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Abstract. Geopolymer concrete is an emerging and innovative alkali-activated concrete that has 

been growingly studied because of its superior mechanical strengths and durability properties. 

This study, therefore, investigates the utilization of both corncob ash (CCA) and ground 

granulated blast furnace slag (GGBFS) as source materials activating with both sodium 

hydroxide (NaOH) and sodium silicate (Na2SiO3) solutions in the production of geopolymer 

concrete (GPC). Sodium hydroxide was prepared in 12 molar concentration using Grade 30 MPa 

mix design ratio. GGBFS was replaced by CCA in varying percentages 20, 40, 60, 80, and 100% 

and cured in ambient conditions. Slump, density, and compressive strength of GPC were 

determined and compared with Portland Cement Concrete (PCC) of the same grade. The 

research findings indicate an optimal strength of 100% GGBFS with a compressive strength of 

43.17MPa at 28 days curing for GPC compared with 35.12MPa for PCC. The result reveals that 

GPC has better strength than PCC and, CCA and GGBFS can be utilized as aluminosilicate 

materials to replace cement in the production of GPC.   

Keywords: geopolymer concrete; corncob ash, ground granulated blast furnace slag; 

regression model; sodium silicate; sodium hydroxide; compressive strength 

 

1. Introduction  

Geopolymer concrete is an inorganic binder formed by the chemical reactions of aluminosilicate source 

materials of geological origin such as fly ash, slag and metakaolin activating with alkaline liquid to 

produce a geopolymeric gel [1]. To date, geopolymer concrete has been identified as a possible alternative 

binder to Portland limestone cement concrete due to its superior engineering properties and 

environmental benefits [1]. Portland limestone cement is the most usable binding agent in the production 

of conventional concrete in the construction industries, but it is generally known that cement production 

is a significant contributor to the emissions of carbon dioxide (CO2) and greenhouse gasses to the 

atmosphere. In 2011, Stewart, Wang, and Nguyen established that the increase in carbon dioxide levels 

would globally raise the carbonation-induced corrosion in reinforced Portland cement concrete structures 

and that higher temperatures would possibly increase the deteriorating rates [2]. Similarly, Saha and 

Eckelman further forecast in 2014 that in construction projects, carbonation and chlorination penetrations 

in the existing Portland cement concrete structures would surpass current code-stipulated concrete cover 

thickness within 65 and 40 years respectively due to carbon dioxide emissions to the atmosphere [3]. In 

2002, Malhotra approximately reported that Portland cement (PC) production contributes 7% of the total 

greenhouse gas emissions to the earth’s atmosphere [4]. In comparison, there are about 70-80% less 

carbon dioxide emissions and 43-59% less energy required in the production of geopolymer cement, slag 

by-product [5]. Hence, the application of geopolymer concrete can significantly reduce the emissions of 

carbon dioxide into the atmosphere. 

In 2017, the United Nations Statistics Division Sustainable Development Goals (UNSDSDGs) established 

that in 2014, 9 in 10 residing in urban areas breathed air which did not conform to World Health 

Organizations air quality guidelines as a result of greenhouse gasses and CO2 into the atmosphere [6]. 

Moreover, rapid urbanization has brought great challenges such as increased air pollution, inadequate 

housing, and lack of opportunity for sustainable services and infrastructure most especially in developing 

countries like Nigeria. Therefore, safety, inclusiveness, resilience, and sustainability of cities and human 

settlements depend on the considerable alternative to the utilization of Portland limestone cement in the 
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production of concrete in Nigerian construction industries [7], and one of these alternatives is geopolymer 

or green concrete which does not use any Portland limestone cement in its production process and the 

source materials are pozzolanic which are supplementary cementitious materials such as ggbfs, cca, 

metakaolin, and fly ash [8-12]. 

Geopolymer concrete has been reported to attain excellent strength and durability when it is cured at a 

higher temperature normally 60-850C because the ambient temperature will be too low to activate the 

aluminosilicate compound of the source materials and alkaline liquids [9] [13]. This type of elevated curing 

condition is not suitable and applicable for in-situ cast concrete and thus, it is important to develop a 

promising binder without curing at a higher temperature in order to establish a practical applicability of 

concrete in real fieldwork. Also, the energy requirement and cost connected with the elevated curing 

process will be minimally reduced.  

