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Abstract
Current scientifc literature indicates that climate change will  cause an average world 
temperature increase between 1 and 4ºC, along with changes in precipitation patterns 
and extreme weather events in the next 50 years. These are likely to have a negative 
impact for biodiversity in general, and forest ecosystems should be particularly afected, 
especially those in Mediterranean areas, like the cork oak (Quercus suber L.) “montados”. 
In order to understand how species can respond to such alterations, it is important to 
know their evolutionary history and genetic architecture of adaptive traits. Advances in 
sequencing technologies have relatively recently brought down the cost of sequencing 
per  base  pair  to  a  point  where  even  small  research  facilities  can  obtain  genomic 
information of non-model organisms. These advances made SNP markers become the 
most  abundant  type of  genetic  variation in  eukaryotic  genomes,  especially  with  the 
advent of Reduced Representation libraries such as RAD-Seq and GBS. Yet, despite their 
widespread use, SNP data analyses still bore its own set of bioinformatics challenges. 
While most of these are related with the practical aspects of the process, such as being 
able to handle very large datasets,  or  discriminate between neutral  and non-neutral 
markers,  some  fundamental  problems,  like  reproducibility  are  also  important  issues 
afecting research in this area.

In this thesis,  genomic and transcriptomic data from  Q. suber was used to assess the 
evolutionary history of the species, detect the efects of natural selection across the 
cork oak’s distribution range and fnd any associations between the obtained markers 
and environmental variables.

The main methodological contributions of this thesis are in the form of three software 
suites: (1) 4Pipe4, a software for automatically mining SNP markers from NGS data when 
no  reference  genome  nor  strain  information  is  present,  (2)  NCBI  Mass  Sequence 
Downloader, a program to automate the downloading of large datasets from the NCBI 
databases, and (3)  Structure_threader, a software to automate and parallelize analyses 
using  several  popular  clustering  analyses  programs.  All  of  these  programs  were 
developed with the intent to improve the automation and reproducibility value of the 
analysis processes they are meant to be part of.

The main fndings of this  thesis  are that (1)  the evolutionary history and population 
structure of Q. suber is not as neatly structured as chloroplastidial markers indicate, (2) 
local  adaptation plays  and important  role  in  the distribution  of  the species’  genetic 
variability, and (3) the cork oak may be better equipped, from a genetic point of view, to 
adapt to climate change than what previous studies based solely on ecological modelling 
indicated.

Keywords: Bioinformatics,  Evolutionary  Biology,  Genotyping  by  Sequencing,  Natural 
Selection, Software Development
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Resumo
A esmagadora maioria da literatura científca atual indica que durante os próximos 50 
anos, a temperatura mundial irá aumentar em média entre 1 e 4ºC dependendo do local 
e  modelo  utilizado  para  a  previsão.  A  acompanhar  estas  alterações  de  temperatura 
preveem-se  também  alterações  aos  padrões  e  frequência  de  precipitação  e  eventos 
climáticos  extremos  (como  furacões,  secas  extremas,  chuvas  torrenciais).  Os  efeitos 
destas mudanças na biodiversidade são ainda desconhecidos,  mas pesquisas recentes 
indicam que terão um impacto geralmente negativo. Espera-se que este impacto seja 
particularmente sentido em sistemas forestais devido a fatores como a longevidade das 
árvores, que difcultam a resposta a alterações rápidas como as que estamos a vivenciar. 
As  forestas  mediterrnneas  serão  possivelmente  as  mais  afetadas  devido  à  sua 
sensibilidade  aos  ciclos  de  precipitação.  Tentar  prever  a  reposta  das  espécies  a 
alterações ambientais exige conhecimento da história evolutiva das mesmas, bem como 
da  arquitetura  genética  das  respetivas  características  adaptativas.  Uma  espécie 
emblemática  que  aparece  frequentemente  associada  a  estes  sistemas  forestais 
mediterrnnicos  é  o  sobreiro  (Quercus  suber L.).  Esta  árvore  da  família  Fagacea  é 
caracterizada  pelo  casca  do  seu  tronco,  composta  por  um tipo de suberina  também 
designada por “cortiça”. A sua distribuição estende-se por diversos países da margem 
Norte  do  Mediterrnneo  (Portugal,  Espanha,  França  e  Itália)  e  também  em  países  da 
margem Sul  do mesmo (Marrocos,  Argélia  e Tunísia)  Q. suber aparece ainda na costa 
Atlnntica de alguns países Europeus (Portugal, Espanha e França). No locais onde ocorre 
forma  tipicamente  um  sistema  denominado  montado (ou  dehesa em  castelhano) 
frequentemente em associação com outras árvores dos géneros Quercus e Pinus. 

A história evolutiva do sobreiro tem sido alvo de diversos estudos, baseados em diversas 
técnicas  de  análise.  No  entanto,  trabalhos  sobre  esta  espécie  que  recorrem  a  uma 
amostragem  representativa  de  todo  o  espetro  de  distribuição  da  mesma  têm  sido 
efetuados com recurso a marcadores cloroplastidiais  e a principal conclusão destes é 
que  Q.  suber é  uma  espécie  essencialmente  dividida  em  quatro  linhagens  distintas, 
geografcamente  segregadas.  Apesar  disto,  estudos  efetuados  com  marcadores 
nucleares, de abrangência geográfca menor sugerem um baixo nível de diferenciação 
populacional,  altos  índices  de  diversidade  e  estrutura  populacional  não  evidente. 
Relativamente à potencial resposta do sobreiro às alterações climáticas globais, estudos 
de  modelação  ecológica,  tanto  de  nmbito  localizado  como  generalizado  foram 
efetuados, mas apresentando resultados contraditórios. Enquanto alguns indicam que a 
área de distribuição de Q. suber será reduzida nos próximos 70 anos, outros preveem que 
a mesma aumente em igual período de tempo.

Apenas  com  o  aparecimento  e  democratização  das  tecnologias  de  sequenciação  de 
segunda geração, normalmente denominadas de “Next Generation Sequencing” (NGS) se 
tornou  possível  a  centros  de  investigação  de  pequenas  dimensões  trabalharem  com 
dados de DNA nuclear em larga escala. Esta tendência ganhou ainda mais relevnncia com 
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o surgimento das técnicas de “Reduced Representation Libraries” (RRLs) que permitem 
amostrar a variação de todo o genoma de um organismo. Uma das consequências destas 
técnicas foi um aumento de várias ordens de grandeza na quantidade de dados gerados 
e  que  passou  a  ser  necessário  analisar  pelos  investigadores.  Métodos  que  eram 
adequados  para  analisar  dados  pré  NGS  deixaram  de  ser  possíveis  de  aplicar  por 
simplesmente não serem capazes de escalar com a quantidade de informação com que 
agora eram obrigados a lidar. Este “novo tipo” de dados trouxe também outros novos 
desafos bioinformáticos associados requerendo novo software, aumentando também 
os padrões de qualidade que a comunidade científca passou a exigir do mesmo.

Se antes do surgimento das tecnologias NGS a bioinformática e a biologia computacional 
eram já disciplinas em ascensão, os problemas gerados por este novos dados deram-lhes 
tal  impulso  que  levou  alguns  autores  a  sugerir  que  no  futuro,  toda  a  biologia  será 
biologia  computacional.  Um dos  grandes  desafos  inerentes  a  estas  áreas  da  ciência 
prende-se com a reprodutibilidade. Apesar de estar intrinsecamente ligada a todos os 
campos científcos, ganha especial relevo nas análises bioinformáticas de dados, por um 
lado porque repetir análises computacionais é mais simples e barato que o equivalente 
laboratorial, e por outro porque a partilha de dados digitais é mais simples e frequente 
entre investigadores do que por exemplo amostras físicas, o que aumenta a visibilidade 
do  problema.  Este  problema  de  reprodutibilidade  em  ciência  (ou  falta  dela)  levou 
inclusive que fosse decretada uma “crise de reprodutibilidade” que afeta principalmente 
pesquisa publicada em revistas de alto fator de impacto. Apesar de esta “crise” estar  
longe de ultrapassada, as práticas que a podem resolver são já conhecidas.

Três objetivos principais foram defnidos para esta tese. Foram eles: (1) estudar a história 
evolutiva de Q. suber, baseado em SNPs minados de dados transcritómicos de NGS, (2) 
estudar a  ação da seleção natural  ao longo da área de distribuição do sobreiro  com 
recurso a dados genómicos, e (3) realizar estudos de associação entre SNPs de sobreiro e 
um conjunto de variáveis  ambientais.  Todos os objetivos  foram cumpridos  durante a 
realização da tese, no entanto, no decorrer da mesma surgiu a oportunidade de tentar 
responder a outras questões científcas relacionadas,  razão pela qual  os produtos da 
tese não se prendem apenas com estes três objetivos.

Do  ponto  de  vista  técnico,  este  tese  contribuiu  para  a  ciência  com  três  suites  de 
software. O primeiro, denominado 4Pipe4, é uma pipeline de análise de dados otimizada 
para minar automaticamente SNPs em conjuntos de dados de 454 (apesar de funcionar 
com  outras  tecnologias  NGS)  quando  não  estão  disponíveis  nem  sequências  de 
referência,  nem  informação  de  estirpe.  À  data  da  sua  publicação,  este  método 
demonstrou uma performance superior a todos os outros métodos testados na métrica 
de deteção de falsos positivos. O segundo, um programa chamado NCBI Mass Sequence 
Downloader, permite automaticamente descarregar das bases de dados do NCBI grandes 
quantidades de dados, que tendem a ser problemáticas quando efetuadas a partir do 
navegador web.  Este programa  simplesmente disponibiliza  duas  interfaces  (gráfca e 
linha de comandos) para a API do próprio site e acrescenta verifcação de sequências e 
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correção de erros. O terceiro é um programa chamado Structure_threader, que permite 
automatizar  e  paralelizar  software  popular  de  estimação  de  estrutura  populacional 
(STRUCTURE,  FASTSTRUCTURE e  Maverick).  Além  disso  tem  também  a  capacidade  de 
desenhar os gráfcos de “Q-values”, que são o produto típicos destes programas, tanto 
numa  forma  estática,  com  qualidade  de  publicação,  como   numa  versão  dinnmica  e 
interativa, ideal para a fase exploratória da análise. Finalmente, este tese contribui ainda 
com o processo de automatização da análise dos dados de GBS utilizados, que não sendo 
um programa formal, por um lado serve para garantir a reprodutibilidade da análise e 
por outro é sufcientemente fexível para que possa ser usado com outros conjuntos de 
dados  em  análises  similares.  Todos  estes  produtos  metodológicos  têm  em  vista  a 
automatização e a reprodutibilidade de processos analíticos.

Do ponto de vista biológico, os principais resultados desta tese são também três. Em 
relação à história evolutiva, os dados de GBS indicam que Q. suber não é uma espécie tão 
estruturada do ponto de vista genético como os marcadores cloroplastidiais indicam. Em 
relação  aos  efeitos  da  seleção  natural,  os  resultados  das  análises  de  outliers  e 
associações,  sugerem  que  a  adaptação  local  desempenha  um  papel  importante  na 
distribuição da variabilidade genética da espécie. Finalmente os resultados das análises 
de risco de não adaptação indicam que o sobreiro está provavelmente melhor equipado 
geneticamente para resistir  às  alterações climáticas do que o indicado por previsões 
efetuadas em estudos anteriores baseados exclusivamente em dados ecológicos.

Palavras-chave: Bioinformática,  Biologia  Evolutiva,  Desenvolvimento  de  Software, 
Genotyping by Sequencing, Seleção Natural.
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 CHAPTER 1

General Introduction



 Chapter 1

1 A changing world

1.1 The fast pace of change
The year is  2017.  Global  climate change is  one of the hottest topics  currently  being 
debated,  both in  academia  and by  the general  public.  It  also  happens  to  be a  quite 
controversial and politicized subject. Regardless of what some factions claim in media 
centred debates (Walther et al. 2005), an overwhelming majority of scientifc literature 
suggests an increase in average temperature will happen until 2100 (Walther et al. 2002; 
Oreskes  2004;  IPCC 2014).  Estimates  of  this  increase vary  with  the  used model  and 
localization, but an average increase of 1.0ºC - 4.0ºC by 2090 (Figure 1.1),  relative to 
1990 values is what most current estimates point towards (IPCC 2014). Climatic changes 
are  not  just  bound  to  temperature,  as  precipitation  patterns  are  also  very  likely  to 
change, along with the frequency of extreme meteorologic events (Beniston et al. 2007; 
IPCC 2014).

Figure 1.1: Global average surface temperature change from 2006 to 2100 as 
determined by multi-model simulations. All changes are relative to 1986–
2005. Time series of projections and a measure of uncertainty (shading) are 
shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Adapted from (IPCC 
2014).

These changes  are likely  to  have a negative impact  for  biodiversity  in  general  (IPCC 
2014), but it should be particularly felt on forest ecosystems (Alley 2003) due to the long 
life-span  of  trees,  which  is  an  obstacle  to  coping  with  rapid  environmental  changes 
(Lindner et al. 2010). This is especially true for European forest systems, which have a 
particularly high anthropogenic imprint in their compositions (Milad et al. 2011).

Even  though  the  expected  temperature  shift  may  bring  some  benefts  to  forests  in 
temperate and boreal areas due to a longer growth season  (Saxe et al. 2002; Briceño-
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Elizondo et al.  2006),  Mediterranean forests,  where precipitation is  expected to shift 
almost exclusively  to winter seasons, are more likely to experience detrimental efects 
(Loustau et al. 2005). Also accompanying these climatic changes, other factors, such as 
diseases, parasites and herbivores that afict forest species will change with the local 
conditions, in ways that are currently unpredictable  (Lindner et al. 2010; Lindner et al. 
2014).

Species afected by the changing environment will therefore inevitably respond to the 
new environmental conditions. This response can be enacted by altering one or more of 
the following traits: (1) the phenology and physiology of organisms, (2) the range and 
distribution of species, (3) the composition of and interactions within communities, and 
(4) the structure and dynamics of ecosystems (Walther et al. 2002). In order to estimate 
in which way a species is capable of responding to environmental change (Kremer et al. 
2012), it is of extreme importance to understand the genetic architecture of its adaptive 
traits  (Alberto et al. 2013) and evolutionary history  (Kremer et al. 2014). Such studies 
have been previously enacted in European forest trees such as Pinus (Alberto et al. 2013) 
or  Populus (Olson et al.  2013) genera,  where both evolutionary history and adaptive 
traits are assessed to help predict the potential response of these tree species to global 
climatic  alterations.  Despite  their  diferences,  distinguishing  the  efects  in  marker 
evolution of evolutionary history from adaptation is not an easy task, especially when 
migration is high or the divergent selection pressure is weak (Thibert-Plante and Hendry 
2010).

1.2 The montado system
A typically  Mediterranean  forest  system is  the  montado in  Portuguese,  or  dehesa in 
Spanish  (Figure  1.2),  which  is  known  to  play  an  important  role  in  water,  soil  and 
biodiversity conservation (Jofre et al. 1999).

Oak  dehesas can be of either  natural  or artifcial  origin,  and have been described as 
multi-functional  systems,  mainly  of  the  foresty-pastoral  type,  consisting  of  multiple, 
integrated and interdependent systems and subsystems  (Lauw et al.  2013).  Montados 
can be composed of several Quercus species (Q. suber, Q. rotundifolia, Q. faginea and Q. 
pyrenaica), in either ‘pure’ or ‘mixed’ settings. When cork oak is the dominant species of a 
montado it  can  be  associated  with  trees  of  the  Pinus genus  (Pinus  pinea and  Pinus 
pinaster)  (Lauw  et  al.  2013).  Montados maintain  very  high  levels  of  biodiversity  and 
provide “ecosystem services”, such as carbon sequestration (Moreno et al. 2016). These 
high levels of animal and plant diversity have been attributed to the mixture of forest 
and open habitat at several scales, typical of the montado systems (Moreno et al. 2016). 
These traits, make the species that compose it is particularly interesting to study under a 
climate change scenario.
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Figure 1.2: Example of a montado forest. © Eduardo Marabuto 2017.

One such species is  Quercus suber L., commonly known as “cork oak” (Figure 1.3). This 
evergreen species of the Fagacea family is mainly distributed across the Mediterranean 
Basin (Figure 1.4)  (Coelho et al.  2006), being naturally found in countries like Algeria, 
France, Italy, Morocco, Portugal, Spain and Tunisia  (Pereira-Leal et al.  2014). Cork oak 
trees are characterized by their uncommon bark, which is composed of a peculiar type of 
suberin  (Vishwanath  et  al.  2015),  commonly  referred  to  as  “cork”,  which  makes  it 
impermeable to liquids and gases. “Cork” is the main reason  Q. suber has such a high 
economic importance (Costa et al. 2015), representing approximately US$1147.5 Million 
each year in exports from the Iberian Peninsula (Sierra-Pérez et al. 2015). This makes this 
tree species (and the respective montado system) quite important for the economies of 
both Portugal and Spain, which encompass 34% and 27% of the world’s cork oak forests 
and 50% and 30% of the world’s cork production respectively (Sierra-Pérez et al. 2015). 
Cork extraction is known to be compatible with the typically high biodiversity levels of 
the montado systems (Sierra-Pérez et al. 2015), which makes the economic exploitation 
of these systems a sustainable activity (Lauw et al. 2013).
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Figure 1.3: A cork oak tree. © Eduardo Marabuto 2017.

1.3 Evolutionary history of Q. suber
The  evolutionary  history  of  Q.  suber has  been  the  subject  of  various  studies,  using 
several molecular biology techniques. The frst study of  Q. suber with molecular data 
resorted to allozyme data, revealing that introgression with holm oak (Quercus ilex) was 
occurring,  and that two genetically distinct groups were geographically segregated – 
one group in the Iberian Peninsula and adjacent French regions, and another comprising 
the  remaining  distribution  range  (Toumi  and  Lumaret  1998).  The  idea  of  genetically 
diferentiated groups of  Q. suber was further reinforced by PRC-RFLP techniques with 
cpDNA of three Oak species – Q. ilex, Q. coccifera and Q. suber (Jiménez et al. 2004). The 
same  technique,  applied  to  the  whole  chloroplast  DNA,  indicated  that  cork  oak 
populations could be further divided into three groups,  instead of the previous two, 
corresponding to potential glacial refuges in Italy, North Africa and Iberia (Lumaret et al. 
2005; López de Heredia et al. 2007).
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Figure 1.4: Mercator projection map of Quercus suber's distribution. Cork oak trees occur in the green land 
areas. Adapted from EUFORGEN 2009 (www.euforgen.org).

A  study  with  eight  chloroplast  microsatellite  loci  further  increased  the  number  of 
identifed lineages of Q. suber to four – two lineages in the Iberian Peninsula, a third in 
Southern  France,  Corsica,  Sardinia  and  Tunisia,  and  a  fourth  in  the  Italian  Peninsula, 
which are considered to have originated due to plate tectonic dynamics  (Magri  et al. 
2007) instead of glacial refugia as stated in previous studies (Figure 1.5).

The frst published study of Q. suber using nuclear DNA resorted to AFLP markers in an 
attempt  to  associate  loci  with  cork  quality  in  Portuguese  populations  (Coelho  et  al. 
2006).  Nuclear  markers  were,  for  the  frst  time,  used to  assess  cork  oak  population 
structure (nine microsatellite loci, eight of which polymorphic in cork oak) and suggested 
a lack of population structuring in this species, although, the study was confned to a 
relatively  small  area  of  11.3  ha  (Soto  et  al.  2007),  which,  combined  with  low 
polymorphism  levels,  led  the  authors  to  maintain  the  question  of  whether  or  not 
population structuring exists in the analyzed population.

Another study focusing on Q. suber using nuclear DNA resorted to six microsatellite loci 
to assess the efects of natural selection along a temperature cline in a common garden 
experiment, using only samples collected in Spain (Ramírez-Valiente et al. 2009). Despite 
the fact that its focus was not on the species' evolutionary history, it was nevertheless 
an important development due to the used markers, which were later applied to search 
for associations between these loci,  a  temperature cline and tree physiological  traits 
(Ramírez-Valiente et al. 2010). One locus revealed associations with temperature, and 
with leaf growth and size, hinting at efects of putative local adaptation. These same 
markers were further used to investigate the impact of neutral evolutionary processes 
on  the  genetic  variance  and  functional  diversity  within  3  populations  of  Q.  suber 
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(Ramírez-Valiente et al. 2014). This study revealed less genetic diferentiation between 
populations than within populations.

Figure 1.5: Cork oak segregation in four lineages as proposed in Magri et al. (2007).

Another study (Simeone et al. 2009) that used nuclear DNA markers (nuclear ribosomal 
DNA),  revealed  poorly  supported  phylogenetic  diferentiation  between  Q.  suber 
populations, which was not consistent with the previously described plastidial lineages. 
The discrepancy,  however,  is  attributed to  hybridization between  Q.  suber and other 
Quercus species.

The evolutionary history of  Q. suber as detailed above, is consistent with that of other 
European oaks, such as  Q. petraea,  (Siegismund and Jensen 2001; Bruschi et al. 2003; 
Muir  et al.  2004) or  Q. robur (Streif et  al.  1998) ,  for which plastidial  markers  reveal 
population  structuring,  but  nuclear  DNA,  indicates  high  molecular  diversity,  low 
population diferentiation and weak or nonexistent structuring, suggestive of high rates 
of gene fow.

Despite all  these studies regarding  Q. suber’s  evolutionary history,  this  species is  far 
from  being  a  model  organism,  with  no  publicly  available  genomic  resources,  and 
relatively few publicly available genetic sequences at the time of writing.

Another phenomenon that may be adding complexity to the evolutionary history of Q. 
suber is the hybridization with other oaks, such as Q. ilex and Q. cerris (Petit et al. 1997; 
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Belahbib  et  al.  2001;  Costa  et  al.  2011) which  can  happen  diferentially  across  the 
species' range.

Q. suber has also been studied regarding its potential response to climate change. Some 
studies, performed in small scale, provide contradicting results, indicating both a likely 
increase in distribution  (Attorre et al. 2011) and a likely decline  (Benito Garzón et al. 
2008). Recently, two new studies have modeled this response on a large scale (Correia et 
al. 2017; Vessella et al. 2017). Once again, these studies show contradictory results, one 
predicting that Q. suber will approximately maintain the same suitable distribution area 
(or even increase it), albeit with a shift to the North, and the other indicating that the 
distribution area of  Q. suber will drastically decrease in the next 60 years. All of these 
studies are, however, focused on present and future environmental conditions, and do 
not consider the species’ ability to adapt to a changing environment.

Despite  both  its  ecological  and  economical  importance,  and  relatively  well  studied 
evolutionary history, no studies regarding how Q. suber may respond to climate change 
from a genetic point of view are published.

Trying to understand the response of cork oak to climate change on a large scale, from 
an adaptation point of view was what motivated this work. For that, as stated above, it is 
important to understand the species’ evolutionary history and the genetic architecture 
of its adaptive traits, preferably on as large a scale as possible, which is the focus of this 
thesis.
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2 A World of Change

2.1 A new kind of data generation
It has long been known that organelle genomes tell a diferent evolutionary history from 
that of nuclear genomes, especially in plants (Govindarajulu et al. 2015), where the male 
gamete may migrate in both the pollen and in the seed, whereas the female gamete is 
restricted to the seed (Petit et al. 1993). This means that in order to know an organism’s 
full  evolutionary history,  nuclear DNA (nuDNA) information is  required in addition to 
that of monoparental inheritance, such as mitochondrial or chloroplast DNA (mtDNA and 
cpDNA respectively).

However, studying non-model organisms’ nuDNA was typically an expensive and time 
consuming task until Second Generation Sequencing technologies, often referred to as 
Next Generation Sequencing (NGS) emerged (Schuster 2008). This situation led to non-
model species being studied for many years resorting to organelle DNA, with nuDNA 
only  being  frequently  used  much  later.  The  previous  section  regarding  cork  oak’s 
evolutionary history is a clear example of this trend.

Only when access to NGS technologies became more afordable  (Kumar et al.  2012) 
(Figure 1.6)  did Single Nucleotide Polymorphisms (SNPs),  the most abundant type of 
genetic  variation in eukaryotic  genomes  (Rafalski  2002),  became a viable solution to 
answer evolutionary biology questions in non-model organisms. Strategies such as SNP 
mining from Expressed Sequence Tags (EST) databases were slowly made possible and 
gained the necessary traction for widespread use (Orsini et al. 2011).

Another, more direct way to obtain SNP markers in large scale from organisms with few 
or  no  genomic  resources  is  the  use  of  Reduced  Representation  Libraries  (RRLs) 
combined with NGS. Techniques such as Genotyping by Sequencing (GBS) (Elshire et al. 
2011), or Restriction-site Associated DNA (RAD)  (Baird et al. 2008), have done for the 
development  of  nuclear  SNP  markers  what  NGS  technologies  did  for  genome 
sequencing –  a  drastic  lowering of  the  entry  barrier  (Lowry  et  al.  2017).  These  RRL 
methodologies  are  able  to  produce  thousands  of  SNP  markers  per  application  (Van 
Tassell et al. 2008), which makes the development of these SNP libraries relatively cheap 
and fast. These are ideal qualities for a technique to be widely applied to organisms for 
which not many genetic/genomic resources are available.
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Figure 1.6: Average cost of sequencing from 2001 to 2015. Reproduced from (Wetterstrand 
2016).

It is the sheer number of SNP markers that are nowadays possible to obtain for relatively 
low operation costs that represents their great strength (Kirk and Freeland 2011). The 
use of RRLs was so disruptive regarding previous techniques, that the RAD technique 
was considered by the journal Science as one of the breakthroughs of the year (Science 
2010). Some authors go as far as considering these techniques as revolutionary in the 
feld of genetics  (Andrews et al. 2016).

It was the availability of NGS libraries and RRL techniques (in this case, GBS and Roche’s  
454) that allowed the generation of almost all the data for this thesis. In this aspect, 
these  methodologies  were  of  paramount  importance,  since  without  them  (or  their 
equivalents), it would not have been possible to reach the results obtained here.

2.2 A new kind of data handling
Despite the fact that studies using SNPs are becoming more common, they still  bore 
associated  bioinformatics  challenges  that  must  be  overcome  when  developing  and 
analysing them, especially for non-model organisms (Kumar et al. 2012).

These challenges are present in every step of the data analysis process, starting with the 
SNP calling  methodologies  (Nielsen et  al.  2011),  to  distinguishing neutral  from non-
neutral markers  (Porcher et al.  2006),  to disentangling historical  population structure 
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from the adaptation process. The task becomes especially difcult when migration is 
high  or  the  divergent  selection  pressure  is  weak  (Thibert-Plante  and  Hendry  2010). 
Although methodologies are available to deal with these issues (Foll and Gaggiotti 2008; 
Vitalis et al. 2014), applying them correctly is rarely a straightforward exercise.

SNP markers whose allelic frequencies difer from expectations under a neutral scenario 
(outlier SNPs) are not as frequent as their neutral counterparts, being represented as 1-
3% of the total genotyped SNPs in some studies  (Chen et al. 2012; De Kort et al. 2014; 
Berdan et al. 2015). However, they are known to provide a better insight into genetic 
diversity,  local  adaptation  and  evolutionary  potential  than  neutral  markers  (Kirk  and 
Freeland 2011). Despite the low frequency of these “special case” markers, with a large 
enough SNP pool it is possible to make biological inferences based on them, while still  
retaining signifcant statistical power (Andrews et al. 2016).

Many methods have been proposed to address the issue of selection detection, but even 
today it remains a challenging task (Vitalis et al. 2014). Early methods attempted to test 
markers for neutrality relying on the comparison of site-frequency spectrum summary 
statistics to their expected distribution from difusion theory (Bustamante et al. 2001). 
Many other methods for performing this task exist, and all have known problems and 
caveats. Two methods are currently in widespread use due to their peculiar approaches 
to the problem. These methods are implemented in the software  Bayescan (Foll  and 
Gaggiotti 2008) and SelEstim (Vitalis et al. 2014). Bayescan is based on an island model in 
which subpopulation allele frequencies are correlated through a common migrant gene 
pool.  The  diference  in  allele  frequency  between  this  common  gene  pool  and  each 
subpopulation is measured by a subpopulation specifc FST coefcient. This FST coefcient 
is then decomposed into a population specifc and a general component which are used 
to infer departures from neutrality.  SelEstim, on the other hand, is based on the same 
island model with migration as Bayescan, but relies on allelic frequencies and not on FST 

to  infer  which  markers  are  under  strong  selective  pressures  (since  SelEstim further 
assumes that all marker loci respond to selection in some extent). However, despite their 
sophistication,  both  these  methods  are  afected  by  a  relatively  high  rate  of  false 
positives  (albeit  SelEstim is  less  afected than  Bayescan).  A  common empirical  “work 
around”  for  this  issue  is  to  use more  than  one program to perform the outlier  loci  
detection and consider only the intersection of the marker sets as being under selection 
(Pais et al. 2017).

Like outlier markers, SNPs that can provide insights regarding the adaptation process 
(whose allelic frequencies are associated with environmental or phenotypic variables) 
are also not very common (Eckert et al. 2015; Rellstab et al. 2016) (albeit their frequency 
cannot  be  compared  between  studies  as  in  the  case  of  outlier  markers,  due  to  the 
multivariate nature of the analyses). They do provide the kind of interesting information 
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regarding a species’  biology that  evolutionary history alone cannot explain  (Kirk  and 
Freeland 2011).

Environmental  association  analyses  can  be  as  simple  as  fnding  a  direct  correlation 
between  a  specifc  genotype  and  an  environmental  variable  (Joost  et  al.  2007),  to 
methodologies  like  Baypass that  incorporate  data  transformations  to  account  for 
eventual  biases  due  to  underlying  population  structure  (Gautier  2015).  Albeit  these 
methods can provide large numbers of markers under potential selection, it is important 
to  underline that  these are still  based on correlation analyses,  which  may not  imply 
causation  (Gautier  2015).  In  order  to  imply  causation  in  the  found  correlations  it  is 
important to identify the putative function of each associated marker and relate it with 
the correlated variable.

SNPs are thus, very suitable markers for population genomics studies, since they can 
easily be used to identify and separate locus-specifc efects, such as selection, mutation, 
assortative mating or recombination (Evans et al. 2014) from genome-wide efects, such 
as bottlenecks, gene fow or inbreeding  (Keller et al. 2010) and consequently improve 
our understanding on microevolution (Black et al. 2001).

Despite the fact that this thesis consisted of feld, laboratory and desktop work,  the 
bioinformatics analyses were by far the greatest challenge. These challenges, are also 
the motivation behind the creation of all the software presented here as chapters 2, 3 
and  4.  On  a  personal  note,  it  was  also  the  most  rewarding  part  of  the  PhD,  even 
trumping  some  of  the  biological  insights  discovered  as  a  result  of  the  results 
interpretation.
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3 Changing the World

3.1 The rise of bioinformatics
With the increase in data throughput that NGS technologies brought to the feld of 
biology, so did the difculty in analysing such large quantities of data (Markowetz 2017). 
This  phenomenon  led  to  an  increase  in  importance  and  relevance  of  felds  such  as 
bioinformatics and computational biology  (Atwood et al. 2015; Markowetz 2017). This 
trend  can  be  seen  in  the  increase  of   publications  in  PubMed  containing  the  term 
“Bioinformatics” and “Computational Biology” (Figure 1.7).

Figure 1.7: Relative number of publications per year in PubMed containing the terms 
"Computational Biology" and "Bioinformatics".

