CPU time (in seconds) spent
computing the best feasible solution and in solving the minimum cost network flow problems during
the computation of such solution, respectively. The gap depicted in Column 4 was computed for each
instance considering the makespan retrieved after performing the 66 passes of the proposed multi-pass
heuristic (i.e., the best makespan achieved). Analogously to Columns 4 and 5, Columns 7 and 8 present
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Table 5.7: Multi-pass heuristic — Set 2: performance analysis of the activity priority rules.

SF NC MRS LFT LPT LST MIS MTS SPT GRPW GRPW* LST + GRPW* LST + LFT LST + MTS

1 1.5 0.0625 4 1 0 1 2 0 1 1 0 0 1
0.0781 1 0 3 0 0 0 0 1 1 4 1
0.0938 1 0 3 0 0 0 2 2 3 3 3

1.8 0.0625 1 1 0 0 0 0 0 3 2 2 2
0.0781 0 0 4 1 1 0 0 0 4 1 4
0.0938 2 0 4 1 1 0 0 0 4 3 4

2.1 0.0625 0 0 1 1 2 1 1 1 1 0 1
0.0781 2 1 2 1 0 0 0 1 2 2 2
0.0938 3 0 1 0 1 0 0 3 1 2 0

0.75 1.5 0.0625 0 0 1 0 1 0 1 2 2 1 1
0.0792 1 0 0 1 2 0 0 1 2 1 3
0.0938 0 0 4 0 0 0 0 2 4 2 3

1.8 0.0625 0 0 1 0 1 0 1 4 1 0 0
0.0792 1 0 3 0 1 0 0 2 2 1 2
0.0938 1 0 3 0 2 0 2 1 2 1 2

2.1 0.0625 2 1 0 3 0 0 1 1 0 0 0
0.0792 1 0 1 0 0 0 0 3 2 2 2
0.0938 1 0 4 1 2 0 0 2 4 5 4

0.5 1.5 0.0625 1 0 0 2 2 1 0 1 2 1 2
0.0781 0 0 2 0 1 0 1 2 2 1 0
0.0938 1 0 1 0 0 0 0 3 3 3 2

1.8 0.0625 2 0 0 0 0 0 3 0 2 1 2
0.0781 2 0 0 1 0 1 1 1 1 1 0
0.0938 0 0 1 0 2 0 1 4 1 1 1

2.1 0.0625 1 0 2 3 1 0 1 1 1 2 1
0.0781 0 1 2 1 1 0 2 0 1 2 1
0.0938 4 0 3 0 1 0 0 3 1 2 1

var. 1.5 0.0625 2 0 1 0 0 1 0 0 0 2 0
0.0792 2 0 1 0 1 0 0 2 1 0 0
0.0938 0 0 4 0 0 0 0 2 1 1 1

1.8 0.0625 1 1 1 1 1 0 1 0 1 0 1
0.0792 2 0 2 0 1 0 0 1 3 3 3
0.0938 2 0 1 2 1 0 0 1 2 2 2

2.1 0.0625 1 1 1 1 0 1 0 1 1 1 1
0.0792 2 0 0 0 2 0 0 2 1 0 1
0.0938 2 0 2 0 2 0 0 0 2 3 3

Average 46 7 59 21 32 5 19 54 63 56 57

the gap and the CPU time (in seconds) spent computing a feasible solution obtained by the heuristic
developed by Correia et al. (2012), respectively. Column 9 presents the number of instances where the
general solver was able to find a solution at least as good as the one provided by the multi-pass heuristic;
Column 10 displays the number of instances where an out of memory error occurred. Finally, Column
11 depicts the average CPU time (in seconds) taken by CPLEX to reach solutions at least as good as the
ones provided by the proposed heuristic.

From the last row of Table 5.8, we observe that the average gaps achieved by the multi-pass heuristic
are roughly 40% smaller than the ones associated with the heuristic developed by Correia et al. (2012).
Additionally, we note that the computational effort associated with the former is nearly a third of the
required by the latter. A deeper analysis reveals that the multi-pass heuristic obtains the smallest gaps for
every combination of SF, NC and MRS. We also observe from the last row of Table 5.8 that in 4 (out of
216) instances, CPLEX failed due to an out of memory error and it was only for 60 instances (out of 216)
that CPLEX was able to achieve an upper bound at least as good as the one provided by the multi-pass
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heuristic. To reach such upper bound, CPLEX required, on average, 4861 seconds, which represents a
significant increase in computational effort.

Table 5.8: Multi-pass heuristic — Set 2: multi-pass heuristic and CPLEX results.

Multi-pass heuristic Correia et al. (2012) IBM ILOG CPLEX 12.6

SF NC MRS Gap (%) CPU (sec) MCNFP (sec) Gap (%) CPU (sec) # SAGH # OOM SAGH CPU (sec)

1 1.5 0.0625 104.80 4.718 1.937 137.92 43.798 0 0
0.0781 52.85 6.726 3.257 91.51 26.081 0 0
0.0938 15.97 9.007 4.182 63.56 7.921 0 0

1.8 0.0625 91.01 4.598 1.708 121.03 30.576 0 0
0.0781 31.38 6.634 3.317 63.64 17.955 0 0
0.0938 15.92 9.009 4.114 66.28 6.339 0 0

2.1 0.0625 63.94 4.611 1.834 95.42 17.504 0 0
0.0781 22.45 6.632 3.272 55.97 8.242 0 0
0.0938 10.44 9.176 4.120 62.22 3.447 0 0

0.75 1.5 0.0625 109.04 3.356 1.306 133.74 30.480 1 0 14388.300
0.0792 55.03 4.085 1.516 91.49 21.333 0 0
0.0938 29.55 5.213 1.794 79.73 9.363 0 0

1.8 0.0625 104.97 3.335 1.240 121.49 16.896 2 0 7614.840
0.0792 36.61 4.182 1.594 75.28 13.497 0 0
0.0938 15.95 5.101 1.800 58.00 5.797 0 0

2.1 0.0625 60.78 3.257 1.181 84.55 10.335 3 1 16144.487
0.0792 19.17 4.005 1.472 56.54 7.129 0 1
0.0938 12.58 4.940 1.859 53.77 3.852 2 0 1661.307

0.5 1.5 0.0625 131.36 2.468 0.843 141.02 9.133 5 0 341.513
0.0781 80.97 2.965 1.047 97.92 13.184 4 0 6481.581
0.0938 37.17 3.231 1.034 81.05 10.069 1 0 47.609

1.8 0.0625 105.44 2.398 0.832 109.94 7.667 6 0 562.588
0.0781 48.71 2.820 0.911 79.54 9.247 4 1 10115.969
0.0938 31.28 3.489 1.144 67.38 7.775 3 0 3040.920

2.1 0.0625 92.49 2.510 0.879 105.59 4.971 6 0 558.843
0.0781 49.16 2.796 0.938 76.85 5.332 6 0 1141.913
0.0938 9.56 3.085 1.091 40.71 5.188 4 0 5181.150

var. 1.5 0.0625 148.84 3.286 1.201 174.88 19.345 2 0 10451.225
0.0792 43.91 3.778 1.434 82.04 21.286 0 0
0.0938 30.65 4.731 1.670 81.12 13.779 0 0

1.8 0.0625 86.39 3.075 1.134 106.10 11.839 3 0 6076.100
0.0792 34.35 3.820 1.526 72.32 14.533 0 0
0.0938 30.13 4.906 1.938 82.03 8.673 0 0

2.1 0.0625 56.76 3.080 1.181 76.82 8.117 4 0 9602.805
0.0792 32.94 3.973 1.487 66.91 7.810 2 1 5642.696
0.0938 13.70 4.658 1.775 58.13 4.982 2 0 4952.835

Average 53.23 4.435 1.766 86.46 12.874 60 4 4861.331

CPU: Total CPU time; MCNFP: Total CPU time spent in solving minimum cost network flow problems; SAGH: solutions at least as
good as those obtained by the multi-pass heuristic; OOM: out of memory error.

Similarly to the instances in Set 1, we investigated the influence of SF, NC and MRS on the quality of
the results. With this purpose, we present Tables 5.9 and 5.10. The former was obtained by aggregating
the results presented in Table 5.7 according to the different values of SF, NC, and MRS; the latter results
from doing the same to Table 5.8.

We recall that for each skill factor value there are 54 instances and that each network complexity
value is associated with 72 instances. The modified resource strength of 0.0625 and 0.0938 occurs in 72
instances each whereas the other two values of modified resource strength occur in 36 instances each.

Observing Table 5.9, we notice that (as expected) there is no rule that was the best one for all the
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values of SF, NC and MRS. The best performing activity priority rule was the multi-priority rule LST +
GRPW∗, which obtained the best results in a total of 5 distinct parameter values. This rule produced the
highest number of best solutions in 2 out of 4 SF values (1 and 0.75) and in 2 out of 3 NC values (1.5
and 1.8). As for MRS, we observe that the best results were attained by the single-priority rules LST (for
MRS values of 0.0781 and 0.0938) and GRPW∗ (for MRS values of 0.0625 and 0.0792).

In Table 5.10, we observe that for the 54 instances with SF = 1, CPLEX was not able to find
any solution at least as good as the one provided by the heuristic within 10 hours of CPU time. The
best performance of CPLEX in terms of skill factor occurred in instances with SF = 0.5. Regarding
the network complexity, the number of feasible solutions found by CPLEX increased as the NC value
increased. In terms of the modified resource strength, the value 0.0625 originated the best results whereas
the value 0.0792 yielded the worst ones. We also observe that the multi-pass heuristic achieves the
smallest gaps for every value of SF, NC and MRS in a significantly smaller computational time than
the heuristic by Correia et al. (2012). This improvement in the gaps is more noticeable in the results
associated with MRS = 0.0792 and MRS = 0.0938, where the gaps provided by the proposed heuristic
are, respectively, 50% and 68% smaller than the ones obtained with the heuristic by Correia et al. (2012).

Table 5.9: Multi-pass heuristic — Set 2: performance analysis of the activity priority rules, summary.

LFT LPT LST MIS MTS SPT GRPW GRPW* LST + GRPW* LST + LFT LST+ MTS

SF 1 14 3 18 5 7 1 4 12 18 17 18
0.75 7 1 17 5 9 0 5 18 19 13 17
0.5 11 1 11 7 8 2 9 15 14 14 10
var. 14 2 13 4 8 2 1 9 12 12 12

NC 1.5 13 1 20 4 9 2 5 19 21 19 17
1.8 14 2 20 6 11 1 9 17 25 16 23
2.1 19 4 19 11 12 2 5 18 17 21 17

MRS 0.0625 15 5 8 12 10 4 10 15 13 10 12
0.0781 5 2 13 4 3 1 4 5 11 11 8
0.0792 9 0 7 1 7 0 0 11 11 7 11
0.0938 17 0 31 4 12 0 5 23 28 28 26

Average 46 7 59 21 32 5 19 54 63 56 57
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Table 5.10: Multi-pass heuristic — Set 2: multi-pass heuristic and CPLEX results, summary.

Multi-pass heuristic Correia et al. (2012) IBM ILOG CPLEX 12.6

Gap (%) CPU (sec) MCNFP (sec) Gap (%) CPU (sec) # SAGH # OOM SAGH CPU (sec)

SF 1 45.42 6.790 3.082 84.17 17.985 0 0
0.75 49.30 4.164 1.529 83.84 13.187 8 2 10171.757
0.5 65.13 2.862 0.969 88.89 8.063 39 1 2860.841
var. 53.07 3.923 1.483 88.93 12.263 13 1 7594.848

NC 1.5 70.01 4.464 1.768 104.66 18.814 13 0 4844.019
1.8 52.68 4.447 1.772 85.25 12.566 18 1 4801.119
2.1 37.00 4.394 1.757 69.46 7.242 29 3 4906.465

MRS 0.0625 96.32 3.391 1.273 117.37 17.555 32 1 5125.924
0.0781 47.59 4.762 2.124 77.57 13.340 14 1 5231.548
0.0792 37.00 3.974 1.505 74.10 14.265 2 2 5642.696
0.0938 21.07 5.545 2.210 66.17 7.265 12 0 3593.604

Average 53.23 4.435 1.766 86.46 12.874 60 4 4861.331

CPU: Total CPU time; MCNFP: Total CPU time spent in solving minimum cost network flow problems; SAGH: solutions at least
as good as those obtained by the multi-pass heuristic; OOM: out of memory error.

5.3.2 Biased Random-key Genetic Algorithm — BRKGA

In this section, we report the numerical experiments performed to evaluate the performance of the pro-
posed BRKGA. We first discuss the methodology for selecting the values for the parameters of the
developed BRKGA, thus fine-tunning the algorithm. Afterwards, the computational results are reported.

Fine-tuning the BRKGA
The BRKGA introduced in Section 5.2 will become a heuristic for our problem only after the values for
its parameters are specified. By checking the literature on genetic algorithms and their applications, we
conclude that no method exists for identifying the best values for the parameters of this metaheuristic
with respect to some particular problem. Hence, it becomes necessary to conduct a series of preliminary
computational tests to find a good set of values for the parameters of the BRKGA.