The use of pozzolans such as CCA and low calcium fly ash as the only source material will retard the 

setting time, early and later age strengths. But in an attempt to achieve a geopolymer concrete cures at 

ambient conditions, Nath and Sarker in 2012, and Parthiban, Saravanarajamohan, Shobana, and 

Bhaskar in 2013 reported that an addition of ground granulated blast furnace slag significantly reduces 

the setting time and increases the early and later age strengths. It was discovered that the significant 

factor is the percentage replacement of slag with pozzolan in addition to the types of alkaline activators 

and molarities [14-15]. In 2013, Pugilla and Mondal observed that the addition of slag speeds up pozzolan 

dissolution and enhances the formation of reaction products in ambient curing condition [16]. 

Furthermore, higher compressive strength is achieved when a higher concentration of sodium hydroxide 

is used because more aluminosilicates will be dissolved thereby, forming stronger bonds [9] [17]. Thus, it is 

important to carry out a study focusing on the effects of sodium hydroxide concentration on the 

mechanical strength of GGBFS and CCA based-GPC.  

Therefore, this study provides an understanding of slump, density and compressive strength of 

geopolymer concrete cured in ambient conditions at 7 and 28 days. CCA and GGBFS were used as 

binder materials while sodium hydroxide and sodium silicate solutions were used as alkaline activators 

and the investigation was done for grade 30 MPa concrete. Density and compressive strength were 

further analyzed by regression model to develop model equations and predict their relationships suitable 

for geopolymer concrete. The optimum scope of the mixture proportions was selected based on the 

relevant studies of Rajini and Rao, and Fang, Ho, Tu, and Zhang [18-19]. Finally, all the experimental 

works in this study were carried out at the Civil Engineering Department, College of Engineering, 

Covenant University, Ota, Nigeria. 

2. Materials and Methods 

2.1. Materials 

Dangote 3X Portland limestone cement Grade 42.5R was used and obtained from a cement dealer in Ota, 

Ogun State, Nigeria. Both fine and coarse aggregates were sourced from tipper garage, Chelsea, Ota, 

Nigeria. The combined coarse aggregates used in this study were 12.5mm and 19mm sizes. Fine and 

coarse aggregates were used in saturated surface dry (SSD) condition in consonant with the American 

Society for Testing and Materials [20-21]. Russian made sodium hydroxide (NaOH) pellet with 99% purity 

and sodium silicate (Na2SiO3) solution were both used and sourced from Obi-Dan & Sons Chemicals 

Division, Lagos, Nigeria. The ratio of sodium silicate solution-to-sodium hydroxide solution was 2.5. 

Furthermore, the naphthalene-based superplasticizer (Conplast- SP 430) or high-range water-reducing 

admixture was sourced from Fine Coat Paint Industry, Lagos, Nigeria and administered at 1.0% of the 

binder materials in accordance with Okoye, Durgaprasad, and Singh [22]. Corncobs were obtained from 

the heaps of waste cobs which exist in large quantity in Agbonle (8° 53' 0" North, 3° 31' 0" East), Oyo 

State, Nigeria. Open air burning was adopted. The corncob ash was then sieved with a 90µm sieve and 

then analyzed for its oxides compositions using X-Ray Fluorescence (see Figure 1) while the granulated 

blast furnace slags was sourced from Dolphin Steel (Nigeria) Limited, Papalanto, Nigeria. It was further 
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dried, ground (see Figure 1) and then sieved with a 90µm sieve, analyzed for its oxides composition 

using X-Ray Fluorescence. Finally, water was sourced from the laboratory tap and used for the 

production process. 

                   
           (a) CCA used                                          (b) GGBFS used 

Fig. 1 The source material used 

2.2 Design of Concrete Mix Proportion 

Both the Portland limestone cement concrete and geopolymer concrete mix proportions were designed in 

accordance with the British Standards [23-24], taking into considerations the specific gravities, water 

absorptions and moisture contents of the constituents in the mix. The mix proportions and mix number is 

presented in Table 1 while the results of volumetric computations for both PCC and GPC are presented in 

Table 2 and Table 3 respectively. 