Defning the interdisciplinary felds of bioinformatics and computational biology, is not 
straightforward,  and  currently  there  is  no  clear  consensus  on  the  subject.  However, 
loose defnitions are put forward by some authors: both disciplines target to develop 
methodology  and  analysis  tools  to  explore,  store,  organize,  systematize,  annotate, 
visualize, query, mine, understand and interpret biological data (Abdurakhmonov 2016). 
For this purpose, they resort to tools from the domain of computer science, statistics 
and mathematics (Abdurakhmonov 2016). Bioinformatics is usually considered a tool kit, 
therefore of  a  more technical  nature,  whereas computational  biology is  viewed as  a 
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“science”,  of  a  more  theoretical  nature  (Searls  2010;  Abdurakhmonov  2016).  The 
boundaries  between  these  two  disciplines  are  usually  intertwined,  a  fact  which 
frequently binds them together (Searls 2010).

Bioinformatics and computational biology are relatively new felds in science. Although 
they mostly gained notoriety in the mid-2000’s, with the advent of NGS technologies, it 
has arguably  started in  the early  20th century  when statistics  and numerical  analysis 
began to establish a foothold in biology  (Searls 2010).  These disciplines have gained 
notorious relevance in recent years, and biology, as a major feld of science has made 
strides in becoming closer to other, longer established, exact sciences such as physics 
and mathematics (Markowetz 2017). Because of this, some would argue that the days of 
computational biology are numbered, since it is only a matter of time until all biology is 
synonymous with computational biology, and bioinformatics become just another tool 
specifc to biology, just like microscopy, or cell culture (Markowetz 2017).

3.2 Reproducibility crisis
Reproducibility, the ability of a researcher to duplicate the results of a prior study using 
the same materials  as were used by the original  investigator  (Bollen et al.  2015) is a 
foundational characteristic of scientifc research. Result consistency from independent 
research laboratories is ultimately the primary way to gather evidence for or against a 
formulated  hypothesis  (Leek  and  Peng  2015).  The  modern  use  of  “reproducible 
research”  was  originally  applied  not  to  corroboration,  but  to  transparency,  with 
application in the computational sciences (Goodman et al. 2016). The term was coined by 
Jon Claerbout who associated it with a set of procedures that permit the reader of a 
scientifc paper to transparently see the entire analysis process from the raw data and 
code to  fnal  fgures  and  tables  (Claerbout  and  Karrenbach  1992).  This  concept  was 
quickly exported to many other data intensive science domains, such as biology, clinical 
trials, or economics (Goodman et al. 2016).

In  recent  times,  the  scientifc  community  as  a  whole  was  shaken  by  reports  that  a 
troubling proportion of peer-reviewed studies are not reproducible (McNutt 2014). The 
problem continued to escalate until it was considered a “reproducibility crisis” (Schooler 
2014; Baker 2016; Scannell and Bosley 2016; Voelkl and Würbel 2016).

Many reasons have been put forward as an explanation for the current “reproducibility  
crisis”, such as measurement errors (Plant et al. 2014), sample size (Button et al. 2013), 
data  availability  (Rung  and  Brazma  2013;  Van  Noorden  2015),  and  closed  source 
software (Ince et al. 2012).

Consequences of this problem are threefold: monetary – with one study estimating the 
costs  of  irreproducible  research  at  US$28,000,000,000  per  year  in  the  USA  alone 
(Freedman et al. 2015), scientifc – the waste in resources it causes to other members of 
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the  scientifc  community  (Russell  2013),  and  social  –  by  triggering  a  decrease  in 
confdence in science from the general public (Pulverer 2015; Sarewitz 2015).

Proposals  exist  to  solve,  or  at  least  mitigate  this  “crisis”,  such  as  standardized  lab 
practices  (Plant et al.  2014), more thorough planning  (Button et al.  2013),  open data 
(Ince et al. 2012; Rung and Brazma 2013; Van Noorden 2015), and open source (Ince et al. 
2012).  Despite  the  existence  of  these  potential  solutions,  implementing and making 
them widespread takes efort, time, training and experience. Albeit the crisis is not yet 
surpassed, it can be argued that the path out of it has already been traced.

3.3 Hands on
Although reproducibility can usually be expensive and time consuming to achieve in wet-
lab experiments  (Sadowski  et  al.  2016),  the same is  not  true regarding dry  lab data 
analyses,  which  is  comparatively  orders  of  magnitude  cheaper  per  retrial  (Sarewitz 
2015).

That being said, it  is  still  very frequent to observe scientifc papers with expressions 
similar  to  “...  the  analysis  was  performed  using  an  in-house  script...”.  Since  these 
publications do not provide their full analyses environment, their results, are by default 
non-reproducible.  As  my  own  research  progressed  during  the  course  of  this  work,  I 
became more and more aware of the problem. Although this is already noticeable in 
chapter 5, where the traditional model of analysis description is followed, albeit with 
more detail than usual, and all the code is provided, it is in chapter 6 that the importance  
given  to  the reproducibility  of  the  study is  emphasised,  with  a  fully  automated  and 
portable analysis environment. As such, chapter 6 contains supplementary material that 
will  allow any researcher to reproduce the entire data analyses.  This means that the 
input data,  code,  confguration fles  and parameters  for  every single  analysis  step is  
provided with the manuscript.

Most  of  the  work  performed  in  this  thesis  is  clearly  inserted  in  the  computational 
biology and bioinformatics felds, and the bulk of the analyses are dry-lab, rather than 
wet-lab.  In an attempt to pioneer the way out of the aforementioned reproducibility 
crisis, a great deal of efort was made to ensure all the dry-lab analyses presented are 
reproducible.

The  objective  of  this  endeavour  is  twofold  –  on  one  hand,  it  allows  any  reader  to 
scrutinize, understand and build upon what was performed for the data analyses steps. 
On the other hand, it works as a way to increase confdence in the obtained results, by 
making sure every step can be automated (reducing human error), that the results of 
multiple subsequent runs are the same and to keep track of what was tried during the 
exploratory phase.
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3.4 Objectives & short description
Three main objectives were envisioned when planning this PhD:

1. Assess the evolutionary history of Quercus suber based on genomic SNP markers, 
resorting to a distribution wide sampling strategy;

2. Assess  the  action  of  natural  selection  on  the  cork  oak,  based  on  outlier  and 
association analyses and infer its role in shaping the species’ genetic background;

3. Improve data analyses methodological reliability by automating and streamlining 
the  process,  consequently  increasing  the  reproducibility  value  of  the  work 
performed for the thesis.

Chapters 2, 3 and 4 are mostly technical, dedicated to fulflling the third objective. These 
describe the most important software projects designed and written specifcally for the 
objectives of this work, but that are likely to have an impact on the broader scientifc 
community. Chapters 5 and 6 represent the biological meaningful analyses that were 
performed to meet the frst and second thesis objectives.
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1 Abstract
Background: Next-generation sequencing datasets are becoming more frequent,  and 
their use in population studies is becoming widespread. For non-model species, without 
a reference genome, it is possible from a panel of individuals to identify a set of SNPs 
that can be used for further population genotyping.  However the lack of a reference 
genome to which the sequenced data could be compared makes the fnding of SNPs 
more troublesome. Additionally when the data sources (strains) are not identifed (e.g. in 
datasets  of  pooled  individuals),  the  problem  of  fnding  reliable  variation  in  these 
datasets can become much more difcult due to the lack of specialized software for this 
specifc task.

Results: Here we describe 4Pipe4, a 454 data  analysis pipeline particularly focused on 
SNP detection when no reference or strain information is available. It uses a command 
line interface to automatically call other programs, parse their outputs and summarize 
the results. The variation detection routine is built-in in the program itself. Despite being 
optimized for SNP mining in 454 EST data, it is fexible enough to automate the analysis 
of genomic data or even data from other NGS technologies. 4Pipe4 will output several  
HTML formatted reports with metrics on many of the most common assembly values, as 
well as on all the variation found. There is also a module available for fnding putative  
SSRs in the analysed datasets.

Conclusions: This  program  can  be  especially  useful  for  researchers  that  have  454 
datasets of a panel of pooled individuals and want to discover and characterize SNPs for 
subsequent  individual  genotyping  with  customized  genotyping  arrays.  In  comparison 
with  other  SNP  detection  approaches,  4Pipe4  showed  the  best  validation  ratio, 
retrieving a smaller number of SNPs but with a considerably lower false positive rate 
than other methods.

4Pipe4's source code is available at https://github.com/StuntsPT/4Pipe4.

2 Background
With the democratization  of NGS technologies, large amounts of genomic and 
transcriptomic data became available to scientists in a short time span (Schuster, 2008). 
However, this magnitude of sequence data has brought  most researchers a new 
bioinformatics challenge: to analyse and mine very large datasets (Papanicolaou, Stierli, 
Ffrench-Constant, & Heckel, 2009). One of the areas of particular interest of NGS data 
analysis is the detection of sequence polymorphisms. This task, however, becomes 
particularly difcult when no reference genome is available, which is common in non 
model  organisms.  This  problem  is  somewhat  mitigated  when  the  samples  can  be 
accurately identifed (strain information is present) (Peterlongo, Schnel, Pisanti, Sagot, & 
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Lacroix, 2010). However, if neither of these is accessible – such as in datasets with pools 
of individuals, looking for reliable variation can be a real problem. It was for this purpose 
that 4Pipe4 was developed: to fnd variation in 454 EST datasets where no reference 
sequence or strain information is available. This is especially useful for researchers who 
wish to fnd reliable variation in a panel dataset of pooled individuals to use as a starting 
point for designing genotyping arrays to further explore their data.  The pipeline can 
provide very high quality SNPs as well as the fanking region sequence, necessary for the 
design of customized genotyping arrays, currently the most efcient way to extend SNP 
genotyping from those found in a panel of samples to a larger set of individuals for  
population genomic studies  (Modesto et  al.,  2014;  Savage,  Kiemnec-Tyburczy,  Ellison, 
Fleischer, & Zamudio, 2014).

Due to the nature of NGS data, any automated pipeline has to be strict enough as to 
follow a work-fow but, at the same time, fexible enough to serve the diferent 
purposes of each investigator. This is the role that 4Pipe4 intends to take.  Although 
4Pipe4 is tuned for EST data, it can also be used with genomic data and, to some extent,  
to help automate the process of gene discovery.

3 Implementation
4Pipe4 is written in Python 3 and is licensed under the GPLv3. It is written in a modular 
manner that allows for relatively simple expansion of functionality.

Most of the functions present in 4Pipe4 result  from the automation of already existing 
programs and the integration of their respective outputs.  However, the variation 
detection routines are of original design and are based on three criteria, all of which can 
be adjusted by the user:

Base coverage – The minimum required coverage (C); the default value is 15;

Base variants – The minimum number of equal base variants required in a position (vmin); 
the default value is 20% of the minimum required coverage;

Base quality – The average minimum quality of each of the base variants  (Qmin); the 
default value is 70.

This means that in order to consider a position of the alignment as a putative SNP, the 
below condition must be verifed:

∑ R⩾C∧∑V 2⩾vmin∧−QV 1⩾Qmin∧−QV 2⩾Qmin

Where  “R”  is  the  number  of  reads  in  the  considered  position,  “C”  is  the  minimum 
coverage as  defned by the user,  “V1” is  the most frequent variant base type in the 
considered  position,  “V2”  is  the  second  most  frequent  variant  base  type  in  the 
considered position and “Q” is the quality value.
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4Pipe4 uses  a confguration fle, called “4Pipe4rc”  with a simple and self documented 
syntax for setting variables such as the location of programs, the SNP detection criteria 
and the parameters that should be passed to the external  software. How the program 
uses this confguration fle is explained in detail in the program documentation.

The analysis process is divided in 9 steps, each of which can be excluded from the run by 
issuing the appropriate arguments at run time. In step 1, 4Pipe4 takes an SFF fle and, if 
all the steps are run, step 9 outputs a series of HTML formatted reports, compressed in 
7zip. Steps 7 (Gene Ontology) and 8 (SSR detection) are considered optional since they 
are not required for the SNP detection routines.  4Pipe4 requires the use of external 
programs, which can all  be installed locally  without root privileges (except Blast2GO 
which requires a MySQL database). The distribution comes with a set of helper scripts to 
automatically  download  and  install  all  of  the  required  software.  All of the required 
programs are available under open-source licenses and are free to use (except Blast2GO 
which is not open source, but is free to use).

4 Results and Discussion

4.1 The analysis process
The above mentioned 9 steps can be described as follows (See  Figure 2.1 for a more 
graphical overview):

Step 1 – Extraction of the “FASTA” and “FASTA.QUAL” fles from the original “SFF” fle. 
This step can be skipped if not dealing with 454 data.

Step 2 – “Cleaning” the sequences, by discarding low overall quality and short reads, as 
well as reads that contain contaminants matched against the “UNIVEC” database (“The 
UniVec Database,” n.d.) or any other contaminant database at the user's discretion. This 
step uses the “Sequence Cleaner”  program (“Sequence Cleaner,” n.d.) and can also be 
skipped if dealing with Illumina data.

Step 3 – Assembling. This step uses mira (Chevreux et al.,  2004).  A set of  optimized 
parameters for SNP calling is contained in the example confguration fle.

Steps 4 and 5 – SNP gathering. Resorting to  the “MAF”  output from step 3 (which is 
converted into the “SAM”  (Li et al., 2009) format), potential SNPs are identifed  in the 
assembly. The result is a summary intermediate “TCS” fle and a “FASTA” fle including all 
the “contigs” that contain putative SNPs (which are identifed in the sequence title). The 
software “pysam” (“pysam-developers/pysam,” n.d.) (Li et al., 2009) is used in this step.

Step 6 – Characterization of the detected  SNPs, by attempting to ft them into Open 
Reading Frames (ORFs). The result is a “FASTA” fle containing the ORFs with the SNPs 
identifed in the sequence title, as well as the ORF frame allowing the quick assessment 
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of the length and level of conservation of the SNP's fanking region. This step uses the 
“EMBOSS getorf”  program  (Rice, Longden, & Bleasby, 2000). Also in this  step, BLASTx 
(Altschul, Gish, Miller, Myers, & Lipman, 1990) is run with the resulting ORFs against a 
large protein database, such as NCBI's “nr”. Lastly, this step will produce an HTML 
formatted report with the characterized SNPs for easy referencing. The report is 
formatted as a table and can easily be transferred to any spreadsheet software for 
further data exploring. Another output of this step is an additional HTML report with a 
compilation of various dataset metrics.

Step 7 (optional) – Blast2GO annotation; this step queries the contigs that contain SNPs 
against a large protein database such as NCBI's 'nr' using BLASTx; these are then run 
through Blast2GO (Conesa et al., 2005) using Blast2Go4Pipe, resulting in an annotation 
fle that can be further analysed with Blast2GO itself.

Step 8 (optional) – SSR detection, by using “EMBOSS etandem” to detect potential SSRs 
in the assembly. The required quality of the putative SSRs is defned in the confguration 
fle.

Step 9 – Compression of all the relevant result fles into a 7zip archive which simplifes 
the transfer of (often large) results.

4.2 Example usage
A test dataset  with documentation on example usage is  provided with the software 
package.  An example resulting report is  also provided for the test dataset (run with 
default values on all settings).

4.3 Validation
In order to assess the efciency of SNP detection and the rate of false positives, and 
assess the best default values to use, an approach using reference data was used.

For  this  goal,  two  reference  sequences  of  two  E.  coli strains  were  used  ( 
http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=ADWQ01 -  Strain  85  and 
http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=ADWR01 -  Strain  79).  Two  454  datasets 
were  also  downloaded  from  the  NCBI  Sequence  Read  Archive  (SRA)  (Leinonen, 
Sugawara,  &  Shumway,  2011) (http://www.ncbi.nlm.nih.gov/sra/SRX036805 and 
http://www.ncbi.nlm.nih.gov/sra/SRX036804) for the same strains as the references.

To assess  the number of SNPs between the strains  that  could be found on the 454 
datasets, the 454 reads of one strain were mapped against the reference sequences of 
the other strain using bowtie2  (Langmead & Salzberg, 2012).  Atlas-SNP2  (Shen et al., 
2010) reported 29673 SNPs between the reference sequence '85' and the 454 reads of 
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the strain '79', and 28525 SNPs between the reference sequence '79' and the 454 reads 
of the strain '85'.

Figure 2.1: 4Pipe4 fowchart. The rectangular shapes represent processes, the rhomboid shapes represent 
input/output fles. The dashed arrows represent optional steps. The names inside square brackets are the 
names of the used external programs. The digits on the top right corner of each rectangle represent the 
step number of each process.
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4Pipe4 was then run on the two merged 454 datasets, discarding all strain information.

Although this validation method is not as good as true wet-lab genotyping, it is likely to 
be a good proxy, since Atlas-SNP2 is known to have very high sensitivity and specifcity 
when dealing with 454 datasets (Shen et al., 2010).

The results varied with the diferent tested parameters (Table 2.1), but the best output 
was obtained with the default values of minimum coverage of 15 and minimum average 
quality of 70 per variant. This setup retrieved 114 SNPs, of which 32 did not match to any 
of those detected by Atlas-SNP2, being thus, considered false positives (28.07% false 
discovery rate).

Table 2.1: Obtained and validated SNPs per parameter set. Of the six tested parameter combinations, the 
lowest false positive rate was retrieved with the default values: 15 Minimum coverage and 70 Minimum 
average quality. 

Parameters used (Min. Coverage|Min. Average Quality)

10|60 10|70 15|60 15|70 (Default) 15|75 20|70

Total SNPs retrieved 234 169 155 114 107 89

Confrmed SNPs 97 86 88 82 69 57

False Positive rate (%) 58.55 49.11 43.23 28.07 35.51 35.96

Although the number of provided SNPs is relatively low, due to the restrictive assembly 
and fltering parameters, we fnd this a good trade-of relative to the high confdence of  
the retrieved SNPs.

The task of SNP calling in 454 data has been performed before on organisms without a 
reference sequence or strain information, with varying degrees of false positives. One 
such study, conducted using custom scripts for SNP calling provided a false positive rate 
of 80% on 4200 retrieved SNPs  (Tollenaere et al., 2012). Another example, where the 
contigs of 283 SNPs were manually screened and selected, had a slightly better false 
positive rate of 45% (Broders, Woeste, San Miguel, Westerman, & Boland, 2011).

The  above  mentioned  studies  are  not  directly  comparable  to  the  results  of  the 
benchmark  performed  here,  since  they  are  performed  on  diferent  datasets, 
nevertheless  they  can  be  used  to  infer  that,  in  general,  4Pipe4  retrieves  a  smaller 
number of SNPs than other methods, but with a considerably lower false positive rate. 
Since the main goal of this pipeline is to provide the user with high confdence SNPs for  
genotyping  arrays,  a  rate  of  28.07%  false  positives  is  a  considerable  improvement 
relative to the other mentioned approaches.
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4.4 4Pipe4 compared to other software
Although 4Pipe4 is specifcally designed for the purpose of detecting variation when no 
strain information or reference sequence is available, other software exists that can be 
used for the same purpose, but which difers from 4Pipe4 in some aspects:

QualitySNP  (Tang,  Vosman,  Voorrips,  van der  Linden,  & Leunissen,  2006) –  Relies  on 
CAP3 for clustering the reads (which is optimized for Sanger sequences, while 4Pipe4 
uses mira, which is optimized for NGS data). Requires perl, PHP, a confgured webserver 
and a MySQL database for SNP retrieval. This means that root access to the machine in  
which  the  program  is  being  run  on  is  required.  Furthermore,  QualitySNP  has  been 
superseded  by  the  simpler  and  faster  QualitySNPng  (Nijveen,  Kaauwen,  Esselink, 
Hoegen, & Vosman, 2013). 

AGSNP  (You et  al.,  2011) –  Relies  on Newbler  assembler for  clustering,  and if  strain 
information is not available, it further requires combining 454 data with Illumina or SOliD 
data (4Pipe4 does not require multiple technologies data for SNP calling).

Still other programs exist for SNP detection, but they usually require either a reference 
sequence,  such as Atlas-SNP2 or SAMtools,  or strain information,  such as discoSnp++ 
(Uricaru et al., 2014) (formerly kisSnp  (Peterlongo et al., 2010)) or DIAL  (Ratan, Zhang, 
Hayes, Schuster, & Miller, 2010).

There is, however, another program that can be used for the same purpose as 4Pipe4 – 
QualitySNPng. This program, however is not an analysis pipeline, but rather a SNP caller 
for read alignments. It has a graphical user interface, which can be disabled for use in 
servers, but still requires “Qt4” to be installed in the server (which is not frequent). In  
order to compare it with 4Pipe4, we have modifed the program to be usable without 
“Qt4”  installed  (https://github.com/StuntsPT/QualitySNP)  and  provide  a  branch  of 
4Pipe4  which  is  ready  to  use  QualitySNPng 
(https://github.com/StuntsPT/4Pipe4/tree/new_snp_caller),  without  requiring  any 
further dependencies.

Benchmarking the results of 4Pipe4 with QualitySNPng as the SNP caller,  more SNPs 
were returned (513|147 SNPs found with the default|tuned values) than with our SNP 
caller, but with a larger rate of false positives (only 60|22 SNPs were a match to those 
found by AtlasSNP2, meaning a false positive rate of 88.3%|85%). Therefore, the builtin 
SNP caller  was  kept as  default,  but  QualitySNPng can still  be used from its  own git 
branch if desired.

For the sake of completeness, we also made the SNP calling on the benchmark dataset 
using  the  software  discoSnp++  (which  requires  strain  identifcation)  with  the  most 
restrictive parameters, to minimize the number of false positives. This program retrieved 
9226 SNPs, of which 5967 were considered true positives (false positive rate of 35.3%). 
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As expected, this method retrieves more SNPs than both 4Pipe4 and QualitySNPng since 
it takes advantage of strain information, but it still provides a somewhat higher false 
positive rate than 4Pipe4.

5 Conclusions
We present here an automated analysis process specifcally designed for SNP detection 
from 454 pyrosequencing transcriptome reads, which we named 4Pipe4. This is the frst 
program specifcally built to automate the whole process of fnding putative SNPs in 
NGS  datasets  that  lack  both  information  regarding  the  origin  of  each  read  and  a 
reference  sequence.  In-silico  validation  of  4Pipe4  results  using  previously  analysed 
reference data revealed good performance in the calling of high confdence SNPs.

The  4Pipe4  pipeline,  at  the  cost  of  retrieving  a  relatively  low number  of  SNPs,  has 
provided  a  lower  rate  of  false  positive  SNPs  than  both  an  alternative  SNP  caller 
(QualitySNPng) and an alternative software that uses strain information (discoSnp++), as 
well as those obtained in previous studies that used diferent approaches for a similar 
type of data and goal.

Since the main purpose of this software is to retrieve high confdence SNPs for further 
exploring, we expect the incremental contributions it brings to improve, speed up and 
facilitate research on the feld of population genomics.

Furthermore, we expect to implement new features in 4Pipe4, such as: graphics in the 
metrics  report;  indel  variation  fnding;  integration  of  alternative  software  (such  as 
newbler  for  assembling  instead  of  mira);  process  optimization  for  NGS  technologies 
besides 454; switch from FASTA + FASTA.QUAL format to FASTQ. These are some of the 
planned  features,  but  others  can  be  requested  and  implemented,  should  there  be 
demand for them.

6 Authors' contributions
FPM has developed the software, drafted the SNP detection routines and written the 
manuscript,  BMV  has  extensively  reviewed  the  code  and  assisted  in  the  initial  data 
analyses, SGS has provided valuable insights on SNP data interpretation and proofread 
the  manuscript,  DB  has  provided  the  samples  and  the  datasets  for  the  initial  data 
analyses,  and  proofread  the  manuscript  and  OSP  has  conceived  of  the  study,  and 
participated in its design and coordination.
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1 Abstract
Sequence  databases,  such  as  NCBI  are  a  very  important  resource  in  many  areas  of 
science.  Downloading  small  amounts  of  sequences  to  local  storage  can  easily  be 
performed  using  any  recent  web  browser,  but  downloading  tenths  of  thousands  of 
sequences is not as simple.

NCBI  Mass  Sequence  Downloader is  an  open  source  program  aimed  at  simplifying 
obtaining large amounts of sequence data from NCBI databases to local storage. It is  
written in python (can be run under both python 2 and python 3), and uses PyQt5 for the 
GUI. The program can be run in either graphical or command line mode.

Source code is licensed under the GPLv3, and is supported on Linux, Windows and Mac 
OSX. Available at https://github.com/StuntsPT/NCBI_Mass_Downloader.

2 Introduction
National Center for Biotechnology Information (NCBI) sequence databases are nowadays 
a  resource  of  unquestionable  importance  for  researchers  in  many  areas  of  science 
(Miller,  Norton,  &  Sarkar,  2009).  The  current  count  of  sequences  available  in  this 
database as of 15 December 2015 ascends to over 18.9x10⁷  sequences and 20.3x10¹⁰ 
base  pairs  (ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt),  representing  roughly  2.5  Tb  of 
compressed data and keeps growing. Due to advances in sequencing technology, the 
amount  of  sequence  data  required  by  investigators  has  increased  by  orders  of 
magnitude in the last few years.  This has naturally led to increased use of the NCBI 
databases by investigators for retrieving sequence data.

NCBI Mass Sequence Downloader provides a user friendly interface and automated error 
checking for downloading large sets of sequence data.

3 Problems and Background
Although downloading sequences from NCBI can be done in a simple fashion using any 
standards compliant web browser via the  Entrez (Sayers et al.,  2010) web portal,  this 
method does not scale well, and downloading large amounts of sequences (in the order 
of the tenths of thousand) from these databases can cause problems when performed 
this  way  (https://www.biostars.org/p/43970/).  Furthermore,  manually  performing  this 
type of tasks is time consuming and error prone, which may hamper the reproducibility 
of scientifc work.

For retrieving large sets of data, NCBI provides the  E-utilities API  (Sayers et al., 2010), 
although it can be difcult to use by investigators without an IT related background, 
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despite  it's  through  documentation.  Frameworks  exist,  written  in  various  popular 
languages, such as Python, Perl or Ruby, that provide some level of abstraction for using 
this API, such as  Biopython (Cock et al., 2009),  BioPerl (Stajich et al., 2002), or  BioRuby 
(Goto  et  al.,  2010),  respectively.  However,  these  too,  require  some  degree  of 
programming knowledge to use, rather than providing end-user packages ready to use 
for a specifc purpose. This leaves investigators without a simple, ready made solution. 
Although this is not much of a problem for someone with a bioinformatics background, it  
poses  a  serious  issue  for  someone  with  a  molecular  biology  background,  who  may 
frequently require this kind of data, but lack the programming skills to use one of the 
mentioned frameworks or the API.

By  using  NCBI's  API,  our  program  intends  to  solve  the  problem  of  retrieving  large 
datasets,  in  a  user  friendly,  automated,  and  reproducible  way.  The  tool  is  therefore 
aimed at molecular biologists that don't have an IT related background, but need to 
download large datasets from the NCBI databases.

4 Software Framework

4.1 Software Architecture
NCBI Mass Sequence Downloader is written in python (http://www.python.org) and can 
be run under both python 2 and python 3. The command line interface (CLI) version of 
the program can be run on any OS that has python available. The GUI version further 
requires  PyQt5  (http://www.riverbankcomputing.com/software/pyqt/intro)  available, 
which means all major currently used operating systems such as GNU/Linux, MS Windows 
and Mac OSX are supported. The program uses a slightly altered (changed the import 
statements)  module from  Biopython (Cock et al.,  2009) –  Entrez (Sayers  et al.,  2010), 
which is  included with the software.  This avoids needing to have  Biopython installed, 
which, despite being a popular library in the bioinformatics community, is not usually so 
for molecular biologists. The consequence of this convenience for the user is a higher 
maintenance  requirement  since it  makes  it  necessary  to  keep up with  the upstream 
Entrez module. However, this  Biopython module has not had many recent changes, and 
merging them into NCBI Mass Sequence Downloader has so far, been trivial.

The program consists of essentially three modules – a back-end, a front-end and the 
Entrez module.  If  the program is run without arguments,  the GUI version is  launched 
(Figure 3.1), but if the program is run with arguments, the command line version will be 
run instead. This makes the program quite fexible to use in diferent environments.
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Figure 3.1: A screenshot of NCBI Mass Sequence Downloader running 
under a GNU/Linux based OS in graphical user interface, downloading 
sequences matching the query  “Fagales[organism]”.

The  program's  source  code  is  available  on  github 
(https://github.com/StuntsPT/NCBI_Mass_Downloader),  along  with  binaries  for 
GNU/Linux, MS Windows and Apple OSX.

4.2 Software Functionalities and Limitations
NCBI Mass Sequence Downloader is made to solve a single task – downloading sets of 
sequences from the NCBI databases. For this, the user should provide an email address 
for eventual contact from NCBI (which is sent only to NCBI), the database to be queried,  
the  search  query,  and  a  path  to  the  fle  for  the  downloaded  sequences.  Download 
progress is indicated in both user interfaces.

Currently, the program is limited to downloading sequences in the FASTA format and to 
NCBI databases, but data from several databases can be retrieved:  nucleotide, nuccore,  
nucgss, protein, genome and popset.

4.3 Internal Routines and Error Handling
Once the  program is  requested  to  start  the download,  it  queries  the selected NCBI 
database for the provided search term. It will then store the returned sequence IDs in 
memory, and begin downloading the respective records in batches of 3000 sequences. 
Every batch is temporarily stored in memory, and once 3000 sequences are downloaded, 
they are immediately stored in the output fle, fushed from memory, and then, the next 
batch is processed.

After all the records are downloaded, the output fle is parsed and it's sequences' IDs 
matched to the originally retrieved sequence IDs. If any sequences are missing, a new 
pass is made, to retrieve them. This process is repeated as often as necessary until all the 
requested sequences are stored in the output fle. Stopping the program at any time will 
not afect any sequences already stored in the output fle.
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If a pre-existing FASTA fle is selected as the output fle, instead of overwriting it, the fle 
is parsed, and the sequences' IDs are retrieved and compared to those returned by NCBI 
for the requested query. Any already present sequences are not downloaded again, and 
any missing sequences  are appended to the end of  the fle.  This  capability  makes  it 
possible to resume any cancelled download.

NCBI Mass Sequence Downloader will handle any server errors thrown during sequence 
retrieval by pausing all activity for eight seconds and then retrying. Five such failures in a  
row, cause a further 20 second pause before trying a retrieval operation again.

4.4 Future Plans
Several  developments  are  expected  for  future  releases  of  NCBI  Mass  Sequence 
Downloader,  such as  being able to get data in formats other than FASTA,  adding an 
online interactive help system to the GUI or even the capability to query databases other 
than NCBI. We expect to keep the software maintained to work with future versions of 
python, Qt, and database APIs for the foreseeable future.

5 Illustrative Examples

5.1 Example use case
A molecular biologist has to analyse a hypothetical dataset of transcriptomic data of a 
plant-fungus  system (Castanea dentata,  Cryphonectria  parasitica).  In  order  to  identify 
which  sequences  can  be  considered  “plant”  and  which  can  be  considered  “fungus”,  
instead of downloading the entire “nt” database from NCBI and running BLAST (Altschul, 
Gish,  Miller,  Myers,  & Lipman,  1990) queries  against it,  by using  NCBI  Mass Sequence 
Downloader, it is possible to download only the sequences of the Fagales (plants) order 
and Sordariomycetidae (fungus) subclass, and run the required BLAST queries against the 
resulting fles. This would considerably reduce both download and query time, provide 
the  user  with  more  specifc  results  and  enable  a  simpler  downstream  data  fltering 
process.

An example study where  NCBI Mass Sequence Downloader could have been useful,  is 
(Haçarız, Akgün, Kavak, Yüksel, & Sağıroğlu, 2015), where the investigators performed 
BLAST searches against several data sets, that could have been quickly obtained and 
segregated with this software.

