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Formulating Mathematica pseudocodes for carrying out third-order ordinary 
differential equations (ODEs) is of essence necessary for proficient 
computation. This research paper is prepared to formulate Mathematica 
Pseudocodes block Milne’s device (FMPBMD) for accomplishing third-order 
ODEs. The coming together of Mathematica pseudocodes and proficient 
computing using block Milne’s device will bring about ease in ciphering, 
proficiency, acceleration and better accuracy. Side by side estimation and 
extrapolation is considered with successive function approximation gives 
rise to FMPBMD.  This FMPBMD turns out to bring about the star local 
truncation error thereby finding the degree of the scheme. FMPBMD will be 
implemented on some numerical examples to corroborate the superiority 
over other block methods established by employing fixed step size and 
handled computation. 
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1. Introduction

*The act of unfolding block-predictor-block-
corrector methods is all-important to the 
developmental process of block Milne’s device. 
Especially, looking for closed solution to ODEs. This 
research paper is proposed in the direction of 
formulating Mathematica pseudocodes of block 
Milne’s device for looping third-order ODEs 
(Dormand, 1996; Oghonyon et al., 2015) i.e.: 

𝑢′′′ = 𝑧(𝑣, 𝑢, 𝑢′, 𝑢′′), 𝑢(𝑏) = 𝑏0, 𝑢′(𝑏) = 𝑏1, 𝑢′′(𝑏) = 𝑏2
for 𝑐 ≤ 𝑣 ≤ 𝑑 and 𝑧:× ℜℷ → ℜℷ        (1) 

The approximate resolution to Eq. 1 can be 
represented broadly as  

∑ 𝜑𝑗𝑢𝑗+𝑛−1 = ℎ
3𝑚

𝑛=1 ∑ 𝜃𝑗𝑧𝑗+𝑛−1
𝑚
𝑛=1   (2) 

where h is the length measure, 𝜑𝑚 = 1, 𝜑𝑛    𝑛 =
0,1, … ,𝑚,    𝜃𝑚 are specified unknown-quantity with 
distinctly defined system of degree j (Anake et al., 
2012; 2013; Oghonyon et al., 2015; 2016). 

Consider for granted that it is tolerable to a 
justifiable state and meets a planetal assumptions for 
ℒ ≥ 0 ∋   
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|𝑧(𝑣, 𝑢) − 𝑧∗(𝑣, 𝑢̿)| ≤ 𝐿|𝑢 − 𝑢̿|,   ∀𝑢, 𝑢̿ ∈ ℜ, 

underneath this presumptions, Eq. 1 checks out the 
planetal and oneness outlined, besides meets the 
requirements of the Weierstrass theorem (Jain and 
Iyengar, 2005; Faires and Burden, 2012; Oghonyon 
et al., 2015). 

Writers hinted that the step-down of Eq. 1 to 
systems of ODEs generates some less favorable 
consequences. This unfavorable consequence 
involves some serious setback. This setback includes 
waste of manpower, difficulty in writing/ 
implementing programming codes and time 
consumption. Scholars have developed direct and 
special methods for solving equation Eq. 1. These 
path ways constitute block predictor and block 
corrector method, block implicit method, block 
hybrid method and backward differentiation method 
(Anake et al., 2012; 2013; Mohammed and Adeniyi, 
2014; Kuboye and Omar, 2015; Olabode, 2009; 2013; 
Olabode and Yusuph, 2009; Omar and Sulaiman, 
2004). Yet, sources have indicated block predictor-
corrector method of Adams typecast for working 
non-stiff ODEs (Dormand, 1996; Awoyemi, 2003; 
Oghonyon et al., 2015; 2016). Others look at 
backward differentiation formula (BDF) differently 
addressed by Gear (1971) for working-out stiff 
ODEs. Entirely,  this research work is put forward to 
overcome the designs of fixed step-size variation, 
unable to define converging standards, curb error, 
exclude BDF which handles stiff ODEs (Majid and 
Suleiman, 2007; 2008; Langkah et al., 2012; 
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Mehrkanoon et al., 2010; Mehrkanoon, 2011; Rauf et 
al., 2015).  