 

Table 1 The mix proportions for the concrete 

S/N Ingredient Proportions Mix No. Remarks 

1 

2 

3 

4 

5 

6 

7 

PCC 

100% GGBFS + 0% CCA 

80% GGBFS + 20% CCA 

60% GGBFS + 40% CCA 

40% GGBFS + 60% CCA 

20% GGBFS + 80% CCA 

0% GGBFS + 100% CCA 

PCC 

GPC 1 

GPC 2 

GPC 3 

GPC 4 

GPC 5 

GPC 6 

Control sample 

 

 

Note: PCC (Portland Cement Concrete); GGBFS (Ground Granulated 

Blast Furnace Slag); CCA (Corncob Ash); GPC (Geopolymer Concrete) 

 

Table 2 The volumetric computation of M30 PCC 

S/N Constituent Weight 

(Kg/m3) 

Specific 

Gravity 

Absolute Volume          

(M3) 

Adjusted 

Volume (M3) 

Ratio 

1 

2 

3 

4 

5 

6 

Cement 

FA (SSD) 

CA (SSD) 

Water 

Air content 

SP 

Total 

390 

675 

1031 

204.15 

2.00 

3.90 

2306 

3.15 

2.60 

2.64 

1.00 

- 

1.20 

0.124 

0.260 

0.390 

0.204 

0.020 

0.005 

1.004 

0.124 

0.259 

0.388 

0.204 

0.020 

0.005 

1.000 

1.00 

2.09 

3.13 

1.65 

- 

0.04 

7.91 

Note: FA (Fine Aggregate); CA (Coarse Aggregate); SSD (Saturated Surface Dry); SP 

(Superplasticizer);M30 (Grade 30 Concrete); PCC (Portland Cement Concrete) 
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Table 3 The volumetric computation of M30 GPC 

S/N Constituent Weight 

(Kg/m3) 

Specific 

Gravity 

Absolute Volume          

(M3) 

Adjusted 

Volume (M3) 

Ratio 

1 

2 

3 

4 

5 

6 

7 

GGBFS/CCA 

FA (SSD) 

CA (SSD) 

NaOH solution 

Na2SiO3 solution 

Conplast SP-430 

Air content 

Total 

390 

675 

1031 

60 

150 

3.90 

2.00 

2306 

2.90/2.44 

2.60 

2.64 

1.49 

1.60 

1.20 

- 

0.134 

0.260 

0.390 

0.040 

0.094 

0.005 

0.020 

0.943 

0.142 

0.276 

0.414 

0.042 

0.100 

0.005 

0.021 

1.000 

1.00 

1.94 

2.92 

0.30 

0.70 

0.04 

- 

6.90 

Note: GGBFS (Ground Granulated Blast Furnace Slag); CCA (Corncob Ash) FA (Fine Aggregate); CA 

(Coarse Aggregate); SSD (Saturated Surface Dry); SP (Superplasticizer); M30 (Grade 30 Concrete) 

2.3 Preparation of Alkaline Activators 

The sodium hydroxide (NaOH) solid pellet (354g) was measured and dissolved in 646g of clean water 

based on the 12 molar concentration [25]. This correctly resulted in 1000g of sodium hydroxide solution. 

The sodium hydroxide solution was prepared 24 hours prior to cool down the solution up to ambient 

condition. Thereafter, NaOH solution was added to Na2SiO3 (water glass) two hours prior to casting of 

concrete to enhance its performance for the best result [17]. 

2.4 Mixing and Casting 

The cementitious materials and aggregates were thoroughly mixed for about three minutes until a 

homogenous mixture was obtained. The liquid and dry components were added and the mixing continued 

for further 5 minutes. The fresh mix was manually cast, and then filled in the moulds and compacted 

accordingly. Workability of fresh concrete was measured by slump cone apparatus after making the 

homogeneous mix. PCC samples were removed from the moulds 24 hours after casting and immersed in 

water curing tank until testing day while GPC specimens were kept in rest period for 72 hours before 

being demoulded to allow for proper polymerization. All samples were cured at room temperature in 

ambient condition (23 ± 5 oC; 60% ± 5% RH). For each mixture, three samples were prepared for each 

testing age.  

2.5 Experimental Test Methods 

Slump, density and compressive strength were carried out in accordance with the procedures set out in 

British Standards [26-28] respectively. Slump test on freshly mixed concrete was carried out on 7 different 

samples. Compressive strength and dry density tests were conducted on the hardened concrete sample. 

Each test was examined on three samples with size 150 mm × 150 mm × 150 mm curing at 7 and 28 

days.  