5.2 The command line interface (CLI)
In order to use the CLI version of the program for solving the problem described in 4.1 
the user needs to run the program with the following arguments: “user email address”,  
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“query term”, “database to query” and “output fle”. Screenshots of NCBI Mass Sequence  
Downloader performing this specifc task in the CLI environment can be seen in  Figure
3.2.

Figure 3.2: A screenshot of NCBI Mass Sequence Downloader running under a GNU/Linux based OS in 
command line interface, downloading sequences matching the queries “Sordariomycetidae[organism]” 
(above) and  “Fagales[organism]” (below).

In this test, the plant query took ~48 minutes to download all 304129 records, roughly 
1.2 GB of sequence data. The fungi query took ~42 minutes to download  all 206928  
records, amounting to approximately 2.0 GB of sequences.
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5.3 The Graphical User Interface (GUI)
In  order to use the GUI version of the program, the user needs to run the program 
without any arguments. This will bring up the interface main window (Figure 3.1), where 
the user can enter the required information to proceed with the downloading of the 
queried sequences.

The performance of the GUI version was essentially the same as the one obtained using 
the CLI method.

5.4 Using the alternative methods
Using the  Entrez web  portal  to  download  the  sequences  mentioned  in  the  example 
resulted  in  having  to  attempt  each  of  the  downloads  several  times  until  all  the 
sequences  were  obtained.  Furthermore,  the  download  would  simply  stop  without 
issuing any error messages, and it was thus, necessary to manually verify that all the 
requested sequences had been downloaded (which didn't happen in the frst three tries 
for the plant dataset and for the frst two times for the fungus dataset). This method, 
was thus more time consuming and required manual  user intervention several  times 
until all the requested data was locally stored.

The E-Utilities API can also be used directly. In order get the example data using this 
method, the following actions need to be taken:

1.  Make the search query to the NCBI servers

2. Retrieve the “Query Key” and “WebEnv” variables

3. Request the sequences in blocks of up to 10⁴ until all are downloaded

This can be done manually, but it is a tedious and error prone process (step 3 would have 
to  be  performed  62  times  to  download  all  sequences  from  the  example  case). 
Alternatively, this behaviour can be scripted to automates the process, but that requires 
programming skills, which may act as a barrier to molecular biologists.

6 Conclusions
Although querying the NCBI database and downloading the respective sequences can 
usually be done from the web browser, when it is necessary to download large amounts 
of  sequences,  this  procedure  becomes  unreliable  since  the  probability  of  download 
problems increases with it's size and the  Entrez web portal does not provide a way to 
resume  interrupted  downloads.  Using  the  alternate  method  –  via  the  E-utilities API 
requires programming skills and not every molecular biologist is equipped to deal with 
that.  These issues make the process of retrieving large datasets  from NCBI  an error 
prone and attention demanding process, unless the user has some programming skills.
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NCBI  Mass  Sequence  Downloader  was  designed  to  fll  in  this  gap.  To  allow  anyone 
without programming skills to easily download large sequence datasets from the NCBI 
databases, in an automated, reliable and reproducible way.

Furthermore,  the  possibility  to  choose  the  interface,  makes  NCBI  Mass  Sequence 
Downloader appropriate  to  use  both  on  desktop  and  on  the  command  line  based 
systems.
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1 Abstract
Structure_threader is  a  program  to  parallelize  multiple  runs  of  genetic  clustering 
software  that  does  not  make  use  of  multi-threading  technology  (STRUCTURE, 
FASTSTRUCTURE and MavericK) on multi-core computers. Our approach was benchmarked 
across multiple systems and displayed great speed improvements relative to the single 
threaded  implementation,  scaling  very  close to  linearly  with  the number  of  physical 
cores used.

Structure_threader was  compared  to  previous  software  written  for  the  same  task  - 
ParallelStructure and  StrAuto,  and  was  proven  to  be  the  faster  (up  to 25%  faster) 
wrapper under all tested scenarios.

Furthermore,  Structure_threader can  perform  several  automatic  and  convenient 
operations, assisting the user in assessing the most biologically likely value of ‘K’  via 
implementations  such  as  the  “Evanno”,  or  “Thermodynamic  Integration”  tests  and 
automatically draw the “meanQ” plots (static or interactive) for each value of K (or even 
combined plots).

Structure_threader is  written  in  python  3  and  licensed  under  the  GPLv3.  It  can  be 
downloaded free of charge at https://github.com/StuntsPT/Structure_threader.

2 Introduction
Clustering analyses are widely used in population genetics and, nowadays, population 
genomics. This technique of using multilocus genotype data to infer population clusters, 
is frequently performed based on multiple MCMC re-sampling. One of the most popular 
tools for performing this type of analyses is structure (Pritchard, Stephens, & Donnelly, 
2000). Despite producing robust results, this approach demands long run times, even in 
modern machines. This problem is aggravated as the type of analysed datasets, which 
gradually  grow  from  relatively  small,  such  as  microsatellite  loci  (De  Barro,  2005; 
Muchadeyi et al., 2007), to high throughput sequencing (Lamaze, Sauvage, Marie, Garant, 
& Bernatchez,  2012;  Renaut,  Grassa,  Moyers,  Kane,  & Rieseberg,  2012),  consequently 
increasing run times by orders of magnitude.

The process can be sped up by either running multiple instances of the used software, 
which  is  an  inefcient  and  error  prone  method  requiring  constant  attention  and 
intervention from the user. There are faster software alternatives to  STRUCTURE, which 
can also be used to speed up the analysis process.

One such option is analysing the data in the program  FASTSTRUCTURE (Raj, Stephens, & 
Pritchard, 2014), which decreases run times by up to two orders of magnitude. However 
FASTSTRUCTURE does not support the popular “no admixture” model present in STRUCTURE, 
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and is not capable of handling haploid data (and several other less widely used features), 
which limits its application to a wide range of data.

Another option in to analyse the data in the software MavericK (Verity & Nichols, 2016), 
which is also considerably faster than STRUCTURE, but not as fast as FASTSTRUCTURE by an 
order of magnitude. It does, however support most of the same features as  STRUCTURE 
and   uses  a  built-in,  improved  method  for  helping  determine  the  most  biologically 
relevant  value  of  “K”  called  “Thermodynamic  Integration”  (Verity  &  Nichols,  2016). 
Regardless of the speed gains these programs ofer, they are only able to use a single  
CPU core for their computations, which means that these methods too, do not scale well  
with current multi-core IT infrastructure.

Alternatively, a method to bootstrap multiple simultaneous runs of the software can be 
used,  such as the R  (R Core Team, 2013) package  ParallelStructure (Besnier & Glover, 
2013), or  StrAuto (Chhatre & Emerson, 2017), which does exactly that for the software 
STRUCTURE (Pritchard et al.,  2000).  ParallelStructure,  however,  has scaling problems, as 
described in the manuscript, considerably loosing efciency as more CPU cores are used. 
StrAuto is  another option that does indeed scale well  with the number of CPU cores 
used, but like  ParallelStructure, it only works as a wrapper for the software  STRUCTURE, 
and cannot be used to speed up other popular genetic clustering programs.

Furthermore, after the clustering step is fnished, it is necessary to infer the number of 
clusters  that make most biological  sense for the data  (Earl  & vonHoldt,  2012),  using 
methods  such  as  the  “Evanno  test”  (Evanno,  Regnaut,  &  Goudet,  2005),  or  the 
“Thermodynamic Integration” (TI) method  (Verity & Nichols, 2016). After this, it is also 
often necessary to plot the “meanQ” values of each cluster per individual, to be able to 
interpret the biological signifcance of the data. This is usually done with software such 
as DISTRUCT (Rosenberg, 2004).

All of these steps typically require parsing the results fles of each clustering run and 
manually  running  all  the  required  steps  until  the  fnal  outcome  is  produced  (Earl  & 
vonHoldt, 2012). This is not only time consuming as it is also error prone due to the large 
number  of  separate  steps  that  must  be  taken  during  the  process.  Neither 
ParallelStructure nor  StrAuto provide an automated and reproducible way to perform 
this task.

Part  of  this  process is  largely  facilitated by the program  STRUCTURE HARVESTER (Earl  & 
vonHoldt,  2012),  which  automates  the  parsing  of  STRUCTURE runs  and  uses  that 
information to perform an “Evanno test” on the data,  which uses some heuristics to 
predict which value of ‘K’ makes the most biological sense regarding the analysed data.  
Although this is a very convenient automation, it still relies on manual user intervention 
to input the data from STRUCTURE, does not provide assistance with the plotting of the 
“meanQ” values and only works for the software  STRUCTURE.  Other programs, such as 
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FASTSTRUCTURE include the necessary software to perform these tests, and even to plot 
the  “meanQ”  values,  but  still  require  manual  intervention  between  these  steps. 
MavericK goes  further  and  presents  the  full  posterior  distribution  for  ‘K’  using  the 
“Thermodynamic Integration” test as an automatic  last  step of the analysis  and even 
recommends some scripts for drawing “meanQ” plots, but this last step also requires 
human intervention.

To address these two problems (reducing run times and automating the analyses tasks),  
we herein present Structure_threader: a program to parallelize STRUCTURE, FASTSTRUCTURE 
and  MavericK runs  that  considerably  reduces  the  scaling  problems  of  previous 
approaches  and  automates  the  entire  process,  -  wrapping  the  runs,  assisting  in  the 
choice of the most biologically relevant value of K, and drawing the “meanQ” plots.

Structure_threader is  available on  https://github.com/StuntsPT/Structure_threader. For 
the stable (non development) versions, check the releases page, or get it from Pypi.

3 Materials & Methods

3.1 Program description
Structure_threader,  licensed  under  the  GPLv3,  is  an  open  source  program  written  in 
python  (https://www.python.org/)  that  automates  and  parallelizes  genetic  clustering 
software (STRUCTURE, FASTSTRUCTURE and MavericK) runs.

The  software  was  written  according  the  “Best  Practices  in  the  Development  of 
Bioinformatics  Software”  (Leprevost,  Barbosa,  Francisco,  Perez-Riverol,  &  Carvalho, 
2014) and can be run on any platform where python is available, such as GNU/Linux, Mac 
OS X and Microsoft Windows (other platforms may also work,  but were not tested).  
Additional details are available in the program's documentation.

All options supported by the wrapped programs can be passed to Structure_threader as 
command line arguments.  These are explained in detail  in  both the program's  online 
documentation and builtin help text.

Parameters are passed to the wrapped software as in their default implementations – all 
wrapped  programs  take  arguments  from  the  command  line,  STRUCTURE also  reads 
settings  from  the  fles  “mainparams”  and  “extraparams”  and  MavericK from 
“parameters.txt”. 

After performing the parallelized runs of the wrapped software, Structure_threader runs 
a  slightly  modifed  (for  integrating  with  Structure_threader)  version  of  STRUCTURE 
HARVESTER chooseK.py (Raj et al.,  2014) or TI for helping identify the most biologically 
relevant value of ‘K’ for any given dataset.
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Finally, Structure_threader parses the results fles and draws the “meanQ” plots for each 
considered value of “K”. These are drawn in both an interactive version for visualization 
and in a static version, better suited for publication.

Example data fles and results are provided in the program's repository.

3.2 Threading strategy
The  threading  strategy  used  in  Structure_threader is  represented  in  Figure  4.1. 
Structure_threader takes  the  provided  input  fle,  the  values  of  “K”  to  test  and  the 
required number of replicates, and creates a job queue, which is sorted by decreasing 
complexity order. After this,  P child processes are spawned, (where P is the number of 
threads made available to the software) each containing one independent instance of 
the wrapped program. Each of these child processes takes the frst available job from 
the queue and once it is fnished, its output is processed by the main process for error 
handling and logging. The child processes are spawned using python’s “multiprocessing” 
and “subprocess” modules from the standard library.

3.3 Benchmarking process
In  order  to  assess  the  gains  provided  by  Structure_threader,  the  program  was 
benchmarked  in  four  diferent  systems,  described  in  Table  4.1,  with  various 
specifcations. Runs were performed twice to serve as replicates (Appendix I  Table 1). 
Run  times  for  STRUCTURE were  assessed  using  both  Structure_threader v0.4.1, 
ParallelStructure v1.0 and  StrAuto v1.0, which were then compared.  FASTSTRUCTURE and 
MavericK   runs  were  only  wrapped  in  Structure_threader,  since  none  of  the  other 
programs  supports  this, and  compared  with  the  default,  single  threaded 
implementation.

Table 4.1: Characteristics of the systems where the programs were benchmarked, along with the run time 
of the single threaded run.

System Name

CPU

OS
STRUCTURE 

single thread 
run time (s)

FASTSTRUCTURE 
single thread 
run time (s)

MavericK 
single thread 
run time (s)Type

Frequency 
Base/Turbo

(GHz)

Physical 
cores

Logical 
cores

Haswell Laptop i7 4700MQ 2.4/3.4 4 8 ArchLinux 9668 3140 1009

Ivy Bridge Desktop i5 3350P 3.1/3.3 4 4 ArchLinux 10926 2854 1140

Nehalem Rack Xeon E5520x2 2.26/2.53 8 16 Ubuntu 16.04 16000 6019 1835
Sandy Bridge Rack Xeon E5-2609x2 2.4 8 8 Ubuntu 12.04 15805 5054 1711

Usage  of  RAM  was  monitored  during  the  benchmarking  process,  and  it  was  never 
detected as a bottleneck on any of the systems. None of the wrapped programs is very I/
O intensive (at least as far as the tested systems were concerned), meaning that the 
present tests were always CPU bound.
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Run times were measured using zsh’s time builtin method (wall time was used), and then 
normalized to a “speed up” factor  (Besnier & Glover, 2013) by dividing the time of the 
multi-core  runs  by  the  time  of  the  single  core  runs,  which  were  performed  in  the 
measured programs’ default implementations.

Figure 4.1: Threading strategy used in Structure_threader. Values in ellipses are read from the 
command line and passed to the main process, which generates a job queue. The jobs in the queue 
are then processed by the spawned child processes. The main process is responsible for handling 
and logging any errors that occur in the child processes.
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3.4 Benchmarking STRUCTURE

3.4.1 Test dataset description

The test fle used for the benchmarks consists of 100 individuals, represented by 80 SNP 
loci  without  missing  data.  This  dataset  was  crafted  based  on  data  from  the  1000 
genomes  project (The  1000  Genomes  Project  Consortium,  2015) to  perform  the 
benchmarks  and was  constructed aiming for  a  size  that  would be neither  too small, 
which could bias the benchmarking towards very quick runs, nor too large, to avoid the 
process taking too long to be practical.

This dataset was created from public data, and instructions on how to recreate it are 
available in the documentation and in the program's repository.

3.4.2 Benchmark details

The benchmarking process consisted of running the test dataset on STRUCTURE v2.3.4 for 
1x10⁶ MCMC iterations, and a “burnin” length of 5x10⁴, under “admixture” model (for 
other parameters check the program’s repository). These settings were performed for 
values of “K” varying from 1 to 4. Each value of “K” was run with 4 replicates, which 
means a total of 16 STRUCTURE runs were performed in each benchmark. All these runs 
were  performed  on  the  default,  single  threaded  implementation  and  under  the 
Structure_threader,  ParallelStructure (using  the  “parallel_structure()”  implementation, 
which initial testing found to be faster in all used machines) and StrAuto wrappers.

3.5 Benchmarking FASTSTRUCTURE

3.5.1 Test dataset description

The test dataset used for benchmarking  FASTSTRUCTURE runs, is diferent from the one 
used for benchmarking  STRUCTURE,  since this program was designed to analyse  larger 
datasets. The tested fle consists of 1000 individuals, represented by 1000 SNP loci. Like 
the previous dataset, this one was also crafted from the same public data from the 1000 
genomes project, and instructions for recreating it are available in the documentation. 
The used dataset itself is available in the program’s repository.

3.5.2 Benchmark details

The benchmarking process consisted of running the above described dataset for values 
of “K” from 1 to 16 for each benchmark run.

The average run time of both replicates was used to plot and analyse the data. Since a 
FASTSTRUCTURE runs do not require replicates for downstream analyses, each value of “K” 
was run only once per benchmark, which means that a total of 16  FASTSTRUCTURE runs 
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were performed both in the default implementation and under the  Structure_threader 
wrapper.

3.6 Benchmarking MavericK

3.6.1 Test dataset description

The test fle used for the MavericK benchmarks is the same that was used to benchmark 
STRUCTURE, which is described above.

3.6.2 Benchmark details

The benchmarking process consisted of running the test dataset on MavericK v1.0.4 for 
1x10⁴ MCMC iterations, plus a “burnin” length of 2500 iterations, with 5 replicates each 
(for other parameters check the program’s repository). These settings were performed 
for values of “K” varying from 1 to 16.

4 Results & Discussion
Using  Structure_threader as a wrapper for all programs has yielded increases in speed 
that scale almost linearly with the number of processes used, at least as long as physical 
cores are concerned, as can be seen in Figure 4.2 and Figure 4.3.

Considering the benchmark results in Figure 4.2, it is clear that both Structure_threader 
and  StrAuto are more efcient  methods to  perform  STRUCTURE runs  on multiple  core 
systems than ParallelStructure (on average 7% faster in the tested systems, varying from 
1% to 25% faster).  Structure_threader is also always faster than  StrAuto,  but by much 
smaller  margins  than  when  compared  with  ParallelStructure (on  average  3%  faster, 
varying from 0.3% to 7% faster). Regardless of the tested system and number of cores 
used,  the diferences in “speed up” are always in favour of  Structure_threader.  When 
compared to ParallelStructure, the diference increases with the requested scaling – the 
more physical cores are used, the better the relative performance of Structure_threader. 
Also worth noting is  that the “speed up” values obtained here with  ParallelStructure 
when using physical cores, are somewhat better than what is described in  (Besnier & 
Glover, 2013), but this could be due to diferences in benchmark workloads.

Speed  up  diferences  between  StrAuto and  Structure_threader are  small,  but  can  be 
compared in Figure 4.2. A more detailed comparison, can be made using the data tables 
available in Supplementary Material 4.1.
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Figure 4.2: Plots of the STRUCTURE “speed up” as more threads are used in Structure_threader, 
ParallelStructure and StrAuto. Each plot represents a diferent system – a) is “Nehalem Rack”, b) is “Ivy 
Bridge Desktop”, c) is “Haswell Laptop” and d) is “Sandy Bridge Rack”.

Unlike  ParallelStructure and  StrAuto,  Structure_threader can also speed up the runs of 
other  programs  by  running  them  in  parallel.  Similar  to  what  is  done  for  running 
STRUCTURE,  wrapping  FASTSTRUCTURE and  MavericK  in  Structure_threader,  provides 
considerable speed improvements, once again scaling almost linearly as long as  hyper-
threading is not in efect (Figure 4.3).

Although ideally the “speed up” factor should scale linearly with the number of used 
physical cores, this does not always happen in practice (Figure 4.2 and Figure 4.3). Of the 
three tested wrappers, Structure_threader scales the closest to linearly, even when using 
8 physical cores, where the “speed up” factor varies between 6.24 and 7.91, depending 
on the system and the wrapped program.  ParallelStructure shows the worst scaling of 
the tested wrappers, especially on 8 physical threads, where the “speed up” factor varies 
between 5.95 and 6.85.
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Figure 4.3: Plots of FASTSTRUCTURE and MavericK “speed up” as more threads are used when wrapped 
under Structure_threader.

The  large  drop  in  performance  increase,  regardless  of  the  used  wrapper  program, 
happens when using hyper-threading (using more than eight cores in the Nehalem Rack 
system and more than four in the Haswell Desktop system – the CPUs of the other two 
systems do not have this feature), as is sometimes described under certain workloads 
(Leng, Ali, Hsieh, Mashayekhi, & Rooholamini, 2002; Marr et al., 2002; Saini et al., 2011). 
We are not sure why this happens on this particular workload, but the issue is not as 
evident when analysing smaller datasets as the one from (Besnier & Glover, 2013). It is 
therefore hypothesised that it may be related to “cache thrashing”, a phenomenon that 
occurs when the CPU constantly refreshes the contents of L2 and L3 caches for quickly 
accessing  diferent  information.  “Cache  thrashing”  is  more  likely  to  happen  when 
working with larger datasets and when hyper-threading is active since both logical cores 
share L2 and L3 cache (Marr et al., 2002).

The  automated  plot  drawing feature  of  Structure_threader is  responsible  for  both  a 
simplifcation of the analysis process (less steps per analysis), and also for the reduction 
in random error (consequence of less human intervention).

The mentioned plots  produced by  Structure_threader are provided in two formats.  A 
static,  vectorial  image  in  “svg”  format,  especially  suited  for  publication,  and  an 
interactive HTML version of the plot, suited for results exploration.

5 Conclusions
The observed diference in efciency between Structure_threader and ParallelStructure 
can  probably  be  explained  by  the  programming  languages  utilized  in  the  wrappers 
(Python  vs.  R)  and the fact  that  ParallelStructure solves  tasks  in  increasing order  of 
complexity,  whereas  Structure_threader sorts  them in  decreasing order.  This  strategy 
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provides an increase in efciency, since the sorting minimizes the time each CPU core is 
left idle.

Another important diference between  ParallelStructure and  Structure_threader is that 
the former is a framework to build scripts that perform the requested analyses, and the 
latter can either be used as a framework, or directly from the command line. This makes 
Structure_threader much easier to use, while simultaneously keeping the same type of 
fexibility  ParallelStructure ofers.  Although  both  programs  can  be used to  draw the 
clustering plots from the  STRUCTURE results, the features ofered by  Structure_threader 
go far beyond the basic plotting that ParallelStructure is capable of.

The speed gains obtained with Structure_threader and StrAuto are very similar, with only 
a marginal diference favouring  Structure_threader. This diference is likely due to the 
efciency of  python’s higher speed when compared to  bash’s, and eventually due to a 
smaller  overhead  of  python’s  multiprocess module  when  compared  to  that  of  GNU 
parallel  (Tange,  2011).  Although  both  programs  are  run  from  the  command  line 
interface, Structure_threader is more user friendly than StrAuto, since it includes built-in 
help, handles user errors, and allows for a lot of parameters to be defned directly in the 
command line.

Structure_threader was  designed  to  exploit  the  power  of  multi-core  machines  for 
speeding up multiple genetic clustering software runs, with emphasis on scalability. Our 
results demonstrate that in every tested scenario this goal is fulflled in a more efcient 
way than previous solutions.

Furthermore,  Structure_threader goes much farther than the two previous solutions in 
it’s capabilities to perform tests for estimating the most biologically relevant “K” value, 
as well as plotting fexibility.

Although the automation process that  Structure_threader provides does not decrease 
computation  time,  it  should  signifcantly  speed  up  the  analyses  process,  due  to  the 
human time that is saved. Furthermore, this automation is also one important step for 
reproducibility of the studies that use this software. That being said, it is also important 
that  users  interact  with  and  explore  the  options  and  parametrization  the  wrapped 
programs ofer. It is critical that these are well understood in order to obtain meaningful 
and statistically relevant results.

We  fnd  that  the  obtained  decrease  in  run  times,  allied  with  the  ease  of  use  and 
automation, including that of follow up analysis, make Structure_threader a useful tool to 
any investigator working with population genetics/genomics data and the best current 
choice for performing genetic clustering analyses.
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1 Abstract
The  cork  oak  (Quercus  suber L.)  is  a  forest  tree  species  with  a  West  Mediterranean 
distribution, spanning from Portugal and Morocco in the West, to Tunisia and Italy in the 
East,  including a location in Bulgaria of human introduced individuals.  In the present 
study, SNPs were mined from a 454 RNA-Seq dataset of pooled anonymous cork oak 
individuals originating from contrasting climatic regions. Based on this information, 375 
individuals were then genotyped via MassArrayTM technique,  representing most of  Q. 
suber’s  distribution range. This data was then used to fnd associations between SNP 
alleles  and a set of environmental  variables,  as well  as to attempt to detect natural  
selection signatures, which should help predict the species’ response to climatic change. 
An  assessment  of  the  species’  genetic  variability  was  also  performed  in  order  to 
accommodate for the efects of population structure in the capacity to detect selection. 
Environmental association analyses revealed 10 associations of environmental variables 
with  fve  of  the  genotyped  loci, three  of  which  may  provide  an  important  base  for 
downstream studies. Genetic variability indices reveal a similar situation to that of other 
European  oaks  where  nuclear  markers  were  analyzed:  considerable  diversity,  but  no 
clear structuring pattern. These results contrast with those of previous studies based on 
chloroplastidial DNA which suggested a genetically segregated distribution, but should 
be regarded with caution, due to the low number of markers used. Finally, evidence was 
found that genes such as  fructose-1,6-biphosphatase,  glutaredoxin,  or  carboxylesterase 
are likely to be involved in the local adaptation process, since their allele frequencies 
were found associated with variables likely to be related to the their putative function.

2 Introduction
Cork  oak  (Quercus  suber L.)  is  an  evergreen  tree  species  whose  distribution  spans 
throughout most of the Western Mediterranean coastal regions, the Atlantic coast of 
the Iberian peninsula and slightly north of the Pyrenees. Q. suber also occurs in Bulgaria, 
a  population  of  Iberian  origin  (Borelli  &  Varela,  2000),  introduced  by  human  action 
(Petrov  & Genov,  2004) (Figure  5.1).  The  strictly  defned  spectrum of  environmental 
conditions endured by Q. suber (Aronson, Pereira, & Pausas, 2012) make it an interesting 
subject for environmental associations studies in the Mediterranean area.

Studies on cork oak genetic variation encompassing most of the species'  distribution 
range are focused on the species' evolutionary history (Lumaret et al., 2005; Magri et al., 
2007; Simeone et al.,  2009; Toumi & Lumaret, 1998) and for the most part, based on 
plastidial  markers,  which  may  impose a  bias  on  conclusions  drawn  from them  alone 
(Govindarajulu, Parks, Tennessen, Liston, & Ashman, 2015). Studies attempting to fnd 
genetic  associations  with  environmental  variables  have  been  typically  performed  on 
“local” scopes  (Ramírez-Valiente et al.,  2010),  resorting to microsatellite loci  markers. 
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Despite  its  relatively  small  scope,  the  previously  mentioned  study  suggested  local 
adaptive pressures as the explanation for the associations found between some of the 
six  tested  loci  with  temperature,  leaf  growth  and  leaf  size.  More  recently,  a  study 
analyzing six candidate genes on a broad cork oak sampling (Modesto et al., 2014) has 
also revealed allelic variation associations with precipitation and temperature related 
variables.

Figure 5.1: A map of Q. suber distribution area (green land areas) with the original sampling sites pin-
pointed. Adapted from EUFORGEN 2009 (www.euforgen.org).

Nowadays, an alternative marker type to those used in the above mentioned studies are 
Single Nucleotide Polymorphisms (SNPs) and one of the currently used strategies for 
their discovery is to mine them from Expressed Sequence Tags (ESTs) databases (Orsini, 
Jansen, Souche, Geldof, & De Meester, 2011). This is a direct consequence of the rapid 
decrease in production costs of these libraries which can currently be sequenced by Next 
Generation  Sequencing  (NGS)  technologies  (Kumar,  Banks,  &  Cloutier,  2012),  thus 
providing  base  information  to  develop  new  SNP  markers  for  organisms  with  few 
available genomic resources.

Although SNP markers are usually less powerful than Simple Sequence Repeats (SSRs) 
for inferring population structuring (Glover et al., 2010), in some cases, such as those of 
species  with  high  efective  population  size,  the  diference  between  both  types  of 
markers  is  minimal  (Haasl  & Payseur,  2011).  On the other hand,  SNP markers  can be 
superior to SSRs regarding accuracy, reproducibility and robustness (Telfer et al., 2015).

Due  to  their  nature,  analyzing  SNP  markers  brings  challenges  that  did  not  afect 
previous  markers,  which  were  typically  assumed  to  behave  as  strictly  neutral.  Non-
neutral  markers  are  known  to  provide  better  insights  into  genetic  diversity,  local 

57



 Chapter 5

adaptation or evolutionary potential than their neutral counterparts  (Kirk & Freeland, 
2011),  however,  distinguishing  both  types  of  markers  is  not  a  simple  task  (Porcher, 
Giraud, & Lavigne, 2006). Methodologies for dealing with this issue are available (Foll & 
Gaggiotti, 2008), but when migration is high or the divergent selection pressure is weak 
(Thibert-Plante & Hendry, 2010), disentangling historical population structure from the 
adaptation process can be a daunting task.

In  a  global  climatic  change  scenario  (García-Ruiz,  López-Moreno,  Vicente-Serrano, 
Lasanta–Martínez, & Beguería, 2011),  Q. suber becomes a particularly interesting study 
subject due to its relatively extended range. In order to predict its response to these 
changes  (Kremer  et  al.,  2012),  it  is  important  to  understand  the  species'  genetic 
architecture of adaptive traits  (Alberto et al.,  2013) and evolutionary history  (Kremer, 
Potts, & Delzon, 2014). This issue has been previously studied in other genera such as 
Pinus (Alberto et al., 2013) or Populus (Olson et al., 2013), where the importance of these 
adaptive traits  was  highlighted to  help  predict  the potential  response of  these tree 
species to global climatic alterations. On the other hand, Q. suber has also been studied 
regarding its potential response to climatic change, but from an ecological point of view 
(Correia, Bugalho, Franco, & Palmeirim, 2017; Vessella, López-Tirado, Simeone, Schirone, 
& Hidalgo, 2017) which did not consider the species’ genetic adaptation potential.

Another factor that may play an important role regarding cork oak genetic background 
and evolutionary history is hybridization with other oaks, such as Q. ilex, Q. coccifera and 
Q. cerris (Belahbib et al., 2001; Burgarella et al., 2009; Costa et al., 2011; Petit et al., 2002) 
which is known to happen diferentially across the species' range. This phenomenon may 
cause these species to maintain a higher genetic diversity than what would be expected 
if they did not exchange genetic material (Belahbib et al., 2001).

The frst objective of this study is to perform environmental association and selection 
detection analyses in order to provide new insights into cork oak's adaptation process 
which  may  help  predict  its  response  to  global  climatic  changes.  This  includes  the 
identifcation and characterization of the genes where associated SNPs are found and 
relating their putative function with the environmental variable they are associated with. 
These analyses are based on SNP markers mined from ESTs and on climatic variables 
represented  for  individuals  from  across  most  of  the  species’  range.  This  approach, 
however,  required  an  initial  assessment  of  the  intraspecifc  genetic  variability  and 
population clustering to accommodate for the eventual role of genetic structure in the 
capacity to detect selection.
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3 Methods

3.1 Field collection and environmental data
Most leaves were collected from cork oak trees planted on an international provenance 
trial (FAIR I CT 95 0202) established at “Monte Fava”, Alentejo, Portugal (38°00’ N; 8°7’ W) 
(Varela, 2000). The remaining individuals, from Portuguese (Sintra and Monchique) and 
Bulgarian  locations,  were  collected  directly  from  their  original  locations  (Table  5.1, 
Figure 5.1). Twenty trees were sampled from each of the 17 sampling sites, spanning the 
full  distribution range of  the species.  Sampling sites  were selected considering both 
geographical  distribution  and  environmental  heterogeneity  between  the  original 
locations,  prioritizing  populations  that  represent  contrasting  environments.  Twenty 
Quercus  ilex subsp.  rotundifolia Lam.  Individuals  were also sampled from their  native 
locations [Estremadura West region (Ranging from “Videla” 39º28'58''N; 8º37'54''W to 
“Pernes”  39º23'06''N;  8º39'02''W)]  as  well  as  twenty  Quercus  coccifera individuals 
[Estremadura West  region  (Ranging from “Foz  do Arelho”  39º25'26''N;  9º12'26''W to 
“Alcabideche” 38º44'34''N; 9º27'11''W)]. This set of individuals from these two species 
are henceforth designated as  Putatively Introgressive Species (PIS).  Plant material  was 
stored at –80°C until DNA extraction.