We performed the preliminary tests using all instances of Set 1, since these instances have been
intensively studied in the literature and we know the optimal value for most of them. Considering small-
sized test beds could compromise the representativeness of the 36 distinct classes of instances defined
by the combination of their values of SF, NC, and MRS. Moreover, we assumed that building a hybrid
set consisting of instances from Set 1 and Set 2 would not allow a greater variability of the values of
parameters that define an instance of this problem, since the proportions of these values, which are
indexed to the size of the instances, remain roughly constant for both sets of instances. Therefore, we
expect the BRKGA to have a similar performance, for a given configuration, on both Set 1 and Set 2.
Thus, we assume that a good configuration for Set 1 will also have a good performance for the larger
instances in Set 2.

In order to get a hint in terms of good ranges for the values of the parameters of the BRKGA, we
referred to Gonçalves et al. (2008), Mendes et al. (2009), and Gonçalves et al. (2011) where a BRKGA
framework has been successfully used to solve resource-constrained project scheduling problems.

Unlike the BRKGA frameworks proposed in the aforementioned studies, we consider 3 variants of
the BRKGA with regard to the type of decoder employed, namely: (i) all the chromosomes are decoded
with the PSS presented in Section 5.1.3; (ii) all the chromosomes are decoded with the SSS proposed
in Section 5.2.2; and (iii) the decoder mechanism applied to each chromosome depends on the value
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of the allele in the position n + K + 1 (see Figure 5.2). These experiments allow us to evaluate if one
of the variants performs better than the others. Regarding the precedence network schemes (original or
reversed), the computational results presented in Table 5.4 indicate that no scheme was always better than
the other. This means that, for some instances, the original precedence network originated better feasible
solutions than when the reversed precedence network was applied, while for the remaining instances the
best results were achieved by the reversed precedence network. However, it was not possible to identify
any class of instances (defined by SF, NC, MRS) where a precedence network scheme performs better
than the other. Therefore, we decided to use both network schemes in the chromosomes in order to
diversify the search space. We focus our deeper analysis in the aspects that clearly may be decisive for
the performance of the new heuristic framework, namely the decoders and the proportions of elite and
mutant populations of the proposed BRKGA.

Hence, the precedence network scheme considered for decoding a chromosome in every of the re-
ferred variants, depends on the value of the gene n + K + 2. Regarding the values of the other BRKGA
parameters, Table 5.11 presents the ranges of values considered.

Table 5.11: BRKGA — Preliminary tests for determining the values for the parameters of the BRKGA.

Population size (p) 5× n chromosomes

Probability of inheriting an allele from the elite parent (ρe) 0.7

Percentage of elite solutions in each generation (pe) {10, 15}

Percentage of mutant solutions in each generation (pm) {15, 20, 30}

Decoder (δ)* {PSS, SSS, Both}

Stopping criterion (G) 5× n generations

Fitness makespan (smaller is better)

∗ We considered both original and reversed precedence networks.

A total of 18 distinct configurations are obtained by combining the values in Table 5.11. Each
BRKGA configuration was set to run 5 times for each instance (using a distinct seed for the random
number generation at the beginning of each run). Accordingly, for each instance tested, it is possible
to compute the average and minimum values for the makespan. The runs are independent from each
other and terminate when the maximum number of generations is reached. We present in Table 5.12,
the average results for every configuration tested. This table consists of two main sets of Columns:
(i) Columns 4–8 refer to the results after n/2 generations, and (ii) Columns 9–13 to the results after
5 × n generations. The scheduling generation scheme considered as well as the values of pe and pm are
presented in Columns 1–3, respectively. Each row depicts the average values for the 216 instances in Set
1. In terms of percentage gaps, their average and minimum values are indicated in Columns 4 and 9, and
Columns 5 and 10, respectively. The average makespan values and their associated standard deviations
are presented in Columns 6 and 11, and Columns 7 and 12, respectively. Columns 8 and 13 contain
the total CPU time (in seconds) used in the 5 runs until reaching n

2 generations and 5 × n generations
respectively. Each gap (in percentage) is computed as

gap =
ZB – ZLB

ZLB × 100%,

where ZB denotes the upper bound provided by the BRKGA and ZLB denotes the optimal value or the
best known lower bound obtained by Correia et al. (2012).

The makespan values and gaps presented in Table 5.12 allow us to conclude that, as expected, with
5× n generations it was possible to obtain better upper bounds than those obtained with n/2 generations.
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However, this improvement in the quality of the feasible solutions was achieved at the expense of about
10 times more CPU time, which seems not to be compensatory.

Table 5.12: BRKGA — Results of the preliminary tests.

G = n
2 generations G = 5× n generations

δ
pe

(%)
pm
(%)

Gap (%) Makespan
Total time
CPU (sec)

Gap (%) Makespan
Total time
CPU (sec)

Avg. Min. Avg. Std. dev. Avg. Min. Avg. Std. dev.

PSS 10 15 1.19 0.88 52.296 0.163 55.188 0.92 0.75 52.162 0.095 538.735
20 1.19 0.83 52.298 0.196 55.322 0.87 0.70 52.135 0.112 540.412
30 1.17 0.86 52.294 0.176 55.558 0.84 0.69 52.114 0.080 543.484

15 15 1.20 0.87 52.300 0.179 52.668 0.89 0.73 52.141 0.098 510.533
20 1.18 0.87 52.294 0.161 52.688 0.88 0.72 52.136 0.085 510.715
30 1.25 0.92 52.331 0.179 52.785 0.87 0.72 52.130 0.085 513.483

SSS 10 15 1.71 1.08 52.531 0.301 76.939 1.21 0.83 52.281 0.191 750.451
20 1.79 1.23 52.582 0.278 77.054 1.23 0.81 52.302 0.221 753.332
30 1.82 1.28 52.604 0.274 77.079 1.20 0.85 52.284 0.195 754.394

15 15 1.68 1.11 52.531 0.278 73.416 1.19 0.83 52.279 0.205 712.074
20 1.82 1.16 52.600 0.296 73.436 1.16 0.79 52.262 0.193 712.910
30 1.82 1.24 52.606 0.286 73.477 1.10 0.75 52.239 0.178 714.160

Both 10 15 1.19 0.82 52.298 0.191 63.326 0.92 0.73 52.158 0.109 613.704
20 1.23 0.86 52.314 0.197 63.668 0.89 0.72 52.144 0.118 617.794
30 1.21 0.78 52.310 0.225 64.405 0.88 0.74 52.140 0.086 627.068

15 15 1.20 0.84 52.303 0.186 60.838 0.89 0.73 52.142 0.094 585.492
20 1.23 0.87 52.317 0.191 60.640 0.86 0.71 52.131 0.097 583.218
30 1.26 0.90 52.333 0.203 61.265 0.86 0.72 52.124 0.083 592.537

We observe that configurations using either the PSS or both decoders tended to yield the best results
either after n/2 generations or after 5 × n. Due to the prohibitive computational effort associated with
considering a large number of generations, we focus on the results obtained after n/2 generations.

From the results obtained after n/2 generations, we conclude that the use of the PSS decoder in
all the chromosomes provided the best results in terms of the average percentage gaps and CPU time.
However, the use of both decoders (PSS and SSS) rendered the best minimum gaps for the majority of the
combinations of pe and pm. Among the 6 combinations of pe and pm, we will adopt pe = 10 and pm = 30
since this was the combination that originated the best results both in terms of the average (provided
by the PSS decoder) and in terms of the minimum percentage gaps (achieved when both decoders were
used).

In the computational results reported in Tables 5.5 and 5.6, we observe that the multi-pass heuris-
tic obtained higher percentage gaps for instances having less resources. In fact, we know that for the
instances in Set 1, a smaller value of MRS corresponds to a smaller number of resources. Since those in-
stances were also the ones that required less computational time, we take advantage of this behavior and
consider a population size determined not only by the number of activities (n) but also by the number of
resources (K) in each instance. Once again, we used all the instances in Set 1 and tested p = 5× dn×n

K e.
By fixing the number of activities (which is 20 for all instances in Set 1), such value for p originates
larger population sizes for the instances with a smaller number of resources.

Therefore, we present next more intensive tests, considering the two selected configurations:

i) p = 5× dn×n
K e, pe = 10%, pm = 30%, ρe = 0.7 and δ = PSS;

ii) p = 5× dn×n
K e, pe = 10%, pm = 30%, ρe = 0.7 and δ = Both.

The maximum number of generations will be considered as the stopping criterion and will be set to
n/2.

76



5.3. Computational experiments and results

BRKGA results
In this section, we report the results obtained with the adopted configurations above-mentioned. We start
by presenting and discussing the results obtained for the instances in Set 1 and afterwards we focus on
Set 2.

In what follows, we denote the BRKGA with the single decoder PSS as BRKGAPSS and the BRKGA
with the two decoders as BRKGABoth. We analyze thoroughly the former configuration and then we point
out the differences to when the BRKGABoth is used. This way, we also avoid redundancy in terms of the
contents presented.

Set 1
In Table 5.13, we present the results for the instances in Set 1 considering the instances grouped into
36 classes according to their values of SF, NC and MRS. Each row of this table refers to the average
results for 6 instances, which together define a class of instances. The percentage gaps were computed as
explained before. In Table 5.14, we summarize the same results in order to highlight their most relevant
features.

The information presented in Tables 5.13 and 5.14 can be partitioned into 4 parts as follows: (i)
Columns 1–3 indicate the characteristics of the instances; (ii) Columns 4–8 contain the results obtained
with the BRKGAPSS. In particular, Columns 4 and 5 are associated with the average and minimum gaps
achieved, Columns 6 and 7 depict the average makespan values and their associated standard deviation,
respectively, and Column 8 contains the total CPU time (in seconds) required to perform the 5 runs; (iii)
Columns 9–13 contain the same information as (ii) but for BRKGABoth; (iv) Columns 14–15 present the
percentage gap obtained by the multi-pass heuristic and the corresponding CPU time, respectively.

From Table 5.13, we observe that the average and minimum gaps achieved by the BRKGAPSS im-
prove the results provided by the multi-pass heuristic in 26 and 27 out of the 36 classes of instances,
respectively. In terms of average and minimum gaps, the BRKGAPSS achieved the same results as the
multi-pass heuristic in 8 classes of instances, 7 of which correspond to a gap of 0.0%. The BRKGAPSS
achieved a gap of 0.0% for all instances in 10 and 19 classes of instances regarding average and minimum
gaps, respectively.

The 12 classes of instances whose minimum gaps obtained by the BRKGAPSS are highlighted in
boldface indicate that the BRKGAPSS was able to find the optimal value of all these 72 instances but the
multi-pass heuristic was not.

The higher gaps yielded by the BRKGAPSS are associated with instances with SF = var., NC = 1.5,
MRS = 0.1667. The higher values of the standard deviation of the makespan occur more commonly in the
classes of instances associated with the smallest value of MRS. These correspond to the hardest instances
with fewer resources, hence having larger population sizes and thus consuming more computational time.

The last row of Table 5.13 presents the average results across all the 216 instances in Set 1. We ob-
serve that the gaps provided by the BRKGAPSS improve the ones of the multi-pass heuristic from 2.65%
to 1.10% in the case of the average gaps and to 0.79% in terms of the minimum gaps. Hence, regarding
the minimum gaps, the values provided by the BRKGAPSS are roughly 3.4 times smaller than the ones
achieved by the multi-pass heuristic. In terms of CPU time, the BRKGAPSS requires an average time of
one minute while the multi-pass heuristic needs on average one second. In spite of this difference in the
computational time, the supremacy of the BRKGAPSS is clear in terms of the quality of the obtained gaps
and one minute of average time is still negligible when we look into the complexity of the MSRCPSP.

Similar conclusions can be drawn for the results obtained using the BRKGABoth. That version of the
BRKGA achieves better results than the multi-pass heuristic for 26 classes out of 36 classes of instances
both in terms of average and minimum gaps. The 9 classes of instances whose minimum gaps obtained
by the BRKGABoth are highlighted in boldface indicate that the BRKGABoth was able to find the optimal
value of all these 54 instances but the multi-pass heuristic was not.
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Moreover, we observe the supremacy of the BRKGABoth over the BRKGAPSS regarding average gaps
for 5 classes of instances, regarding minimum gaps for also 5 classes of instances and, in terms of both
average and minimum gaps for 1 class of instances. Furthermore, the BRKGABoth was able to reach
the optimal solutions for all the instances in the following classes of instances (a total of 12 instances):
SF = var., NC = 1.8, MRS = 0.2083 and SF = 0.5, NC = 1.5, MRS = 0.1875, and the BRKGAPSS was
not. This behavior may be associated with the incorporation of the SSS decoder which was also the
responsible for the BRKGABoth requiring a slightly higher computational time than the BRKGAPSS.

From Table 5.14, one can observe that, for the BRKGAPSS, as the SF decreases, the gaps also decrease
while the associated computational effort increases. This increase may be justified with the fact that
instances with a smaller SF have fewer resources and thus originate larger population sizes. For instances
having SF = 0.5, the BRKGAPSS achieved solutions that correspond to an improvement of 6 and 22.8
times the results of the multi-pass heuristic, for average and minimum percentage gaps, respectively.
Despite the instances associated with SF = 1 rendering a smaller improvement, the minimum gaps
provided by the BRKGAPSS for these instances are roughly half of the ones obtained when using the
multi-pass heuristic.

Looking into the results from the perspective of the network complexity (NC) values, we conclude
that an increase in this parameter leads, as expected, to a reduction in the gaps of the BRKGA. The
BRKGAPSS was able to reduce the minimum gaps of the instances having NC = 2.1 to nearly 0.0%.