Formulating Mathematica pseudocodes of block 
Milne’s device for accomplishing third-order ODEs is 
the principal destination of this research study. 
These path ways of accomplishing Mathematica 
pseudocodes are built up to give immediate output, 
skillful and niftier accuracy. But then, block Milne’s 
device is formulated to better converging standards, 
vary-step-size and curb errors (Dormand, 1996; 
Faires and Burden, 2012; Lambert, 1991; Oghonyon 
et al., 2015; 2016). 
 
Definition: Consider x-block, y-point-method and 
assume x indicates the block-size and value 
magnitude h, then block-magnitude in time period is 
𝑦ℎ. Let 𝑤 = 0,1,2, … depict the block measure and 
𝑐 = 𝑤𝑦, while x-block, y-point-method is the future 
superior-general figure: 
 
𝑈𝜇 = ∑ 𝐴𝑠𝑈𝜇−𝑠 + ℎ∑ 𝐵𝑠𝑍𝜇−𝑠

𝑏
𝑠=0

𝑏
𝑠=1                        (3) 

 
where  
 
𝑈𝑢 = [𝑢𝑛+1, … , 𝑢𝑛+1]

^𝜔  
𝑍𝑢 = [𝑧𝑛+1, … , 𝑧𝑛+1]

^𝜔 . 

 
𝐴𝑆 and 𝐵𝑆  are y×y constant-coefficients of 
arrangement of expressions expressed by rows and 
columns (Ibrahim et al., 2007). 

In addition, for the concise explanation 
(definition) stated before, block way defines the 
mathematical gains for real-life coatings and vaulted 
output is simultaneously generated at more-point.  
Thus, the amounts of valuates trust on the 
development of the block method. Employing this 
approach will supply faster and more improved 
outputs to the given application which can be 
calculated to furnish the sought-after truth (Majid 
and Suleiman, 2007; 2008).  

The organization of this research work is as 
follows: in section 2, Mathematica pseudocodes of 
block Milne’s device is presented; in section 3, 
Mathematica pseudocodes for accomplishing block 
Milnes’ device is addressed; in section 4, conclusion 
as seen in Akinfenwa et al. (2013) and Oghonyon et 
al. (2016) is discussed. 

2. Materials and methods 

This section is dedicated to formulate 
pseudocodes of block Milne’s device. Block Milne’s 
device is an accumulation of the 5-step-explicit 
method and 4-step-implicit method respectively. 
This accumulation is presented as 

  
𝑢(𝑣) = ∑ 𝛼𝑟

𝑛
𝑟=0 𝑢𝑘−𝑟 + ℎ

3∑ 𝛽𝑟𝑧𝑘−𝑟
𝑛
𝑟=0 ,                                 (4) 

𝑢(𝑣) = ∑ 𝛼𝑟
𝑛
𝑟=0 𝑢𝑘−𝑟 + ℎ

3∑ 𝜷𝑟
∗𝑧𝑘+𝑟

𝑛
𝑟=1 .                           (5) 

 
Putting together Eq. 4 and Eq. 5 will yield the 

block Milne’s device, where 𝛽𝑟 , 𝑟 = 0, 1, 2,3. 
Referring to 𝑢𝑛+𝑟 as the approximate of the exact, 
results in 𝑢(𝑣𝑛+𝑟) i.e. 𝑢(𝑣𝑛+𝑟 , 𝑢𝑛+𝑟) ≈ 𝑢𝑛+𝑟 and 

𝑧(𝑣𝑛+𝑟 , 𝑢𝑛+𝑟) ≈ 𝑧𝑛+𝑟owning 𝑟 = 0, 1, 2,3. To realize 
Eq. 4 and Eq. 5, the power-series approximate is 
extrapolated and differentiated side-by side about 
chosen-intervals leading organized system to the 
linear equation i.e. 𝐴𝑢 = 𝑣. 