Three spatial variables were recorded for each of the original sampling sites: altitude, 
latitude and longitude  (Varela, 2000). Climatic data was gathered from the WorldClim 
database (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) at 30 arc-seconds resolution 
(about  1  km)  using  a  python  script,  layer_data_extractor.py 
(https://github.com/StuntsPT/Misc_GIS_scripts)  as  of  commit  bd36320.  Nineteen 
Bioclimatic (BIO) variables were directly collected, BIO1 to BIO19. Correlations between 
variables were assessed using Pearson's correlation coefcient as implemented in the R 
script  eliminate_correlated_variables.R (https://github.com/JulianBaur/R-scripts)  as  of 
commit 43e6553. This resulted in the exclusion of six variables due to high correlation 
(r>0.95). Each sampling location was thus characterized by three spatial variables and 13 
environmental variables (Appendix II Table 1).

3.2 SNP mining from 454 EST data
The 454 dataset used in this work is described in (Pereira-Leal et al., 2014), designated as 
“L-19”  and  was  obtained  from  RNA  sequencing  of  leaf  tissues  from  8  Q.  suber 
populations naturally growing on climatic divergent regions,  in the scope of the FCT 
project SOBREIRO/0036/2009 (“Polymorphism detection and validation”).

EST data was analyzed using 4Pipe4 (Pina-Martins, Vieira, Seabra, Batista, & Paulo, 2016) 
as of commit 373c30e, with a minimum coverage of 15 reads, minimum less frequent 
allele frequency of 20% and minimum average base quality of 70 (confguration fle with 

59

https://github.com/JulianBaur/R-scripts
https://github.com/StuntsPT/Misc_GIS_scripts


 Chapter 5

all  parameters  available  as  Appendix  II  Data  1).  BLAST  queries  of  the  largest  Open 
Reading  Frames  (ORFs)  were  performed  against  NCBI's  “nr”  database  (05-12-2013). 
Additionally, the mutation type of each ORF was characterized.

Table 5.1: Sampled sites, including original geographical location (coordinates in “Deg. Min. Sec” in 
the WGS84 system) , coupled with summary statistics per sampling location – expected 
heterozigozity (He), observed heterozigozity (Ho), Introgression coefcient (FIS), Average Minimum 
Allele Frequency (MAF) and Hardy & Weinberg Equilibrium (HWE).

Sampling site
Num. 

Individuals
Latitude Longitude He Ho FIS

Average 
MAF

HWE Dhe 
q-value

HWE Ehe 
q-value

Algeria 20 36° 32' 24'' N 7° 9' 0'' E 0.372 0.337 0.0660 0.404 0.66 0.98

Bulgaria 20 41° 25' 59.88'' N 23° 10' 0.12'' E 0.361 0.363 -0.0324 0.391 0.89 0.71

Catalonia 20 41° 51' 0'' N 2° 31' 59.88'' E 0.392 0.427 -0.1184 0.418 0.99 0.59

Corsica 19 41° 37' 0.12'' N 8° 58' 0.12'' E 0.388 0.351 0.0400 0.371 0.68 0.98

Haza de Lino 20 36° 49' 59.88'' N 3° 17' 60'' W 0.379 0.427 -0.1696 0.412 0.99 0.21

Kenitra 18 34° 4' 59.88'' N 6° 34' 59.88'' W 0.312 0.322 -0.0633 0.347 0.89 0.71

Landes 20 43° 45' 0'' N 1° 19' 59.88'' W 0.290 0.337 -0.1832 0.371 0.99 0.21

Monchique 20 37° 19' 0.12'' N 8° 34' 0.12'' W 0.367 0.363 -0.0283 0.398 0.89 0.79

Puglia 19 40° 34' 0.12'' N 17° 40' 0.12'' E 0.353 0.340 -0.0073 0.347 0.81 0.98

Sardinia 20 39° 4' 59.88'' N 8° 50' 60'' E 0.347 0.353 -0.0582 0.365 0.89 0.79

Sicily 20 37° 7' 0.12'' N 14° 30' 0'' E 0.326 0.353 -0.1155 0.327 0.99 0.49

Sintra 19 38° 45' 0'' N 9° 25' 0.12'' W 0.394 0.404 -0.0493 0.416 0.89 0.96

Taza 20 34° 12' 0'' N 4° 15' 0'' W 0.318 0.323 -0.0538 0.386 0.89 0.71

Toledo 20 39° 22' 0.12'' N 5° 20' 60'' W 0.384 0.383 -0.0290 0.398 0.89 0.79

Tunisia 20 36° 57' 0'' N 8° 50' 60'' E 0.339 0.357 -0.0775 0.390 0.89 0.71

Tuscany 20 42° 25' 0.12'' N 11° 56' 60'' E 0.346 0.360 -0.0707 0.355 0.89 0.71

Var 20 43° 7' 59.9988'' N 6° 15' 0'' E 0.350 0.360 -0.0783 0.342 0.89 0.71

Q. ilex 20 39º 28' 58'' N 8º 37' 54'' W 0.079 0.080 -0.0638 0.361 0.086 0.996

Q. coccifera 20 39º 25' 26'' N 9º 12' 26'' W 0.045 0.040 0.0948 0.365 0.808 0.982

Mean 19.74 N/A N/A 0.323 0.331 -0.0525 0.377 N/A N/A

Mean Q. suber 19.71 N/A N/A 0.354 0.362 -0.0605 0.379 N/A N/A

The 4Pipe4 analysis pipeline was developed specifcally to fnd SNPs in 454 datasets of 
pooled individuals when no reference information or strain information is available. The 
objective was to identify and mine SNPs unlikely to be false positives – located in high 
coverage zones and with high confdence in the base callings, in order to maximize the 
number of reliable markers for downstream genotyping assays.

Of  the  mined  putative  SNPs,  those  contained  within  contigs  with  ORFs  whose best 
BLAST  hit  was  against  a  mitochondrial  or  chloroplastidial  sequence  were  discarded. 
Using the remaining SNPs putatively located in nuclear protein coding sequences,  six 
potential  assays  were  designed  using  Sequenom's  “Assay  Design  Suite”  based  on 
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sequences from the fanking regions of each of the SNPs, which were produced using a 
python script (https://github.com/StuntsPT/4Pipe4_to_genotyping_array) as of commit 
3644efd. From the generated assays, one of the two with most multiplexed SNPs (36 
plex) was randomly selected.

In order to further explore the genotyped SNPs,  the respective contig sequence was 
queried using BLAST against NCBI's nucleotide database “nt” as of 05-12-2013. 

3.3 Sample preparation and genotyping
Total genomic DNA was extracted from liquid nitrogen-grounded leaves of all samples 
collected from Q. suber, Q. ilex and Q. coccifera individuals using the kit "innuPREP Plant 
DNA Kit" (Analytik Jena AG), according to the manufacturer's protocol.

The  total  amount  of  extracted  DNA  was  quantifed  by  spectrophotometry  using  a 
Nanodrop 1000 (Thermo Scientifc) and integrity verifed on an agarose gel (0.8%). DNA 
samples were then diluted to the same concentration and plated for genotyping.

DNA samples were then outsourced to “Sequenom GmbH, Hamburg” for genotyping 
using  the  “iPLEX  Genotyping”  technology  on  a  “MassArray  Analyser  4”  with  water 
randomly placed in 1-3 wells  per  plate to use as  a  negative controls.  This  technique 
consists in amplifying DNA samples in multiplex PCR reactions which are used for locus-
specifc single-base extension reactions. The resulting products are then discriminated 
by mass spectrometry.

3.4 Genetic diversity and diferentiation
Deviations  from  Hardy  &  Weinberg  Equilibrium  (HWE)  and  expected  and  observed 
heterozygosity were calculated with  Genepop 4.5.1  (Rousset, 2008),  and fltered with a 
custom script (https://github.com/CoBiG2/RAD_Tools/blob/master/BioGenepop.py) that 
relies on the Biopython project  (Cock et al., 2009) module “PopGen”. All  p-values were 
corrected with a FDR test to account for multiple testing. The same software was also 
used to calculate FST values and to perform 10⁶ permutations Mantel tests to correlate 
genetic with geographic distance  (Rousset, 1997). FIS values were obtained with the R 
package “diveRsity” v1.9.89 (https://cran.r-project.org/web/packages/diveRsity/) module 
“divBasic”.  Plots  of  FST values  were  produced  using  the  R  script  Fst_heatmap.R 
(https://github.com/StuntsPT/misc_plotters) as of commit 9911835.

Analyses involving geographic and environmental variables were performed excluding 
PIS and Bulgaria individuals.

All  fle  format  conversions  for  diferent  software  were  performed  with  PGDSpider 
(Lischer & Excofer, 2012). In order to increase the reproducibility value of this study, a 
“vcf” formatted fle containing the raw SNP data is made available as Appendix II Data 2.
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3.5 Outlier detection and environmental associations
In order to distinguish between neutral and non-neutral loci, the polymorphic genotyped 
SNPs  were  scanned  for  outliers  using  Selestim v1.1.4  (Vitalis,  Gautier,  Dawson,  & 
Beaumont, 2014) with the following parameters: 200 pilot runs with a length of 5000, 
and a fnal run of 4e-6  MCMC iterations, a thinning interval of 50, and a burn-in length of 
500000. The limit value for comparison with the generated pseudo observed distribution 
was 0.01.

The software Bayescan 2.1 (Foll & Gaggiotti, 2008) was also used for the same purpose, 
with the following parameters: 20 pilot runs with a length of 5000 iteration each, and a 
fnal run with a total of 4e-6  MCMC iterations, a thinning interval of 10 and a burnin 
length of 50000. The FDR test limit was set to 0.05.

Associations of SNP alleles to environmental and geospatial variables were performed 
with Samβada 0.4.2 (Stucki et al., 2014), with the model “BEST” and a signifcance value 

of 0.05. Due to concerns that eventual population structure could be causing an analysis 
bias,  Samβada  was  run  on  three  separate  datasets  –  one  containing  all  Q.  suber 
individuals,  one  comprised  only  of  individuals  from  Western  sampling  sites  (Sintra, 
Monchique, Kenitra, Toledo, Taza, Haza de Lino, Landes and Catalonia) and one comprised 
of individuals from Eastern sampling sites (Var, Algeria, Sardinia, Corsica, Tunisia, Tuscany, 
Sicilia and Puglia), similar to the approach from (Modesto et al., 2014).

Two diferent approaches were used to determine wether any given locus is under the 
efects  of  selection.  The  frst  approach,  called  “Strict  criteria”  considered  that  any 
markers meeting at least three of the following criteria were considered “Non-neutral”:  
(1) is detected as an outlier by SelEstim, (2) is detected as an outlier by Bayescan, (3) is 
associated to an environmental variable, and (4) is a non-synonymous mutation in the 
context of the largest ORF that can be drawn from the contig where the marker SNP is 
located.  Combination of  these criteria  minimizes  the fagging of  false  positive  “non-
neutral” loci, which is a known problem in the used methods  (Vitalis et al., 2014). The 
second approach, called “Loose criteria” considered that only one of the above criteria is 
necessary for any given locus to be considered under selection (Table 5.2).

3.6 Genetic structure
Population genetic structure was inferred based on two datasets – one with all loci and 
one exclusively comprised of the loci previously defned as “Neutral” based on the “Strict 
criteria”.  Patterns  of  population  structure  were  investigated  using  the  software 
FASTSTRUCTURE 1.0  (Raj,  Stephens,  &  Pritchard,  2014) wrapped  in  Structure_threader  v 
1.1.0.post1 (Pina-Martins, Silva, Fino, & Paulo, 2016). Structure_threader was also used to 
infer the best value of “K” as well as to draw the individual cluster attribution plots, 
which  were  sorted  by  longitude.  The  Principal  Components  Analyses  (PCA)  were 
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performed with  vcf2PCA.R (https://github.com/Nymeria8/R_little_scripts) as of commit 
“debec0e”.

4 Results

4.1 SNP mining and genotyping
The 454 sequencing of L-19 dataset (Pereira-Leal et al., 2014) resulted in 1177063 reads. 
Of these, 201328 were discarded due to low quality, shortness or contaminant presence. 
From the  remaining  975735  reads,  788232  assembled  into  74950  contigs,  with  a 
maximum length of 3598 bp, N50, N90 and N95 of 602, 398 and 347, respectively. Of all  
the variation in the assembly, only 361 sites of 267 contigs matched the criteria to be 
considered putative SNPs by 4Pipe4 (on average, 1.35 putative SNPs per contig). Among 
these, six SNPs had a best BLAST hit against a mitochondrial or chloroplastidial protein, 
and were thus, discarded.

The 4Pipe4 report containing these results is available as  Appendix II Data 3.

The remaining 355 putative SNPs,  whose contigs'  ORFs had a best BLAST hit against 
nuclear proteins, were used to design the MassArrayTM genotyping assays.

Of the 36 SNPs comprising the performed assay, three (8%) failed to amplify, possibly 
due  to  undetected  polymorphisms  in  the  primer  regions.  The  ratio  between 
monomorphic and polymorphic SNPs was of 17/16, which translates to a false positive 
rate of approximately 51.5%. Only polymorphic SNPs were considered for subsequent 
analyses (Contig name to marker name translations can be found in Appendix II Table 2).

After querying the SNPs' contig sequences against the nucleotide database “nr”,  the 
SNP QSM001 was revealed to be located in a mitochondrial region, contrary to what the 
initial blast results against a protein database indicated, and was therefore discarded, 
resulting in a total of 15 SNP markers used for downstream analyses.

4.2 Genetic diversity and diferentiation
Only two of the 15 polymorphic SNP loci were not found to be in HWE, QSN006, which 
displayed heterozygote excess, and QSN014, which displayed heterozygote defciency 
(Table 5.2).

Regarding the  Q. suber sampling sets (Table 5.1), observed heterozygosity (Ho) ranged 
from 0.322 (Kenitra) to 0.427 (Haza de Lino), while expected heterozygosity (He) ranged 
from 0.290 (Landes)  to 0.394 (Sintra).  FIS values ranged from -0.183 (Landes)  to 0.067 
(Algeria), with only two positive values out of 17 measurements, which hints at a lot of 
gene fow between samples from diferent locations. Performing the HWE tests per set 
of samples revealed no signifcant deviations from equilibrium (Table 5.1).
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When considering all  15 loci,  pairwise FST values range from -0.018 (Haza de Lino vs. 
Monchique) to 0.530 (Landes vs. Q. coccifera), or 0.206 (Var vs. Kenitra) if considering only 
Q. suber individuals, with average values of 0.126 (all samples) and 0.060 (Q. suber only).

When considering only loci from the “Neutral” set, pairwise FST values range from -0.017 
(Taza vs. Algeria) to 0.527 (Landes vs. Q. coccifera), or 0.181 (Landes vs. Var) if considering 
only Q. suber individuals, with average values of 0.084 (all samples) and 0.029 (Q. suber 
only).

4.3 Outlier detection and environmental associations
Selestim analyses  identifed  seven  SNPs  that  signifcantly  deviate  from  a  neutral 
distribution  (Appendix  II  Figure  1):  QSN002,  QSN004,  QSN005,  QSN008,  QSN011, 
QSN012 and QSN014 (Table 5.2).

Bayescan analyses identifed four SNPs as outlier loci (Appendix II  Figure 2):  QSN001, 
QSN026,  QSN009  and  QSN010  (Table  5.2).  Allele  frequency  graphs  available  as 
supplementary material (Appendix II Figure 3).

Using “Strict criteria” to assess the putative neutrality of each marker indicated fve non-
neutral SNPs: QSN002, QSN004, QSN008, QSN011 and QSN012 (Table 5.2).  Using the 
“Loose criteria” indicated that all SNPs were under the efects of natural selection.

Environmental association analysis carried out with Samβada provided diferent results 

depending  on  the  analyzed  dataset.  When  all  individuals  are  considered,  fve  SNPs, 
QSN002, QSN004, QSN007, QSN008 and QSN011 are signifcantly associated with some 
of the considered variables (Table 5.2 and Appendix II Table 4). Specifcally, QSN002 and 
QSN011 are associated with longitude, QSN004 and QSN007 with precipitation related 
variables (both to annual precipitation and the latter also to precipitation of the wettest 
and driest month) and QSN008 is associated with temperature related variables, namely 
“Isothermality” and mean diurnal range.

When analyzing only individuals from the Western sampling sites, two SNPs were found 
to be associated with environmental  variables.  Namely,  QSN007 was associated with 
“Annual precipitation”, “Precipitation of wettest month”, “Precipitation of driest month” 
and “Altitude”. These are the same associations that were found when all individuals are 
used,  except  for  Altitude,  which  is  exclusive  to  the  Western  individuals.  The  marker 
QSN012 was found to be associated with “Latitude”, which was not found on the full  
dataset.

When performing the analysis  with individuals  exclusively from the Eastern sampling 
sites, only a single association is  found, between QSN004 and “Annual precipitation”, 
which is also present in the dataset with all individuals.
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Table 5.2: Summary data of polymorphic SNPs. “Largest ORF silent” refers to whether the SNP alleles represent a silent mutation in the largest contig ORF. “HWE” 
refers to Hardy & Weinberg equilibrium. “Dhe” and “Ehe” refer to “defcit” and “excess” heterozygotes respectively. Associations written with a bold typeface 
occur on the dataset with individuals from all sampling sites, an emphasis typeface represent associations on the dataset with Eastern individuals, and underlined 
associations were fund in the dataset with only the Western individuals. Refer to section 3.4.1 for the defnition of “Strict criteria” and “Loose criteria”.

SNP name Putatively represented gene
HWE Dhe 

q-value
HWE Ehe 
q-value

Alleles
Num. 
ORFs

Largest 
ORF silent

SelEstim 
Outlier

Bayescan 
Outlier

Associations (All, West, East) Genotype
Strict 

criteria
Loose criteria

QSN001
T-complex protein 1 subunit 

epsilon-like
0.74293 0.88788 AG 3 Yes No Yes 0 N/A Neutral Non-Neutral

QSN002
sphingoid long-chain bases kinase 

1-like
0.74293 0.88788 CT 4 No Yes No Longitude CC

Non-
neutral

Non-neutral

QSN003 alanyl-tRNA synthetase-like 0.92827 0.77813 AC 3 No No No 0 N/A Neutral Non-neutral

QSN004 fructose-1,6-bisphosphatase 0.85020 0.88788 GT 3 No Yes No Annual precipitation TT
Non-

neutral
Non-neutral

QSN005
Galactosyltransferase family 

protein 
0.85020 0.88788 AG 2 Yes Yes No 0 N/A Neutral Non-neutral

QSN006 Early light-induced protein 1.00000 0.00000 GT 2 No No Yes 0 N/A Neutral Non-neutral

QSN007 Glutaredoxin 0.74293 0.88788 CT 2 Yes No No

Annual precipitation

CC Neutral Non-neutral
Precipitation of wettest month

Precipitation of driest month

Altitude

QSN008 Carboxylesterase 0.85020 0.88788 CT 1 No Yes No

Latitude

CC
Non-

neutral
Non-neutralMean diurnal range

Isothermality

QSN009
NADH-ubiquinone 

oxidoreductase
0.92827 0.77813 CT 4 Yes No Yes 0 N/A Neutral Non-neutral

QSN010 fatty acid desaturase 0.98496 0.60525 CT 2 Yes No Yes 0 N/A Neutral Non-neutral

QSN011 Chlorophyll a/b binding protein 0.92827 0.78060 CG 1 No Yes No Longitude
CC Non-

neutral
Non-neutral

GG

QSN012
nuclear transcription factor Y 

subunit A-7-like
0.74293 0.97523 CT 2 No Yes No Latitude CC

Non-
neutral

Non-neutral

QSN013
alcohol dehydrogenase class-3-

like
0.60225 0.98539 AG 2 No No No 0 N/A Neutral Non-neutral

QSN014
extracellular calcium sensing 

receptor
0.03750 0.99750 CT 2 Yes Yes No 0 N/A Neutral Non-neutral

QSN015 uncharacterised 0.74293 0.88788 CG 1 No No No 0 N/A Neutral Non-neutral
QSM001 cytochrome oxidase subunit I (COI) N/A N/A CT 1 No N/A N/A N/A N/A N/A N/A
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A graphical representation of the pairwise FST values for Q. suber sampling sites can be 
seen in Figure 5.2. All pairwise FST values can be found in Appendix II Table 3.

Figure 5.2: Pairwise FST plots between sampling sites of the neutral loci (upper matrix) and all loci (lower 
matrix) datasets of Q. suber only. The line plot on the right represents the FST value density of neutral loci 
(full line) and all loci (dashed line).1

Mantel  tests  revealed  the  probability  of  Isolation  by  distance  (IBD)  to  be  ~0  on  all 
datasets.

4.4 Population genetic structure
Population genetic structure was separately inferred based on all  15 loci  and on ten 
neutral loci. In both cases, the “bestk.py” test indicated 1 as the best ft value of K. This is  
strong evidence that no structuring can be found in the data. Considering this, K=2 was 
plotted (Figure 5.3), and although no clear structuring pattern is presented, individuals 
of Q. ilex and Q. coccifera are clustered together, in a somewhat segregated way from Q. 
suber individuals, but can not be distinguished from each other.

Since STRUCTURE is known to perform poorly when FST values are below 0.05,  (Latch, 
Dharmarajan, Glaubitz, & Rhodes, 2006), a PCA analysis was also performed in order to 
confrm the results (Appendix II Figure 4). Similarly to what happened with the previous 
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analysis, the PCA is also able to distinguish PIS from Q. suber, but no evident segregation 
pattern can be found regarding cork oak individuals.

Figure 5.3: Plot of the clustering obtained with the software FASTSTRUCTURE. Q. coccifera and Q. ilex 
represent the PIS individuals, and all other labels represent the original sampling site of Q. suber 
individuals.

5 Discussion

5.1 SNP mining and genotyping
This  study  demonstrates  that  assemblies  of  anonymous  individuals  based  on  454 
technology  can  provide  useful  variation  data  which  can  be  further  explored  by 
genotyping.  Although  the  number  of  validated  SNPs  obtained  by  this  approach  is 
relatively low (49.51%), this value is in line with similar studies which revealed a 46% rate 
of  false  positives  (Oliver  et  al.,  2011).  However,  in  the  mentioned  study,  reference 
sequences were used,  which should in principle,  reduce the number of false positive 
SNPs comparatively to when this information is missing. This value is also below what is 
expected according to 4Pipe4's benchmarks (Pina-Martins, Vieira, et al., 2016), however 
the diference  might  be explained  by  the  complexity  diferences  between  cork  oak, 
which  is  a  diploid  eukaryotic  organism,  and  the  bacterial  data  that  was  used  to 
benchmark 4Pipe4.

As such, the amount of SNP markers used in this study is relatively low. However, it has  
been shown that as lineage divergence time increases, the number of markers required 
to correctly infer population structuring decreases  (Haasl & Payseur, 2011), and fossil 
records indicate this  to be the case of  Q. suber (Carrión,  Parra,  Navarro,  & Munuera, 
2000), which suggests that any marked lineage divergence should be detectable, even 
using few markers, assuming any eventual structuring signal was not eroded due to high 
gene fow. That  being stated,  caution is  generally  advised when interpreting genetic 
structure  results  based  on  the  15  markers  developed  in  this  work.  Despite  this 
shortcoming, the genotyped SNP markers are adequate to obtain a clear signal in the 
detection of both outliers and environmental associations.  The way they were mined 
also allows  for  further  exploration than  the typical  markers  obtained  from Reduced 
Representation Libraries, since all of the markers have a large identifed fanking region.
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5.2 Genetic diversity and diferentiation
Although values of genetic diversity  will  vary according to the type of markers from 
which they are inferred, measures found in this work can be generally compared with 
those  from  other  publications  focused  on  other  European  Quercus species,  such  as 
Quercus petraea and  Quercus robur. In this regard, the data herein presented is in line 
with that from (Ballian, Belletti, Ferrazzini, Bogunić, & Kajba, 2010; Guichoux et al., 2013; 
Neophytou,  Aravanopoulos,  Fink,  &  Dounavi,  2010),  which characterize  these  species 
(using nuclear markers) as low inbred, but essentially unstructured panmitic populations 
(Table 5.3).

Table 5.3: Comparison of genetic variability measures between the data from the present study and data 
from similar studies with other European oak species.

Author This study Ballian et al. 2010 Neophytou et al. 2010 Guichoux et al. 2013

Scope West Mediterranean Bosnia and Herzegovina Central – East Europe Across France

Species Q. suber Q. robur Q. robur Q. petraea Q. robur Q. petraea

Marker SNPs SSRs SSRs SSRs SNPs SNPs

FST 0.06 0.05 0.04 0.05 0.01 0.13

FIS -0.06 0.23 0.11 0.08 0 0

He 0.35 0.86 0.82 0.8 0.22 0.22

Ho 0.36 0.68 0.74 0.75 N/A N/A

Overall,  intraspecifc  pairwise  FST values  are  relatively  low,  suggesting  little 
diferentiation among samples from diferent locations. 

Moreover,  regardless  of  the  considered  marker  set,  the  probability  of  isolation  by 
distance is  always  ~0,  according to  the Mantel  test.  This  suggests  that  gene fow is 
indeed an important factor regarding the species’ population genetics.

The rate of false positives is a known problem when attempting to determine weather or 
not a marker is under the efects of selection (Gautier, 2015; Stucki et al., 2014; Vitalis et 
al.,  2014).  All  the  SNP  markers  developed  for  this  work  can  be  considered  as  “non-
neutral” under at least one of the used methods, designated as “Loose criteria”. As such, 
more restrictive criteria have also been used to determine weather or not any given 
locus can be considered “non-neutral”.  This method, deemed “Strict criteria” selected 
fve SNP markers as being under the efects of selection. On any account, this is a high 
ratio of SNPs under selection, however, it may be due to the fact that the markers were 
mined from ESTs, and from individuals from across the species’ range, which makes them 
a lot more likely to be under selection than average markers taken from random non-
coding genome regions.
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5.3 Population genetic structure
The  15  markers  developed  for  this  work  do  not  reveal  much  as  far  as  population 
structure is concerned. Regardless of the used set of markers, the most likely value of K 
is one, despite the datasets containing multiple species. This can either be due to a true  
lack of population structure, or to the fact that the used markers do not have enough 
power to discern it. It is, nevertheless, possible to segregate between PIS and cork oak 
individuals.  Although  (Guichoux et  al.,  2013) states that this  is  to  be expected,  even 
based on few SNP markers, the fact that PIS cannot be distinguished from each other is 
somewhat  unexpected.  This  might  be  due  to  the  fact  that  the  used  markers  were 
identifed and developed exclusively from  Q. suber genetic data, and as such, may not 
accurately represent the genetic diversity specifc to the two PIS, or, once again, due to 
lack of power to make a distinction.  It  is,  however,  worth noting that  Q. ilex and  Q. 
coccifera have been found to frequently share haplotypes (Jiménez, de Heredia, Collada, 
Lorenzo, & Gil, 2004) and the sampled individuals of both  PIS are from relatively close 
locations.  It  is  in  fact,  quite  possible  that  the  lack  of  diferentiation  is  due  to  a 
combination of these factors.

The PIS were included in the analyses in an attempt to gain an insight on the amount of 
introgression these species might incur along Q. suber's distribution range. Although  the 
three Quercus species included in this study are close enough for the developed markers 
to be common to all of them, and yet intraspecifcally variable, the found variation was 
insufcient to provide information about any eventual diferential introgression.

Regarding  cork  oak  individuals,  independently  of  dataset  or  value  of  K  plotted,  no 
evident  structuring  pattern  could  be  found.  This  lack  of  structuring  is  supported by 
previous  studies  (Ramírez-Valiente,  Valladares,  &  Aranda,  2014;  Soto,  Lorenzo,  &  Gil, 
2007) regarding  nuclear  genetic  diversity  of  Q.  suber,  despite  the  diferences  in 
geographic scope. Once again it should be highlighted that this can either be due to (1) a  
true lack of structure, (2) a lack of marker power to detect it, or (3) a combination of 
both these factors – weak structure and low marker power.

5.4 Environmental associations and outlier detection
Despite the markers used in this work providing no hint of structure, in order to perform 
environmental associations, three datasets were considered. This was similar to what 
was done in (Modesto et al., 2014), in an attempt to overcome an eventual analysis bias 
due to undetected population structure.

Of the 11 associations found between six markers and ecologically relevant variables 
across the species' natural distribution range, fve of them are with geospatial variables. 
These variables may be functioning as a proxy for co-varying environmental data which 
was not considered per se on this study, such as photoperiod. Alternatively, these may 
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simply be a spurious correlation, not necessarily due to causation. As such, a functional  
overview  of  the  genes  containing  the  SNPs  associated  with  environmental  variables 
(Table 5.2) should help understand how likely causation is to be involved.

The  gene  containing  QSN004  encodes  a  fructose-1,6-bisphosphatase,  which  is  a 
regulatory enzyme critical for gluconeogenesis (Marcus & Harrsch, 1990). Water stress is 
reported to have an efect on the activity of this enzyme (Botha & Small, 1985), which 
might explain the genotypic association with “Annual precipitation”. It is interesting to 
note  that  this  association  is  present  on  the  dataset  with  all  individuals  and  on  the 
dataset comprised of individuals exclusively from Eastern sampling sites. This marker is 
also considered “non-neutral” based on the “Strict criteria” for selection detection, which 
makes it particularly interesting for downstream functional studies.

The gene where QSN007 is located, codes for a  glutaredoxin, a protein belonging to a 
family of enzymes involved in redox reactions  (Fernandes & Holmgren, 2004). In other 
plants, such as Arabidopsis thaliana and Solanum lycopersicum, glutaredoxin plays a role 
in drought stress (Guo, Huang, Xie, Song, & Zhou, 2010), which could explain this SNP's 
association with precipitation related variables. This association can be found in both the 
dataset with all individuals and the one with only western individuals. Furthermore, in 
the  smaller  dataset,  another  association  can  be  found,  between  QSN007  and  the 
“Altitude” variable. In this case, “Altitude” can either be a proxy for another variable, or 
simply a spurious association, since the function of the protein where QSN007 is found 
can hardly be associated with the variable.

QSN008 is located in a gene coding for a  carboxylesterase, which has catalytic activity 
(Krejci, Duval, A Chatonnet, P Vincens, & J Massoulié, 1991), and is known to play a role 
in ecological situations of heat stress (Lan, Li, Wang, & Ma, 2010). The putative function 
of  this  gene  is  in  accordance  with  the  associations  found  for  the  genotype  with 
temperature  related  variables  and  even,  to  some  extent,  latitude.  This  association, 
however is exclusive to the full dataset. This can either mean that it only happens on a 
“global” scope, or that the reason this association is detected is due to a diference in  
allelic frequencies between the defned Eastern and Western groups.

The marker QSN012 is located in a gene that encodes a DNA binding protein, nuclear 
transcription factor Y subunit A-7 (Theologis et al., 2000). It is not clear why such marker 
can  be  associated  with  the  variable  “Latitude”.  This  makes  this  association  a  likely 
candidate to being one of those cases whee causation is not involved.