The instances having MRS = 0.1625 were the ones where the BRKGAPSS produced the smallest
gaps with values of 0.16% and 0% for average and minimum gaps, respectively. We point out that all
these instances have SF = 0.5 and thus correspond to cases that were among the hardest to tackle by
the multi-pass heuristic. In this subset of “harder” instances, we also find the ones associated with small
values of MRS, such as MRS = 0.1250, where the BRKGAPSS originates a minimum gap of 0.83%. This
correspond to a major improvement since the multi-pass heuristic produced gaps roughly 6 times higher.

The BRKGABoth improve the results obtained by the BRKGAPSS for MRS = 0.1563 and MRS =
0.1875, regarding average gaps and for SF = 1, MRS = 0.1875 and MRS = 0.2083 in terms of minimum
gaps.
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Table 5.13: BRKGA — Set 1: comparative analysis.

BRKGA 5 runs
p = 5× d n×n

K e, pe = 10%, pm = 30%, ρe = 70%,G = n
2

Multi-pass heuristic

δ = PSS δ = Both

Gap (%) Makespan
Total time
CPU (sec)

Gap (%) Makespan
Total time
CPU (sec)

Gap (%)
Total time
CPU (sec)

SF NC MRS Avg. Min. Avg. Std. dev. Avg. Min. Avg. Std. dev.

1 1.5 0.1250 6.33 6.13 52.433 0.149 61.027 6.47 5.83 52.500 0.448 66.355 9.47 1.096
0.1563 2.89 2.89 49.167 0.000 55.743 2.97 2.89 49.200 0.075 63.376 4.37 1.145
0.1875 0.00 0.00 48.667 0.000 56.852 0.00 0.00 48.667 0.000 67.529 0.00 1.374

1.8 0.1250 0.73 0.00 53.033 0.289 59.165 0.77 0.00 53.067 0.322 64.993 1.57 1.051
0.1563 1.19 0.79 47.667 0.149 54.801 1.03 0.79 47.600 0.091 64.405 1.92 1.195
0.1875 0.46 0.46 45.833 0.000 54.293 0.46 0.46 45.833 0.000 66.847 0.46 1.333

2.1 0.1250 0.00 0.00 64.167 0.000 60.835 0.00 0.00 64.167 0.000 69.524 1.07 1.103
0.1563 0.00 0.00 53.833 0.000 52.455 0.00 0.00 53.833 0.000 61.553 0.00 1.116
0.1875 0.00 0.00 56.667 0.000 54.155 0.00 0.00 56.667 0.000 67.839 0.00 1.304

0.75 1.5 0.1250 0.70 0.53 59.767 0.166 69.142 0.85 0.26 59.833 0.332 75.654 3.98 0.976
0.1667 0.33 0.00 44.133 0.166 57.961 0.44 0.00 44.200 0.231 65.579 0.90 1.000
0.2083 2.68 2.39 51.433 0.091 54.167 3.06 2.87 51.567 0.091 63.849 3.84 1.145

1.8 0.1250 2.04 0.82 60.433 0.610 66.369 2.27 1.31 60.567 0.498 71.881 6.47 0.916
0.1667 2.34 1.72 47.800 0.224 54.704 2.46 2.04 47.833 0.183 63.326 2.93 0.952
0.2083 0.00 0.00 49.833 0.000 52.925 0.00 0.00 49.833 0.000 64.306 0.00 1.117

2.1 0.1250 0.95 0.00 59.600 0.428 65.550 0.74 0.22 59.533 0.298 70.397 3.99 0.867
0.1667 0.00 0.00 43.167 0.000 56.201 0.24 0.00 43.267 0.091 63.110 0.00 0.984
0.2083 0.00 0.00 45.000 0.000 52.240 0.00 0.00 45.000 0.000 63.240 0.79 1.137

0.5 1.5 0.1250 1.79 0.26 61.633 0.833 81.355 1.96 0.80 61.733 0.584 85.962 6.17 0.749
0.1625 0.20 0.00 49.933 0.224 67.694 0.34 0.00 50.000 0.183 73.764 4.27 0.796
0.1875 0.51 0.51 41.667 0.000 64.173 0.10 0.00 41.533 0.075 72.743 0.88 0.890

1.8 0.1250 0.79 0.34 60.267 0.240 72.780 0.97 0.63 60.367 0.257 77.886 5.19 0.658
0.1625 0.29 0.00 55.467 0.240 70.753 0.41 0.00 55.533 0.224 75.775 2.42 0.872
0.1875 0.14 0.00 47.900 0.091 62.440 0.22 0.00 47.933 0.091 70.642 0.36 0.846

2.1 0.1250 0.42 0.00 71.967 0.447 78.988 0.39 0.24 71.967 0.183 81.704 5.00 0.713
0.1625 0.00 0.00 55.167 0.000 65.061 0.00 0.00 55.167 0.000 73.334 0.93 0.809
0.1875 0.00 0.00 56.000 0.000 57.938 0.00 0.00 56.000 0.000 66.694 0.00 0.783

var. 1.5 0.1250 3.12 1.58 52.467 0.611 60.477 3.45 2.19 52.633 0.743 68.199 7.55 0.765
0.1667 6.75 6.56 47.233 0.091 53.469 6.90 6.56 47.300 0.183 61.253 7.41 0.939
0.2083 0.49 0.49 37.667 0.000 49.560 0.49 0.49 37.667 0.000 60.592 1.42 1.049

1.8 0.1250 0.91 0.00 54.333 0.348 63.006 1.47 0.93 54.633 0.332 69.311 5.16 0.872
0.1667 2.08 2.08 45.667 0.000 55.702 2.21 1.67 45.733 0.240 62.642 4.02 1.002
0.2083 0.71 0.51 43.733 0.091 49.464 0.99 0.00 43.833 0.240 59.584 0.00 1.093

2.1 0.1250 0.38 0.32 63.700 0.075 66.694 0.32 0.32 63.667 0.000 73.867 2.46 0.916
0.1667 0.52 0.00 48.900 0.166 54.834 0.67 0.41 48.967 0.075 63.657 0.33 0.911
0.2083 0.00 0.00 54.667 0.000 47.308 0.00 0.00 54.667 0.000 60.410 0.00 1.033

Average 1.10 0.79 52.250 0.159 60.008 1.19 0.86 52.292 0.169 68.105 2.65 0.986
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Table 5.14: BRKGA — Set 1: comparative analysis, summary.

BRKGA 5 Runs
p = 5× d n×n

K e, pe = 10%, pm = 30%, ρe = 70%,G = n
2

Multi-pass heuristic

δ = PSS δ = Both

Gap (%) Makespan
Total time
CPU (sec)

Gap (%) Makespan
Total time
CPU (sec)

Gap (%)
Total time
CPU (sec)

Avg. Min. Avg. Std. dev. Avg. Min. Avg. Std. dev.

SF 1 1.29 1.14 52.385 0.065 56.592 1.30 1.11 52.393 0.104 65.824 2.10 1.191
0.75 1.00 0.61 51.241 0.187 58.807 1.12 0.74 51.293 0.191 66.816 2.55 1.010
0.5 0.46 0.12 55.556 0.231 69.020 0.49 0.19 55.581 0.177 75.389 2.80 0.791
var. 1.66 1.28 49.819 0.154 55.613 1.83 1.40 49.900 0.201 64.391 3.15 0.953

NC 1.5 2.15 1.78 49.683 0.194 60.968 2.25 1.82 49.736 0.245 68.738 4.19 0.994
1.8 0.97 0.56 50.997 0.190 59.700 1.11 0.65 51.064 0.206 67.633 2.54 0.992
2.1 0.19 0.03 56.069 0.093 59.355 0.20 0.10 56.075 0.054 67.944 1.21 0.973

MRS 0.1250 1.51 0.83 59.483 0.350 67.116 1.64 1.06 59.556 0.333 72.978 4.84 0.890
0.1563 1.36 1.23 50.222 0.050 54.333 1.33 1.23 50.211 0.055 63.111 2.10 1.152
0.1625 0.16 0.00 53.522 0.155 67.836 0.25 0.00 53.567 0.135 74.291 2.54 0.826
0.1667 2.00 1.73 46.150 0.108 55.479 2.15 1.78 46.217 0.167 63.261 2.60 0.965
0.1875 0.19 0.16 49.456 0.015 58.308 0.13 0.08 49.439 0.028 68.716 0.28 1.088
0.2083 0.65 0.57 47.056 0.030 50.944 0.76 0.56 47.094 0.055 61.997 1.01 1.096

Average 1.10 0.79 52.250 0.159 60.008 1.19 0.86 52.292 0.169 68.105 2.65 0.986
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Set 2
We recall that Set 2 contains the 216 larger instances and also that by using the multi-pass heuristic it was
possible to find the optimal value for 5 of these instances and, of course, an upper bound on that value
for the remaining ones. This constitutes all the available information that can be used for evaluating the
results provided by the BRKGAPSS and by the BRKGABoth. The results presented in Table 5.8 showed
that, after 10 hours of CPU time, a general solver was unable to find a solution with the same quality of
the one provided by the multi-pass heuristic for 156 instances. For the remaining 60 instances, the solver
required, on average, 4861 seconds of CPU time to find a solution of at least the same objective value
of the one provided by the multi-pass heuristic. It is for this type of instances, where the use of exact
methods becomes impractical, that the development of efficient approximate methods is of particular
interest.

In order to evaluate the results provided by both the BRKGAPSS and the BRKGABoth and due to the
fact that no information regarding the optimal solutions is available for the majority of these instances, we
introduce a new concept referred to as Performance Ratio (PR). This is a relative ratio that we compute
both for the makespan values (PRm) and for the gaps (PRg) as follows:

PRm = ZB
∗

–ZH

ZH × 100%, regarding makespan values,

PRg = DB
∗

–DH

DH × 100%, regarding gap values,

where ZB
∗

(DB
∗
) denotes the best upper bound (minimum gap) provided by the BRKGAPSS or by the

BRKGABoth and ZH (DH) denotes the upper bound (gap) obtained by the multi-pass heuristic. The lower
bound considered for computing the percentage gaps for each instance was the length of the correspond-
ing critical path. We illustrate this concept next.

Suppose that for some instance, and considering the BRKGAPSS, we obtain DB
∗

= 8% and DH =
10%. In this case, we have PRg = –20%, which indicates that the BRKGAPSS provides a gap 20% lower
than the multi-pass heuristic.

The analysis of improvements from the makespan point of view (PRm) is also of great interest, in
particular when no lower bound besides the critical path length is available.

For fixed values of SF and NC, a decrease of the value of MRS usually leads to a deterioration of
the objective value (i.e., leads to its increase) which consequently results in a larger distance between
the optimal value and the critical path length value. It is for this type of instances, particularly when the
best known lower bound is most likely poor, that the use of a makespan performance measure is of major
relevance.

Table 5.15 presents the detailed results for each class of instances induced by a distinct combination
of SF, NC and MRS. Each row of this table (class of instances) presents average results for 6 instances.
The results are then summarized in Table 5.16.

The information presented in Tables 5.15 and 5.16 can be partitioned into 4 parts as follows: (i)
Columns 1–4 contain the characteristics of each class of instances; (ii) Columns 5–9 are associated with
the results obtained by the BRKGAPSS. In particular, columns 5 and 6 show the results associated with the
PR values in terms of makespan (PRm) and gap (PRg), respectively and columns 7–9 present the average
makespan, standard deviation and total CPU time required by the 5 runs, respectively; (iii) Columns
10–14 refer to the results provided by the BRKGABoth and follow the structure of (ii); (iv) Column 15
depicts the total time required by the multi-pass heuristic.

We note that the BRKGAPSS found the optimal solutions for all the 5 instances for which the multi-
pass heuristic identified their optimal value. We did not take into account these instances for computing
the values presented in Tables 5.15 and 5.16. Therefore, we indicate, in (the untitled) column 4, inside
parentheses, the number of instances not considered for the results presented.
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From Table 5.15, we observe a general improvement in terms of both PRm and PRg. The BRKGAPSS
performed better than the multi-pass heuristic in all the 36 classes of instances. The best results in terms
of PRm were generally attained for the instances associated with smaller values of MRS, with a particular
emphasis to those having SF = 0.5 and MRS = 0.0625. In fact, the class of instances that reported
the highest improvement regarding PRm (–13.86%) is actually defined by SF = 0.5, NC = 1.5 and
MRS = 0.0625. This class was also the one associated with the highest standard deviation of the average
makespan value, which indicates an increased difficulty faced by the BRKGAPSS in attaining solutions
of the same fitness consistently for these instances. Analyzing the PRg values, these seem to follow a
different direction. This result may be related to the fact that smaller makespan values are associated with
instances with higher values of MRS (thus allowing a greater degree of parallelization) for fixed values
of SF and NC. In fact, considering SF = 0.5, the class of instances with NC = 2.1 and MRS = 0.0938 is
the one associated with the smallest improvement in the makespan (PRm = –2.30%) and the one having
the greatest gap improvement (PRg = –35.18%), hence validating our reasoning of evaluating the results
of the selected BRKGA configurations in terms of gap and makespan improvement from the results of
the multi-pass heuristic.

The BRKGABoth improved the results of the BRKGAPSS for 25 out of the 36 classes of instances.
More precisely, the BRKGABoth was better in 5 classes of instances having SF = 1, 8 classes of instances
with SF = 0.75 and 6 classes of instances for both SF = var. and SF = 0.5. The best results attained
by the BRKGABoth are associated with PRm = –15.88% and PRg = –36.57% and have been found in
the same class of instances where the BRKGAPSS performed best. A closer look at Table 5.15 allows
the identification of a pattern. In fact, as the SF decreases, the quality of the results achieved by the
BRKGAPSS and by the BRKGABoth in terms of PRg and PRm are generally improved.