 

𝑢(𝑣) = ∑ 𝑎𝑟
𝑟
𝑛=0 (

𝑥−𝑥𝑟

ℎ
)
𝑛

.                                                             (6) 

 
Eq. 6 is converted from ordinary language into 

code to reproduce the Mathematica pseudocodes as 
 

𝑢[𝑣−] = 𝑒[0] + 𝑒[1]
(𝑣−𝑣[𝑛])

ℎ
+ 𝑒[2]

(𝑣−𝑣[𝑛])

ℎ2

2

+

𝑒[3]
(𝑣−𝑣[𝑛])

ℎ3

3

+ 𝑒[4]
(𝑣−𝑣[𝑛])

ℎ4

4

+ 𝑒[5]
(𝑣−𝑣[𝑛])

ℎ5

5

+

+𝑒[6]
(𝑣−𝑣[𝑛])

ℎ5

6

+ 𝑒[7]
(𝑣−𝑣[𝑛])

ℎ7

7

+ 𝑒[8]
(𝑣−𝑣[𝑛])

ℎ8

8

,                  (7) 

 
where 𝑒[0], 𝑒[1], 𝑒[2], 𝑒[3], 𝑒[4], 𝑒[5], 𝑒[6] and 𝑒[7] 
will be considered as unknown-parameters 
demanded to be checked in specified manner. Pre-
suppose that the pre-condition of Eq. 6 aligns with 
the exact-result at some-selected time-interval 
𝑣𝑛 , 𝑣𝑛−𝑟to get the estimate of  
  
𝑢(𝑣𝑛) ≈ 𝑢,     𝑢(𝑣𝑛−𝑟) ≈ 𝑢𝑛−𝑟 .                                                   (8) 
 
Predicting Eq. 7 matches Eq. 1 at the some-selected-
points 𝑣𝑛+𝑟 , 𝑟 = 0, 1, 2,3 to develop the next 
approximates as  
 
𝑢′′′(𝑣𝑛+𝑟) ≈ 𝑧𝑛+𝑟 ,  𝑟 = 0, 1, 2,3.                   (9) 

 
Coming together of the forecasts of Eq. 8 and Eq. 

9 will translate into the eight-fold-systems of 
equation which brings out 𝐴𝑢 = 𝑥. Working-out 
𝐴𝑢 = 𝑥 will result to block Milne’s device of the 
block-predictor-corrector method constituted as the 
Mathematica pseudocodes 

 

𝑚𝑎𝑡𝑟𝑖𝑥𝑎 =

{
 
 
 
 
 

 
 
 
 
 

{1,0,0,0,0,0,0,0},
{1, −1,1,−1,1, −1,1,−1},

{1,−2,4,−8,16,−32,64,−128},
{0,0,0,6,0,0,0},

{0,0,0,6,−24,60,−120,210},
{0,0,0,6,−48,240,−960,3360},
{0,0,0,6,−72,540,−3240,17010},
{0,0,0,6,−96,960,−7680,53760}

}
 
 
 
 
 

 
 
 
 
 

  

𝑥 = {𝑢[𝑛], 𝑢[𝑛 − 1], 𝑢[𝑛 − 2], 𝑧[𝑛], 𝑧[𝑛 − 1], 𝑧[𝑛 − 2], 𝑧[𝑛 −
3], 𝑧[𝑛 − 4]} ; 
{𝑐, 𝑓, 𝑔, 𝑖, 𝑙, 𝑚, 𝑜, 𝑡} = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒[𝑚𝑎𝑡𝑟𝑖𝑥𝑎]. 𝑥                (10) 

𝑚𝑎𝑡𝑟𝑖𝑥𝑎 =

{
 
 
 
 
 

 
 
 
 
 

{1,0,0,0,0,0,0,0},
{1, −1,1,−1,1, −1,1,−1},

{1,−2,4,−8,16,−32,64,−128},
{0,0,0,6,−24,60,−120,210},

{0,0,0,6,−72,540,−3240,17010},
{0,0,0,6,48,240,960,3360},
{0,0,0,6,48,240,960,3360},
{0,0,0,6,72,540,3240,17010}

}
 
 
 
 
 

 
 
 
 
 

; 