Finally, the gene where QSN002 is located encodes a sphingoid long-chain bases kinase 
1-like enzyme, which is involved in stomatal opening and closing (Nakagawa et al., 2012), 
and  in  disease resistance  and apoptosis  (Zhang et  al.,  2013).  The marker  QSN011  is 
located in a chlorophyll a-b binding protein encoding gene, which plays a crucial role in 
the  Light  Harvesting  Complex  (LHC),  specifcally  in  balancing  the  excitation  energy 
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between the two photosystems  (Liu & Shen, 2004) and also in thermal dissipation of 
excess absorbed light energy in the photosystem  (Li et al.,  2004). This protein is also 
known to play a role in drought stress (Xu et al., 2011). Associating any kind of function 
to a geospatial variable like “Longitude” does not make much biological sense, so either 
the variable is working as a proxy for another unrepresented environmental variable, or 
this correlation is non causative (Gautier, 2015; Stucki et al., 2014). Both these markers’ 
associations  are  only  present  in  the  full  dataset.  This makes  these  markers  less 
interesting for downstream analyses than QSN004, QSN007 or QSN008.

It  is  interesting  to  note  that  many  of  the  genes  containing  SNPs  associated  with 
environmental variables are involved in heat and water stress, which coincides with what 
was reported in  (Modesto et al., 2014). This could be due to the same environmental 
pressures afecting the allele frequencies of diferent genes involved in similar adaptive 
traits.

Due to their associations to environmental variables of identifed ecological relevance, 
QSN004,  QSN007 and QSN008 are interesting as  candidate markers  for  downstream 
analyses.  Further  studying  these  markers  and  their  respective  sequences  with  case-
control  trials  and  on  a  functional  level  may  be  of  paramount  importance  in 
understanding Q. suber’s response to the looming threat of climatic change.

5.5 Final remarks
This study shows what can be achieved based on SNP mining from EST data. Despite the 
method not having provided a great number of markers to explore, it allowed a greater 
ratio of markers to be further explored than what is typically obtained using Reduced 
Representation Libraries on organisms without reference genomes. This is due to the 
large  fanking  regions  EST  SNP  mining  typically  provides,  which  allows  a  detailed 
exploration of putative gene functions. In this regard, the results provided by  4Pipe4 
were a success.

The overall aim of this research was to make a contribution to better understanding the 
adaptation  of  cork  oak  and  provide  genomic  tools  that  can  help  to  forecast  the 
consequences of climatic change for this species.

Genetic variability levels of the SNP markers developed for this work seem to be in line 
with those found for other European oaks. The possible comparisons, however, are of 
limited scope due to marker and scope diferences. Doing a full re-analysis of the data 
from  (Guichoux  et  al.,  2013) to  compare  the  results  under  the  same  models  is  a 
possibility  to  enable  a  better  comparison,  but  falls  out  of  the  scope  of  this  work. 
Nevertheless,  the  simple  performed  comparisons  suggest  that  cork  oak’s  standing 
genetic  variability  should not be too diferent from other European oaks,  namely  Q. 
petraea or Q. robur.
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The novel markers developed for this study provide a diferent perspective on Q. suber's 
evolutionary history than what was previously described with plastidial markers  (Magri 
et al.,  2007).  Although the population structuring results are not conclusive,  the few 
markers  developed  in  this  frst  step  work  show  that  more  research  needs  to  be 
performed with nuclear markers on cork oak in order to confrm whether there is more 
to Q. suber's evolutionary history than what cpDNA can reveal.

This study also uncovered three markers (QSN004, QSN007, QSN008) that correlate to 
environmental  variables  (“Annual  precipitation”,  “Precipitation  of  wettest  month”, 
Precipitation of driest month”, “Mean diurnal range” and “Isothermality”) which are likely 
to change in the near-medium term due to climatic changes. The corresponding genes 
could provide specifc answers regarding cork oak's adaptation potential in downstream 
projects, especially if coupled with other markers from previous studies, such as those 
from (Modesto et al., 2014). The association of several climatic variables with identifed 
genes related with temperature and water stress, suggests diferential local adaptation 
pressures  across  the  species  range,  but  once  again,  further  research  is  required  to 
validate these fndings.

Studies  attempting  to  forecast  the  cork  oak’s  response  to  climatic  change  from  an 
ecological modeling perspective are non concordant (Correia et al., 2017; Vessella et al., 
2017).  Integrating  this  information  with  genetic/genomic  based  predictions  should 
considerably improve the accuracy of such predictions. Results from this work highlight 
the presence of  markers  under natural  selection,  thus  suggesting that  with  a  larger 
number of markers it should be possible to make the aforementioned forecasts.

The combination of results presented here, regarding population genetic structure and 
candidate genes for further exploration, should provide a solid starting point to attempt 
to predict the species' response to climatic change, including the consequences for the 
”Montado” ecosystem and the economy based on the cork exploration. This study serves 
as a frst step in this direction, and as a starting point for future research regarding the  
cork oak’s adaptation potential.
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1 Abstract
Species respond to global climatic changes in a local context. Understanding this process 
is paramount due to the pace at which these changes are occurring. Tree species are 
particularly  interesting  to  study  in  this  regard  due  to  their  long  generation  times, 
sedentarism, and because of their ecological and economic importance. Quercus suber L. 
is an evergreen forest tree species of the Fagaceae family with an essentially Western 
Mediterranean  distribution.  Even  though  this  species’  evolutionary  history  has  been 
frequently  studied,  large-scale  genetic  studies  have  essentially  relied  on  plastidial 
markers,  whereas  those  performed  with  nuclear  markers  have  been  done on  locally 
focused  sampling  strategies.  The  potential  response  of  Q.  suber to  global  climatic 
changes has also been studied, under ecological modelling. In this work, the “Genotyping 
by Sequencing” (GBS) technique is used to derive 2,547 SNP markers in order to assess 
the species’ evolutionary history from a nuclear DNA perspective, to gain insights on 
how local adaptation may be shaping the species’ genetic background, and to attempt to 
forecast  how  the  cork  oak  may  respond  to  global  climatic  changes  from  a  genetic 
perspective.  Results  reveal  an  essentially  unstructured  species,  where  a  balance 
between  gene  fow  and  local  adaptation  keeps  the  species’  gene  pool  somewhat 
homogeneous across its distribution, but at the same time allows variation clines for the 
individuals to cope with local conditions. “Risk of Non-Adaptedness” (RONA) analyses, 
based on environmental association results, suggest that for the considered variables 
and  most  sampled  locations,  the  cork  oak  does  not  require  large  shifts  in  allele 
frequencies  to  survive  the  predicted  climatic  changes.  However,  more  research  is 
required to integrate these results with the ecological modelling ones.

2 Introduction

2.1 Adaptation
Global climatic changes have been shown to cause alterations in species’ traits  (Benito 
Garzón, Alía, Robson, & Zavala, 2011; Walther et al., 2002). Understanding how species 
respond to such alterations in their environmental context is becoming an increasingly 
important question due to the pace at which they are taking place (Kremer et al., 2012; 
Primack et al., 2009). Too avoid obliteration, species may respond to climatic changes by 
either altering their distribution range, efectively going extinct in the original location 
but persisting somewhere else,  or by adapting to the new conditions.  The latter can 
occur “instantly”,  due to phenotypic plasticity,  or across several  generations,  by local 
adaptation  (Aitken,  Yeaman,  Holliday,  Wang,  &  Curtis-McLane,  2008).  The  kind  of 
response species can provide is known to depend on factors like location, distribution 
range,  and/or  genetic  background  (Gienapp,  Teplitsky,  Alho,  Mills,  &  Merilä,  2008; 
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Ohlemuller,  Gritti,  Sykes,  &  Thomas,  2006).  Climatic  change  is  modelled  for  the 
Mediterranean region  (Giorgi & Lionello, 2008), and some of the species in this region 
have been studied regarding the impact  of  these changes  (Lindner et  al.,  2010),  but 
much is still unknown.

Tree species are characterized by sedentarism, long lifespan and generation times, allied 
with generally large distribution ranges and capacity for long distance dispersal through 
pollen and seeds  (Kremer et al., 2012). These traits make them interesting subjects to 
study regarding their response to global climatic changes (Thuiller et al., 2008).

In this work, we address the case of the cork oak (Quercus suber L.). With a distribution 
ranging most of the West Mediterranean region (Figure 6.1), this oak species is the most 
selective  evergreen  oak  of  the  Mediterranean  basin  in  terms  of  precipitation  and 
temperature  conditions  (Vessella,  López-Tirado,  Simeone,  Schirone,  &  Hidalgo,  2017). 
European oaks in particular, are known to have endured past climatic alterations, but 
how  they  can  cope  with  the  current,  rapidly  occurring  changes  is  not  yet  fully 
understood  (Kremer  et  al.,  2012;  Kremer,  Potts,  &  Delzon,  2014).  Despite  this  tree’s 
ecological  and  economic  importance,  little  is  known  regarding  the  consequences  of 
global climatic change on its future  (Benito Garzón,  Sánchez de Dios,  & Sainz Ollero, 
2008). Some recent works have been performed to attempt to answer this very question, 
but focusing on range expansion and contraction with the assumption of a genetically 
homogeneous  species  (Correia,  Bugalho,  Franco,  &  Palmeirim,  2017;  Vessella  et  al., 
2017).  Both these studies  also  highlight  the need for  a  genetic  study regarding the 
adaptation potential of Q. suber.

In  this  regard,  studies  integrating  genetic  information  and  response  to  climatic 
alterations of Q. suber are rare and of small scale (Modesto et al., 2014) when compared 
with other oak species  (Rellstab et al.,  2016).  Studies such as  Jose Alberto Ramírez-
Valiente, Valladares, Huertas, Granados, & Aranda (2011) have revealed that some traits 
can be associated to genetic variants, however, these were performed on a local scope 
and using a relatively low number of markers, which limits their utility in a larger scope.  
Knowing  gene  fow  and  local  adaptation  dynamics  of  Q.  suber is  paramount  to 
understanding  the  species’  potential  to  endure  rapid  climatic  changes  through 
adaptation (Savolainen, Lascoux, & Merilä, 2013).

Genomic resources represent a new way to study the genetic mechanisms responsible 
for local adaptation  (Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015), through 
the use of environmental association analyses, which correlate environmental data with 
genetic  markers,  thus  highlighting  loci  putatively  involved  in  the  adaptation  process 
(Rellstab et al., 2016). The same methods, can thus, in principle, be used to assess the 
degree of  maladaptation  to  predicted  future  local  conditions  (Rellstab  et  al.,  2016). 
Applying this kind of methodology on Q. suber would fll the gap mentioned in (Correia 
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et al.,  2017;  Vessella et al.,  2017).  The Risk of Non-adaptedness (RONA) method was 
developed  in  (Rellstab  et  al.,  2016) with  this  very  goal,  however,  no  public 
implementation is provided in the mentioned work.

2.2 Population structure
In order to predict a species’ response to change (Kremer et al., 2012), it is fundamental 
to  know  both  its  genetic  architecture  of  adaptive  traits  (Alberto  et  al.,  2013) and 
evolutionary  history  (Kremer  et  al.,  2014).  However,  the  very  nature  of  genetic  and 
genomic datahampers the distinction of selection signals from other processes (McVean 
& Spencer, 2006), especially demographic events (Bazin, Dawson, & Beaumont, 2010). In 
order to overcome the obstacles caused by the entanglement of population structure 
(mostly shaped by gene fow, inbreeding, and genetic drift) and selection (Foll, Gaggiotti, 
Daub,  Vatsiou,  &  Excofer,  2014),  recent  methods  incorporate  population  structure 
information  to  detect  adaptation  (Gautier,  2015;  Günther  &  Coop,  2013).  Likewise, 
methods to accurately estimate population structure should be performed without loci 
known to be under selection (De Kort et al., 2014).

The  evolutionary  history  of  Q.  suber has  been  studied  in  the  past  using  multiple 
methodologies and in diferent geographic ranges. The most recent large-scale studies 
on the subject suggest that cork oak is divided into four strictly defned lineages (Magri 
et al., 2007; Simeone et al., 2009). Two of these lineages range from the south-east of 
France,  to  Morocco,  including  the  Iberian  peninsula  and  the  Balearic  Islands,  a  third 
lineage ranges from the Monaco region to Algeria and Tunisia, including the islands of 
Corsica and Sardinia. The fourth lineage spans the entire Italic peninsula, including Sicilia. 
Based only on plastidial markers, these lineages have been shown to hardly share any 
haplotypes.  Notwithstanding,  later  works  based  on  nuclear  DNA  have  hinted  at  a 
diferent scenario, where the species is not as categorically divided(Costa et al., 2011; J. 
A. Ramírez-Valiente, Valladares, & Aranda, 2014) (see also Chapter 5). These works are, 
however,  limited  in  either  geographic  scope  or  number  of  markers  to  confdently 
conclude that such segregation is only present in plastidial markers.

2.3 Objectives
In the present work, a panel of Single Nucleotide Polymorphism (SNP) markers derived 
from the Genotyping by Sequencing (GBS) technique (Elshire et al., 2011) was developed 
to attain the following goals:  (1)  attempt to infer  the species’  genetic  structure and 
evolutionary history, (2) detect signatures of natural selection, and (3) investigate the 
adaptation potential of Q. suber based on the RONA method developed and presented 
on (Rellstab et al., 2016).
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3 Material & Methods

3.1 Sample and environmental data collection
In order to provide a comprehensive view of the species genetic background, samples 
were collected from 17 locations spanning most of Q. suber’s distribution. Fresh leaves 
were collected from six individuals from,  Bulgaria,  Corsica,  Kenitra,  Monchique,  Puglia, 
Sardinia, Sicilia, Tuscany, Tunisia and Var, and from fve individuals from Algeria, Catalonia, 
Haza de Lino,  Landes,  Sintra,  Taza and  Toledo for a  total  of 95 individuals  (Table 6.1, 
Figure 6.1).

Figure 6.1: A map of cork oak (Quercus suber) distribution. Land areas in green represent the species' 
range. White dots represent the sampling locations. Adapted from EUFORGEN 2009 (www.euforgen.org).

Most samples were collected from an international provenance trial (FAIR I CT 95 0202) 
established at “Monte Fava”, Alentejo, Portugal (38°00’ N; 8°7’ W) (Varela, 2000), except 
Portuguese  and  Bulgarian  samples,  which  were  collected  directly  from  their  native 
locations. The collected plant material was stored at –80°C until DNA extraction.

Altitude, latitude and longitude spatial variables (Varela, 2000) were recorded for each 
of the native sampling sites. Nineteen Bioclimatic (BIO) variables, BIO1 to BIO19 were 
collected from the WorldClim database (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) 
at 30 arc-seconds (~ 1 km) resolution for “Current conditions ~1960-1990” and “Future” 
predictions  for  2070  (rcp26 and  rcp85 conditions  for  the  following  “Global  Climate 
Models” (GCMs): BCC-CSM1-1, CCSM4, GFDL-CM3, GISS-E2-R, HadGEM2-ES, IPSL-CM5A-
LR, MRI-CGCM3, MPI-ESM-LR and NorESM1-M as these are available under permissive 
licenses and calculated for both rcp26 and rcp85). An average of the mentioned datasets 
was obtained for each coordinate and variable used in the analyses (Appendix III Table 1 
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and 2 respectively).  Data was extracted from the GeoTif fles using a python script,  
layer_data_extractor.py (https://github.com/StuntsPT/Misc_GIS_scripts)  as  of  commit 
“bd36320”.

Table  6.1:  Coordinates  and  number  of  sampled  individuals  for  every 
sampling site.

Sample site
Latitude (decimal 

deg.)
Longitude (decimal 

deg.)
Number of sampled 

individuals

Algeria 36.5400 7.1500 5

Bulgaria 41.43 23.17 6

Catalonia 41.8500 2.5333 5

Corsica 41.6167 8.9667 6

Haza de Lino 36.8333 -3.3000 5

Kenitra 34.0833 -6.5833 6

Landes 43.7500 -1.3333 5

Monchique 37.3167 -8.5667 6

Puglia 40.5667 17.6667 6

Sardinia 39.0833 8.8500 6

Sicilia 37.1167 14.5000 6

Sintra 38.7500 -9.4167 5

Taza 34.2000 -4.2500 5

Toledo 39.3667 -5.3500 5

Tunisia 36.9500 8.8500 6

Tuscany 42.4167 11.9500 6

Var 43.1333 6.2500 6

Total: - - 95

Correlations  between  present  Bioclimatic  variables  were  assessed  using  Pearson's 
correlation coefcient as implemented in the R script  eliminate_correlated_variables.R 
(https://github.com/JulianBaur/R-scripts) as of commit “43e6553”, which resulted in the 
exclusion of six variables due to high correlation (r>0.95). Each sampling location was 
thus characterized by three spatial variables and 13 environmental variables (Appendix 
III Table 3).

3.2 Library preparation and sequencing
Genomic  DNA  was  extracted  from  liquid  nitrogen  grounded  leaves  of  all  samples 
collected  for  this  work  using  the  kit  "innuPREP  Plant  DNA  Kit"  (Analytik  Jena  AG),  
according to the manufacturer's protocol.
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The  total  amount  of  extracted  DNA  was  quantifed  by  spectrophotometry  using  a 
Nanodrop 1000 (Thermo Scientifc) and integrity verifed on Agarose gel (0.8%). DNA 
samples were then diluted to a concentration of ~100 ng/μl and plated for genotyping.

DNA  samples  were  then  outsourced  to  “Genomic  Diversity  Facility,  Institute  of 
Biotechnology  of  Cornell  University”  for  genotyping  using  the  “Genotyping  by 
sequencing” (GBS) technique as described in (Elshire et al., 2011). Samples were shipped 
in a single 96 well  plate with one “blank” well  for  negative control.  Sequencing was 
performed according to the standard protocol using the low frequency cutter enzyme 
“EcoT22I”, due to the large size of  Q. suber’s genome on a single Illumina HiSeq 2000 
fowcell.

3.3 Genomic data analyses
The raw GBS data received from “Genomic  Diversity  Facility”  was analysed using the 
program  ipyrad v0.5.15,  which  is  based  on  pyrad (Eaton,  2014),  using  the  provided 
“conda”  environment  -  MUSCLE v3.8.31  (Edgar,  2004) and  VSEARCH v2.0.3  (Rognes, 
Flouri, Nichols, Quince, & Mahé, 2016). Sequence assembly was performed for the GBS 
datatype,  with  a  clustering threshold of  0.95,  a  mindepth of  8  and maximum  barcode 
mismatch of 0. Each sampling site had to be represented by at least three individuals for 
a SNP to be called, except the locations of Kenitra and Taza, where only one individual 
was required, due to the lower representation of these sampling sites. Full parameters 
can be found in Appendix III Data 1. The demultiplexed “fastq” fles were submitted to 
NCBI’s Sequence Read Archive SRA) as “Bioproject” PRJNA413625.

Downstream analyses were automated using “GNU Make”.  This  fle,  containing every 
detail of every step of the analyses for easier reproducibility is presented as Appendix III 
Data 2. For improved reproducibility, a docker image with all the software, confguration 
fles,  parameters  and  the  Makefile,  ready  to  use  is  also  provided 
(https://hub.docker.com/r/stunts/q.suber_gbs_data_analyses/). The intent is not to allow 
the  analyses  process  to  be  treated  as  a  “black  box”,  but  rather  to  provide  a  full  
environment that can be reproduced, studied and modifed by the scientifc community.

Processed data from  ipyrad was then fltered using  VCFtools v0.1.14  (Danecek et al., 
2011) with the following criteria: each sample has to be represented in at least 55% of 
the  SNPs,  and  after  this  each  SNP  has  to  be  represented  in  at  least  80% of  the 
individuals.  Furthermore,  due to the relatively  small  sample size,  the minimum allele 
frequency (MAF) of each SNP has to be at least 0.05 for it to be retained.

In order to minimize the efects of linkage disequilibrium, analyses downstream from 
this point were performed using only the SNP closest to the centre of the sequence 
where  each  SNP  was  found.  This  sub  dataset  was  obtained  using  the  python  script 
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vcf_parser.py (https://github.com/CoBiG2/RAD_Tools/blob/master/vcf_parser.py)  as  of 
commit “0893296”.

All fle format conversions were performed using PGDSpider v2.1.0.0 (Lischer & Excofer, 
2012), except for the BayPass and SelEstim formats, where the scripts geste2baypass.py 
(https://github.com/CoBiG2/RAD_Tools/blob/master/geste2baypass.py)  and 
gest2selestim.sh (https://github.com/Telpidus/omics_tools) as of commit “b99636e” and 
“f74f66b”  respectively  were  used,  since  PGDSpider did  not  handle  either  of  these 
formats at the time of writing.

Descriptive  statistics,  such  as  Hardy-Weinberg  Equilibrium  (HWE),  FST and  FIS were 
calculated using Genepop v4.6 (Rousset, 2008). The same software was further used to 
perform Mantel tests to determine an eventual efect of Isolation by Distance (IBD) by 
correlating “'F/(1-F)'-like with common denominator” with “Ln(distance)” following on 
1,000,000 permutations.  This test was performed excluding individuals sampled from 
Bulgaria due to their introduced origin (Chapter 5, section 2).

3.4 Population Structure
Three distinct methods were used for clustering the individuals in order to understand 
the general pattern of individual or population grouping, namely, Principal Components 
Analysis (PCA), STRUCTURE (Pritchard, Stephens, & Donnelly, 2000) and MavericK (Verity & 
Nichols, 2016).

The  PCA  was  performed  with  snp_pca_static.R 
(https://github.com/CoBiG2/RAD_Tools/blob/master/snp_pca_static.R)  as  of  commit 
“bb2fc45”.

The  STRUCTURE method was performed with  STRUCTURE  v2.3.4,  (Pritchard et  al.,  2000) 
using the admixture model  with an inferred  alpha. To achieve the best results  using 
STRUCTURE, 20 replicates of each “K” were run at 200000 iterations (10% burnin), and the 
three best values of delta K were then run for a single replicate at 2000000 iterations 
(10% burnin). The same method was also performed as implemented under MavericK. In 
this case, two runs were performed: an initial single “pilot” run of 5000 iterations, with a 
burnin of  500  using  an  admixture  model,  a  free  alpha parameter  of  “1”  and 
“thermodynamic integration” (TI) turned of. Tuned alpha and alphaPropSD values were 
extracted  from  the  pilot  run  and  used  in  the  “tuned”  run  as  parameters  for  the 
admixture model. This run was comprised of fve runs of 10000 iterations (10% burnin),  
with TI turned on and set to 20 rungs of 10000 samples with 20% burnin. Both programs 
were wrapped under Structure_threader v 1.2.2 (Pina-Martins, Silva, Fino, & Paulo, 2016) 
for values of “K” between 1 and 8. The most suitable value of “K” was calculated using 
the  evanno (Earl  &  vonHoldt,  2012) and TI  methods for  and  STRUCTURE and  MavericK 
respectively. Full parameter fles are available as Appendix III Data 2.
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In order to obtain an unbiased population structure, the same methodology was used on 
two more datasets derived from the original data. On one, only SNPs considered outliers 
or that were associated with environmental variables were used (“non-neutral” dataset), 
and on the other one, these markers were removed (“neutral” dataset).

3.5 Outlier detection and environmental associations
Outlier detection was performed using two programs:  SelEstim v1.1.4  (Vitalis, Gautier, 
Dawson, & Beaumont, 2014) (50 pilot runs of length 1000 followed by a main run of 
length 10⁶, with a burnin of 1000, a thinning interval of 20, and a detection threshold of 
0.01) and BayeScan v2.1 (Foll & Gaggiotti, 2008) (20 pilot runs of length 5000 followed by 
a  main run of  500000 iterations,  a  burnin  of 50000,  a  thinning interval  of  10,  and a 
detection threshold of 0.05)  (full  commands and parameters available in Appendix III 
Data 2), since these methods show the lowest rate of false positives  (Narum & Hess, 
2011;  Vitalis  et  al.,  2014).  Only  SNPs  indicated  as  outliers  by  both  programs  were 
considered outliers for the purpose of this work. This was done to reduce the chance of 
false positives, which is a known issue in this type of analyses (Gautier, 2015; Vitalis et al., 
2014).

The software BayPass v2.1 (Gautier, 2015) wrapped under the script Baypass_workfow.R 
(https://github.com/StuntsPT/pyRona/blob/master/Baypass_workfow.R)  as  of  commit 
“5b406fb” was used to assess associations of SNPs to environmental variables using the 
“AUX” model (20 pilot runs of length 1000, followed by a main run of length 500000 with 
a burnin of 5000 and a thinning interval of 25). Any association with a Bayes Factor (BF)  
above 15 was considered signifcant.  Similar  to what was done for  the Mantel  tests, 
association analyses were performed excluding individuals from Bulgaria sampling site.

Sequences containing outlier loci or SNPs associated to an environmental variable were 
queried against the genome of  Q. lobata (Sork et al., 2016) v1.0 using BLAST v2.2.28+ 
(Altschul et al., 1997) with an e-value threshold of 0.00001.

3.6 Risk of non-adaptedness
The software pyRona was developed in this work as the frst public implementation of 
the method described in (Rellstab et al., 2016) called “Risk of non-adaptedness” (RONA). 
This  method  provides  a  way  to  represent  the  theoretical  average  change  in  allele 
frequency  at  loci  associated  with  environmental  variables  required  for  any  given 
population to cope with changes in that variable. The program source code is hosted on 
github,  under  a  GPLv3  license,  and  can  be  downloaded  free  of  charge  at 
https://github.com/StuntsPT/pyRona.

In short, for every signifcant association between a SNP and an environmental variable,  
the  RONA  method  plots  each  location’s  individuals’  allele  frequencies  (corrected  by 
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Baypass to  eliminate any possible  efects  of  population structure)  vs.  the respective 
environmental variable. This is done for both the current value and the future prediction. 
A  correlation  between  allele  frequencies  and  the  current  variable  values  is  then 
calculated and the corresponding best  ft  line is  inferred.  The distance between the 
ftted line and the two coordinates is then compared per location and its normalized 
diference is considered the RONA value for each association and location (which can 
vary between 0 and 1). In theory, the higher the diference in conditions between the 
current  values  and  the  prediction,  the  more  Q.  suber should  have  to  shift  its  allele 
frequencies to survive in the location under the new conditions.

Two alternative climate prediction models were used to calculate a RONA value for each 
location, a low emission scenario (RPC26) and a high emission scenario (RPC85) in order 
to account for uncertainties in the models’ assumptions.

The software version 0.1.3 was used and any associations fagged by Baypass with a BF 
above 15 were considered relevant and included in the RONA analysis. Results for the 
three most frequent non-geospatial environmental variables associated with most SNPs, 
were selected as the most interesting for determining generic RONA values.

4 Results
Genotyping by sequencing (Elshire et al., 2011), a technique based on restriction enzyme 
genomic  complexity  reduction  followed  by  short-read  sequencing,  was  employed  to 
discover  SNP  markers  from  a  total  of  95  Q.  suber individuals  sampled  from  17 
geographical locations (Table 6.1).

A total of 225,214,094 reads (100 bp) generated by the GBS assay was processed by 
ipyrad (Eaton,  2014) computational  pipeline.  The  frst  step  of  the  analysis  process 
consisted in the assembly of raw reads into 7,456 loci, containing 12,330 SNPs. Twelve Q. 
suber samples  were  discarded  due  to  low  sequence representation,  resulting  in  the 
retention  of  83 individuals.  After  fltering  according to  the  criteria  presented in  3.3, 
2,547 SNPs remained, which were used for all further analyses. The fltering process also 
further removed two samples due to too much missing data (>55%), and therefore, of 
the 83 remaining samples, only 81 were used in the analyses (Table 6.2).

The calculated FIS values for each sampling site are available in  Table 6.2. These range 
from  -0.0234 (Landes) to 0.0987 (Puglia) with an average value of 0.0531. Pairwise FST 

values are available in  Figure 6.2 and Appendix III  Table 4.  These range from 0.0038 
between  Sintra and  Monchique to  0.1225  between  Kenitra and  Var  (average  FST of 
0.0553).
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Table 6.2: Number of individuals used in analysis, FIS values, and Hardy-Weinberg Equilibrium 
(HWE) p-values for each sampling site.

Sample site
Number of 

individuals used in 
analysis

FIS
HWE (Het. Def. P-

value)
HWE (Het. Exc. P-

value)

Algeria 4 0.09 0 1

Bulgaria 4 0.01 0.26 1

Catalonia 5 0.03 0 1

Corsica 6 0.1 0 1

Haza de Lino 5 0.04 0 1

Kenitra 3 0.06 0 1

Landes 4 -0.02 0.94 0.57

Monchique 5 0.03 0 1

Puglia 6 0.1 0 1

Sardinia 6 0.07 0 1

Sicilia 3 0.09 0 1

Sintra 3 0.09 0 1

Taza 4 0.09 0 1

Toledo 5 0.02 0.02 1

Tunisia 6 0.05 0 1

Tuscany 6 0.06 0 1

Var 6 0.01 0.02 1

Total: 81 - 15 0

Hardy-Weinberg Equilibrium tests revealed that a heterozygote defcit exists in most 
sampling sites (Table 6.2), in fact, only  Bulgaria and  Landes sampling sites seem not to 
have an excess of homozygote individuals. When looking at HWE results per marker, of 
the 2,547 SNPs, only  109 reveal a heterozygote defcit, whereas 23 reveal a defcit of 
homozygotes. Performing the same test on all individuals as a single large population 
also  revealed  a  defcit  of  heterozygotes.  The  performed  Mantel  test  revealed  no 
evidence of IBD between the Q. suber samples.

4.1 Population structure
In order to perform clustering analyses,  it  is  important to estimate the value of “K”, 
which  represents  how  many  demes the  data  can  be  clustered  into.  The  software 
MavericK is especially interesting for cluster estimation due to its innovative method for 
estimating  “K”,  called  “Thermodynamic  Integration”  (TI),  which  has  shown  superior 
performance in this task relative to other methods (Verity & Nichols, 2016). In this case, 
the “TI” method determined the best “K” value to be “1” on both the full dataset and the 
“neutral” dataset and “2” in the “non-neutral” dataset (Appendix III Figure 1). The classic 
method for the STRUCTURE software, the evanno method revealed that K=2 had the best 
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ΔK, followed by K=3 and K=4 on all datasets. It is, however, important to note that the 
evanno method is not able to evaluate the ΔK value for K=1.

Figure 6.2: Pairwise FST plot between sampling sites. Darker blue represents a higher pairwise FST value, 
and lighter blue represents a lower value.

Q-matrix plots provide the relatedness of each genotype to each considered deme (as 
many demes are represented as the value of “K”). The Q-matrix plot of MavericK‘s results 
produced  using  all  loci  (Figure  6.3  A  )  can  be  interpreted  as  a  rough  split  between 
Western individuals (from locations Sintra, Monchique, Kenitra, Toledo, Landes, Taza, Haza 
de lino and Catalonia), which are mostly assigned to cluster “1” and Eastern ones (from 
locations Var, Algeria, Sardinia, Corsica, Tunisia, Tuscany, Sicilia, Puglia and Bulgaria), which 
are mostly assigned to cluster “2”.  Individuals from  Bulgaria are a notable exception, 
since  individual  genotypes  are  mostly  assigned  to  cluster  “1”  similar  to  those  of 
individuals from Western locations (due to the species’ introduced origin  (Varela, 2000)). 
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This West – East split is, however, not completely clear, as individuals’ genomes are never 
completely attributed to a single cluster. In fact, most individuals have a considerable 
part of their genome attributed to both cluster “1” and “2”. Furthermore,  individuals 
from some eastern locations have their genomes mostly attributed to cluster ”1” (Var 21, 
Corsica  3,  Corsica  11,  Corsica  14 and  Puglia  5),  and  individuals  from  Tunisia are  split 
between both clusters on a close to 50-50 proportion.

The Q-plot obtained using the “neutral” loci subset (Figure 6.3  B  ) is nearly identical to the 
one with all the loci, and can be interpreted in the same way.

The Q-plot produced using only the 13.4% “non-neutral” loci (Figure 6.3  C  ), however does 
bear a diferent clustering pattern from the previous ones. In this case, the East – West  
split  is  more evident, as the individual genomes’ attribution to each cluster is not as 
evenly split, but rather a much more pronounced attribution to either cluster.