From Table 5.16 we observe a global improvement with respect to the solutions obtained by the
multi-pass heuristic. The quality of the results achieved by the BRKGAPSS tends to increase as the values
of SF become smaller. Smaller values of SF lead to a smaller computational effort. Instances having
SF = 0.5 are associated with higher values of standard deviation of makespan, a similar behavior to what
was observed for Set 1. These instances can, in fact, be looked at as “difficult” to tackle. Moreover, it is
for these instances that the best results regarding both PRm and PRg were achieved.

From the perspective of the network complexity (NC), an increase in its value leads to a slight de-
crease in terms of the CPU time consumed. We note that 3 (out of the 5) instances where the multi-pass
heuristic reached the optimal solution, are associated with NC = 2.1. Instances having higher values of
NC usually tend to be easier because a smaller number of activities is likely to be processed in parallel
due to the increased number of precedence relations, for a fixed number of activities. Among the differ-
ent NC values, the largest improvements in terms of both PRm and PRg were generally achieved for the
instances having NC = 1.8.

Regarding the MRS, the best results in terms of PRm and PRg are associated with MRS = 0.0625 and
MRS = 0.0938, respectively. This may be explained by the fact that the instances with higher values of
MRS are the ones associated with smaller values of average makespan and, as discussed before, these
instances typically allow a greater degree of parallelization and hence their corresponding optimal values
can be closer to the value of the associated critical path length.

We noticed that the 5 instances for which the multi-pass heuristic attain their optimal solutions,
belong to the set of instances having the most resources, which are associated with the highest value of
MRS considered (0.0938). We observe average values for the 216 instances in this set of PRm = –5.69%
and PRg = –21.10% for the BRKGAPSS. This represents a significant improvement of the results obtained
by the multi-pass heuristic.

It is worth noticing that the standard deviation values are larger for the instances having smaller
values of either SF or NC or MRS. In terms of CPU time, we should recall that the instances in this set
have roughly the double of resources and activities as well as a population and a stopping criterion with

82



5.3. Computational experiments and results

twice the size of the ones considered in Set 1.
The aggregated view of Table 5.16 provides strong evidence that the BRKGABoth outperforms the

BRKGAPSS for each and every value of SF, NC and MRS at the expense of an increase of 9% on the CPU
time which, nonetheless is still negligible given the high complexity of the MSRCPSP. The BRKGABoth
achieved the best average results for Set 2 by obtaining PRm = –6.05% and PRg = –22.25%, and hence
it may be more appropriate for dealing with instances of large dimensions. In fact, the use of the two
decoders may have contributed to a better exploration of the search space of feasible solutions, which is
larger for the instances in Set 2.
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Table 5.15: BRKGA — Set 2: comparative analysis.

BRKGA 5 Runs
p = 5× d n×n

K e, pe = 10%, pm = 30%, ρe = 70%,G = n
2

Multi-pass heuristic

δ = PSS δ = Both

Performance
Ratio (%)

Makespan
Total time
CPU (sec)

Performance
Ratio (%)

Makespan
Total time
CPU (sec)

Total time
CPU (sec)

SF NC MRS PRm PRg Avg. Std. dev. PRm PRg Avg. Std. dev.

1 1.5 0.0625 –5.92 –11.79 97.900 0.783 1158.783 –5.74 –11.30 98.167 0.859 1236.057 4.718
0.0781 –4.36 –12.77 79.300 0.847 1478.504 –4.13 –12.06 79.300 0.789 1620.044 6.726
0.0938 (1) –3.06 –18.70 70.480 0.687 1791.673 –4.16 –26.96 70.200 0.837 1890.474 9.007

1.8 0.0625 –6.49 –14.61 100.533 1.027 1136.121 –5.91 –13.31 100.800 0.704 1220.869 4.598
0.0781 –5.17 –27.61 82.400 0.827 1455.465 –5.17 –26.56 82.067 0.763 1582.846 6.634
0.0938 (1) –2.41 –33.12 65.160 0.597 1776.367 –2.70 –34.66 65.040 0.649 1888.868 9.009

2.1 0.0625 –5.33 –14.10 100.000 0.767 1132.525 –5.48 –14.29 99.867 0.753 1211.125 4.611
0.0781 –3.02 –19.39 85.900 0.562 1451.702 –3.03 –20.18 86.267 0.718 1566.615 6.632
0.0938 –1.68 –26.39 67.733 0.456 1726.694 –1.93 –29.17 67.633 0.582 1846.476 9.176

0.75 1.5 0.0625 –6.20 –12.67 110.300 0.656 1119.035 –6.57 –13.23 109.700 0.743 1243.254 3.356
0.0792 –4.75 –14.07 81.967 0.865 1102.655 –5.29 –16.08 81.933 0.965 1192.030 4.085
0.0938 –3.64 –16.33 69.800 0.611 1135.340 –4.04 –18.13 69.767 0.711 1246.575 5.213

1.8 0.0625 –8.54 –16.92 110.733 1.067 1142.319 –9.75 –19.18 109.800 1.258 1282.192 3.335
0.0792 –4.83 –19.95 83.767 0.959 1092.978 –5.25 –22.06 83.700 1.046 1183.419 4.182
0.0938 –3.52 –27.59 70.800 0.872 1115.094 –3.24 –22.78 70.667 0.659 1226.932 5.101

2.1 0.0625 –7.73 –20.69 108.967 1.108 1076.178 –8.20 –21.78 108.700 1.332 1181.252 3.257
0.0792 –3.32 –19.42 77.400 0.673 1045.309 –3.94 –24.91 77.400 0.942 1138.075 4.005
0.0938 (2) –1.44 –18.13 71.150 0.537 1109.151 –1.80 –20.63 71.000 0.649 1218.183 4.940

0.5 1.5 0.0625 –13.86 –25.82 120.767 2.408 1139.316 –15.88 –29.44 117.400 2.060 1231.441 2.468
0.0781 –9.22 –20.41 98.433 1.393 1127.840 –10.34 –23.92 97.067 1.285 1217.346 2.965
0.0938 –3.62 –24.49 81.500 0.829 1100.186 –3.44 –23.73 81.600 0.810 1170.960 3.231

1.8 0.0625 –12.77 –25.88 129.200 1.712 1087.627 –12.46 –25.24 129.267 1.748 1179.768 2.398
0.0781 –8.58 –27.97 88.167 1.193 1050.740 –8.23 –26.56 88.600 1.236 1124.984 2.820
0.0938 –6.85 –29.21 77.567 0.939 1134.217 –7.10 –30.26 77.600 0.896 1224.682 3.489

2.1 0.0625 –10.60 –22.31 120.933 1.628 1109.013 –12.16 –25.58 119.467 2.129 1179.548 2.510
0.0781 –6.58 –22.85 87.100 0.716 1043.272 –7.88 –27.31 86.900 1.406 1112.957 2.796
0.0938 –2.30 –35.18 75.400 0.316 1027.204 –2.52 –36.57 75.300 0.300 1108.814 3.085

var. 1.5 0.0625 –7.68 –13.21 110.367 1.572 1116.957 –9.34 –15.94 108.167 1.479 1351.140 3.286
0.0792 –6.23 –24.12 79.533 1.077 1015.154 –5.86 –22.76 79.533 1.009 1120.748 3.778
0.0938 –2.99 –30.28 70.467 0.745 1061.472 –3.19 –33.63 70.467 0.781 1176.741 4.731

1.8 0.0625 –9.57 –21.46 111.067 1.703 1033.412 –10.64 –23.63 109.600 1.628 1230.622 3.075
0.0792 –3.40 –14.15 77.967 0.719 1017.991 –3.78 –17.06 77.867 0.820 1113.140 3.820
0.0938 –4.24 –19.31 71.400 0.787 1068.803 –3.76 –17.69 71.567 0.715 1181.989 4.906

2.1 0.0625 –6.37 –17.71 109.433 1.290 997.032 –6.95 –19.13 108.733 1.254 1157.324 3.080
0.0792 –3.08 –20.06 88.467 0.541 1052.956 –3.11 –20.73 88.433 0.732 1164.139 3.973
0.0938 (1) –2.74 –21.49 73.720 0.888 1018.186 –1.93 –15.64 74.000 0.578 1144.390 4.658

Average (5) –5.69 –21.10 89.493 0.962 1169.095 –6.05 –22.25 89.148 1.003 1277.896 4.435
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Table 5.16: BRKGA — Set 2: comparative analysis, summary.

BRKGA 5 Runs
p = 5× d n×n

K e, pe = 10, pm = 30, ρe = 70,G = n
2

Multi-pass heuristic

δ = PSS δ = Both

Performance
Ratio (%)

Makespan
Total time
CPU (sec)

Performance
Ratio (%)

Makespan
Total time
CPU (sec)

Total time
CPU (sec)

PRm PRg Avg. Std. dev. PRm PRg Avg. Std. dev.

SF 1 (2) –4.22 –19.60 83.862 0.731 1443.826 –4.28 –20.56 83.862 0.739 1550.017 6.790
0.75 (2) –5.02 –18.43 87.827 0.827 1104.039 –5.48 –19.83 87.577 0.933 1212.213 4.164
0.5 –8.26 –26.01 97.674 1.237 1091.046 –8.89 –27.62 97.022 1.319 1172.278 2.862
var. (1) –5.19 –20.17 88.317 1.038 1042.898 –5.46 –20.78 87.853 1.008 1182.962 3.923

NC 1.5 (1) –6.00 –18.72 89.499 1.044 1187.180 –6.53 –20.51 88.868 1.030 1299.865 4.464
1.8 (1) –6.42 –23.01 89.400 1.040 1167.471 –6.55 –23.09 89.217 1.015 1278.211 4.447
2.1 (3) –4.63 –21.57 89.583 0.796 1152.157 –5.04 –23.17 89.365 0.962 1254.966 4.394

MRS 0.0625 –8.42 –18.10 110.850 1.310 1104.026 –9.09 –19.34 109.972 1.329 1225.383 3.391
0.0781 –6.15 –21.83 86.883 0.923 1267.920 –6.46 –22.77 86.700 1.033 1370.799 4.762
0.0792 –4.27 –18.63 81.517 0.806 1054.507 –4.54 –20.60 81.478 0.919 1151.925 3.974
0.0938 (5) –3.28 –25.25 72.230 0.692 1247.489 –3.38 –25.98 72.206 0.681 1352.096 5.545

Average –5.69 –21.10 89.493 0.962 1169.095 –6.05 –22.25 89.148 1.003 1277.896 4.435
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5.3.3 Mathematical models and lower bounds

This section focuses on reporting the numerical results associated with the models and lower bounds
presented in Chapter 4. Since the formulations that we present require an upper bound for each instance
(to compute the latest start times of the activities), we adopt the best upper bound (minimum value)
among those provided by the multi-pass heuristic, by the BRKGAPSS and by the BRKGABoth. We begin
by discussing the results associated with the mathematical formulations and then we focus on evaluating
the quality of the lower bounds provided by the SbCB and by the SbCSLB.

Mathematical models
The value of M used in model PCT was set to the best available upper bound. As discussed in the
previous chapter, the objective value of a linear programming relaxation of a given mathematical for-
mulation for this problem, constitutes a lower bound on its optimal value. Such value can be used both
to compute gaps of approximate algorithms more accurately and as a lower cutoff, for instance within
optimization models. The quality of the linear programming relaxation of a given model can be assessed
by computing, for each instance, its corresponding LP-relaxation gap (LP gap) as follows:

gap =
ZUB –

⌈
ZLP⌉

ZUB × 100%,

with ZUB denoting the best available upper bound and ZLP denoting the optimal value of the correspond-
ing linear programming relaxation. The best available upper bound for each instance is the minimum
among all the upper bounds provided by the heuristics discussed previously and by the mathematical
models considered in this computational study.

We start by presenting and analyzing the results for the 216 instances in Set 1 and then we move to
the 216 larger instances in Set 2.

Set 1
After performing some preliminary experiments, it was possible to determine the mathematical model
that performed best, i.e., the model that achieved the highest number of optimal solutions (for instances
in Set 1). Then, it seemed natural to assess whether supplying information of a lower bound (provided
by other source than its corresponding linear programming relaxation) had any impact on either the
computational time required to prove optimality or the number of optimal solutions achieved by such
model. Instead of providing a lower cutoff on the objective function of that model, we opted to set the
earliest start time of the dummy activity n + 1 to a specific lower bound value. More specifically, we
considered the following:

1. maxzLP : the maximum LP-relaxation value across all mathematical formulations;

2. maxzLB : the maximum among the values derived by the two lower bound methods presented in
Section 4.3 and maxzLP .

Table 5.17 summarizes the results obtained for instances in Set 1. This table contains 8 columns.
The first column contains the models considered. More specifically, ′X + (A)′ denotes the addition of the
inequalities (A) to model X, ′(RT)′ identifies the application of the reduction test presented in Section 4.1,
and ′X + (A – B)′ denotes the addition of all inequalities associated with a label between (A) and (B),
inclusive, to model X. Column 2 reports the number of instances (out of 216) that were solved to
optimality (# opt) within the given CPU time of 18000 seconds and Column 3 indicates the average
time (in CPU seconds) required to solve such instances. Column 4 depicts the number of instances
where the optimality of the best feasible solution found was not proved within the stipulated time limit
(#tl). For those instances, the average MIP gap (%) reported at CPLEX termination is shown in Column
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5. Column headed by “# inf” indicates the number of instances for which no feasible solution was found
within the predefined CPU time limit. Column 7 indicates the relative percentage deviation between the
objective value of the best known feasible solution and the linear programming relaxation bound (ZLP)
of the corresponding model. Finally, Column 8 presents the average time (also in seconds) required by
the linear programming relaxations.