𝑥 = {𝑢[𝑛], 𝑢[𝑛 − 1], 𝑢[𝑛 − 2], 𝑧[𝑛 − 1], 𝑧[𝑛 − 3], 𝑧[𝑛 +
1], 𝑧[𝑛 + 2], 𝑧[𝑛 + 3]}; 
{𝑐, 𝑓, 𝑔, 𝑖, 𝑙, 𝑚, 𝑜, 𝑡} = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒[𝑚𝑎𝑡𝑟𝑖𝑥𝑎]. 𝑥                (11) 
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to achieve 𝑒[𝑛], 𝑛 = 0, 1, 2, 3, … ,7 and replacing the 
measures of 𝑒[𝑛] substituted in Eq. 6 to obtain 
continuous-block Milne’s device  
 

𝑢[𝑣−] = (1 +
3

2

(𝑣−𝑣[𝑛])

ℎ
+
1

2

(𝑣−𝑣[𝑛])

ℎ2

2

) 𝑢[𝑛] + (
−2(𝑣−𝑣[𝑛])

ℎ
−

(𝑣−𝑣[𝑛])

ℎ2

2

)𝑢[𝑛 − 1] + (
(𝑣−𝑣[𝑛])

2ℎ
+
(𝑣−𝑣[𝑛])

2ℎ2

2

) 𝑢[𝑛 − 2] +

(
307

5040
(
𝑣−𝑣[𝑛]

ℎ
) +

233

1440
(
𝑣−𝑣[𝑛]

ℎ
)
2
+
1

6
(
𝑣−𝑣[𝑛]

ℎ
)
3
+

25

288
(
𝑣−𝑣[𝑛]

ℎ
)
4
+

7

288
(
𝑣−𝑣[𝑛]

ℎ
)
5
+

1

288
(
𝑣−𝑣[𝑛]

ℎ
)
6
+

1

5040
(
𝑣−𝑣[𝑛]

ℎ
)
7
)  𝑧[𝑛]ℎ3 + (

793

2520
(
𝑣−𝑣[𝑛]

ℎ
) +

101

240
(
𝑣−𝑣[𝑛]

ℎ
)
2
−

1

6
(
𝑣−𝑣[𝑛]

ℎ
)
4

−
13

180
(
𝑣−𝑣[𝑛]

ℎ
)
5

−
1

80
(
𝑣−𝑣[𝑛]

ℎ
)
6

−

1

1260
(
𝑣−𝑣[𝑛]

ℎ
)
7
)  𝑧[𝑛 − 1]ℎ3 + (

−19

280
(
𝑣−𝑣[𝑛]

ℎ
) −

31

240
(
𝑣−𝑣[𝑛]

ℎ
)
2
+

1

8
(
𝑣−𝑣[𝑛]

ℎ
)
4

+
19

240
(
𝑣−𝑣[𝑛]

ℎ
)
5

+
1

60
(
𝑣−𝑣[𝑛]

ℎ
)
6

+

1

840
(
𝑣−𝑣[𝑛]

ℎ
)
7
)  𝑧[𝑛 − 2]ℎ3 + (

79

2520
(
𝑣−𝑣[𝑛]

ℎ
) +

41

720
(
𝑣−𝑣[𝑛]

ℎ
)
2
−

1

18
(
𝑣−𝑣[𝑛]

ℎ
)
4
−

7

180
(
𝑣−𝑣[𝑛]

ℎ
)
5

−
7

720
(
𝑣−𝑣[𝑛]

ℎ
)
6

−

1

1260
(
𝑣−𝑣[𝑛]

ℎ
)
7

)  𝑓[𝑛 − 3]ℎ3 + (
−29

5040
(
𝑣−𝑣[𝑛]

ℎ
) −

1

96
(
𝑣−𝑣[𝑛]

ℎ
)
2

+

1

96
(
𝑣−𝑣[𝑛]

ℎ
)
4

+
11

1440
(
𝑣−𝑣[𝑛]

ℎ
)
5

+
1

480
(
𝑣−𝑣[𝑛]

ℎ
)
6

+

1

5040
(
𝑣−𝑣[𝑛]

ℎ
)
7

) 𝑧[𝑛 − 4]ℎ3                    (12) 

𝑢[𝑣−] = (1 +
3

2

(𝑣−𝑣[𝑛])