Figure 6.3: MavericK clustering plots for K=2. Sampling sites are presented from West to East. “A” is the 
Q-value plot for the dataset with all loci, “B” is for the dataset with only “neutral” loci, and “C” if for the 
dataset with only “non-neutral” loci.

The Q-plot obtained from  STRUCTURE (Appendix III Figure 2) reveals a generally similar 
pattern to that of MavericK on all datasets.

The  PCA  clustering  method  (largest  eigenvector  values  of  0.0431  and  0.0241)  is 
essentially  concordant  with  the  previous  methods,  revealing  two  loosely  defned 
groupings (Appendix III  Figure 3).  The frst group containing individuals from  Algeria, 
Corsica, Puglia, Sardinia, Sicilia, Tuscany, Tunisia and Var and the second group containing 
individuals from  Bulgaria,  Catalonia,  Corsica,  Haza de Lino,  Kenitra,  Landes,  Monchique, 
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Puglia,  Sintra,  Taza,  Toledo and  Var.  The  groups  are  loosely  defned,  because  they 
somewhat resemble an East – West split, but individuals from Corsica, Puglia and Var are 
present in both groups. Just as in the Q-plots, Bulgarian individuals group with Western 
ones,  despite  existing  on  the  edge  of  the  species’  Eastern  range.  Finally,  a  less 
pronounced sub-grouping is discernible: one comprising three individuals from Corsica;  a 
second comprising all Landes individuals, plus three individuals from Bulgaria; and a third 
sub-group consisting of two individuals from Puglia and three from Var .

4.2 Outlier detection and environmental association
The  software  BayeScan and  SelEstim detected  32  and  48 outlier  SNPs  respectively 
(Appendix III Table 5).  The 31 markers common to both methods were considered as 
being putatively under the efect of natural selection.

Ten of the 31 sequences were matched to Q. lobata genome scafolds. Of these, seven 
were not annotated, and four could be matched to an annotated region (Table 6.3).

BayPass detected  374  associations  between  329  SNPs  and  14  of  the  16  tested 
environmental variables (no associations were found with neither “Temperature Annual 
Range” nor “Precipitation Seasonality”). These associations can be found in Appendix III  
Table 6. Despite this relatively high number of associations, it is important to note that 
72 of these associations were between a SNP and a geospatial variable – 9 associations 
with  “Latitude”,  55  with  “Longitude”  and  8  with  “Altitude”.  Of  all  environmental 
variables, the one with most markers associated is “Precipitation of Driest Month” with 
79 associations, followed by “Mean Temperature of Driest Quarter” with 51 associations, 
and “Temperature Seasonality” with 33 associations.

Sequences containing 144 of the 329 markers associated with environmental variables 
were  matched  to  entries  in  the  Q.  lobata genome,  however,  of  these  only  47  were 
annotated (Table 6.4).

Since 19 SNP markers are simultaneously associated with an environmental variable and 
considered outliers, the union of these two SNP sets, resulted in a sub-dataset of 341 
SNP markers deemed “non-neutral”. The remaining 2206 SNPs were grouped in another 
sub-dataset, deemed “neutral”.
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Table 6.3: Summary of best BLAST hit results for loci with SNPs considered outliers against the genome of Q. lobata.

SNP name Scafold name
Seq. 

length
evalue Identity %

Match 
length

Scafold 
start

Scafold 
end

Conserved protein 
domain

Description (Similar to) GO term

SNP 37 scafold3209 51 8.2E-13 49 53 56022 56074
InterPro:IPR015590, 
Pfam:PF00171

Aldehyde dehydrogenase family 
7 member A1 (Malus domestica)

GO:0008152, 
GO:0016491, 
GO:0055114

SNP 490 scafold1024 65 2.1E-20 60 63 161458 161396
InterPro:IPR018108, 
Pfam:PF00153

At3g20240: Probable 
mitochondrial adenine 
nucleotide transporter BTL1 
(Arabidopsis thaliana)

SNP 497 scafold8324 52 1.1E-16 49 51 23136 23086
InterPro:IPR000916, 
Pfam:PF00407

NCS2: S-norcoclaurine synthase 2 
(Papaver somniferum)

GO:0006952, 
GO:0009607

SNP 1896 scafold1118 103 5E-44 100 103 250562 250664

InterPro:IPR002100, 
InterPro:IPR002487, 
Pfam:PF00319, 
Pfam:PF01486

AGL104: Agamous-like MADS-box 
protein AGL104 (Arabidopsis 
thaliana)

GO:0003677, 
GO:0003700, 
GO:0005634, 
GO:0006355, 
GO:0046983
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Table 6.4: Summary of BLAST hits for loci with SNPs associated to one or more environmental variables. 
“MTDQ” and “MTWQ” stand for “Mean Temperature of Driest Quarter” and “Mean Temperature of 
Wettest Quarter” respectively.

SNP 
name

Note (Similar to) Associations

SNP 37 Aldehyde dehydrogenase family 7 member A1 Longitude

SNP 70 PAT23: Probable protein S-acyltransferase 23 Longitude

SNP 76 UGT74E2: UDP-glycosyltransferase 74E2 MTWQ

SNP 346 KINESIN-13A: Kinesin-13A Longitude

SNP 442 tea1: Tip elongation aberrant protein 1 MTDQ

SNP 490 At3g20240: Probable mtDNA adenine nucleotide transporter BTL1 Precip. of Driest Month

SNP 497 NCS2: S-norcoclaurine synthase 2 MTDQ

SNP 513
LTA3: Dihydrolipoyllysine-residue acetyltransferase component 1 
of pyruvate dehydrogenase complex mtDNA

Longitude

SNP 545 AVT1: Vacuolar amino acid transporter 1 Precip. of Driest Month

SNP 618 TCTP: Translationally-controlled tumor protein homolog MTDQ

SNP 626 At4g13010: Putative quinone-oxidoreductase homolog cpDNA Isothermality

SNP 638 FAAH: Fatty acid amide hydrolase Annual Mean Temp. MTDQ

SNP 690 At1g22950: Uncharacterized PKHD-type hydroxylase At1g22950 Precip. of Driest Month

SNP 892 ARGF: Ornithine carbamoyltransferase cpDNA MTDQ

SNP 896 PIR: Protein PIR Isothermality

SNP 910 FOLD1: Bifunctional protein FolD mtDNA MTDQ

SNP 975 LPP2: Lipid phosphate phosphatase 2 Annual Mean Temp. MTWQ

SNP 985 NUDT8: Nudix hydrolase 8 Longitude

SNP 1267 RABH1B: Ras-related protein RABH1b MTDQ

SNP 1279 NPF4.6: Protein NRT1/ PTR FAMILY 4.6 Precip. of Wettest Month

SNP 1317 FH20: Formin-like protein 20 Precip. of Driest Month

SNP 1381 ATG18F: Autophagy-related protein 18f Min Temp. of Coldest Month

SNP 1391 BETAC-AD: Beta-adaptin-like protein C MTDQ

SNP 1515 C7-dimethyl-8-ribityllumazine synthase cpDNA
Mean Temp. of Warmest 
Quarter

SNP 1568 yipf6: Protein YIPF6 homolog Latitude

SNP 1621 At5g10080: Aspartic proteinase-like protein 1 Min Temp. of Coldest Month

SNP 1645 ERDJ3A: DnaJ protein ERDJ3A Latitude

SNP 1663 PIGS: GPI transamidase component PIG-S Altitude Annual Mean Temp.

SNP 1680 66 kDa stress protein Isothermality

SNP 1733 SBT5.4: Subtilisin-like protease SBT5.4 Precip. of Driest Month

SNP 1742 MCM8: Probable DNA helicase MCM8 MTDQ

SNP 1748 ATOBGM: Probable GTP-binding protein OBGM mtDNA Precip. of Driest Month

SNP 1774 LDL2: Lysine-specifc histone demethylase 1 homolog 2 Isothermality

SNP 1779 VIT_19s0014g04930: MTWQ

SNP 1922 Stearoyl-[acyl-carrier-protein] 9-desaturase cpDNA Isothermality

SNP 1959 Tbc1d15: TBC1 domain family member 15 Annual Precip.

SNP 1982 ALDH3F1: Aldehyde dehydrogenase family 3 member F1 Longitude

SNP 2068 CAJ1: Protein CAJ1 Mean Diurnal Range

SNP 2213 PAT04: Probable protein S-acyltransferase 4 Mean Diurnal Range

SNP 2253 APK1B: Protein kinase APK1B cpDNA Temp. Seasonality

SNP 2272 UPL4: E3 ubiquitin-protein ligase UPL4 MTDQ

SNP 2282 Os04g0338000: Probable aldo-keto reductase 2 Precip. of Driest Month

SNP 2361 CRS1: cpDNA group IIA intron splicing facilitator CRS cpDNA Precip. of Driest Month

SNP 2413
At1g11300: G-type lectin S-receptor-like serine/threonine-protein 
kinase At1g11300

Longitude

SNP 2525 XYL1: Alpha-xylosidase 1 Isothermality

SNP 2539 TIG: Trigger factor-like protein TIG cpDNA Temp. Seasonality Annual Precip.

SNP 2540 At1g54610: Probable serine/threonine-protein kinase At1g54610 MTDQ
Precip. of Driest 
Month
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4.3 Risk of non-adaptedness (RONA)
A summary of the RONA analyses for both a low emission scenario (RPC26) and a high 
emission scenario (RPC85) predictions can be found in Figure 6.4 and Appendix III Table 
7. The most represented environmental variables are “Precipitation of Driest Month” (79 
SNPs,  mean  R²=0.1597),  “Mean  Temperature  of  Driest  Quarter”  (51 SNPs,  mean 
R²=0.1466) and “Temperature Seasonality”  (33 SNPs,  mean R²=0.1545).  The values of 
RONA  per  sampling  site  are  always  higher  for  RPC85  than  for  RPC26,  except  for 
“Precipitation of Driest Month” in  Tunisia  where RPC85 has a lower RONA than RPC26, 
and in Kenitra where they are the same (the “Precipitation of Driest Month” variable in 
Kenitra  is not predicted to change from current conditions (0 mm²), regardless of the 
model).

Under the RPC26 predictions, the highest RONA values for “Mean Temperature of Driest 
Quarter” is  Landes (0.1482),  for  “Temperature Seasonality”  is  Toledo (0.0690) and for 
“Precipitation  of  Driest  Month”  is Landes (0.0356).  Under  the  RPC85  predictions, 
Catalonia presents  the  highest  values  of  RONA  for  “Mean  Temperature  of  Driest 
Quarter” (0.3921), Landes presents the highest RONA for “Precipitation of Driest Month” 
(0.1157), whereas Toledo has the highest value (0.1478) for “Temperature Seasonality”. It 
is important to note that the high RONA values of  Catalonia are twice as high as the 
second highest RONA value on the RPC26 prediction and more than three times as high 
for RPC85.
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Figure 6.4: Risk of Non-Adaptedness plot for the three SNPs with most 
associations. Bars represent weighted means (by R² value) and lines 
represent standard error. (A) is the plot for RPC26 and (B) is for RPC85 
prediction models.
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5 Discussion
In  this  study,  Quercus  suber individuals  were  sampled  from  across  the  species’ 
distribution range to assess the population structure,  impact of local  adaptation and 
provide an estimate of the RONA value of each sampled location.

Due to the relatively large size of  Q. suber’s genome (Zoldos, Papes, Brown, Panaud, & 
Siljak-Yakovlev, 1998) a genome reduction technique, GBS, was used to discover SNPs for 
this species. There is no “standard” parameter set to call SNPs on GBS datasets, since 
this will ultimately depend on the organism being studied. The conservative approach 
used in this study was, however, preferred to alternatives that could result in more SNPs 
being discovered at the cost of lowering confdence in the called variants, eventually 
biasing analyses results. In fact, since no biological replicates were performed for this 
study, a conservative approach was always preferred as to minimize biases in the results.

After stringent quality fltering, a set of 2,547 SNPs was used in this study. This number 
is  lower than that  of  some studies with similar  data  (Berthouly-Salazar  et  al.,  2016), 
which obtained ~22k SNPs (albeit using a more frequent cutting enzyme), but still more 
than (De Kort et al., 2014), which obtained 1630 SNPs, very close to that of (Escudero, 
Eaton, Hahn, & Hipp, 2014) and (Pais, Whetten, & Xiang, 2017). Even though this number 
may seem small, in the universe of  Q. suber’s genome of ~750 Mbp, this is to date the 
largest number of molecular markers available for this species and represents a step 
forward to increase the power of population genetics studies.

5.1 Population genetic structure
Past  studies  (Magri  et  al.,  2007) have  characterized  Q.  suber as  a  highly  structured 
species,  with  an  evolutionary  history  shaped  by  large  efect  events,  such  as  plate 
tectonics. These were, however, mostly based on plastidial DNA data, which is known to 
not  always  provide  a  comprehensive  view  on  a  species’  evolutionary  history  (Kirk  & 
Freeland,  2011).  The  nuclear  markers  developed  for  this  work  provide  a  somewhat 
diferent perspective.

The obtained values of FIS are higher than those of unstructured European oaks when 
analysed  with  the  same  type  of  markers,  such  as  Quercus  robur or  Quercus  petraea 
(Guichoux et al., 2013), but are nonetheless relatively low in general, which is compatible 
with low levels of population structuring.

Only two sampling sites did not reveal signifcant deviations from HWE (Bulgaria and 
Landes)  regarding  heterozygote  defciency.  No  sampling  site  exhibited  heterozygote 
excess.  Although this pattern is  not usual,  few individual markers deviate from HWE 
(4.28% reveal excess heterozygotes and 0.90% defcit heterozygotes). This may be due 
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to the fact that each sampling site does not represent a real biological population, or to 
non random mating across the species distribution range.

Similar to what is observed with FIS, FST values are on average (0.0553) higher than on 
unstructured trees species (0.0125)  (Guichoux et al.,  2013), but lower than other well 
structured trees such as eucalypts (0.095) (Cappa et al., 2013). This data supports what 
the clustering analyses reveal:  an incomplete segregation in two clusters, as seen  on 
Figure 6.3. Although clustering analyses using all loci do not provide a clear structuring 
signal  (and  the  “TI”  method  clearly  favours  a  scenario  of  a  single  large  panmitic 
population),  the  produced  Q.  suber Q-plots  do  show  some  degree  of  segregation 
between Western and Eastern individuals.

A comparative Q-plot analysis  between “neutral”  and “non-neutral”,  however,  reveals 
the most contrasting diferences regarding Q. suber’s population structure.

In Figure 6.3  C  , where the Q-plot was produced using only loci putatively under selection, 
the division between Western and Eastern individuals is much clearer than in Figure 6.3  A   
and Figure 6.3  B  . The respective “TI” test also supports this segregation by indicating K=2 
as the most likely clustering pattern. Conversely, Figure 6.3  B  , which was drawn based on 
loci deemed “neutral”, a pattern very similar to the Q-plots of all loci emerges, which 
supports a scenario of an incomplete segregation between individuals from Eastern and 
Western locations. This evidence, combined with the relatively low pairwise FST and FIS 

values,  suggests  that  there  is  a  balance  between  local  adaptation  and  gene  fow. 
Whereas  the  former  is  responsible  for  maintaining  the  species’  standing  genetic 
variation and the latter for the species’s response to local environmental diferences.  
Intense gene fow would also explain the relatively low proportion of outlier SNPs, which 
may  be  counteracting  reactions  to  weak  selective  pressures.  At  the  same  time,  this 
balance  may  provide  the  species  a  relatively  large  genetic  variability  to  respond  to 
strong selection (De Kort et al., 2014; Kremer et al., 2012).

Data from this work do not seem to support the four glacial refugia hypothesis proposed 
in Magri et al., (2007). It could be argued that the mentioned refugia had in fact existed, 
but gene fow would have erased any evidence of their existence, which is thought to 
have occurred in other tree species (Eidesen et al., 2007), however it seems just as likely 
to assume a scenario where there were no refugia at all, and the cpDNA segregation is 
due to the diferent dispersal capacities of pollen and acorns (Sork, 1984).

Two hypotheses can thus be proposed to explain the observed genetic structure. (1) The 
observed genetic  structure can be explained by the balance between gene fow and 
local adaptation. In this scenario, these two processes are responsible for both creating 
and maintaining this level of divergence. This hypothesis seems to be fully supported by 
the SNP data. (2) The observed pattern can be explained by diferential hybridization of 
Q. suber with  Q. cerris in  the East  (Bagnoli  et  al.,  2016) and with  Q. ilex in  the West 
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(Burgarella et al., 2009). In this scenario, the balance between gene fow and adaptation 
is responsible for maintaining the current divergence levels, but not for their origin. The 
SNP data in not sufcient to corroborate this hypothesis,  and as such,  the issue will  
remain open for investigation.

5.2 Outlier detection and environmental association analyses
The method used to detect outlier loci fagged ~1.2% of the total SNPs, which is in line 
with what was found on other similar studies (Berdan, Mazzoni, Waurick, Roehr, & Mayer, 
2015; Chen et al., 2012). Of the 31 outlier markers found, only four had a match to an 
annotated  location  in  Q.  lobata’s  genome.  This  low  proportion  is  likely  due  to  a 
combination of factors, such as the distance between  Q. suber and  Q. lobata,  and the 
incomplete annotation of  Q. lobata’s  genome.  On the other  hand,  it  emphasizes the 
need for more genomic resources in this area, which can potentially provide important 
functional information of these SNPs in  Q. suber’s  genome, that will  at least for now 
remain unknown. Of particular note is SNP 493, whose sequence is a match to a region of 
the  Q.  lobata genome,  annotated  as  “Similar  to  NCS2:  S-norcoclaurine  synthase  2 
(Papaver somniferum)”, a protein family member usually expressed upon infections and 
stressful  conditions  (van  Loon,  Rep,  &  Pieterse,  2006).  This  can  be  a  particularly 
interesting marker for downstream studies regarding adaptation to infection response.

The environmental association analyses (EAA) served two purposes in this work. On one 
hand, the reported associations work as a proxy for detecting local adaptation, and on 
the other hand, allow the attribution of a RONA score to each sampling site. Q. suber is 
known to be very sensitive to precipitation and temperature conditions (Vessella et al., 
2017), and as such, it was expected beforehand that some of the markers obtained in 
this study were to be associated with some of these conditions (Rellstab et al., 2016). In 
order to understand how important the found associations are for the local adaptation 
process, it is necessary to understand the putative function of the genomic region where 
each  SNP  was  found.  Querying  the  available  sequences  against  Q.  lobata’s  genome 
annotations, has provided insights regarding some of the markers’ sequences putative 
function.  The  proportion  of  sequences  that  were  a  match  to  an  annotated  region, 
however, is rather small – only ~14.3% of the queried sequences were matched to such 
regions. Reasons for the low ratio of annotations are likely the same as for the outlier  
loci.

Of  the  47  SNPs  associated  with  an  environmental  variable  that  returned  hits  to 
annotated  regions  of  Q.  lobata’s  genome,  four  are  likely  located  in  a  mitochondrial 
region,  seven  in  chloroplastidial  regions,  and  36  in  nuclear  regions.  While  all  these 
associations are potentially interesting to explore,  doing so falls  outside the grander 
scope of this work. Nevertheless, 6 SNPs are particularly interesting to take a closer look 
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at, mostly due to how much information is available regarding the identifed genomic 
region function.

In addition to being identifed as an outlier, SNP 497 is also associated with the variable 
“Mean Temperature of Driest Quarter”. It is interesting to assess that a marker located in 
a genetic region known to be expressed during stressful conditions is associated with an 
environmental variable that cork oak is known to be sensitive to. This makes SNP 497 a 
very interesting candidate for downstream studies.

SNP  638  is  located  in  a  sequence  annotated  as  “Similar  to  FAAH:  Fatty  acid  amide 
hydrolase”. This is a family of proteins that are known to play a role in the transport of  
fxed nitrogen from bacteroids to plant cells in symbiotic nitrogen metabolism (Shin et 
al., 2002). Q. suber is known to have symbiotic associations with mycorrhizae (Sebastiana 
et al., 2014) and the association of this marker with both “Annual Mean Temperature” 
and  “Mean  Temperature  of  Driest  Quarter”  can  lead  to  important  fndings  on 
downstream studies.

SNP  1621  and  SNP  1733  are  located  in  sequences  that  matched  regions  whose 
annotation indicates they may be involved in pathogen defence signalling  (Figueiredo, 
Monteiro, & Sebastiana, 2014; Xia et al., 2004). The matched annotations are “Similar to 
At5g10080:  Aspartic  proteinase-like  protein  1”  and  “Similar  to  SBT5.4:  Subtilisin-like 
protease  SBT5.4”  respectively.  SNP  1621  is  associated  with  the  variable  “Min 
Temperature of Coldest Month”, and SNP 1733 is associated with “Precipitation of driest 
month”.  Like  the  above,  these  markers  can  be  potentially  very  interesting  for 
downstream analyses regarding pathogen response.

SNP  1645  is  located  in  a  sequence  that  matched  a  region  annotated  as  “Similar  to 
ERDJ3A:  DnaJ  protein  ERDJ3A”.  This  protein  is  known  to  play  a  role  in  pollen  tube 
formation during heat stress (Yang et al., 2009). In this case, the maker is associated with 
“Latitude”, which might be working as a proxy for some temperature related variable 
that was not used in this study.

The  sequence  where  SNP  2272  is  found  can  be  matched  to  a  region  annotated  as 
“Similar to UPL4: E3 ubiquitin-protein ligase UPL4”. This family of proteins is known to be 
involved  in  leaf  senescence  processes  (Miao  &  Zentgraf,  2010).  Its  association  with 
“Mean  Temperature  of  Driest  Quarter”  makes  SNP  2272  a  good  candidate  for 
downstream research regarding Q. suber’s leaf development.

5.3 Risk of non-adaptedness
Although the RONA method is a greatly simplifed model (its limitations are described in 
Rellstab et al. (2016)), it provides an initial estimate of how afected Q. suber is likely to 
be by environmental changes (at least as far as the tested variables are concerned). The 
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implementation developed for this work, named pyRONA sufers from most of the same 
limitations as the original application, even though it is based on an arguably superior 
association detection method (Gautier, 2015), but introduces a correction to the average 
values  based  on  the  R²  of  each  marker  association  (by  using  weighted  means).  The 
automation brought by this new implementation, easily allows two diferent emission 
scenarios (RPC26 and RPC85) to be tested and compared.

With  the exception  of  Catalonia,  which  seems to  have an exceptionally  high highest 
RONA value under both prediction models,  the other locations present relatively low 
RONA  values  for  the  tested  variables.  The  variable  “Mean  Temperature  of  Driest 
Quarter” appears to be the tested variable that requires the greatest changes in allele 
frequencies to ensure adaptation of the species to the local projected changes, although 
“Temperature  Seasonality”  is  not  far  behind.  These  RONA  values,  are  nevertheless 
smaller  than those presented in  Rellstab et  al.  (2016).  This  might  be due to  various 
factors, such as the diferent variables tested, the geographic scope of the study, the 
species’ respective tolerance to environmental ranges, the diferences between species’ 
standing genetic variation, the association detection method, or likely a combination of 
several of these factors.

Notwithstanding, the obtained results seem to indicate that  Q. suber is generally well 
genetically equipped to handle climatic change in most of its current distribution (with 
the notable exception of  Catalonia). Despite cork oak’s long generation time, it seems 
reasonable that during the considered time frame current populations are able to shift 
their allele frequencies (2% to 10% on average, depending on the predictive model) due 
to the species relatively high standing genetic variation, which according to (Kremer et 
al.,  2012) should really work in the species’  favor in the presence of strong selective 
pressures.

This study, however, is limited to the considered environmental variables. Other factors 
that were not included in this work may have a larger efect on Q. suber’s RONA.

6 Conclusions
In  this  study,  new  nuclear  markers  were  developed  to  shed  new  light  on  Q.  suber’s 
evolutionary history, which is important to understand, in order to attempt to predict 
the species response to future environmental pressures (Kremer et al., 2014).

Despite the relatively large geographic distances involved, the nuclear markers used in 
this  work  indicate  lesser  genetic  structuring  than  previously  thought  from  cpDNA 
markers, that clearly segregated the species in several well defned demes (Magri et al., 
2007). The SNP data from this work can thus be used to propose two new hypotheses to 
replace the current  view of a  genetic  structure carved by population recessions  and 
expansions from glacial refugia. The observed genetic structure origin and maintenance 
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can  be  explained  either  by  balance  between  gene  fow  and  local  adaptation,  or 
alternatively, diferential hybridization of Q. suber with Q. ilex in the West and Q. cerris in 
the East is responsible for the geographic diferences, which are then maintained by the 
mentioned balance between gene fow and local  adaptation (albeit  more research is 
required to confrm this second hypothesis).

Despite the genetic structure homogeneity, outlier and association analyses hint at the 
existence of local adaptation. The RONA analyses suggest that this balance, between 
local adaptation and gene fow, may be key in the Q. suber’s response to climatic change. 
It is also worth considering that despite the species likely capability to shift its allele 
frequencies for survival in the short term, the efects of such changes in the long term 
can be quite unpredictable (Feder, Egan, & Nosil, 2012; Lenormand, 2002), and only very 
recently have they began being understood (Aguilée, Raoul, Rousset, & Ronce, 2016).

This study starts by providing a new perspective into the population genetics of Q. suber, 
and, based on this data, suggests an initial conjecture on the species’ future, despite the 
used  technique’s  limitations.  Even  though  studies  regarding  Q.  suber’s  response  to 
climatic change are not new (Correia et al., 2017; Vessella et al., 2017), this is the frst 
work where this response is investigated from an adaptive perspective. One aspect that 
could  thoroughly  improve  its  reliability  would  be  the  availability  of  more  genomic 
resources,  especially  a  thoroughly  annotated  genome  of  the  species.  Such  resource 
would  allow  the  identifcation  of  more  markers,  and  assess  the  reliability  of  more 
associations, which would also allow a more refned method for assessing which loci are 
more likely to be under the efects of selection. Fortunately, such eforts are underway 
at the time of writing, and further work in this area should beneft from it in the near  
future.
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1 General overview
According to the most current scentifc literature, global climatic change will  cause a 
general  increase in temperature which may vary from 1 to 4ºC in the next 70 years,  
depending on the prediction model and location (IPCC, 2014; Oreskes, 2004; Walther et 
al.,  2002).  These  changes,  which  are  also  bound  to  afect  precipitation  patterns 
(Beniston et al., 2007), are likely to have a negative impact on current biodiversity (IPCC, 
2014). Mediterranean forest tree species are expected to be more afected than those 
of  temperate  and  boreal  areas,  due  to  their  sensitivity  to  precipitation  seasonality 
(Briceño-Elizondo,  Garcia-Gonzalo,  Peltola,  Matala,  &  Kellomäki,  2006;  Loustau  et  al., 
2005; Saxe, Cannell, Johnsen, Ryan, & Vourlitis, 2002).

The scientifc questions addressed in this thesis arise from the need to understand how 
species may respond to global climatic change. In particular, it focuses on the need to 
better understand the potential response of Quercus suber to such rapid alterations. For 
that, it was necessary to gain a better understanding on the evolutionary history of this  
Mediterranean species, as well as identifying the efects of natural selection across the 
species’ genome (Kremer, Potts, & Delzon, 2014).

This  large  scale  assessment  was  possible  due  to  the  “mainstreaming”  of  Second 
generation Sequencing technologies,  often called  Next Generation Sequencing,  or NGS. 
This  technology  has  changed  the  way  biological  problems  are  thought  of  and 
approached (Kumar, Banks, & Cloutier, 2012). Current low cost per sequenced base pair 
of these methods allows for non-model organisms like  Q. suber to be sequenced in a 
larger  scope  than  ever  (Schuster,  2008).  Even  for  organisms  whose  whole  genome 
sequencing  remains  a  challenge,  alternative  approaches  like  Reduced  Representation 
Libraries,  in  which  Genotyping  by  Sequencing  (GBS)  is  included,  allow  the  scientifc 
community to study their genome at a whole new level  (Van Tassell et al., 2008), for a 
fraction of previous costs.

New types of data require new methodologies, and in the case of NGS, researchers now 
have to deal  both with new data types,  and also with unprecedented amounts  of  it 
(Markowetz, 2017). Software that was used without issue on typical Sanger sequencing 
data, or microsatellite loci did not scale to what NGS demands. Workfows and protocols 
that were considered good practice for “small” data became either impractical, or could 
not even be applied to the new reality.

Bioinformatics, which was already a rising discipline, took centre stage in dealing with 
the terabytes of FASTQ and similar fles generated by the new sequencing machines 
(Markowetz, 2017). Bioinformatics software now had to scale, perform and run stable on 
datasets that were unimaginable just a few years prior. This led to an increase in the 
quality  patterns  researchers  now  hold  bioinformatics  software  (and  the  respective 

106



 Chapter 7

documentation)  to  (Leprevost,  Barbosa,  Francisco,  Perez-Riverol,  &  Carvalho,  2014). 
Automation  became  a  necessity  and  reproducibility  became  a  particularly  important 
issue.

This is the context under which the works for this thesis were performed, and it is under 
these conditions that it was set out to make a contribution for science.

2 Field contributions
The works on this thesis were performed in pursue of three main objectives. In order to 
optimize the accomplishment of the two evolutionary biology objectives, the technical,  
bioinformatics focused objective had to be fulflled frst.

2.1 Technical issues
In place of writing scripts and programs tailored specifcally for each specifc analysis, t 
generic,  reusable software,  that  can be used by the larger  scientifc community  was 
developed and made available.

Software in scientifc research is now a crucial part of the scientifc method, and it can be 
argued that anything less than the full  release of source code is indefensible for any 
scientifc results (Ince, Hatton, & Graham-Cumming, 2012). The programs conceived and 
built for this thesis are released under open source licenses with the code being made 
available, which is crucial from a reproducibility standpoint. These programs have been 
built  with  the  specifc  purpose  of  improving  the  automation,  performance  and 
reproducibility  value  of  workfows,  and  respect  the  guidelines  recommended  in 
Leprevost et al., 2014.

2.1.1 4Pipe4

Chapter 2 describes the  4Pipe4 program which was developed for this thesis. It was a 
fundamental piece in mining the SNP markers from a 454 dataset with no reference 
sequence nor strain information available. It outperformed every other method available 
in the false positives metric at the time of publishing. It was used to generate the EST 
data that Chapter 5 builds upon.

The 454 technology has been surpassed by other technologies, until fnally having been 
declared “end of life” by Roche in 2016. 4Pipe4, however, still stands as an example for 
automation and reproducibility  –  a  considerable  improvement over  the  too frequent 
alternative approach of using “custom scripts”  (Barbazuk, Emrich, Chen, Li, & Schnable, 
2007; Tollenaere et al., 2012).
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2.1.2 NCBI Mass Sequence Downloader

Chapter 3 describes a program that is used to download large datasets from the NCBI 
databases. It can run either in the command line (CLI) or with the use of a Graphical User  
Interface (GUI), and is a far more reliable way to obtain large sequences from NCBI in  
large scale than performing downloads of several gigabytes from a web browser. It was 
especially useful during the exploratory phase of Chapter 5 and 6, where the size of the  
sequence databases to query was particularly important.

NCBI_Mass_sequence_downloader,  however,  is  catered  to  a  niche  audience.  It  is, 
nonetheless, a good example of software that improves automation and, consequently,  
the research’s reproducibility value (Gentleman et al., 2004) as well as the performance 
of downstream analyses (due to dataset reduction).