From this table, we can observe that the model that performed best in terms of solving the problem
to optimality was among the continuous-time models derived from PCT . In fact, besides being able
to find the most number of optimal solutions (when compared to the discrete-time formulations), these
models were also the ones that required the smallest average CPU time for proving their optimality.
The smallest value in the column titled “# inf” was also obtained by these formulations. Moreover, we
observe that the progressive inclusion of both the valid inequalities and the reduction test into model
PCT contributes to a higher number of instances where a feasible solution is found. In fact, model PCT
fails to find a feasible solution within the time limit of 18000 seconds for 4 instances, but when all the
valid inequalities and reduction test are applied, such number reduces to 0. Furthermore, we find that the
addition of the valid inequalities (see Section 4.1.2) and the reduction test (see Section 4.1.1) contributed
to increase the value of the linear programming relaxation for some instances. Model PM and model
PM + (4.39 + 4.40) render the worst results in terms of the number of optimal solutions found and the
number of instances for which no feasible solution was obtained, respectively. In general, the results
obtained by the discrete-time models with the disaggregate precedence constraints outperformed the
results provided by the corresponding models without those constraints. Among these models, model
PDDT achieved more optimal solutions and required a lower CPU time than the other discrete-time
models. Still in Table 5.17, we can observe that the linear programming relaxations of the continuous-
time models were the fastest but produced some of the worst lower bounds. Being the computation of
feasible solutions to the MSRCPSP much more difficult than to the classical resource-constrained project
scheduling problem, it is not surprising the weak CPLEX’s ability to compute optimal solutions for the
former problem. Models PM and PMDDT were the most time consuming and were not able to produce
better lower bounds than the other discrete-time models. Models PDT and PN produce the same lower
bounds. Such behavior is also observed for models PDDT and PNDDT .

Table 5.17: Mathematical formulations — Set 1: overall results.

Model # opt CPU (sec) # tl MIP gap (%) # inf LP gap (%) LP CPU (sec)

PCT 181 299.455 31 6.68 4 7.24 0.063
PCT + (4.7) 184 352.530 29 6.88 3 7.24 0.104
PCT + (4.7) + (RT) + (4.1 – 4.5) 207 137.021 9 5.43 0 6.89 0.479
PCT + (4.7) + (RT) + (4.1 – 4.5) + maxLP 205 56.928 11 6.80 0 — —
PCT + (4.7) + (RT) + (4.1 – 4.5) + maxLB 205 53.267 11 6.86 0 — —

PDT 143 479.575 28 6.32 45 6.86 2.049
PDT + (4.38) 144 459.962 29 7.92 43 6.86 5.428
PDDT 151 395.942 31 5.83 34 6.01 5.540
PDDT + (4.38) 148 782.641 26 5.70 42 6.01 10.324

PM 138 503.199 25 8.53 53 7.17 19.279
PM + (4.39 + 4.40) 138 543.596 23 6.53 55 7.17 27.702
PMDDT 148 623.032 30 6.21 38 6.01 15.596
PMDDT + (4.39 + 4.40) 152 660.396 29 6.05 35 6.01 22.856

PN 150 859.261 34 8.55 32 6.86 3.142
PN + (4.39 + 4.40) 142 532.324 36 7.02 38 6.86 5.639
PNDDT 150 653.170 32 7.05 34 6.01 5.094
PNDDT + (4.39 + 4.40) 150 938.423 28 6.04 38 6.01 10.193
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In order to highlight the main differences in the results provided by both the continuous-time model
PCT and a discrete-time model, we present next the results grouped according to NC, SF, and MRS. The
main reason from selecting the standard continuous-time model PCT for this comparison is associated
with the fact that the other continuous-time models include information (e.g., valid inequalities, reduction
tests, lower bound values) that is not available to any discrete-time formulation. Regarding the discrete-
time model, we decided to analyze PNDDT in more depth since it was the fastest to solve the linear
programming relaxation among the models that produced an average linear programming relaxation gap
of 6.01%.

Table 5.18 concerns model PCT . The first two columns of this table contain information about the
instances and the third column “# inst” contains the number of instances associated with each row of the
table. The remaining columns have the same meaning of the corresponding columns in Table 5.17.

Table 5.18: Model PCT — Set 1: results per each value of SF, NC and MRS.

# inst # opt CPU (sec) # tl MIP gap (%) # inf LP gap (%) LP CPU (sec)

SF 1 54 39 265.795 11 10.45 4 4.60 0.159
0.75 54 43 393.483 11 4.69 0 6.34 0.038
0.5 54 53 11.213 1 2.08 0 10.88 0.011
var. 54 46 572.203 8 4.82 0 7.16 0.041

NC 1.5 72 52 537.767 17 6.94 3 8.27 0.099
1.8 72 63 289.244 8 7.02 1 6.62 0.065
2.1 72 66 121.422 6 5.51 0 6.84 0.023

MRS 0.1250 72 56 437.042 15 9.04 1 15.62 0.034
0.1563 18 12 828.059 3 4.68 3 3.97 0.220
0.1625 18 17 3.355 1 2.08 0 9.89 0.015
0.1667 36 27 712.669 9 4.58 0 3.78 0.034
0.1875 36 36 11.460 0 — 0 0.93 0.102
0.2083 36 33 2.385 3 4.74 0 0.58 0.053

In terms of network complexity, the instances with NC = 1.5 were the ones with higher linear
programming relaxation gaps and in which the solver found more difficulties in computing their optimal
solutions. Regarding the skill factor, it is interesting to observe that despite the highest value of the linear
programming relaxation gaps having been obtained for the instances with SF = 0.5, on average, that
was not an obstacle for computing optimal solutions for these instances. In fact, the solver found the
optimum for 53 instances (out of the 54 instances) associated with SF = 0.5 in approximately 11 seconds
of CPU time. This behavior was also observed in instances with MRS = 0.1625 where a high linear
programming relaxation gap did not prevent the solver from achieving the optimum of almost all the
instances. The analysis of the remaining results from the perspective of the MRS, allows us to conclude
that the worst performance in terms of both the linear programming relaxation gap and integer solving
occurred in instances having MRS = 0.1250. From Table 3.6, we observe that these are the instances
with fewer resources and this fact may justify the difficulty faced by the solver in attaining the optimum
for these instances.

Table 5.19 contains the same information as Table 5.18 but for the discrete-time model PNDDT .
From this table we observe that, not surprisingly, the instances became harder to solve optimally

as the network complexity decreases. The instances with NC = 1.5 are the ones exhibiting the highest
values in terms of the linear programming relaxation gaps and the CPU time required to solve them. As
far as the skill factor is concerned, the results indicate again that, in spite of the instances with SF = 0.5
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Table 5.19: Model PNDDT — Set 1: results per each value of SF, NC and MRS.

# inst # opt CPU (sec) # tl MIP gap (%) # inf LP gap (%) LP CPU (sec)

SF 1 54 38 60.461 5 6.40 11 3.99 5.814
0.75 54 37 1230.259 11 6.52 6 5.28 5.111
0.5 54 40 654.305 8 7.79 6 8.72 3.103
var. 54 35 685.319 8 7.47 11 6.06 6.347

NC 1.5 72 43 668.181 14 7.63 15 6.78 6.200
1.8 72 48 369.277 13 4.99 11 5.59 5.122
2.1 72 59 873.193 5 10.80 8 5.67 3.959

MRS 0.1250 72 25 2772.708 18 7.85 29 12.89 8.431
0.1563 18 13 163.340 3 8.20 2 3.50 5.365
0.1625 18 14 127.864 3 5.09 1 7.85 2.858
0.1667 36 27 829.821 7 5.98 2 3.25 3.993
0.1875 36 36 7.137 0 — 0 0.88 2.579
0.2083 36 35 59.491 1 2.63 0 0.50 3.016

having the largest linear programming relaxation gaps, on average, the solver was able to achieve a larger
percentage of optimal solutions for this set of instances than for the instances with other values of SF.
The results further reveal that increasing the modified resource strength generally results in an increase
of the percentage of instances solved optimally. The instances having MRS = 0.1250 are associated with
the highest linear programming relaxation gaps and were some of the hardest to tackle by the solver
(when looking for the optimal solution). Finally, a comparison between the results obtained by these
two models allow us to conclude that the instances associated with NC = 1.5, SF = 0.5 or MRS = 0.1250
were the ones where the largest differences between the gaps of the linear programming relaxations
produced by models PCT and PNDDT were observed. Therefore, it is for those sets of instances that the
supremacy of the discrete-time models is larger.

Set 2
Next, we report a comparison of the results provided by the linear programming relaxations of all the
models for instances in Set 2. For each instance, a time limit of 18000 seconds was considered for
the resolution of the corresponding linear programming relaxation. We opted not to present any results
regarding the performance of the models in terms of integer solving. The underlying reason for such de-
cision is associated with the fact that the experiments performed on model PCT with all valid inequalities
and with the reduction test, i.e., the model that performed best for instances in Set 1, revealing the inabil-
ity of the solver to provide a feasible solution for more than 88.8% of the instances in Set 2 within 36000
seconds of CPU time. Some arguments that may justify these results include the randomness associated
with CPLEX’s heuristic (used at each node) and the introduction of additional valid inequalities both
rendering a heavier model and not contributing to a significant improvement of the linear programming
relaxation values. We believe that it is not worth considering any of the other models in terms of integer
solving given the results obtained for Set 1.

Table 5.20 depicts the results in four columns. Column 1 refers to the models tested while Column 2
contains the number of instances, out of 216, for which the optimal solution of the linear programming
relaxation was not computed within the stipulated time limit of 18000 seconds. Therefore, the rows of
this table associated with models PM +(4.39+4.40) and PMDDT contain average results for 213 instances,
the rows associated with models PDDT and PMDDT +(4.39+4.40) refer to the average results for 215 and
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212 instances, respectively, while all the other rows refer to average results for 216 instances. The results
are not surprising and follow the same pattern of the results already presented for instances in Set 1.
Models PDDT , PMDDT , and PNDDT , i.e., the discrete-time models with the disaggregate precedence
constraints produced the best lower bounds but required a computational time incomparably larger than
the time spent by the other models, in particular by the continuous-time models. Adding the valid
inequalities (4.7) to model PCT as well as the discretized versions of these constraints to the discrete-
time formulations did not contribute to improving their respective linear programming relaxations and
rendered, obviously, heavier models. When both the valid inequalities and the reduction test proposed
by Correia et al. (2012) were added to model PCT , a marginal improvement was achieved. Moreover, the
computational time required to compute the linear programming relaxation of such model, was almost
the double of its standard version (PCT ).

Table 5.20: Mathematical formulations — Set 2: overall results.

Model #tl LP LP gap (%) LP CPU (sec)

PCT 0 25.92 8.101
PCT + (4.7) 0 25.92 15.491
PCT + (4.7) + (RT) + (4.1 – 4.5) 0 25.51 15.103

PDT 0 25.09 155.750
PDT + (4.38) 0 25.09 396.269
PDDT 1 21.92 607.345
PDDT + (4.38) 0 21.96 1084.167

PM 0 25.72 1643.995
PM + (4.39 + 4.40) 3 25.62 2137.620
PMDDT 3 21.78 1975.980
PMDDT + (4.39 + 4.40) 4 21.70 2633.133

PN 0 25.09 198.280
PN + (4.39 + 4.40) 0 25.09 551.997
PNDDT 0 21.96 764.064
PNDDT + (4.39 + 4.40) 0 21.96 1299.823

Table 5.21: Model PCT — Set 2: results per each value of SF, NC and MRS.

# inst LP gap (%) LP CPU (sec)

SF 1 54 24.05 18.489
0.75 54 25.09 6.684
0.5 54 28.36 1.488
var. 54 26.19 5.743

NC 1.5 72 32.12 7.891
1.8 72 25.71 7.786
2.1 72 19.93 8.625

MRS 0.0625 72 41.30 7.317
0.0781 36 24.79 6.245
0.0792 36 21.86 5.840
0.0938 72 13.14 10.943

Similarly to what was done for Set 1, we focus our analysis on the models PCT and PNDDT . We
recall that both models finished computing the linear programming relaxation for all the 216 instances
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Table 5.22: Model PNDDT — Set 2: results per each value of SF, NC and MRS.

# inst LP gap (%) LP CPU (sec)

SF 1 54 20.57 1342.927
0.75 54 21.38 645.859
0.5 54 24.04 407.928
var. 54 21.85 659.543

NC 1.5 72 27.13 1064.507
1.8 72 21.85 722.594
2.1 72 16.91 505.091

MRS 0.0625 72 34.07 1168.359
0.0781 36 21.54 1037.814
0.0792 36 18.89 586.426
0.0938 72 11.60 311.713

of Set 2.
The analysis of Tables 5.21 and 5.22 allow us to conclude that in terms of skill factor (SF) both

models originate the largest average linear programming relaxation gaps for instances with SF = 0.5
while the smallest ones are attained for instances with SF = 1. The instances having SF = 1 were also
the most time consuming.