ℎ
+
1

2

(𝑣−𝑣[𝑛])

ℎ2

2

) 𝑢[𝑛] + (
−2(𝑣−𝑣[𝑛])

ℎ
−

(𝑣−𝑣[𝑛])

ℎ2

2

)𝑢[𝑛 − 1] + (
(𝑣−𝑣[𝑛])

2ℎ
+
(𝑣−𝑣[𝑛])

2ℎ2

2

) 𝑢[𝑛 − 2] +

(
2801

10080
(
𝑣−𝑣[𝑛]

ℎ
) +

117

320
(
𝑣−𝑣[𝑛]

ℎ
)
2
+

1

16
(
𝑣−𝑣[𝑛]

ℎ
)
3
−

3

128
(
𝑣−𝑣[𝑛]

ℎ
)
4

+
7

2880
(
𝑣−𝑣[𝑛]

ℎ
)
5

+
1

1920
(
𝑣−𝑣[𝑛]

ℎ
)
6

−

1

10080
(
𝑣−𝑣[𝑛]

ℎ
)
7
)  𝑧[𝑛 − 1]ℎ3 + (

−113

50400
(
𝑣−𝑣[𝑛]

ℎ
) −

97

14400
(
𝑣−𝑣[𝑛]

ℎ
)
2

−
1

240
(
𝑣−𝑣[𝑛]

ℎ
)
3

+
1

1152
(
𝑣−𝑣[𝑛]

ℎ
)
4

+

1

2880
(
𝑣−𝑣[𝑛]

ℎ
)
5

−
1

5760
(
𝑣−𝑣[𝑛]

ℎ
)
6

+
1

50400
(
𝑣−𝑣[𝑛]

ℎ
)
7
)  𝑧[𝑛 −

3]ℎ3 + (
121

1120
(
𝑣−𝑣[𝑛]

ℎ
) +

251

960
(
𝑣−𝑣[𝑛]

ℎ
)
2
+

3

16
(
𝑣−𝑣[𝑛]

ℎ
)
3

+

3

128
(
𝑣−𝑣[𝑛]

ℎ
)
4

−
11

960
(
𝑣−𝑣[𝑛]

ℎ
)
5

−
1

1920
(
𝑣−𝑣[𝑛]

ℎ
)
6

+

1

3360
(
𝑣−𝑣[𝑛]

ℎ
)
7
)  𝑧[𝑛 + 1]ℎ3 + (

−101

1575
(
𝑣−𝑣[𝑛]

ℎ
) −

23

150
(
𝑣−𝑣[𝑛]

ℎ
)
2

−
1

10
(
𝑣−𝑣[𝑛]

ℎ
)
3

+
1

90
(
𝑣−𝑣[𝑛]

ℎ
)
5

−

1

3150
(
𝑣−𝑣[𝑛]

ℎ
)
7

)  𝑧[𝑛 + 2]ℎ3 + (
139

10080
(
𝑣−𝑣[𝑛]

ℎ
) −

19

576
(
𝑣−𝑣[𝑛]

ℎ
)
2

+
1

48
(
𝑣−𝑣[𝑛]

ℎ
)
3

−
1

1152
(
𝑣−𝑣[𝑛]

ℎ
)
4

−

7

2880
(
𝑣−𝑣[𝑛]

ℎ
)
5

+
1

5760
(
𝑣−𝑣[𝑛]

ℎ
)
6

+
1

10080
(
𝑣−𝑣[𝑛]

ℎ
)
7

) 𝑧[𝑛 + 3]ℎ3.