2.1.3 Structure_threader

Chapter  4  regards  a  program  designed  to  automate  and  accelerate  the  runs  of 
population genetics clustering software. It was fundamental for this work, because it 
reduced human intervention in an involved and mistake prone process (thus reducing 
random error and increasing reproducibility value),  sped up the analysis  process by a 
factor of approximately 8x, and produced the Q-value plots that can be seen in Chapter 
5 and 6.

Structure_threader is putatively the greatest contribution of this thesis to the feld of 
population genetics/genomics. By running the analyses wrapped in  Structure_threader, 
any  user  will  instantly  fnd  improvements  in  terms  of  automation,  performance and 
reproducibility, when compared to the alternatives.  Structure_threader, however is not 
designed  for  the  absolute  novice.  It  requires  some  degree  of  familiarity  with  the 
wrapped programs, and minimal knowledge of how to use a CLI interface. In this respect,  
the program could be improved with the addition of an optional GUI.

2.1.4 Further automation

In order to improve the reproducibility value of Chapter 6, most of the analysis process 
has been automated. Every step of the analysis performed after the SNP calling stage 
has been performed in an automated manner recurring to a “Makefle”. This method 
ensures that the performed analyses are easy to repeat and that the entire procedure is 
logged.  Furthermore,  every change to the process is  recorded via  git version control 
system.  But  in  order  to  maximize  the  reproducibility  value  of  the  study,  a  docker 
container including all the software required to perform the analysis is also provided. 
This automated approach ensures that at least for the foreseeable future, the analyses 
performed  here  will  remain  completely  reproducible.  Although  the  container  and 
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“Makefle” are tuned for this specifc analysis,  they are built in  a way that is  fexible 
enough to allow them to be broadly used as a base for other, similar procedures.

2.2 Evolutionary biology questions
Evolutionary  biology  is  the  main  focus  of  this  thesis.  As  such,  some  of  the  most 
important “breakthroughs” of this thesis fall under this category. Below are some of the 
arguably most relevant ones.

2.2.1 New Q. suber evolutionary history hypotheses

In Chapter 5 and 6, the evolutionary history of cork oak was revisited, and approached 
from a  genomic  perspective,  which  revealed a  diferent  reality  from what had been 
known, based essentially on plastidial molecular markers. Whereas previous studies had 
classifed Q. suber as a species clearly split in four diferent lineages (Magri et al., 2007; 
Simeone et al., 2009), evidence from high density SNP data obtained and analysed in this 
thesis revealed a much lesser level of segregation (albeit inconclusively in Chapter 5).  
The data also suggest that gene fow in Q. suber is much more prevalent, at least from a 
nuclear genome standpoint, than what was previously considered.

In these two chapters, the role of local adaptation was assessed across most of Quercus 
suber‘s  distribution.  Association  analyses  revealed  several  SNP  markers  whose  allele 
frequencies  across  sampling  sites  suggest  that  they  are  either  under  the  efects  of 
natural selection or, at the very least, correlated with a certain environmental variable 
(functional  analyses  of  the  gene  where  these  markers  lie  frequently  suggested 
causation).  Likewise,  outlier  analyses  were  used  to  identify  loci  putatively  under 
selection. These loci were subsequently used to generate sub-datasets of “neutral” and 
“non-neutral” markers. Although data from Chapter 5 did not allow for any substantiated 
hypothesising regarding the species’ evolutionary history, combining information from 
selection detection analyses with population structure in Chapter 6 did. In this chapter,  
clustering  analyses  performed  exclusively  with  markers  putatively  under  selection 
hinted at a two cluster scenario, roughly segregating Eastern and Western individuals. 
This pattern is not evident when all loci are analysed together, in which case a single 
cluster is  indicated as the most likely scenario.  These results cannot be explained by 
previously proposed hypotheses, which ponted glacial refugia as the origin of the four 
Q. suber lineages (Magri et al., 2007). Therefore two new hypotheses were proposed in 
this chapter as explanations for the cork oak’s evolutionary history:

1. The observed genetic  structure can be explained by a balance between gene 
fow and local adaptation. In this scenario, these two processes are responsible 
for both generating and maintaining the observed level of divergence.
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2. The observed genetic structure can be explained by diferential hybridization of 
Q. suber with Q. cerris in the East and with Q. ilex in the West. In this scenario, the 
balance between gene fow and adaptation is  responsible for maintaining the 
current divergence levels, but not for their origin.

It  should  be  reinforced  that  hypothesis  1  is  fully  supported  by  the  SNP  data,  and 
although  the  data  does  not  reject  hypothesis  2,  further  research  regarding  the 
mentioned species’ introgression levels is required to confrm it.

2.2.2 New identifed markers

In  both  Chapter  5  and  6,  several  SNP  markers  were  associated  with  environmental 
variables.  These  markers  and  the  respective  fanking  regions  were  compared  to 
sequences  from publicly  available  resources  –  Genbank  (Sayers  et  al.,  2010) and the 
genome annotation of Quercus lobata (Sork et al., 2016). Although far from a complete 
assessment, this resulted in the creation of a small database of markers that are not only 
associated with  an environmental  variable,  but  whose putative molecular  function is 
known. This data can be used as a basis for future “case – control” studies in Q. suber.

2.2.3 Risk of Non-adaptedness

During the analysis of Genotyping by Sequencing (GBS) data (Chapter 6), it was possible to 
assess a  Risk of Non-Adaptedness (RONA) (Rellstab et al., 2016) value for each sampled 
site. Although this was not one of the main objectives of this thesis, it is likely one of its 
most  interesting  results,  despite  its  known  limitations.  These  RONA  results  are 
particularly interesting, not only because it is the frst time such metric is assessed for  
the  species,  as  it  is  also  the  frst  time  the  adaptation  potential  of  the  species  is  
considered from a genetic point of view. RONA analyses suggest that the species is likely 
genetically equipped to survive in most of its current distribution. Recent works have 
tried  to  answer  this  very  question,  but  from an  exclusively  ecological  point  of  view 
(Correia, Bugalho, Franco, & Palmeirim, 2017; Vessella, López-Tirado, Simeone, Schirone, 
& Hidalgo, 2017), with both providing diferent predictions (although not antagonistic) 
regarding  the  future  of  cork  oak,  none  of  them  incompatible  with  the  genetic 
perspective revealed in Chapter 6.

3 Future perspectives
Science  does  not  often  provide  defnitive  answers,  but  frequently  provides  further 
questions on the studied subject. The results of this thesis are no exception, but not only 
do they provide a way to answer a new set of questions, they also hint at an answer to 
those that were placed. Results presented in this thesis provide many avenues of future 
exploration regarding the questions it proposed to provide answers for.
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As is the case for most code ever written, improvements for the programs produced in 
the context of this  thesis  are always possible – this  is  software,  after all.  NCBI Mass 
Sequence Downloader can be given more options to simplify the querying of the NCBI 
databases, and more formats other than FASTA can be supported. This will, of course, 
depend on user interest.  Structure_threader can also in the future integrate with more 
clustering programs, and eventually be given a GUI for easier use by novice users. Most 
importantly,  the  use  of  these  programs  by  the  community  is  already  a  gain  for 
automation and reproducibility, since they are improvements on manual and often error,  
and consequently bias, prone procedures.

Regarding the automated analysis process: in this thesis, the choice was to use a version 
controlled “Makefle” and a docker container. In an ideal world, approaches such as this 
start being adopted in large scale by the scientifc community, as it visibly increases the 
reproducibility value of the analyses. But this process too, can be further improved – for  
instance,  the  generation  of  environmental  data  can  still  be  further  automated,  and 
although using “GNU Make” was a good choice, other, more recent “build systems” exist.

As for evolutionary biology perspectives – the species’ evolutionary history just became 
a controversial theme. Further exploration in this front could be performed via Whole 
Genome Sequencing (WGS), using a smaller sampling than what was used in the works 
presented here,  since what is  now known can help make a more informed sampling 
strategy. A reference genome of  Q. suber would be of paramount importance to make 
such an approach a successful project.

It would also be interesting to further understand how much local adaptation infuences 
Q. suber’s evolutionary history and current standing genetic variation. A study could be 
devised using the markers mined in  Chapters 5 and 6, applied in transects of natural 
populations,  case-control  studies,  or  even  provenance  trials  as  “candidate  genes”  in 
order  to  gain  further  insights  on  the  role  of  this  type  of  natural  selection  from  a 
functional point of view.

Regarding  the  RONA  values  of  cork  oak,  this  is  a  method  that  could  certainly  be 
improved upon. This could be done by expanding beyond the limits of linear regressions 
and correlations,  and by  attempting to  associate multiple  loci  of  “small  efect”  with 
environmental variables, instead of just looking for “large efect” markers as is currently 
implemented  in  the  method.  Furthermore,  the  genetic  perspective  presented  here, 
should be combined with the ecological approaches performed elsewhere to maximize 
forecast accuracy.

As an ending statement – this thesis shows some of what can be done when combining 
bioinformatics  with  evolutionary  biology,  a  combination  that  is  only  likely  to  grow 
tighter. Moving evolutionary biology from genes to whole genomes is certain to bring 
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new answers to many old (and new) questions, and the challenges that will be coupled 
with these advances, are bound to be, at least, just as interesting.
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Appendix I

1 Tables
Table 1: Software run times. “Speed up” value for single thread shows the run time in seconds.

STRUCTURE (Structure_threader) STRUCTURE (ParallelStructure)
Replica 1 Replica 1

Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P

1 02:41:45 04:23:35 04:25:47 03:02:44 1 02:41:45 04:23:35 04:25:47 03:02:44

2 01:21:51 02:11:21 02:13:16 01:31:53 2 01:22:27 02:38:56 02:14:36 01:45:06

4 00:41:14 01:06:01 01:07:45 00:48:20 4 00:43:06 01:37:33 01:08:39 00:52:08

6 00:39:18 00:48:02 00:51:29 N/A 6 00:41:59 01:21:55 00:54:29 N/A

8 00:36:41 00:33:38 00:36:13 N/A 8 00:39:40 00:44:41 00:38:37 N/A

10 N/A N/A 00:38:14 N/A 10 N/A N/A 00:41:33 N/A

12 N/A N/A 00:50:36 N/A 12 N/A N/A 00:53:42 N/A

14 N/A N/A 00:41:21 N/A 14 N/A N/A 00:55:52 N/A

16 N/A N/A 00:33:20 N/A 16 N/A N/A 00:37:41 N/A
Replica 2 Replica 2

Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P

1 02:40:30 04:23:15 04:27:33 03:01:27 1 02:40:30 04:23:15 04:27:33 03:01:27

2 01:21:52 02:11:33 02:13:01 01:31:59 2 01:22:38 02:38:02 02:14:45 01:47:35

4 00:41:42 01:06:12 01:07:36 00:49:01 4 00:42:42 01:33:42 01:08:41 00:54:32

6 00:39:07 00:47:58 00:51:15 N/A 6 00:41:14 01:19:23 00:54:42 N/A

8 00:36:43 00:32:58 00:37:48 N/A 8 00:39:42 00:43:51 00:39:11 N/A

10 N/A N/A 00:37:20 N/A 10 N/A N/A 00:43:28 N/A

12 N/A N/A 00:50:05 N/A 12 N/A N/A 00:54:36 N/A

14 N/A N/A 00:46:30 N/A 14 N/A N/A 00:56:18 N/A

16 N/A N/A 00:33:48 N/A 16 N/A N/A 00:37:56 N/A
Average Average

Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P

1 02:41:08 04:23:25 04:26:40 03:02:06 1 02:41:08 04:23:25 04:26:40 03:02:06

2 01:21:52 02:11:27 02:13:09 01:31:56 2 01:22:33 02:14:41 02:14:41 01:46:21

4 00:41:28 01:06:07 01:07:41 00:48:41 4 00:42:54 01:08:40 01:08:40 00:53:20

6 00:39:13 00:48:00 00:51:22 N/A 6 00:41:37 00:54:36 00:54:36 N/A

8 00:36:42 00:33:18 00:37:01 N/A 8 00:39:41 00:44:16 00:38:54 N/A

10 N/A N/A 00:37:47 N/A 10 N/A N/A 00:42:31 N/A

12 N/A N/A 00:50:21 N/A 12 N/A N/A 00:54:09 N/A

14 N/A N/A 00:43:56 N/A 14 N/A N/A 00:56:05 N/A

16 N/A N/A 00:33:34 N/A 16 N/A N/A 00:37:49 N/A
“Speed up” “Speed up”

Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P

1 9668 15805 16000 10926 1 9668 15805 16000 10926

2 1.97 2.00 2.00 1.98 2 1.95 1.96 1.98 1.71

4 3.89 3.98 3.94 3.74 4 3.76 3.84 3.88 3.41

6 4.11 5.49 5.19 N/A 6 3.87 4.82 4.88 N/A

8 4.39 7.91 7.20 N/A 8 4.06 5.95 6.86 N/A

10 N/A N/A 7.06 N/A 10 N/A N/A 6.27 N/A

12 N/A N/A 5.30 N/A 12 N/A N/A 4.92 N/A

14 N/A N/A 6.07 N/A 14 N/A N/A 4.75 N/A
16N/A N/A 7.94N/A 16N/A N/A 7.05N/A
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Table 1(cont.): Software run times. “Speed up” value for single thread shows the run time in seconds. 
STRUCTURE (StrAuto) fastStructure (Structure_threader)

Replica 1 Replica 1

Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P

1 02:41:45 04:23:35 04:25:47 03:02:44 1 00:55:11 01:20:13 01:40:29 00:46:06

2 01:23:17 02:12:14 02:14:18 01:39:20 2 00:28:08 00:43:39 00:52:09 00:23:47

4 00:41:56 01:06:09 01:08:30 00:48:49 4 00:12:41 00:24:36 00:28:01 00:13:45

6 00:42:01 00:51:12 00:53:59 N/A 6 00:12:43 00:15:17 00:17:51 N/A

8 00:37:11 00:35:39 00:37:53 N/A 8 00:13:43 00:13:36 00:15:32 N/A

10 N/A N/A 00:41:44 N/A 10 N/A N/A 00:15:42 N/A

12 N/A N/A 00:52:49 N/A 12 N/A N/A 00:21:42 N/A

14 N/A N/A 00:48:45 N/A 14 N/A N/A 00:24:39 N/A

16 N/A N/A 00:33:42 N/A 16 N/A N/A 00:18:31 N/A
Replica 2 Replica 2

Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P

1 02:40:30 04:23:15 04:27:33 03:01:27 1 00:49:29 01:28:15 01:40:08 00:49:01

2 01:22:49 02:11:53 02:14:43 01:32:00 2 00:26:26 00:41:59 00:56:44 00:23:24

4 00:42:07 01:06:29 01:08:16 00:49:04 4 00:13:18 00:22:19 00:28:07 00:12:44

6 00:42:05 00:51:20 00:53:51 N/A 6 00:12:42 00:14:44 00:18:38 N/A

8 00:37:13 00:35:41 00:38:15 N/A 8 00:13:17 00:13:23 00:13:34 N/A

10 N/A N/A 00:42:05 N/A 10 N/A N/A 00:16:53 N/A

12 N/A N/A 00:54:26 N/A 12 N/A N/A 00:19:25 N/A

14 N/A N/A 00:49:52 N/A 14 N/A N/A 00:19:12 N/A

16 N/A N/A 00:34:12 N/A 16 N/A N/A 00:19:06 N/A
Average Average

Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P

1 02:41:08 04:23:25 04:26:40 03:02:06 1 00:52:20 01:24:14 01:40:19 00:47:34

2 01:23:03 02:12:04 02:14:31 01:35:40 2 00:27:17 00:42:49 00:54:27 00:23:36

4 00:42:02 01:06:19 01:08:23 00:48:57 4 00:13:00 00:23:28 00:28:04 00:13:15

6 00:42:03 00:51:16 00:53:55 N/A 6 00:12:43 00:15:01 00:18:15 N/A

8 00:37:12 00:35:40 00:38:04 N/A 8 00:13:30 00:13:30 00:14:33 N/A

10 N/A N/A 00:41:55 N/A 10 N/A N/A 00:16:18 N/A

12 N/A N/A 00:53:38 N/A 12 N/A N/A 00:20:34 N/A

14 N/A N/A 00:49:19 N/A 14 N/A N/A 00:21:56 N/A

16 N/A N/A 00:33:57 N/A 16 N/A N/A 00:18:49 N/A
“Speed up” “Speed up”

Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P Threads i7 4700MQ
Intel Xeon E5-
2609

Intel Xeon 
E5520

i5 3350P

1 9668 15805 16000 10926 1 3140 5054 6019 2854

2 1.94 1.99 1.98 1.90 2 1.92 1.97 1.84 2.02

4 3.83 3.97 3.90 3.72 4 4.03 3.59 3.57 3.59

6 3.83 5.14 4.95 N/A 6 4.12 5.61 5.50 N/A

8 4.33 7.39 7.01 N/A 8 3.88 6.24 6.89 N/A

10 N/A N/A 6.36 N/A 10 N/A N/A 6.15 N/A

12 N/A N/A 4.97 N/A 12 N/A N/A 4.88 N/A

14 N/A N/A 5.41 N/A 14 N/A N/A 4.57 N/A
16N/A N/A 7.85N/A 16N/A N/A 5.33N/A
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Table 1(cont.): Software run times. “Speed up” value for single thread shows the run time in seconds. 
MavericK (Structure_threader)

Replica 1
Threads i7 4700MQ Intel Xeon E5-2609 Intel Xeon E5520 i5 3350P

1 00:16:47 00:28:34 00:30:39 00:19:01

2 00:08:41 00:14:14 00:15:25 00:09:34

4 00:04:27 00:07:10 00:07:50 00:05:05

6 00:03:56 00:05:12 00:05:50 N/A

8 00:03:18 00:03:39 00:04:10 N/A

10 N/A N/A 00:04:09 N/A

12 N/A N/A 00:05:34 N/A

14 N/A N/A 00:05:05 N/A

16 N/A N/A 00:04:39 N/A
Replica 2

Threads i7 4700MQ Intel Xeon E5-2609 Intel Xeon E5520 i5 3350P

1 00:16:51 00:28:28 00:30:30 00:18:59

2 00:08:42 00:14:14 00:15:25 00:09:33

4 00:04:25 00:07:09 00:07:54 00:05:05

6 00:03:56 00:05:13 00:05:50 N/A

8 00:03:17 00:03:37 00:04:09 N/A

10 N/A N/A 00:04:10 N/A

12 N/A N/A 00:05:32 N/A

14 N/A N/A 00:05:04 N/A

16 N/A N/A 00:04:39 N/A
Average

Threads i7 4700MQ Intel Xeon E5-2609 Intel Xeon E5520 i5 3350P

1 00:16:49 00:28:31 00:30:35 00:19:00

2 00:08:42 00:14:14 00:15:25 00:09:34

4 00:04:26 00:07:10 00:07:52 00:05:05

6 00:03:56 00:05:13 00:05:50 N/A

8 00:03:18 00:03:38 00:04:10 N/A

10 N/A N/A 00:04:10 N/A

12 N/A N/A 00:05:33 N/A

14 N/A N/A 00:05:05 N/A

16 N/A N/A 00:04:39 N/A
“Speed up”

Threads i7 4700MQ Intel Xeon E5-2609 Intel Xeon E5520 i5 3350P

1 1009 1711 1835 1140

2 1.93 2.00 1.98 1.99

4 3.79 3.98 3.89 3.74

6 4.28 5.47 5.24 N/A

8 5.10 7.85 7.34 N/A

10 N/A N/A 7.34 N/A

12 N/A N/A 5.51 N/A

14 N/A N/A 6.02 N/A
16N/A N/A 6.58N/A
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1 Tables
Table 1: Environmental variable values for each sampling site (Coordinates in decimal degrees).

Vars Lat. Long. Alt

BIO1 BIO2 BIO3 BIO4 BIO6 BIO7 BIO8 BIO9 BIO10 BIO12 BIO13 BIO14 BIO15

Annual 
Mean 
Temp.

Mean 
Diurnal 
Range

Isotherm.
Temp. 

Seasonality

Min Temp. 
of Coldest 

Month

Temp. 
Annual 
Range

Mean 
Temp. of 
Wettest 
Quarter

Mean 
Temp. of 

Driest 
Quarter

Mean 
Temp. of 
Warmest 
Quarter

Annual 
Precipitation

Precipitation 
of Wettest 

Month

Precipitation 
of Driest 

Month

Precipitation 
Seasonality

Algeria 36,54 7,15 742 143.0 114.0 38.0 6097 16.0 293 69 219 226 744 123.0 6.0 59.0

Catalonia 41,85 2,533 663 127.0 71.0 31.0 5435 25.0 226 175 62 199 887 99.0 46.0 21.0

Cosrica 41,616 8,966 337 141.0 59.0 29.0 5019 55.0 198 121 206 209 639 92.0 9.0 48.0

Haza de Lino 36,833 -3,3 1316 123.0 117.0 38.0 6224 -3.0 304 60 207 208 573 71.0 9.0 49.0

Kenitra 34,083 -6,583 138 181.0 107.0 45.0 4509 69.0 237 134 237 240 553 107.0 0.0 75.0

Landes 43,75 -1,333 9 136.0 86.0 40.0 4613 36.0 212 110 176 195 1286 158.0 64.0 23.0

Monchique 37,316 -8,566 723 133.0 93.0 43.0 4183 44.0 214 93 186 191 731 111.0 4.0 63.0

Puglia 40,566 17,666 128 159.0 87.0 35.0 5720 49.0 247 133 234 234 575 75.0 18.0 40.0

Sardinia 39,083 8,85 899 123.0 80.0 33.0 5651 23.0 241 71 197 200 825 125.0 9.0 55.0

Sicily 37,116 14,5 273 161.0 76.0 34.0 5187 63.0 219 144 227 230 432 82.0 3.0 65.0

Sintra 38,75 -9,416 161 149.0 71.0 42.0 3472 72.0 168 112 190 194 819 127.0 5.0 64.0

Taza 34,2 -4,25 318 187.0 122.0 39.0 6284 49.0 311 111 271 271 521 86.0 1.0 66.0

Toledo 39,366 -5,35 545 151.0 118.0 36.0 6733 20.0 319 77 241 241 469 59.0 5.0 45.0

Tuscany 42,416 11,95 173 151.0 88.0 33.0 6151 35.0 266 121 231 231 709 97.0 20.0 34.0

Tunisia 36,95 8,85 20 182.0 98.0 40.0 5430 73.0 245 116 249 254 825 152.0 3.0 70.0

Var 43,133 6,25 12 151.0 83.0 36.0 5085 46.0 225 126 216 217 726 99.0 10.0 43.0
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Table 2: Contig names of the assembly used to mine the data, followed by 
the gene annotation and SNP name.

Contig name Represented gene SNP name

c2092 T-complex protein 1 subunit epsilon-like QSN001

c886 sphingoid long-chain bases kinase 1-like QSN002

c9224 alanyl-tRNA synthetase-like QSN003

c924 fructose-1,6-bisphosphatase QSN004

rep_c13347 Galactosyltransferase family protein QSN005

rep_c13353 Early light-induced protein QSN006

rep_c13589 Glutaredoxin QSN007

rep_c13804 Carboxylesterase QSN008

rep_c14161 NADH-ubiquinone oxidoreductase QSN009

rep_c17000 fatty acid desaturase QSN010

rep_c22049 Chlorophyll a/b binding protein QSN011

rep_c22615 nuclear transcription factor Y subunit A-7-like QSN012

rep_c29429 alcohol dehydrogenase class-3-like QSN013

rep_c29438 extracellular calcium sensing receptor QSN014

rep_c31383 Uncharacterized QSN015

rep_c32576 cytochrome oxidase subunit I (COI) QSM001
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Table 3: Pairwise FST values for all loci (lower triangular) and neutral loci (upper triangular) only datasets.

Neutrals

Pops Sintra Monchique Kenitra Toledo Taza
Haza 

de 
Lino

Landes Catalonia Var Algeria Sardinia Corsica Tunisia Tuscany Sicilia Puglia Bulgaria
Q. 

ilex
Q.  

coccifera

Sintra 0 0.02 0.13 0 0.04 0.03 0.1 0.02 0.08 0.04 0.07 0.03 0.05 0.03 0.11 0.1 0.01 0.25 0.33

Monchique 0.02 0 0.05 0 0.02 -0.01 0.1 0.02 0.04 0.03 0.02 0 0 -0.01 -0.01 0.02 0.02 0.34 0.41

Kenitra 0.07 0.03 0 0.05 0.03 0.06 0.12 0.1 0.12 0.13 0.04 0.1 0.04 0.02 0.02 0.04 0.12 0.32 0.39

Toledo 0.01 0 0.06 0 0.01 0.01 0.11 0.02 0.08 0.03 0.09 0.02 0.03 0.01 0.05 0.07 0.03 0.31 0.39

Taza 0.05 0.02 0.05 0.02 0 0.02 0.08 0.02 0.03 0.01 0.06 0.02 0.01 0.03 0.03 0.03 0.04 0.31 0.38

Haza de Lino 0.01 -0.01 0.04 0 0.02 0 0.15 0.03 0.03 0.03 0 0 0 -0.01 0 0 0.03 0.27 0.34

Landes 0.16 0.13 0.16 0.16 0.1 0.13 0 0.08 0.12 0.08 0.13 0.09 0.18 0.14 0.16 0.16 0.04 0.43 0.53

Catalonia 0.03 0.03 0.07 0.04 0.01 0.01 0.11 0 0.01 0.03 0 0 0.03 0.03 0.04 0 0.03 0.3 0.37

Var 0.13 0.1 0.21 0.13 0.1 0.08 0.18 0.12 0 0.1 0.06 0.03 0.1 0.1 0.14 0.03 0.14 0.25 0.33

Algeria 0.01 0 0.02 0 -0.02 0 0.09 -0.01 0.03 0 -0.01 0 0.01 0 0.01 -0.01 0 0.29 0.38

Sardinia 0.03 0.09 0.19 0.03 0 0.07 0.13 0.09 0.03 0.03 0 0.04 0.01 0.01 0.02 0.01 0.07 0.3 0.36

Corsica 0.01 -0.01 0.04 0.01 0.01 -0.01 0.1 0.03 0.01 0.01 0.01 0 0.01 0 0.01 0.02 0.02 0.34 0.41

Tunisia 0.04 0.01 0.11 0.04 0.02 0.02 0.12 0.04 0.04 0.01 0.04 0.01 0 0.01 0.04 0.05 0.02 0.18 0.27

Tuscany 0.04 0.03 0.11 0.03 0.03 0.04 0.1 0.06 0.06 0.02 0.01 0.03 0.01 0 0.04 0.03 0.02 0.27 0.34

Sicilia 0.07 0.05 0.1 0.04 0.02 0.05 0.15 0.06 0.05 0.03 0.09 0.04 -0.01 -0.01 0 0.05 0.06 0.32 0.39

Puglia 0.05 0.07 0.13 0.04 -0.01 0.05 0.16 0.08 0.03 0.04 -0.01 0.03 0 0.02 0.01 0 0.1 0.25 0.33

Bulgaria 0.02 0 0.02 0.02 0.03 0.01 0.05 0.03 0.05 0 0.02 -0.01 0.04 0 0.03 0.04 0 0.33 0.42

Q. Ilex 0.38 0.4 0.33 0.39 0.37 0.3 0.42 0.35 0.36 0.43 0.35 0.38 0.25 0.3 0.38 0.36 0.47 0 0.03

Q. coccifera 0.43 0.46 0.39 0.45 0.42 0.35 0.5 0.4 0.42 0.48 0.4 0.43 0.32 0.35 0.43 0.42 0.53 0.03 0

All loci



Table 4: Signifcant associations between genotypes and environmental variables identifed by Samβada.

All locations

Marker Environmental variable Loglikelihood Gscore WaldScore Efron McFadden McFaddenAdj CoxSnell Nagelkerke AIC BIC Beta_0 Beta_1

QSN002_CC Longitude -202.8947 17.3839 16.5228 0.0549 0.0411 0.0316 0.0537 0.0200 409.79 428.80 -0.6211 0.0590

QSN004_TT Annual precipitation -184.2542 23.6584 18.9342 0.0817 0.0603 0.0501 0.0724 0.0315 372.51 391.52 1.6112 -0.0035

QSN007_CC Annual precipitation -151.9607 27.3310 24.0417 0.1346 0.0825 0.0704 0.0879 0.0470 307.92 326.70 -3.7095 0.0035

QSN007_CC
Precipitation of wettest 
month

-154.3532 22.5459 21.8855 0.1134 0.0681 0.0560 0.0731 0.0385 312.71 331.48 -1.6576 0.0348

QSN007_CC
Precipitation of driest 
month

-155.5226 20.2073 19.0313 0.0886 0.0610 0.0489 0.0658 0.0343 315.05 333.82 -3.5799 0.0228

QSN008_CC Latitude -197.4191 22.8535 21.2239 0.0712 0.0547 0.0451 0.0702 0.0271 398.84 417.84 8.1973 -0.1969

QSN008_CC Mean diurnal range -199.0764 19.5390 18.1127 0.0657 0.0468 0.0372 0.0603 0.0231 402.15 421.15 -2.1562 0.0291

QSN008_CC Isothermality -199.3411 19.0095 17.6672 0.0620 0.0455 0.0359 0.0587 0.0224 402.68 421.68 -4.0192 0.1225

QSN011_CC Longitude -155.9218 37.4050 31.6006 0.1125 0.1071 0.0956 0.1126 0.0619 315.84 334.83 -0.9895 -0.1053

QSN011_GG Longitude -175.2156 35.4616 31.0857 0.1102 0.0919 0.0815 0.1071 0.0493 354.43 373.42 -1.2114 0.0933

West

Marker Environmental variable Loglikelihood Gscore WaldScore Efron McFadden McFaddenAdj CoxSnell Nagelkerke AIC BIC Beta_0 Beta_1

QSN007_CC
Precipitation of wettest 
month

-69.2538 35.3398 25.4537 0.2787 0.2033 0.1803 0.2176 0.1186 142.51 158.39 -5.4845 0.0423

QSN007_CC Annual precipitation -72.8401 28.1673 22.6345 0.2503 0.1620 0.1390 0.1777 0.0922 149.68 165.56 -3.9927 0.0040

QSN007_CC
Precipitation of driest 
month

-76.1961 21.4553 19.8940 0.1998 0.1234 0.1004 0.1384 0.0685 156.39 172.27 -1.6271 0.0363

QSN007_CC Altitude -72.9770 27.8936 18.8700 0.2531 0.1604 0.1374 0.1761 0.0912 149.95 165.83 0.3729 -0.0032

QSN012_CC Latitude -84.4641 25.2431 20.0323 0.1615 0.1300 0.1094 0.1494 0.0711 172.93 189.13 10.9117 -0.3097

East

Marker Environmental variable Loglikelihood Gscore WaldScore Efron McFadden McFaddenAdj CoxSnell Nagelkerke AIC BIC Beta_0 Beta_1

c924_TT Bio12 -81.0333 31.9724 25.9382 0.2232 0.1648 0.1442 0.1832 0.0929 166.07 182.32 4.7175 -0.0083



Appendix II

2 Data

Data 1: 4Pipe4rc configuration file used for mining the SNPs from the EST dataset

https://gist.github.com/StuntsPT/52c64503388710f7c4f38f193c81cbc2

Data 2: VCF file containing the raw SNP data.

https://gist.github.com/StuntsPT/5582de33110c60cf95e9b123f12647ac

Data 3: 4Pipe4 SNP mining report.

https://stuntspt.github.io/EST_data_mining_reports/  index.html  
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3 Figures

Figure 1: SelEstim outlier plot
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Figure 2: Bayescan outlier detection plot
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Figure 3: Allele frequency plots
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Figure 3 (continued): Allele frequency plots



Appendix II

Figure 4: PCA plot of the SNP matrix
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 APPENDIX III

Supplementary Material for Chapter 6



1 Tables
Table 1: Bioclimatic variables for the RPC26 prediction model.

Latitude 
(Dec. 
Deg)

Longitude 
(Dec. Deg)

Altitude 
(m)

BIO1 BIO2 BIO3 BIO4 BIO6 BIO7 BIO8 BIO9 BIO10 BIO12 BIO13 BIO14 BIO15

Sample
Annual 
Mean 
Temp.