From the network complexity (NC) point of view, we observe that, for both models, the linear pro-
gramming relaxation gap decreases as the network complexity (NC) increases. However, we observe that
the computational time required to solve the linear programming relaxation of model PNDDT decreases
as the value of NC increases; for model PCT we do not observe such behavior. In fact, the average time
required by model PNDDT for instances with NC = 1.5 is roughly the double of the time needed for
the instances having NC = 2.1, whereas for model PCT , the computational effort is roughly the same
across the different NC values. It was also for the instances associated with NC = 1.5 that model PNDDT
produced the largest reduction in the average linear programming relaxation gaps, when compared with
model PCT , but at the expense of a large increase in the execution time.

Regarding the modified resource strength (MRS), one can observe that, for both models, the average
gaps decrease as the MRS values increase. The average computational time required to solve the linear
programming relaxation of model PNDDT also decreases as the value of MRS increases. On the other
hand, we observe that the instances associated with MRS = 0.0938 are, on average, the most time
consuming for PCT . The instances having MRS = 0.0625 were the ones where the use of model PNDDT
produced linear programming relaxation gaps that are roughly 17% smaller than the gaps produced by
model PCT . The instances in this class are among the ones that are the hardest to solve, due to a high
resource scarcity.

Lower bounds
We now concentrate on the results provided by the two lower bound methods proposed in Section 4.3:
SbCB and SbCSLB. For each method, we evaluate the quality of its associated lower bounds by comput-
ing a gap analogously to the linear programming relaxation gap defined previously. More specifically,
the gap was computed as follows:

gap =
ZUB –

⌈
Zlower

⌉
ZUB × 100%,

where ZUB denotes the best available upper bound (considering the results provided by all the models
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considered in this computational section and the approximate methods discussed previously) and Zlower

denotes the value computed by such method (either SbCB or SbCSLB).
We begin by discussing the results associated with the instances in Set 1 and then we focus on the

results achieved for the instances in Set 2.

Set 1
The results obtained by the two proposed lower bounds for the MSRCPSP are depicted in Table 5.23.
This table consists of 5 columns. The instances are grouped by SF, NC and MRS. Column 2 indicates
the specific value of the respective parameter depicted in the first column. Columns 3 and 4 illustrate the
gap values provided by SbCB and SbCSLB, respectively. We recall, that over the course of the SbCSLB,
it is necessary to verify whether some pairs of activities are compatible. The associated computational
time required is depicted in Column 5. The total time required by SbCB and the additional time needed
by SbCSLB were considered negligible and were omitted.

Table 5.23: Lower bounds — Set 1: SbCB and SbCSLB gaps.

SbCB gap (%) SbCSLB gap (%) Pairs of compatible activities CPU (sec)

SF 1 53.65 4.03 0.078
0.75 48.45 5.00 0.070
0.5 45.94 7.04 0.041
var. 49.01 5.28 0.074

NC 1.5 46.04 6.21 0.077
1.8 48.62 4.99 0.068
2.1 53.13 4.82 0.051

MRS 0.1250 43.22 11.16 0.051
0.1563 53.21 3.97 0.075
0.1625 45.36 5.32 0.036
0.1667 49.14 3.63 0.073
0.1875 55.04 0.85 0.074
0.2083 55.67 0.58 0.088

Average 49.26 5.34 0.066

From Table 5.23, we observe that the results provided by both the SbCB and the SbCSLB follow an
opposite tendency. In fact, as the values of the SF, NC or MRS increase, the average gaps provided by
the SbCB tend to increase and the average gaps obtained by the SbCSLB generally decrease. The time
spent checking weather two activities are compatible is almost the double for instances with SF = 1 than
it is for instances with SF = 0.5. This observation is mostly associated with the fact that (i) the number
of resources involved in the instances with SF = 1 is the double of the resources in instances having
SF = 0.5 and (ii) the activities in instances with SF = 1 require every skill for their execution and hence
every resource is eligible to contribute to any activity. This last aspect contributes to rendering heavier
network flow problems when compared to the instances associated with smaller SF values.

From a NC point of view, the computational effort associated with checking if two activities are
compatible increases as the value of this parameter decreases. For a fixed number of activities, the
instances associated with smaller values of NC tend to allow a greater degree of parallelization (of the
activities). Hence, there are potentially more pairs of overlapping activities whose compatibility has to be
verified. This results in a higher number of flow problems to be solved, when compared to the instances
with higher values of NC.

In terms of MRS, we observe a similar behavior to the results aggregated by SF. As the number of
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resources involved in each instance increases (i.e., as the value of MRS becomes larger) the computational
time required for computing pairs of compatible activities increases, in general.

The SbCSLB attains the best lower bound gaps of 5.34%, an average for the 216 instances, when
compared to the LP gaps provided by each mathematical formulation presented in the Table 5.17 and to
the lower bound gaps achieved by SbCB. Additional information reveals that such supremacy is observed
for 31 instances (3 with SF = 1, 15 with SF = 0.5, 6 with SF = 0.75 and 7 with SF = var.) out of the
216 instances in this set. We would like to provide some additional insight regarding the SbCB. Such
method was able to provide the best lower bound value for 6 out of the 216 instances that constitute Set 1
(when compared to the values provided by the LP of all mathematical formulations and by the SbCSLB).
We note that these 6 instances are associated with the smallest value of MRS in this set (MRS = 0.1250)
and, as discussed previously, this type of instances is among the hardest to tackle. These 6 instances are
partitioned per SF as follows: 4 with SF = 0.5, 1 with SF = var. and 1 with SF = 0.75.

We would like to emphasize that the behavior of the SbCB is strongly constrained by the number
of available resources and the number of skills that they are proficient in. In fact, the SbCB relaxes
the number of resources involved in the problem according to the skills they master (which ends up
defining a problem much more simple than the original one). Moreover, the SbCB is dependent on
the available resources, which are more abundant in the instances where activities require more skills
for being processed, i.e., instances having higher values of SF and/or higher values of MRS. Since all
instances in this set have 20 activities that demand on average 2 resources per each skill required for
their execution, and consider the number of skills mastered by each resource to be pseudo-randomly
generated between 1 and 3, a decrease on the number of resources (considering a fixed SF value) may
have a direct influence in the denominator of SbCB—leading to a small cardinality of set Rl, l ∈ L and
hence to higher values (better lower bounds) provided by the SbCB.

Set 2
We now focus on the results obtained by the SbCB and the SbCSLB for the instances in Set 2. These
results are presented in Table 5.24, which follows the same structure of Table 5.23.

Analyzing Table 5.24 from a SF, NC or MRS perspective yields the same conclusions that were
drawn for Set 1. Hence, to avoid redundancy we focus our analysis on the results that are specific to
Set 2.

Similarly to Set 1, the SbCSLB attains consistently better gaps than the SbCB. Unlike what was
observed for Set 1, the best lower bounds were not provided by SbCSLB, which achieved a gap of
24.22%, on average. This fact justifies the effort to have developed new discrete-time formulations for
the MSRCPSP. In fact, the linear programming relaxations of some of the referred formulations allowed
to achieve better gaps (21.96%, on average) than the SbCSLB.

The time spent verifying the compatibility of some pairs of activities continues to be negligible (at
most 1.3 CPU seconds, an average for the 54 instances with SF = 1) particularly when compared to
the computational time associated with solving the linear programming relaxation of the mathematical
models studied (see Table 5.20).

Additional information allows to conclude that the SbCB outperforms both the linear programming
relaxations of all mathematical formulations and the lower bounds provided by the SbCSLB in 10 out of
the 216 instances (3 instances with SF = 1, 4 instances with SF = 0.5, 1 instance with SF = 0.75 and 2
instances with SF = var.). The SbCSLB performed better than both the linear programming relaxation
of all mathematical models and the SbCB in 20 out of the 216 instances (14 instances with SF = 0.5, 3
instances with SF = 0.75 and 3 instances with SF = var.).

We recall that the main purpose of this thesis was to develop effective approximate methods to
compute feasible solutions to the MSRCPSP. When the heuristics proposed in thesis were developed, no
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Table 5.24: Lower bounds — Set 2: SbCB and SbCSLB gaps.

SbCB gap (%) SbCSLB gap (%) Pairs of compatible activities CPU (sec)

SF 1 46.54 23.84 1.335
0.75 45.31 23.94 0.702
0.5 42.86 24.48 0.392
var. 45.75 24.62 0.688

NC 1.5 44.64 30.37 0.918
1.8 44.25 23.89 0.800
2.1 46.45 18.40 0.620

MRS 0.0625 44.22 37.71 0.509
0.0781 43.88 22.35 0.912
0.0792 46.35 21.46 0.705
0.0938 46.01 13.05 1.020

Average 45.11 24.22 0.779

lower bound aside from the critical path length existed for the instances in Set 2. Later, and with the main
purpose of improving those lower bounds, some effort was put into developing alternative mathematical
formulations and lower bound methods for the problem. After performing the computational experiments
just presented, it was possible to generally improve the lower bounds for both sets of instances. Hence,
it becomes interesting to recompute the gaps for the instances in Set 1 and to calculate the gaps for the
instances in Set 2. For each instance and each approximate method, the gap is computed for each instance
as follows:

gap =
ZUB –

⌈
ZLB∗

⌉
ZLB∗ × 100%,

where ZUB denotes the best upper bound obtained by the heuristic method being evaluated and ZLB∗

is equal to the best known lower bound. We note that when assessing the quality of each BRKGA
configuration studied, ZUB will also take the value of the average upper bound achieved after performing
the considered 5 runs.

For each instance, the value of ZLB∗ corresponds to the maximum of the lower bounds considering the
best one obtained in Correia et al. (2012) and those provided by the studied mathematical formulations
at CPLEX’s termination, i.e., the optimal value or the best lower bound found before the stipulated time
limit has been reached. We note that the values derived by SbCSLB and SbCB are implicitly considered
in one of the continuous-time formulation studied, which receives information (as input) of both the
best lower bound achieved by the two aforementioned methods and the linear programming relaxation
values of all studied mathematical formulations. Hence, the lower bounds attained by such formulation
at CPLEX’s termination are never worse than the ones achieved by SbCSLB and SbCB.

Analogously to the computational results reported previously, we first present the (recomputed) gaps
for the instances in Set 1, in Table 5.25, and then we present the gaps for the instances in Set 2, in
Table 5.26. These tables follow the same structure. The first three columns identify the values of SF,
NC and MRS. Column 4 refers to the gaps of the multi-pass heuristic, Columns 5–6 and Columns 7–8
depict the gaps for the BRKGAPSS and for the BRKGABoth, respectively. More specifically, Columns 5
and 7 refer to the minimum gaps obtained and Columns 6 and 8 to the average gaps achieved. Each row
corresponds to the average results for 6 instances (which are associated with the same values of SF, NC
and MRS).
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These results are then summarized in two tables that follow a similar structure to the one described
above, Table 5.27 and Table 5.28, which contain the results for Set 1 and Set 2, respectively.

Table 5.25: Set 1 — Gaps of the developed heuristics computed using the best known lower bound.

Multi-pass
heuristic

BRKGA 5 runs
p = 5× dn×n

K e, pe = 10%, pm = 30%, ρe = 70%,G = n
2

δ = PSS δ = Both

SF NC MRS Gap (%) Avg. gap (%) Min. gap (%) Avg. gap (%) Min. gap (%)

1 1.5 0.1250 4.89 1.82 1.62 1.96 1.32
0.1563 3.93 2.46 2.46 2.54 2.46
0.1875 0.00 0.00 0.00 0.00 0.00

1.8 0.1250 1.57 0.73 0.00 0.77 0.00
0.1563 1.11 0.38 0.00 0.23 0.00
0.1875 0.00 0.00 0.00 0.00 0.00

2.1 0.1250 1.07 0.00 0.00 0.00 0.00
0.1563 0.00 0.00 0.00 0.00 0.00
0.1875 0.00 0.00 0.00 0.00 0.00

0.75 1.5 0.1250 3.98 0.70 0.53 0.85 0.26
0.1667 0.90 0.33 0.00 0.44 0.00
0.2083 1.79 0.70 0.44 1.05 0.88

1.8 0.1250 6.47 2.04 0.82 2.27 1.31
0.1667 1.15 0.61 0.00 0.71 0.31
0.2083 0.00 0.00 0.00 0.00 0.00

2.1 0.1250 3.99 0.95 0.00 0.74 0.22
0.1667 0.00 0.00 0.00 0.24 0.00
0.2083 0.79 0.00 0.00 0.00 0.00

0.5 1.5 0.1250 6.17 1.79 0.26 1.96 0.80
0.1625 4.27 0.20 0.00 0.34 0.00
0.1875 0.88 0.51 0.51 0.10 0.00

1.8 0.1250 5.19 0.79 0.34 0.97 0.63
0.1625 2.42 0.29 0.00 0.41 0.00
0.1875 0.36 0.14 0.00 0.22 0.00

2.1 0.1250 5.00 0.42 0.00 0.39 0.24
0.1625 0.93 0.00 0.00 0.00 0.00
0.1875 0.00 0.00 0.00 0.00 0.00

var. 1.5 0.1250 7.55 3.12 1.58 3.45 2.19
0.1667 1.84 1.27 1.11 1.40 1.11
0.2083 0.91 0.00 0.00 0.00 0.00

1.8 0.1250 5.16 0.91 0.00 1.47 0.93
0.1667 2.31 0.38 0.38 0.51 0.00
0.2083 0.00 0.71 0.51 0.99 0.00

2.1 0.1250 2.46 0.38 0.32 0.32 0.32
0.1667 0.33 0.52 0.00 0.67 0.41
0.2083 0.00 0.00 0.00 0.00 0.00

Average 2.15 0.62 0.30 0.70 0.37
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Table 5.26: Set 2 — Gaps of the developed heuristics computed using the best known lower bound.