                    (13) 

 
Appraising Eq. 12 and Eq. 13 at some specific 

pick-out bound of targets 𝑣𝑛+𝑟 , 𝑟 = 1, 2, 3 will bring-
forth FMPBMD as 

 
𝑢[𝑣−] = 𝑒[0]𝑢[𝑛] + 𝑒[1]𝑢[𝑛 − 1] + 𝑒[2]𝑢[𝑛 − 2] +
ℎ3(𝛽[0]𝑧[𝑛] + 𝛽[1]𝑧[𝑛 − 1] + 𝛽[2]𝑧[𝑛 − 2] +
𝛽[3]𝑧[𝑛 − 3] + 𝛽[4]𝑧[𝑛 − 4])                  (14) 
𝑢[𝑣−] = 𝑒[0]𝑢[𝑛] + 𝑒[1]𝑢[𝑛 − 1] + 𝑒[2]𝑢[𝑛 − 2] +
ℎ3(𝛽[0]𝑧[𝑛 − 1] + 𝛽[1]𝑧[𝑛 − 3] + 𝛽[2]𝑧[𝑛 + 1] +
𝛽[3]𝑧[𝑛 + 2] + 𝛽[4]𝑧[𝑛 + 3]),                 (15) 

 

where 𝑒[𝑟], 𝑟 = 0,…4 and  𝛽[𝑟], 𝑟 = 0,1… 4 are 
acknowledged physical-quantity of the FMPBMD 
(Faires and Burden, 2012). 

2.1. Formulating the converging bound FMPBMD 

To implement the FMPBMD, 5-step block-explicit 
method and 4-step block-implicit method are 
distributed as predictor-corrector pair off holding 
the like-order. The conflux of Ascher and Petzold 
(1998), Dormand (1996), Faires and Burden (2012), 
Lambert (1991), and Oghonyon et al. (2015, 2016) 

together with the effort of assimilators, it turns more 
technical to find approximate of star local truncation 
error of FMPBMD free from estimating derivations of 
𝑢(𝑣). Presume 𝑝1̃ = 𝑝2̿̿ ̿ where 𝑝1̃and 𝑝2̿̿ ̿  manifests as 
the order of block- explicit and block-implicit 
methods. Straight off, method of order 𝑝1̃, the 5-step 
block -explicit method is seen to yield the star local 
truncation errors: 

 

𝐶̃𝑝+5
[1]
ℎ𝑝+5𝑢(𝑝+5)(𝑣𝑛) = 𝑢(𝑣𝑛+1) − 𝑢𝑛+1

[𝑞1] +𝑂(ℎ𝑝+6),   

𝐶̃𝑝+5
[2]
ℎ𝑝+5𝑢(𝑝+5)(𝑣𝑛) = 𝑢(𝑣𝑛+2) − 𝑢𝑛+2

[𝑞2] +𝑂(ℎ𝑝+6),        (16)     

𝐶̃𝑝+5
[3]
ℎ𝑝+5𝑢(𝑝+5)(𝑣𝑛) = 𝑢(𝑣𝑛+3) − 𝑢𝑛+1

[𝑞3] +𝑂(ℎ𝑝+6).   

 
Likewise, the mathematical investigation of 4-

step block- implicit method gives the star local 
truncation errors: 

 

𝐶̅𝑝̿+9
[1]
ℎ𝑝̿+5𝑦(𝑝̿+5)(𝑣𝑛) = 𝑢(𝑣𝑛+1) − 𝑢𝑛+1

[𝑙1] + 𝑂(ℎ𝑝̿+6),  

𝐶̅𝑝̿+5
[2]
ℎ𝑝̿+5𝑦(𝑝̿+5)(𝑣𝑛) = 𝑢(𝑣𝑛+2) − 𝑢𝑛+2

[𝑙2] + 𝑂(ℎ𝑝̿+6),        (17) 

𝐶̅𝑝̿+5
[3]
ℎ𝑝̿+5𝑢(𝑝̿+5)(𝑣𝑛) = 𝑢(𝑣𝑛+3) − 𝑢𝑛+3

[𝑙3] +𝑂(ℎ𝑝̿+6), 

 

where 𝐶̃𝑝+5
[1]
, 𝐶̃𝑝+5

[2]
, 𝐶̃𝑝+5

[1]
 , 𝐶̅𝑝̿+5

[1]
, 𝐶̅𝑝̿+5

[2]
 and 𝐶̅𝑝̿+5

[3]
 occur as 

distinctive physical element irrespective of the 
varying-step-size ℎ and 𝑢(𝑣) is given as analytical 
resolution of the third-order differential equations 
gratifying the pre-initial assumption 𝑢(𝑣𝑛) ≈ 𝑢𝑛 .  