Mean 
Diurnal 
Range

Isotherm.
Temp. 

Seasonality

Min 
Temp. of 
Coldest 
Month

Temp. 
Annual 
Range

Mean 
Temp. of 
Wettest 
Quarter

Mean 
Temp. of 

Driest 
Quarter

Mean 
Temp. of 
Warmest 
Quarter

Annual 
Precip.

Precip. of 
Wettest 
Month

Precip. 
of 

Driest 
Month

Precip. 
Seasonality

Algeria 36.54 7.15 742 170.67 116 37.78 6352.56 40.33 302.78 99.22 251.11 257.44 635.78 102.22 4.67 58.44

Catalonia 41.85 2.53 663 148.78 72.11 30.22 5774.78 44.89 236.56 168.89 132.33 226.89 856.33 98.33 45.11 22.33

Corsica 41.62 8.97 337 158.11 59 28.33 5261.11 69.67 205.56 137.89 225.56 229.56 650.67 94.11 8.44 50

Haza de Lino 36.83 -3.30 1316 145.44 118 37.56 6479.67 16.22 311.56 87.22 232.78 234.67 499.78 72.78 7.33 52

Kenitra 34.08 -6.58 138 197.11 109.33 44.56 4714.89 82.56 243 149.67 255.67 259.11 483.56 89.67 0 75.44

Landes 43.75 -1.33 9 151.56 88.33 39.11 4935.44 48.78 223.56 105.44 202.11 216.22 1239.56 152.44 57.56 24.67

Monchique 37.32 -8.57 723 146.89 93.44 42 4406.33 55.89 219.11 99.56 203 207.22 694.78 112.56 3.56 65

Puglia 40.57 17.67 128 176.67 87.22 33.33 6006.11 64.89 257.33 145 253.33 256.11 564 74.89 16.11 42.11

Sardinia 39.08 8.85 899 144.78 80.11 32.11 5825.78 43.11 246.67 91.67 220.11 224.56 775.33 117 7.11 57.44

Sicilia 37.12 14.50 273 177.33 76.22 33.11 5438.11 76.11 227.56 158.67 246.56 250.56 424.89 82 2.89 68.11

Sintra 38.75 -9.42 161 165 71.78 41.11 3683.56 85 173.56 127.11 208.67 212.56 781.67 130.56 4.22 68.89

Taza 34.20 -4.25 318 206 124.89 38.22 6619.33 63.56 321.89 135.89 294.67 295.89 449.78 79.78 1 68.11

Toledo 39.37 -5.35 545 166.22 123.22 36.22 7261.22 30.44 336.33 104.22 264.56 264.67 466.67 68.89 4.78 49.89

Tuscany 42.42 11.95 173 168.78 90.78 32.33 6430 51.11 276.67 142.78 248.22 254 711.89 94.67 19.11 34.44

Tunisia 36.95 8.85 20 195.56 102 38.56 5831.11 81.33 262.22 132 268.56 274.33 796.33 137.44 3.78 67.56

Var 43.13 6.25 12 167.11 82.78 35 5381.89 61.44 234 142.67 234.33 239 731.11 100.44 9.11 45.78



Table 2: Bioclimatic variables for the RPC85 prediction model.

Latitude 
(Dec. 
Deg)

Longitude 
(Dec. Deg)

Altitude 
(m)

BIO1 BIO2 BIO3 BIO4 BIO6 BIO7 BIO8 BIO9 BIO10 BIO12 BIO13 BIO14 BIO15

Sample
Annual 
Mean 
Temp.

Mean 
Diurnal 
Range

Isotherm.
Temp. 

Seasonality

Min 
Temp. of 
Coldest 
Month

Temp. 
Annual 
Range

Mean 
Temp. of 
Wettest 
Quarter

Mean 
Temp. of 

Driest 
Quarter

Mean 
Temp. of 
Warmest 
Quarter

Annual 
Precip.

Precip. of 
Wettest 
Month

Precip. 
of 

Driest 
Month

Precip. 
Seasonality

Algeria 36.54 7.15 742 192.22 119.67 37.11 6754.11 55.11 317 118.11 278 284.33 504.11 86.44 3.67 61.22

Catalonia 41.85 2.53 663 169 72.78 28.56 6219.67 59.44 249.89 156.22 248.44 253.22 711.67 86.78 29.78 26.78

Corsica 41.62 8.97 337 176.33 59.22 27.22 5557.67 85.67 212.78 146 247.78 252.44 573.56 92.56 6.22 57.67

Haza de Lino 36.83 -3.30 1316 165.89 120.11 36.67 6839.89 30 323.67 92.78 257.33 259.11 378.89 57 6.11 53

Kenitra 34.08 -6.58 138 217.33 111.89 44.89 4865.22 97.22 247.33 166.89 275.89 279.78 352.22 65.22 0 74.89

Landes 43.75 -1.33 9 170.11 91.22 38.11 5307 63.22 237.33 117.56 230.78 240.89 1118.33 147.89 42.22 34.22

Monchique 37.32 -8.57 723 162.44 94.78 41.78 4563.78 67.22 224.56 111.56 219.56 223.78 547.56 110.44 3.33 73.11

Puglia 40.57 17.67 128 197.22 88 32.56 6381 82.33 267.78 159.89 279.56 282.67 495.89 72.78 11.11 51.22

Sardinia 39.08 8.85 899 161.89 80.67 31.22 6090.44 58 254.22 101.33 240.89 246.22 636.67 99.89 6 60.56

Sicilia 37.12 14.50 273 195.67 76.89 32.44 5691.67 91.89 234.22 172.89 265.78 272.89 354.89 71.56 2.44 69.78

Sintra 38.75 -9.42 161 179.33 72.44 40.56 3837 97 176.67 135.11 223.67 228 652.56 119.67 3.89 75

Taza 34.20 -4.25 318 230.44 128.67 37.67 6976.67 79.11 336.33 156.78 321.56 323.67 332.56 58.44 0.89 67.56

Toledo 39.37 -5.35 545 190.67 127.67 34.89 7945.78 43.33 360.22 110.22 296.67 297.56 377.22 56.89 2.89 53.56

Tuscany 42.42 11.95 173 190.56 91.11 31.33 6870.11 69.22 288.33 152.22 273.22 282.22 633.78 94.56 13.33 45.11

Tunisia 36.95 8.85 20 215 103.89 37.67 6138.33 96.44 272.33 146.67 292.56 298 648.56 117 3.11 70

Var 43.13 6.25 12 186.33 83.78 33.78 5792.67 77.22 245.33 145.78 261.44 264.56 665.33 101.11 5.89 54.67



Table 3: Bioclimatic variables for the “current conditions” as extracted from the worldclim.org database.

Latitude 
(Dec. 
Deg)

Longitude 
(Dec. Deg)

Altitude 
(m)

BIO1 BIO2 BIO3 BIO4 BIO6 BIO7 BIO8 BIO9 BIO10 BIO12 BIO13 BIO14 BIO15

Sample
Annual 
Mean 
Temp.

Mean 
Diurnal 
Range

Isotherm.
Temp. 

Seasonality

Min 
Temp. of 
Coldest 
Month

Temp. 
Annual 
Range

Mean 
Temp. of 
Wettest 
Quarter

Mean 
Temp. of 

Driest 
Quarter

Mean 
Temp. of 
Warmest 
Quarter

Annual 
Precip.

Precip. of 
Wettest 
Month

Precip. 
of 

Driest 
Month

Precip. 
Seasonality

Algeria 36.54 7.15 742 143 114 38 6097 16 293 69 219 226 744 123 6 59

Catalonia 41.85 2.53 663 127 71 31 5435 25 226 175 62 199 887 99 46 21

Corsica 41.62 8.97 337 141 59 29 5019 55 198 121 206 209 639 92 9 48

Haza de Lino 36.83 -3.30 1316 123 117 38 6224 -3 304 60 207 208 573 71 9 49

Kenitra 34.08 -6.58 138 181 107 45 4509 69 237 134 237 240 553 107 0 75

Landes 43.75 -1.33 9 136 86 40 4613 36 212 110 176 195 1286 158 64 23

Monchique 37.32 -8.57 723 133 93 43 4183 44 214 93 186 191 731 111 4 63

Puglia 40.57 17.67 128 159 87 35 5720 49 247 133 234 234 575 75 18 40

Sardinia 39.08 8.85 899 123 80 33 5651 23 241 71 197 200 825 125 9 55

Sicilia 37.12 14.50 273 161 76 34 5187 63 219 144 227 230 432 82 3 65

Sintra 38.75 -9.42 161 149 71 42 3472 72 168 112 190 194 819 127 5 64

Taza 34.20 -4.25 318 187 122 39 6284 49 311 111 271 271 521 86 1 66

Toledo 39.37 -5.35 545 151 118 36 6733 20 319 77 241 241 469 59 5 45

Tuscany 42.42 11.95 173 151 88 33 6151 35 266 121 231 231 709 97 20 34

Tunisia 36.95 8.85 20 182 98 40 5430 73 245 116 249 254 825 152 3 70

Var 43.13 6.25 12 151 83 36 5085 46 225 126 216 217 726 99 10 43



Table 4: Pairwise FST values between all individuals, grouped by sampling sites.

Algeria Bulgaria Catalonia Corsica
Haza de 

Lino
Kenitra Landes Monchique Puglia Sardinia Sicilia Sintra Taza Toledo Tunisia Tuscany

Bulgaria 0.0429

Catalonia 0.0607 0.0446

Corsica 0.0661 0.0386 0.0599

Haza de Lino 0.0556 0.0368 0.0317 0.0565

Kenitra 0.0835 0.0812 0.0825 0.1051 0.0637

Landes 0.0832 0.0182 0.0667 0.0509 0.0588 0.1186

Monchique 0.0494 0.0326 0.0422 0.0502 0.0174 0.0574 0.0531

Puglia 0.0544 0.0655 0.0634 0.0618 0.0625 0.0995 0.0920 0.0636

Sardinia 0.0424 0.0593 0.0557 0.0527 0.0553 0.0947 0.0998 0.0551 0.0312

Sicilia 0.0544 0.0780 0.0669 0.0477 0.0681 0.1059 0.1057 0.0710 0.0384 0.0313

Sintra 0.0402 0.0380 0.0316 0.0526 0.0163 0.0478 0.0501 0.0038 0.0591 0.0572 0.0630

Taza 0.0357 0.0377 0.0412 0.0462 0.0197 0.0403 0.0531 0.0126 0.0515 0.0550 0.0566 0.0074

Toledo 0.0377 0.0296 0.0262 0.0499 0.0128 0.0632 0.0474 0.0200 0.0528 0.0451 0.0629 0.0152 0.0233

Tunisia 0.0096 0.0383 0.0539 0.0677 0.0513 0.0822 0.0721 0.0450 0.0607 0.0402 0.0517 0.0394 0.0381 0.0385

Tuscany 0.0346 0.0583 0.0522 0.0545 0.0568 0.0891 0.0898 0.0536 0.0289 0.0050 0.0360 0.0508 0.0503 0.0467 0.0449

Var 0.0768 0.0906 0.0920 0.0743 0.0855 0.1225 0.1220 0.0865 0.0580 0.0453 0.0690 0.0725 0.0767 0.0814 0.0767 0.0665



Appendix III

Table 5: List of SNPs detected by Bayescan and SelEstim 
as outlier loci. Common markers are represented in bold 
typeface.

Bayescan Selestim

37 37

70

79

99

145 145

180 180

249 249

381

387

490 490

497 497

619 619

671 671

673

749 749

768 768

818 818

825

1011

1132 1132

1139 1139

1208 1208

1258 1258

1282

1293 1293

1297 1297

1338 1338

1345

1353 1353

1513 1513

1528 1528

1589 1589

1601

1618

1646

1658 1658

1793 1793

1874 1874

1896 1896

1920

2083

2102 2102

2126

2140

2195

2270 2270

2419 2419

2427 2427

2514 2514

136
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Table 6: List of SNPs with associations to environmental variables

Environmental Variable
SNP 

name
BF(dB) Environmental Variable

SNP 
name

BF(dB) Environmental Variable
SNP 

name
BF(dB)

Latitude 762 16.78 Longitude 1881 32.31 Isothermality 254 16.72

Latitude 1271 19.5 Longitude 1934 18.23 Isothermality 626 19.78

Latitude 1503 15.07 Longitude 1982 17.72 Isothermality 714 18.61

Latitude 1568 15.41 Longitude 1984 20.62 Isothermality 787 18.3

Latitude 1589 16.9 Longitude 2085 24.02 Isothermality 860 15.5

Latitude 1601 23.35 Longitude 2120 28.9 Isothermality 896 16.24

Latitude 1645 15.07 Longitude 2142 17.42 Isothermality 960 19.61

Latitude 1714 20.53 Longitude 2185 18.14 Isothermality 1071 18.41

Latitude 1957 24.8 Longitude 2374 21.16 Isothermality 1084 18.86

Longitude 17 20.13 Longitude 2413 23.45 Isothermality 1175 15.5

Longitude 37 40.37 Longitude 2422 24.96 Isothermality 1245 15.9

Longitude 42 30.39 Longitude 2458 16.58 Isothermality 1276 15.5

Longitude 70 23.55 Altitude 408 15.46 Isothermality 1419 21.07

Longitude 99 25.98 Altitude 524 17.76 Isothermality 1458 15.88

Longitude 141 17.81 Altitude 778 19 Isothermality 1609 15.96

Longitude 174 19.99 Altitude 872 19.21 Isothermality 1680 27.95

Longitude 180 17.76 Altitude 1663 15.05 Isothermality 1706 15.9

Longitude 199 15.61 Altitude 1906 16.78 Isothermality 1774 16.96

Longitude 226 16.07 Altitude 2244 18.57 Isothermality 1920 15.77

Longitude 234 16.42 Altitude 2419 15.46 Isothermality 1922 15.98

Longitude 249 16.94 Annual Mean Temp. 235 19.99 Isothermality 1937 27.26

Longitude 258 15.28 Annual Mean Temp. 401 20.83 Isothermality 1995 15.44

Longitude 346 19.64 Annual Mean Temp. 499 15.28 Isothermality 2046 17.64

Longitude 361 22.84 Annual Mean Temp. 619 27.03 Isothermality 2113 16.52

Longitude 406 16.17 Annual Mean Temp. 638 20.78 Isothermality 2525 18.94

Longitude 409 23.17 Annual Mean Temp. 649 15.3 Temp. Seasonality 188 16.09

Longitude 513 18.25 Annual Mean Temp. 733 19.12 Temp. Seasonality 199 15.19

Longitude 524 22.08 Annual Mean Temp. 891 16.5 Temp. Seasonality 238 35.2

Longitude 551 17.74 Annual Mean Temp. 895 16.56 Temp. Seasonality 267 16.9

Longitude 593 22.66 Annual Mean Temp. 960 15.3 Temp. Seasonality 291 16.4

Longitude 671 32.31 Annual Mean Temp. 975 16.48 Temp. Seasonality 370 17.33

Longitude 673 17.7 Annual Mean Temp. 1258 17.42 Temp. Seasonality 375 15.53

Longitude 708 16.6 Annual Mean Temp. 1303 16.82 Temp. Seasonality 460 19.99

Longitude 791 20.06 Annual Mean Temp. 1336 23.97 Temp. Seasonality 468 16.07

Longitude 883 20.9 Annual Mean Temp. 1663 15.53 Temp. Seasonality 469 18.73

Longitude 985 18.09 Annual Mean Temp. 1871 29.8 Temp. Seasonality 677 18.2

Longitude 1016 16.84 Annual Mean Temp. 1956 15.39 Temp. Seasonality 847 25.68

Longitude 1125 21.86 Annual Mean Temp. 2089 15.28 Temp. Seasonality 996 20.69

Longitude 1133 18.84 Annual Mean Temp. 2094 15.85 Temp. Seasonality 1065 16.05

Longitude 1198 17.61 Annual Mean Temp. 2170 16.3 Temp. Seasonality 1156 16.6

Longitude 1208 16.46 Annual Mean Temp. 2449 15.5 Temp. Seasonality 1241 15.46

Longitude 1276 18.21 Mean Diurnal Range 299 52.96 Temp. Seasonality 1313 21.16

Longitude 1320 21.84 Mean Diurnal Range 595 17.46 Temp. Seasonality 1322 15.12

Longitude 1336 23.37 Mean Diurnal Range 625 16.09 Temp. Seasonality 1398 18.98

Longitude 1513 20.43 Mean Diurnal Range 1052 22.46 Temp. Seasonality 1406 18.61

Longitude 1523 17.76 Mean Diurnal Range 1073 21.41 Temp. Seasonality 1549 19.97

Longitude 1528 17.74 Mean Diurnal Range 1225 21.07 Temp. Seasonality 1615 19.89

Longitude 1575 18.16 Mean Diurnal Range 1874 25.3 Temp. Seasonality 1674 22.8

Longitude 1658 18.27 Mean Diurnal Range 2068 18.16 Temp. Seasonality 1693 20.43

Longitude 1672 15.16 Mean Diurnal Range 2213 16.86 Temp. Seasonality 1814 16.78

Longitude 1700 23.29 Isothermality 88 21.02 Temp. Seasonality 1953 17.74

Longitude 1771 15.55 Isothermality 127 25.84 Temp. Seasonality 2098 17.66
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Table 6 (cont.): List of SNPs with associations to environmental variables

Environmental Variable
SNP 

name
BF 

(dB)
Environmental Variable

SNP 
name

BF 
(dB)

Environmental Variable
SNP 

name
BF 

(dB)

Temp. Seasonality 2151 20.16 Mean Temp. of Driest Quarter 366 17.7 Annual Precip. 357 15.55

Temp. Seasonality 2253 18.52 Mean Temp. of Driest Quarter 391 18.16 Annual Precip. 527 20.99

Temp. Seasonality 2492 32.93 Mean Temp. of Driest Quarter 442 16.88 Annual Precip. 571 29.31

Temp. Seasonality 2506 16.56 Mean Temp. of Driest Quarter 497 52.96 Annual Precip. 711 18.57

Temp. Seasonality 2530 15.92 Mean Temp. of Driest Quarter 618 17.38 Annual Precip. 861 31.46

Temp. Seasonality 2539 15.21 Mean Temp. of Driest Quarter 625 20.85 Annual Precip. 1012 20.16

Min Temp. of Coldest Month 140 21.11 Mean Temp. of Driest Quarter 638 15.59 Annual Precip. 1019 18.03

Min Temp. of Coldest Month 145 17.21 Mean Temp. of Driest Quarter 657 15.48 Annual Precip. 1229 16.07

Min Temp. of Coldest Month 238 18.29 Mean Temp. of Driest Quarter 757 17.25 Annual Precip. 1253 26.03

Min Temp. of Coldest Month 597 17.1 Mean Temp. of Driest Quarter 771 20.55 Annual Precip. 1260 16.21

Min Temp. of Coldest Month 651 16.54 Mean Temp. of Driest Quarter 773 16.46 Annual Precip. 1261 18.32

Min Temp. of Coldest Month 825 19.38 Mean Temp. of Driest Quarter 892 27.77 Annual Precip. 1506 18.47

Min Temp. of Coldest Month 913 15.72 Mean Temp. of Driest Quarter 910 17.55 Annual Precip. 1513 15.07

Min Temp. of Coldest Month 1188 17.17 Mean Temp. of Driest Quarter 976 16.03 Annual Precip. 1693 15.79

Min Temp. of Coldest Month 1381 15.32 Mean Temp. of Driest Quarter 1007 17.94 Annual Precip. 1749 15.53

Min Temp. of Coldest Month 1621 18.29 Mean Temp. of Driest Quarter 1171 16.9 Annual Precip. 1776 38.76

Min Temp. of Coldest Month 1623 17.29 Mean Temp. of Driest Quarter 1181 16.62 Annual Precip. 1959 17.38

Min Temp. of Coldest Month 1646 20.79 Mean Temp. of Driest Quarter 1258 26.87 Annual Precip. 2162 16.19

Min Temp. of Coldest Month 2094 15.81 Mean Temp. of Driest Quarter 1267 17.57 Annual Precip. 2195 16.76

Min Temp. of Coldest Month 2218 15.57 Mean Temp. of Driest Quarter 1338 16.76 Annual Precip. 2263 18.94

Min Temp. of Coldest Month 2264 16.07 Mean Temp. of Driest Quarter 1391 15.25 Annual Precip. 2539 16.4

Mean Temp. of Wettest Quarter 16 15.23 Mean Temp. of Driest Quarter 1479 19.54 Precip. of Wettest Month 209 17.23

Mean Temp. of Wettest Quarter 76 20.43 Mean Temp. of Driest Quarter 1542 25.84 Precip. of Wettest Month 362 16.98

Mean Temp. of Wettest Quarter 171 17.15 Mean Temp. of Driest Quarter 1565 30 Precip. of Wettest Month 387 18.5

Mean Temp. of Wettest Quarter 321 42.94 Mean Temp. of Driest Quarter 1626 15.16 Precip. of Wettest Month 711 18.21

Mean Temp. of Wettest Quarter 558 19.4 Mean Temp. of Driest Quarter 1654 15.61 Precip. of Wettest Month 779 15.98

Mean Temp. of Wettest Quarter 797 15.46 Mean Temp. of Driest Quarter 1742 17.55 Precip. of Wettest Month 860 16.15

Mean Temp. of Wettest Quarter 960 15.81 Mean Temp. of Driest Quarter 1874 23.53 Precip. of Wettest Month 1002 16.64

Mean Temp. of Wettest Quarter 975 17.81 Mean Temp. of Driest Quarter 1876 16.24 Precip. of Wettest Month 1279 17.81

Mean Temp. of Wettest Quarter 1145 15.41 Mean Temp. of Driest Quarter 1898 16.76 Precip. of Wettest Month 1344 20.43

Mean Temp. of Wettest Quarter 1320 20.55 Mean Temp. of Driest Quarter 1973 15.37 Precip. of Wettest Month 1646 18.79

Mean Temp. of Wettest Quarter 1342 21.86 Mean Temp. of Driest Quarter 2032 15.64 Precip. of Wettest Month 1693 17.63

Mean Temp. of Wettest Quarter 1612 21.54 Mean Temp. of Driest Quarter 2073 19.75 Precip. of Wettest Month 1882 15.35

Mean Temp. of Wettest Quarter 1779 18.09 Mean Temp. of Driest Quarter 2126 24.23 Precip. of Wettest Month 2102 20.53

Mean Temp. of Wettest Quarter 1998 15.79 Mean Temp. of Driest Quarter 2178 20.62 Precip. of Wettest Month 2195 16.4

Mean Temp. of Wettest Quarter 2037 15.79 Mean Temp. of Driest Quarter 2184 19.1 Precip. of Driest Month 2 17.85

Mean Temp. of Wettest Quarter 2085 16.07 Mean Temp. of Driest Quarter 2272 26 Precip. of Driest Month 33 25.53

Mean Temp. of Wettest Quarter 2244 19.61 Mean Temp. of Driest Quarter 2287 20.43 Precip. of Driest Month 39 22.16

Mean Temp. of Wettest Quarter 2327 17.79 Mean Temp. of Driest Quarter 2463 15.09 Precip. of Driest Month 77 18.96

Mean Temp. of Wettest Quarter 2427 17.34 Mean Temp. of Driest Quarter 2485 18.84 Precip. of Driest Month 97 18.94

Mean Temp. of Wettest Quarter 2452 24.54 Mean Temp. of Driest Quarter 2540 15.37 Precip. of Driest Month 146 15.3

Mean Temp. of Wettest Quarter 2495 17.29 Mean Temp. of Warmest Quarter 183 16.66 Precip. of Driest Month 214 18.01

Mean Temp. of Driest Quarter 16 19.17 Mean Temp. of Warmest Quarter 299 52.96 Precip. of Driest Month 230 27.26

Mean Temp. of Driest Quarter 85 19.31 Mean Temp. of Warmest Quarter 302 15.21 Precip. of Driest Month 450 20.79

Mean Temp. of Driest Quarter 196 15.48 Mean Temp. of Warmest Quarter 891 15.12 Precip. of Driest Month 490 18.55

Mean Temp. of Driest Quarter 200 17.81 Mean Temp. of Warmest Quarter 895 17.81 Precip. of Driest Month 507 15.41

Mean Temp. of Driest Quarter 203 16.84 Mean Temp. of Warmest Quarter 1515 16.09 Precip. of Driest Month 519 23.33

Mean Temp. of Driest Quarter 237 19.87 Mean Temp. of Warmest Quarter 1888 17.66 Precip. of Driest Month 527 16.84

Mean Temp. of Driest Quarter 249 17.44 Mean Temp. of Warmest Quarter 2178 15.48 Precip. of Driest Month 538 15.61

Mean Temp. of Driest Quarter 276 15.57 Mean Temp. of Warmest Quarter 2364 19.36 Precip. of Driest Month 545 20.32

Mean Temp. of Driest Quarter 291 16.34 Annual Precip. 209 22.72 Precip. of Driest Month 611 15.37

Mean Temp. of Driest Quarter 295 15.72 Annual Precip. 262 15.14 Precip. of Driest Month 621 20.72

138



Appendix III

Table 6 (cont.): List of SNPs with associations to environmental variables

Environmental Variable SNP name BF(dB) Environmental Variable SNP name BF(dB)

Precip. of Driest Month 634 20.93 Precip. of Driest Month 2280 31.75

Precip. of Driest Month 665 25.55 Precip. of Driest Month 2282 16.38

Precip. of Driest Month 690 49.95 Precip. of Driest Month 2284 21.25

Precip. of Driest Month 692 15.96 Precip. of Driest Month 2308 16.82

Precip. of Driest Month 704 36.24 Precip. of Driest Month 2311 23.47

Precip. of Driest Month 777 16.24 Precip. of Driest Month 2361 16.21

Precip. of Driest Month 862 17.06 Precip. of Driest Month 2462 15.79

Precip. of Driest Month 957 15.46 Precip. of Driest Month 2485 17.29

Precip. of Driest Month 967 15.92 Precip. of Driest Month 2490 15.02

Precip. of Driest Month 1028 15.44 Precip. of Driest Month 2540 16.76

Precip. of Driest Month 1036 15.79

Precip. of Driest Month 1110 21.36

Precip. of Driest Month 1173 15.9

Precip. of Driest Month 1242 32.48

Precip. of Driest Month 1271 18.16

Precip. of Driest Month 1292 17.17

Precip. of Driest Month 1317 19.07

Precip. of Driest Month 1382 19.9

Precip. of Driest Month 1427 15.19

Precip. of Driest Month 1428 19.82

Precip. of Driest Month 1435 15.37

Precip. of Driest Month 1480 20.34

Precip. of Driest Month 1506 21.66

Precip. of Driest Month 1589 17.21

Precip. of Driest Month 1598 18.93

Precip. of Driest Month 1609 23.68

Precip. of Driest Month 1646 27.13

Precip. of Driest Month 1683 16.8

Precip. of Driest Month 1693 16.52

Precip. of Driest Month 1733 21.92

Precip. of Driest Month 1748 20.23

Precip. of Driest Month 1749 18.68

Precip. of Driest Month 1795 22.55

Precip. of Driest Month 1815 16.58

Precip. of Driest Month 1821 17.64

Precip. of Driest Month 1856 25.4

Precip. of Driest Month 1869 19.64

Precip. of Driest Month 1885 21.9

Precip. of Driest Month 1920 25.23

Precip. of Driest Month 1949 15.05

Precip. of Driest Month 2014 16.56

Precip. of Driest Month 2042 18.12

Precip. of Driest Month 2065 17.21

Precip. of Driest Month 2072 15.35

Precip. of Driest Month 2081 18.05

Precip. of Driest Month 2083 16.72

Precip. of Driest Month 2163 20.08

Precip. of Driest Month 2170 16.24

Precip. of Driest Month 2231 16.21

Precip. of Driest Month 2239 17.96

Precip. of Driest Month 2251 19.57

Precip. of Driest Month 2271 19.49
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Table 7: “Risk of non-Adaptedness” values for each sampling site, projected for the three environmental variables with most associations to SNPs.

Model RPC26 RPC85

Covar Precipitation of Driest Month
Mean Temperature of 

Driest Quarter
Temperature 
Seasonality Average

Precipitation of 
Driest Month

Mean Temperature of 
Driest Quarter

Temperature 
Seasonality Average

#SNPs 79 51 33 79 51 33

Algeria 0.0085 0.0710 0.0318 0.0371 0.0148 0.1254 0.0841 0.0748

Catalonia 0.0054 0.1482 0.0432 0.0656 0.0905 0.3921 0.0944 0.1923

Corsica 0.0036 0.0415 0.0314 0.0255 0.0172 0.0871 0.0701 0.0581

Haza de Lino 0.0103 0.0545 0.0285 0.0311 0.0172 0.1092 0.0754 0.0672

Kenitra 0.0000 0.0416 0.0269 0.0228 0.0000 0.0834 0.0465 0.0433

Landes 0.0356 0.0568 0.0421 0.0448 0.1157 0.1084 0.0843 0.1028

Monchique 0.0028 0.0355 0.0292 0.0225 0.0042 0.0674 0.0497 0.0405

Puglia 0.0120 0.0415 0.0366 0.0300 0.0437 0.0998 0.0839 0.0758

Sardinia 0.0121 0.0501 0.0228 0.0283 0.0191 0.0955 0.0574 0.0574

Sicilia 0.0007 0.0421 0.0328 0.0252 0.0036 0.0761 0.0652 0.0483

Sintra 0.0049 0.0411 0.0236 0.0232 0.0068 0.0638 0.0405 0.0370

Taza 0.0000 0.0464 0.0408 0.0291 0.0007 0.0996 0.0795 0.0599

Toledo 0.0014 0.0520 0.0690 0.0408 0.0133 0.1064 0.1478 0.0891

Tuscany 0.0056 0.0383 0.0364 0.0268 0.0404 0.0848 0.0773 0.0675

Tunisia 0.0048 0.0428 0.0514 0.0330 0.0007 0.0963 0.0914 0.0628
Var 0.0057 0.0403 0.0388 0.0282 0.0257 0.1006 0.0924 0.0729

Min R² 0.0000 0.0000 0.0007 0.0002 0.0000 0.0000 0.0007 0.0004

Max R² 0.3410 0.2956 0.3316 0.3227 0.3410 0.2956 0.3316 0.2693

Average R² 0.1597 0.1466 0.1545 0.1536 0.1597 0.1466 0.1545 0.1570
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2 Data

Data 1: Parameter files used in the ipyrad analyses. Both the main parameter file and the 
“popfilee” are present in the link.

https://gist.github.com/StuntsPT/399f2957b3af9450c26089c05ee5c037

Data 2: GNU Makefile containing the entire analyses process from the data in this work.

https://gist.github.com/StuntsPT/c3c1f4c1f77f7151f00d168b5a01dced
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3 Figures

Figure 1: MavericK posterior distribution plots. “A” is for the dataset with all loci, “B” is for the dataset with 
only “neutral” loci, and “C” is for the dataset with only “non-neutral” loci.
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Figure 2: STRUCTURE clustering plots for K=2. Sampling sites are presented from West to East. “A” is the Q-
value plot for the dataset with all loci, “B” is for the dataset with only “neutral” loci, and “C” if for the 
dataset with only “non-neutral” loci.
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Figure 3: PCA plot for the dataset with all loci. Eigenvector 1 explains 4.31% of the variation and 
eigenvector 2 explains 2.41% of the variation.
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