Multi-pass
heuristic

BRKGA 5 Runs
p = 5× dn×n

K e, pe = 10%, pm = 30%, ρe = 70%,G = n
2

δ = PSS δ = Both

SF NC MRS Gap (%) Avg. gap (%) Min. gap (%) Avg. gap (%) Min. gap (%)

1 1.5 0.0625 78.17 69.21 67.65 69.60 67.85
0.0781 43.58 39.20 37.21 39.25 37.52
0.0938 14.62 12.54 11.59 12.15 10.54

1.8 0.0625 65.89 56.65 55.06 57.01 56.02
0.0781 25.93 20.78 19.22 20.26 19.17
0.0938 13.39 12.06 11.01 11.71 10.73

2.1 0.0625 47.63 40.96 39.77 40.75 39.52
0.0781 17.79 14.75 14.19 15.23 14.21
0.0938 9.78 8.61 7.97 8.45 7.70

0.75 1.5 0.0625 79.61 69.83 68.57 68.91 67.83
0.0792 45.72 40.42 38.67 40.44 37.99
0.0938 24.81 21.35 20.25 21.30 19.76

1.8 0.0625 68.61 55.39 53.92 54.26 51.76
0.0792 30.71 26.01 24.39 25.88 23.86
0.0938 14.97 12.72 10.88 12.52 11.18

2.1 0.0625 45.01 35.54 33.89 35.13 33.19
0.0792 17.33 14.45 13.36 14.49 12.68
0.0938 10.56 10.15 9.45 9.99 9.17

0.5 1.5 0.0625 68.03 48.47 44.77 44.37 41.40
0.0781 48.44 37.10 34.42 35.31 32.87
0.0938 31.36 27.50 25.91 27.70 26.16

1.8 0.0625 53.74 36.29 33.98 36.31 34.46
0.0781 35.62 26.21 24.02 26.80 24.52
0.0938 26.53 19.41 17.77 19.43 17.40

2.1 0.0625 44.28 31.18 29.08 29.73 26.74
0.0781 24.85 17.81 16.72 17.45 15.08
0.0938 8.19 5.94 5.64 5.82 5.38

var. 1.5 0.0625 79.13 68.00 65.50 64.94 62.71
0.0792 36.09 30.13 27.65 30.14 28.13
0.0938 25.07 22.68 21.32 22.79 21.22

1.8 0.0625 55.09 42.79 40.09 40.83 38.43
0.0792 28.12 25.29 23.70 25.14 23.27
0.0938 24.12 20.36 18.76 20.71 19.41

2.1 0.0625 39.92 32.92 30.94 32.08 30.10
0.0792 23.61 20.96 19.82 20.89 19.79
0.0938 10.57 9.36 7.94 9.71 8.70

Average 36.58 30.08 28.47 29.65 27.96
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Table 5.27: Set 1 — Gaps of the developed heuristics computed using the best known lower bound, summary.

Multi-pass
heuristic

BRKGA 5 Runs
p = 5× dn×n

K e, pe = 10%, pm = 30%, ρe = 70%,G = n
2

δ = PSS δ = Both

Gap (%) Avg. gap (%) Min. gap (%) Avg. gap (%) Min. gap (%)

SF 1 1.40 0.60 0.45 0.61 0.42
0.75 2.12 0.59 0.20 0.70 0.33
0.5 2.80 0.46 0.12 0.49 0.19
var. 2.28 0.81 0.43 0.98 0.55

NC 1.5 3.09 1.08 0.71 1.18 0.75
1.8 2.15 0.58 0.17 0.71 0.27
2.1 1.21 0.19 0.03 0.20 0.10

MRS 0.1250 4.46 1.14 0.46 1.26 0.68
0.1563 1.68 0.95 0.82 0.92 0.82
0.1625 2.54 0.16 0.00 0.25 0.00
0.1667 1.09 0.52 0.25 0.66 0.30
0.1875 0.21 0.11 0.08 0.05 0.00
0.2083 0.58 0.23 0.16 0.34 0.15

Average 2.15 0.62 0.30 0.70 0.37

Table 5.28: Set 2 — Gaps of the developed heuristics computed using the best known lower bound, summary.

Multi-pass
heuristic

BRKGA 5 Runs
p = 5× dn×n

K e, pe = 10%, pm = 30%, ρe = 70%,G = n
2

δ = PSS δ = Both

Gap (%) Avg. gap (%) Min. gap (%) Avg. gap (%) Min. gap (%)

SF 1 35.20 30.53 29.30 30.49 29.25
0.75 37.48 31.76 30.37 31.44 29.71
0.5 37.89 27.77 25.81 26.99 24.89
var. 35.75 30.28 28.41 29.69 27.97

NC 1.5 47.88 40.53 38.62 39.74 37.83
1.8 36.89 29.50 27.73 29.24 27.52
2.1 24.96 20.22 19.06 19.98 18.52

MRS 0.0625 60.43 48.94 46.93 47.83 45.83
0.0781 32.70 25.98 24.30 25.72 23.89
0.0792 30.26 26.21 24.60 26.16 24.29
0.0938 17.83 15.22 14.04 15.19 13.94

Average 36.58 30.08 28.47 29.65 27.96
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We observe that the results presented in the previous sections (with the exception of PRm, which is not
influenced by lower bound improvements) were highly overestimated, particularly for Set 1. Nonetheless,
the conclusions drawn therein seem to hold. By improving the lower bounds for some of the instances
that remained unsolved by Correia et al. (2012), the average gaps obtained by the BRKGAPSS for 216
instances of Set 1 were reduced to 0.30%, reinforcing the quality of the proposed heuristics.

5.4 Conclusions

This chapter presents the main contributions of this thesis, which concern the development of approxi-
mate methods for computing feasible solutions to the problem being studied.

With the purpose of avoiding random resource selection and allocation (both to skill and activity),
we introduced the concepts of activity grouping and resource weight. Instead of simply determining
whether a feasible flow exists in a specific network—a fundamental condition for a set of activities to be
processed simultaneously at a specific moment in time, we suggested going one step further by finding
a set of resources that meets their skill demands with the least total cost. We believe that by aggregating
the requirements of a set of activities eligible to be scheduled at a given time and fulfilling them at
once through the assignment of the referred set of resources, a more proper resource allocation may be
achieved.

The two well-known parallel and serial schedule generation schemes (PSS and SSS, respectively)
were extended to our problem setting and the two concepts referred above were incorporated into them.
We revisited the notion of scheduling the project from the end to the beginning, which is equivalent to
reversing all the arcs in the precedence network. The main purpose for considering the reversed prece-
dence network in the heuristics developed is associated with the possibility of such representation of the
precedence network allowing to achieve makespan values different from those obtained when the origi-
nal precedence network is used. Two new heuristics were proposed, namely a multi-pass heuristic built
upon the developed parallel scheduling scheme and a biased random-key genetic algorithm. Regarding
the multi-pass heuristic, we considered several single and multi-priority rules for selecting the activities
to be scheduled at each moment in time and we developed 3 resource weight functions for computing
the weights of the resources. After introducing a general framework for the biased-random key genetic
algorithm, we defined the problem-dependent components, namely the chromosome structure and the
decoders. By incorporating a wide range of characteristics, including those specific to our problem, into
the chromosomes (e.g., resource weights, type of decoder and precedence network schemes to be used),
a comprehensive chromosome structure was derived.

Extensive computational experiments were performed. The heuristics proposed in this chapter and
the methodologies presented in Chapter 4 were tested on a total of 432 instances of the problem, parti-
tioned into two sets: Set 1 and Set 2 (see Sections 3.4.2 and 3.4.4, respectively, for detailed descriptions
of the instances considered). The results allowed us to conclude that the complexity of this problem
justifies the indispensable use of procedures based on heuristics to compute good quality feasible solu-
tions to real problems in an admissible time. In fact, a heuristic that provides better upper bounds, even
at the cost of increased computational time, is often preferred when compared to a faster heuristic that
provides worse upper bounds, since real-world instances of these problems are expected to be tackled
only by approximate methods.

The multi-pass heuristic proved to be an efficient approach time-wise. In fact, it provided good
quality solutions within a very small computational time. For the larger instances, we observed that
the computational time required by an off-the-shelf solver for achieving feasible solutions of the same
quality of those provided by the multi-pass heuristic was prohibitive. In fact, the solver failed to attain a
feasible solution for more than 72% of the instances in Set 2.

The computational results of the BRKGA indicated that the configuration with the single decoder
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PSS provides the best results for the smaller-sized instances whereas the BRKGA with the two decoders,
the PSS and SSS, achieves the best results for the set of larger instances. Overall, we conclude that the
upper bounds computed by the multi-pass heuristic were greatly improved by both BRKGA configura-
tions tested. Furthermore, we observed that the proposed BRKGA is extremely robust, in the sense that
it has the ability to find solutions of a similar quality (for a given instance) in distinct runs.

The numerical experiments performed on the mathematical formulations studied showed that the
use of a solver is more suitable, as expected, for instances of small dimensions. In order to evaluate
the quality of the lower bounds produced by the different models (stemming from their respective lin-
ear programming relaxations) we performed a series of computational experiments on the two sets of
benchmark instances from the literature used in the previous experiments. Additionally, we deepened
the analysis by focusing it in the comparison between the continuous-time model and one of the studied
discrete-time models (with disaggregated precedence constraints). Such comparison allowed us to iden-
tify the features of the test instances that highlight the supremacy of the referred discrete-time model in
terms of the quality of the lower bounds stemming from its linear programming relaxation. Finally, we
also analyzed the suitability of each model to solve the small-sized instances to optimality, using a gen-
eral purpose solver. Although the discrete-time models provided the best linear programming relaxation
gaps, the continuous-time models achieved the most optimal solutions. Such conclusion had already
been drawn by Koné et al. (2011) for the RCPSP.

In terms of the developed lower bound mechanisms we observe that the SbCSLB provided good
results by attaining the best lower bound gaps, on average, for instances in Set 1. Regarding Set 2, the
best lower bounds were achieved, on average, by some discrete-time formulations.

After performing the computational experiments on both the mathematical formulations studied and
the two derived lower bound methods, it was possible to improve the quality of the existing lower bounds
for some instances of Set 1 and to obtain lower bounds of a better quality than the critical path length for
the instances in Set 2. This led us to calculate a meaningful gap between the upper bounds obtained by
the proposed approximate methods for the instances in Set 2 and to recompute the gaps for the instances
in Set 1.

99





CHAPTER 6

Conclusions and directions for future work

In this thesis, we investigated a particular project scheduling problem with multi-skill resources. This
problem usually arises in companies that deal with complex projects whose requirements have to be
fulfilled by human resources organized in multidisciplinary teams.

After reviewing the work published so far in this field of research, it became clear that some effort
could still be made in terms of developing competitive approximate methods for the problems consider-
ing homogeneous resources.

The specific problem studied, which considers the resources as being homogeneous, was fully de-
scribed. It is important to note that aside from a set of instances (of small dimensions), there were no
properly generated or described instances in the literature for the specific problem studied. This fact mo-
tivated the development of the instance generator formally proposed in this thesis. Using such generator,
a new set of larger instances was built. The characteristics of these two sets of instances were thoroughly
described.

Several mathematical models, lower bound mechanisms and heuristic procedures were proposed.
The main purpose of developing alternative mathematical formulations for the problem was associated
with the need to improve the existing lower bounds, which consisted of the critical path length for the
larger instances. Two new optimization models and two new lower bounds were derived. The computa-
tional experiments revealed, as expected, the unsuitability of the mathematical models to cope with the
increased complexity of, particularly, large-sized instances. These results corroborated our decision to
focus on the development of approximate methods for the problem.

The development of approximate methods for this problem is of major relevance if one thinks that the
real-world project scheduling problems faced by practitioners are of large dimensions and that the use
of exact methods often becomes impracticable for problems of such size. The development of effective
approximate solution methodologies consists in one of the major contributions of this thesis. The well-
known parallel and serial scheduling schemes, which are the backbone for development of heuristics for
project scheduling problems, were extended to our problem setting. Then, we thoroughly described the
two heuristics proposed: a multi-pass heuristic built upon such parallel scheduling scheme and a biased
random-key genetic algorithm with different configurations.

The computational results revealed that the proposed multi-pass heuristic is more time-efficient
and the biased random-key genetic algorithm achieves solutions of higher quality, on average. In
terms of the mathematical formulations, it is observed that the continuous-time formulations studied
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are more suitable for solving small- and medium-sized instances of the problem optimally, while the
analyzed discrete-time formulations yielded stronger linear programming relaxations, as expected. The
two proposed lower bounds methods improved the lower bounds for some instances. Despite the use
of heuristics being more suitable for solving this type of problems, the development of mathematical
formulations continues also to be of great importance since there are some instances, namely those of
relatively small size, whose characteristics make them easy to tackle by an off-the-shelf solver.

The problem investigated in this thesis has been scarcely treated in the literature. Therefore, the
contributions herein represent a relevant step forward towards the development of new and more efficient
procedures for tackling instances of a realistic dimension. Nonetheless, there is still a wide range of
methodologies and extensions of the problem investigated that remain unstudied.