In moving on, assuming for a smaller-scale 
measures of h is recognized as follows: 

 
𝑢(5)(𝑣̃𝑛) ≈ 𝑢

(5)(𝑣̅𝑛); 

 
and as such, generates the converging bounds and 
accomplishing the FMPBMD banks on the earlier 
stated presumption.  

Valuation of the computational construction of 
Eq. 16 and Eq. 17 stated earlier, avoiding 
interference, withdrawing termini of degree 
𝑂(ℎ𝑝+6), it suits the computed star local truncation 
errors of FMPBMD encountered as  

 

𝐶̅𝑝̿+5
[1]
ℎ𝑝̿+5𝑢(𝑝̿+5)(𝑣̅𝑛) ≈

𝐶̅𝑝̿+5
[1]

𝐶
𝑝̿+5
[1]

−𝐶̅
𝑝̿+5
[1] [𝑢𝑛+1

[𝑞1] − 𝑢𝑛+1
[𝑙1] ]  < 𝜀1,  

𝐶̅𝑝̿+5
[2]
ℎ𝑝̿+5𝑢(𝑝̿+5)(𝑣̅𝑛) ≈

𝐶̅𝑝̿+9
[2]

𝐶
𝑝̿+5
[2]

−𝐶̅
𝑝̿+5
[2] [𝑢𝑛+2

[𝑞2] − 𝑢𝑛+2
[𝑙2] ]  < 𝜀2,     (18) 

𝐶̅𝑝̿+5
[3]
ℎ𝑝̿+5𝑢(𝑝̿+5)(𝑣̅𝑛) ≈

𝐶̅𝑝̿+9
[3]

𝐶
𝑝̿+5
[3]

−𝐶̅
𝑝̿+5
[3] [𝑢𝑛+3

[𝑞3] − 𝑢𝑛+3
[𝑙3] ]  < 𝜀3. 

Keeping that 𝑢𝑛+1
[𝑞1] ≠ 𝑢𝑛+1

[𝑙1] , 𝑢𝑛+2
[𝑞2] ≠ 𝑢𝑛+2

[𝑙2]  and 

𝑢𝑛+3
[𝑞3] ≠ 𝑢𝑛+3

[𝑙3]  were seen as valuates of block-explicit 
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and block-implicit methods got by FMPBMD of order 

𝑝̿, while 𝐶̅𝑝̿+5
[1]
ℎ𝑝̿+5𝑢(𝑝̿+5)(𝑣̅𝑛), 𝐶̅𝑝̿+5

[2]
ℎ𝑝̿+5𝑢(𝑝̿+5)(𝑣̅𝑛) and 

𝐶̅𝑝̿+5
[3]
ℎ𝑝̿+5𝑢(𝑝̿+5)(𝑣̅𝑛) defines distinctively as star local 

truncation errors while then 𝜀1, 𝜀2 and 𝜀3 represents 
boundaries of the converging converging bound.  

Even so, star local truncation error of Eq. 18 is 
exploited to make decision of acceptance or rejection 
of the successive iteration or re-perform with a 
refine smaller varying-step-size. This procedure is 
justly acceptable on test of examination executed by 
Eq. 18 as seen earlier. For more particulars 
interested readers can see Ascher and Petzold 
(1998), Dormand (1996), Faires and Burden (2012), 
Lambert (1991), and Oghonyon et al. (2015, 2016). 
Again, the start local truncation errors Eq. 18 is 
mentioned as the converging bounds of FMPBMD for 
rectifying convergence. 

3. Result and discussion  

This section shows the performance of block-
Milne’s device accomplishing third-order ODEs using 
formulating Mathematica pseudocodes. The fulfilled 
computational result issued is got engaging 
Mathematica 9 Kernel. See FMPBMD ciphers. The 
language stated in Table 1 is seen underneath: 
 
Problem-Tested: Two problems are tested and 
accomplished applying FMPBMD on distinctively 
converging bounds of 0.00000001, 0.000000001, 
0.0000000001 and 0.00000000001 (Kuboye and 
Omar, 2015; Olabode, 2009; 2013; Olabode and 
Yusuph, 2009; Omar and Sulaiman, 2004). 
 
Tested-Problem 1:  
𝑢′′′(𝑣) = −𝑒𝑣,  𝑢(0) = 1,      𝑢′(0) = −1,    𝑢′′(0) = 3. 

Exact-Solution:  
𝑢(𝑥) = 2𝑣2 − 𝑒𝑣 + 2.   
Tested-Problem 2: 
𝑢′′′(𝑣) = 3𝑠𝑖𝑛𝑣, 𝑢(0) = 1,  𝑢′(0) = 0, 𝑢′′(0) = −2.  

Exact-Solution: 

𝑢(𝑣) = 3𝑐𝑜𝑠𝑣 +
𝑣2

2
− 2. 

 
Table 1 and Table 2 show the finished 

computational results of the tested-problem 1 and 2 
applying FMPBMD comparable to existing methods. 
The nomenclature used in Table 1 and Table 2 are 
seen infra. 

 
Table 1: Problem 1 

Method Maxerr Cbounds 
ANBM 7.2263𝐸 − 8 10−8 

FMPBMD 6.3496𝐸 − 8 10−8 
FMPBMD 6.38009𝐸 − 8  
FMPBMD 6.41019𝐸 − 8  
AASBM 9.73655𝐸 − 9 10−9 

FMPBMD 6.07475𝐸 − 9 10−9 
FMPBMD 7.42455𝐸 − 9  
FMPBMD 8.77572𝐸 − 9  
PR-PIBM 6.189094𝐸 − 11 10−11 
FMPBMD 5.53667𝐸 − 11 10−11 
FMPBMD 5.55306𝐸 − 11  
FMPBMD 5.57943𝐸 − 11  

 

Table 2: Problem 2 
Method Maxerr Cbounds 

BMM 8.35700𝐸 − 8 10−8 
FMPBMD 6.01206𝐸 − 8 10−8 
FMPBMD 6.02424𝐸 − 8  
FMPBMD 6.03605𝐸 − 8  

NS 8.343294𝐸 − 10 10−10 
FMPBMD 6.12059𝐸 − 10 10−10 
FMPBMD 6.2424𝐸 − 10  
FMPBMD 6.3654𝐸 − 10  

 

where: 
FMPBMD: error in FMPBMD (Formulating 
Mathematica Pseudocodes of Block Milne’s Device 
for Accomplishing Third-Order Ordinary Differential  
Equations). 
Cbounds: converging bounds. 
Mth: method used. 
Maxerr: magnitude of the computational maximum 
errors of FMPBMD. 
AASBMO: error in AASBMO (An Accurate Scheme By 
Block Method for Third Order Ordinary Differential 
Equations) for tested-problem 1 as cited Olabode 
(2009). 
ANBMS: error in ANBMS (A New Block Method for 
Special Third-Order ODEs) for tested-problem 1 as 
seen in Olabode and Yusuph (2009). 
BMMDS: error in BMMDS (Block Multistep Method 
for the Direct Solution of Third-Order of Ordinary 
Differential Equations) for tested-problem 2 
(Olabode, 2013). 
NSO: error in NSO (Numerical Solution of Third- 
Order Ordinary Differential Equations) for tested- 
problem 2 as seen Kuboye and Omar, 2015. 
PR-PIBMH: error in PR-PIBMHO (Parallel R-Point 
Implicit Block Method for Solving Higher Order 
Ordinary Differential Equations Directly Using 
Multistep Collocation Approach) for tested-problem 
1 as discoursed (Omar and Sulaiman, 2004). 

4. Conclusion 

The computational results achieved in Table 1 of 
problem 1 and Table 2 of problem 2 are truly a force 
of the converging bounds and varying-step-size. The 
termini computational result besides prove the 
functional performance of the FMPBMD to possess a 
meliorated result than AASBMO, ANBMS, BMMDS, 
NSO, PR-PIBMHO when in equivalence to kuboye 
and Omar (2015), Olabode (2009, 2013), Olabode 
and Yusuph (2009), and Omar and Sulaiman (2004). 
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