We begin by introducing some suggestions for further research regarding methodological develop-
ments and then we discuss some potentially interesting extensions of the addressed problem that could
be investigated.

A research direction that is highlighted in this work regards the development of effective tools for
computing sharp lower bounds which are especially important for large-scale instances of the problem.
Lower bounds allow a more accurate evaluation of the quality of feasible solutions provided by heuristics
and may contribute to improve the performance of exact methods. Hence, it is of major relevance to con-
tinue the research for fast algorithms for deriving good lower bounds for this problem. The development
of alternative mathematical formulations should also be pursued. In fact, depending on their structures,
new optimization models may be used to compute feasible solutions and even to solve some medium-
and large-sized instances of the problem as well as to yield lower bounds stemming from their linear
programming relaxations.

In terms of approximate methods, we believe that there is still an opportunity to derive both
new heuristics and local search mechanisms. By exploiting some crucial features of the problem,
the heuristics proposed in this thesis took the research in this area one step further and proved to be
competitive for solving instances of the problem of a reasonable size. Nonetheless, the mechanisms
used in the developed heuristics may have also opened new directions for further research. More
specifically, and in the context of priority-based heuristics (e.g., the developed multi-pass heuristic)
future work may concern the development of new deterministic functions to compute the weights of the
resources, with a particular emphasis to those whose weights computed to each resource may vary over
time. These dynamic weight rules may consider instance-specific information related to, for instance,
the skill requirements and processing times of activities not yet scheduled. Regarding the developed
biased random-key genetic algorithm, it would be interesting to study other crossover operators, solution
encodings as well as different and possibly more comprehensive chromosome structures. Moreover,
the investigation of other stopping criteria is also of particular interest. In fact, other stopping criteria
may cause the time spent by the algorithm to decrease while possibly not compromising the quality
of the solutions achieved. A common denominator for both approximate methods is the procedure
for assigning the resources to the activities. Currently, the resources are assigned to the activities in a
two-step process: first, we determine the skill that each resource will perform by finding a min-cost
flow in a specific network; then, the resources with higher weights are assigned to the activities with
smaller processing times as much as possible. It would be interesting to evaluate the computational
effort required to solve this problem at once by considering, for instance, the second set of nodes in the
graph depicted in Figure 5.1 to be associated with the specific pairs (activity, skill) instead of simply
considering the skills required to process the activities. Theoretically, this will render a much more
complex graph structure and consequently, a heavier min-cost flow problem to be solved.

Regarding the type of problem, we observe that several variants of project scheduling problems with
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multi-skill resources remain unstudied.
By looking into Tables 2.1 and 2.2, we realize that little work has been done on multi-objective

problems. More specifically, we point out that the two most well-studied objective functions in project
scheduling problems which are often conflicting: the makespan of the project and the cost for its execu-
tion have not been yet considered together in the context of project scheduling problems with multi-skill
resources. Due to its particular interest for real-world problems, the study of that specific multi-objective
function in the scope of project scheduling problems with multi-skill resources (either homogeneous or
non-homogeneous) constitutes a possible direction for further research.

After examining the aforementioned tables it also becomes clear that the references considering
homogeneous resources always study a single project and a single objective function. Hence, it may be
interesting to consider multi-project environments and multi-objective functions. In terms of problems
considering non-homogeneous resources, we suggest the extension of some of the concepts introduced
in this thesis (e.g., resource weight, the notion of meeting the requirements of a set of activities at once)
to account for the heterogeneity of the resources, as an attempt to better capture the specific features of
those problems.

Activity preemption is a feature that has been widely studied in the context of resource-constrained
project scheduling problems and consists of another proposal for a deeper investigation when it comes to
considering problems with multi-skill resources. This extension illustrates real-world situations where
activities have occasionally to be halted. We note that the preemptive version of a problem involving
non-homogeneous resources has not been addressed to date and hence constitutes a possible direction
for further research.

The majority of the analyzed research consider that the processing times of the activities are fixed.
It may make sense to consider variable processing times for the activities, namely in the presence of
non-homogeneous resources. In that situation, we may conclude that the smallest processing time of
an activity is achieved when the set of resources assigned to each skill it requires consists of the most
proficient ones in each of those skills.

The problems analyzed by the reviewed research are deterministic since all the information concern-
ing the problem is available and known beforehand and do not change over time. However, in real-world
settings, this is almost never the case. Hence, a plausible research direction may include the investigation
of project scheduling problems with multi-skill resources under uncertainty. This concept has already
been studied in the context of resource-constrained project scheduling problems by considering stochas-
tic processing times for the activities, i.e., the processing times of the activities are random numbers
which follow a specific probability distribution function.

103





Bibliography

Alba, E. and Chicano, J. F. (2007). Software project management with GAs. Information Sciences,
177:2380–2401.

Alcaraz, J. and Maroto, C. (2001). A robust genetic algorithm for resource allocation in project schedul-
ing. Annals of Operations Research, 102(1):83–109.

Almeida, B. F., Correia, I., and Saldanha-da-Gama, F. (2015). An Instance Generator for the Multi-
Skill Resource-Constrained Project Scheduling Problem. Technical report, Faculdade de Ciências da
Universidade de Lisboa — Centro de Matemática, Aplicações Fundamentais e Investigação Opera-
cional. Available at https://ciencias.ulisboa.pt/sites/default/files/fcul/
unidinvestig/cmaf-cio/SGama.pdf.

Almeida, B. F., Correia, I., and Saldanha-da-Gama, F. (2016a). A BRKGA for the project
scheduling problem with flexible resources — Submitted. Working Paper available at
http://cmafcio.campus.ciencias.ulisboa.pt/sites/cmafcio/files/

A%20BRKGA%20for%20the%20project%20scheduling%20problem%20with%

20flexible%20resources.pdf.

Almeida, B. F., Correia, I., and Saldanha-da-Gama, F. (2016b). Priority-based heuristics for the multi-
skill resource constrained project scheduling problem. Expert Systems with Applications, 57:91–103.

Alvarez-Valdés, R. and Tamarit, J. M. (1993). The project scheduling polyhedron: Dimension, facets
and lifting theorems. European Journal of Operational Research, 67(2):204–220.

Artigues, C. (2017). On the strength of time-indexed formulations for the resource-constrained project
scheduling problem. Operations Research Letters, 45(2):154–159.

Artigues, C., Koné, O., Lopez, P., and Mongeau, M. (2015). Mixed-integer linear programming for-
mulations. In Schwindt, C. and Zimmermann, J., editors, Handbook on Project Management and
Scheduling, volume 1, pages 17–41. Springer International Publishing.

Baptiste, P., Pape, C. L., and Nuijten, W. (1999). Satisfiability tests and time-bound adjustments for
cumulative scheduling problems. Annals of Operations Research, 92:305–333.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA Journal
on Computing, 6(2):154–160.

105



Bibliography

Bellenguez-Morineau, O. and Néron, E. (2005). Lower Bounds for the Multi-skill Project Scheduling
Problem with Hierarchical Levels of Skills. In Proceedings of the 5th international conference on
Practice and Theory of Automated Timetabling, PATAT’04, pages 229–243.

Bellenguez-Morineau, O. and Néron, E. (2007). A Branch-and-Bound Method for Solving Multi-Skill
Project Scheduling Problem. RAIRO Operations Research, 41:155–170.
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CHAPTER 7

Appendix

This appendix contains the pseudo-codes for the instance generator presented in Section 3.4.3. In
particular, we formalize 5 algorithms properly introduced in the referred section. We note that whenever
we refer to a parameter as being randomly generated in a set {a, . . . , b}, this means that the parameter
was generated according to a discrete uniform distribution in that set.

Algorithm 7.1: Generating a precedence network — Step 1
Data: nStart, nFinish, MaxSucc, Pred(j) : j ∈ V , Succ(j) : j ∈ V
Result: Randomly selects a predecessor i for each non-dummy activity j ∈ V : Pred(j) = ∅

1 nonredarcs←− nStart + nFinish; // number of non-redundant arcs in the graph;
2 j←− nStart + 1;
3 while j < n + 1 do
4 while Pred(j) = ∅ do
5 if j ≥ (n – nFinish + 1) then
6 i←− random ∈ {1, ..., (n – nFinish)};
7 else
8 i←− random ∈ {1, ..., j – 1};
9 end

10 if
∣∣Succ(i)

∣∣ < MaxSucc then
11 Succ(i)←− Succ(i) ∪ {j};
12 Pred(j)←− {i};
13 nonredarcs←− nonredarcs + 1;
14 end
15 end
16 j←− j + 1;
17 end

111



7. Appendix

Algorithm 7.2: Generating a precedence network — Step 2
Data: nStart, nFinish, MaxPred, nonredarcs, Pred(j) : j ∈ V , Succ(j) : j ∈ V
Result: Randomly selects a successor u for each non-dummy activity j ∈ V : Succ(j) = ∅

1 j←− n – nFinish;
2 while j > 0 do
3 Compute Pred(j);
4 while Succ(j) = ∅ do
5 if j ≤ nStart then
6 u←− random ∈ {nStart + 1, ..., n};
7 else
8 u←− random ∈ {j + 1, ..., n};
9 end

10 if
∣∣Pred(u)

∣∣ < MaxPred ∧ u /∈ ∪i∈Pred(j)Succ(i) then
11 Pred(u)←− Pred(u) ∪ {j};
12 Succ(j)←− {u};
13 nonredarcs←− nonredarcs + 1;
14 end
15 end
16 j←− j – 1;
17 end

Algorithm 7.3: Generating a precedence network — Step 3
Data: nStart, nFinish, Pred(j) : j ∈ V , Succ(j) : j ∈ V , MaxPred, MaxSucc, nonredarcs, NC
Result: Creates a network with the desired NC

1 reqnumarcs := dNC × (n + 1)e // required number of arcs to fulfill the desired NC;
2 if nonredarcs > reqnumarcs then
3 Go to Algorithm 7.4;
4 else
5 while nonredarcs ≤ reqnumarcs do
6 i←− random ∈ {1, . . . , (n – nFinish)};
7 if

∣∣Succ(i)
∣∣ < MaxSucc then

8 if i ≤ nStart then
9 j←− random ∈ {nStart + 1, . . . , n} \ Succ(i);

10 else
11 j←− random ∈ {i + 1, . . . , n} \ Succ(i);
12 end
13 end
14 if

∣∣Pred(j)
∣∣ < MaxPred then

15 if j ∈ Succ(i) ∨ ∃ u ∈ Succ(j) : Pred(u) ∩ Pred(i) 6= ∅
16 ∨Pred(j) ∩ Pred(i) 6= ∅ ∨ Succ(i) ∩ Succ(j) 6= ∅ then
17 This arc is not added as it creates redundancy in the network;
18 else
19 Pred(j)←− Pred(j) ∪ {i};
20 Succ(i)←− Succ(i) ∪ {j};
21 nonredarcs←− nonredarcs + 1;
22 end
23 end
24 end
25 end
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Algorithm 7.4: Generating a precedence network — Step 3: removing arcs from the network
Data: nFinish, Pred(j) : j ∈ V , Succ(j) : j ∈ V , nonredarcs, reqnumarcs
Result: Removes arcs from the network until the desired NC is reached

1 while nonredarcs > reqnumarcs do
2 i←− random ∈ {1, ..., (n – nFinish)};
3 if

∣∣Succ(i)
∣∣ > 1 then

4 j←− random ∈ Succ(i);
5 if

∣∣Pred(j)
∣∣ > 1 then

6 Succ(i)←− Succ(i) \ {j};
7 Pred(j)←− Pred(j) \ {i};
8 nonredarcs←− nonredarcs – 1;
9 end

10 end
11 end

Algorithm 7.5: Generation of the activities — Step 2
Data: V; L; Lj, j ∈ V; SF
Result: Generation of the skill requirements

1 L0,Ln+1 ←− ∅;
2 if SF ∈ ]0, 1] then
3 λ←− dSF × Le // λ:= number of skills required by each activity j ∈ V \ {0, n + 1};
4 end
5 while There is at least one skill not required by any activity do
6 j←− 1;
7 ρ←− 0 // ρ := overall number of already associated resources;
8 while j < n + 1 do
9 Lj ←− ∅;

10 if SF /∈ ]0, 1] then
11 λ←− random ∈ {2, . . . , L}; // a non-valid SF value has been provided, a variable SF is
12 considered;
13 end
14 while

∣∣Lj
∣∣ < λ do

15 l←− random ∈ L;
16 if l /∈ Lj then
17 Lj ←− Lj ∪ {l};
18 rjl ←− 1;
19 ρ←− ρ + 1;
20 end
21 end
22 j←− j + 1;
23 end
24 end
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Algorithm 7.6: Generation of the activities — Step 3
Data: V ,R, Lj, j ∈ V , MRS, ρ, maxResSkill, maxResAct
Result: Increase the requirements of the activities until MRS is reached

1 while ρ <
⌊ K

MRS
⌋

do
2 j←− random ∈ {1, ..., n};
3 if

∑
l′∈Lj

rjl′ < maxResAct then
4 l←− random ∈ Lj;
5 if rjl < maxResSkill then
6 rjl ←− rjl + 1;
7 if skill requirements of the activity are met (i.e., a feasible flow is found) then
8 ρ←− ρ + 1;
9 else

10 rjl ←− rjl – 1;
11 end
12 end
13 end
14 end
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