3. Results and Discussions 

3.1 CCA Oxides compositions 

The results of the o x i d e s  c o m p o s i t i o n s  a r e  presented in Table 4. It showed a silicon 

dioxide (SiO2) content of 59.50% which is greater than the minimum requirement of 25.0% by mass 

recommended by the American Society for Testing and Materials [29]. Moreover, a total of (SiO2 + Al2O3 

+ Fe2O3) content of 77.41% met the minimum specification of 70.0%. The magnesium oxide (MgO) 

and the sulphur oxide (SO3) contents of 1.23% and 1.25% respectively are below the maximum 

requirement of 4.0%. The loss of ignition and the moisture contents of 0.49% and 1.25% are below the 

maximum specifications of 10% and 3% respectively. From the above analysis, it is inferred that the Corn 
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Cob Ash (CCA) used is a suitable material for use as a Pozzolan as it satisfied the required specifications 
[29].  

Table 4: The oxides compositions of the CCA used 

Composition SO3 SiO2 Al2O3 Fe2O3 CaO MgO Na2O M.C LOI  

Properties (%) 1.25 59.50 8.78 9.13 18.23 1.23 0.65 1.25 0.49  

ASTM C 618  

Requirements                

   ≤ 4%  SiO2+Al2O3+ Fe2O3   

                 > 70%  

-  ≤ 4% > 0.70  ≤ 3% ≤10%   

 

3.2 GGBFS Oxides compositions 

The oxides compositions of the GGBFS used is presented in Table 5 and the result indicates that GGBFS 

is suitable for use because its properties met the requirements of the American Society for Testing and 

Materials [30]. 

Table 5: The oxides compositions of the GGBFS used 

Composition CaO SiO2 Al2O3 Fe2O3 SO3 MgO Na2O M.C LOI      

Properties (%) 36.52 35.77 14.11 0.92 1.08 9.45 0.30 0.52 0.32  

ACI 233R  

Requirements                

32-45 32-42    7-16    0.1-1.5 0.7-2.2 5-15 - - -  

 

3.3 Slump 

Figure 2 shows the slump values of the geopolymer concrete (GPC) at various ground granulated blast 

furnace slag replacements. The results revealed that slump values were influenced by the replacement 

levels of ground granulated blast furnace slag (GGBFS) in the geopolymer concrete because the control 

sample (PCC) exhibited the similar slump to GPC (100% GGBFS). In the mixtures, the slump values 

increased with the decrease of ground granulated blast furnace slag content, and it is in agreement with 

the studies by [14] [18] [31]  who reported an increase in a slump as the slag replacement levels decrease. The 

result can be attributed to the induced and stimulated reaction of calcium and the angular shape of ground 

granulated blast furnace slag when compared with the spherical shape of CCA [31]. Hence, the workability 

of geopolymer concrete is categorized as a highly workable concrete because the slump values exceed 

90mm based on the condition of compaction [32].  

 
 

Fig. 2 Graph of a slump test 
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3.4 Density 

The density of Portland cement concrete (PCC) from Figure 3 ranges from 2420kg/m3 in 7 days to 

2400kg/m3 in 28 days. The density slightly decreases with ages as a result of the degree of hydration in 

the concrete.  A similar pattern was noticed for geopolymer concrete (GPC 1 to GPC 3) with a density 

ranging from 2425kg/m3 in 7 days to 2386kg/m3 in 28 days. From GPC 4 to GPC 6, there is a slight 

decrease in density from 2373kg/m3 in 7 days to 2250 kg/m3 in 28 days. This infers that the addition of 

more corncob ash (CCA) marginally decreases the density in the GPC mix. This may be attributed to the 

specific gravity of CCA which is less than that of GGBFS. 

 

 
 

Fig. 3 Graph of density against the curing days 

3.5 Compressive Strength 

Comparing the compressive strengths of geopolymer concrete (GPC) to the compressive strengths of 

control mix (PCC) at 7 and 28 days curing in Figure 4, the results show that there is an increase in 

compressive strength of GPC up to 40% replacement levels over the PCC. Thus, 40% substitution of 

GGBFS with CCA seems to be the optimal limit for the Grade 30 mix design. The increase in both early 

and later strengths of GPC 1 to GPC 3 compare with the control mix (PCC) may be attributed to the 

reactive presence and formation of calcium-aluminate-silicate-hydrate (C-A-H-S) gels in the geopolymer 

paste, which compress the microstructure of geopolymer matrix, and reduce the void, and the continued-

longer period of polymerization process of the GPC [33-34]. In addition, it is revealed that the compressive 

strength of the geopolymer concrete increased with the increased amount of ground granulated blast 

furnace slag in the mix. Furthermore, GPC 4, GPC 5, and GPC 6 exhibit relatively lower early age and 

later age strengths than the control mix (PCC) which may be imputed to the lower amount of reactive 

silica or aluminate in the matrix of the concrete to influence the formation of particle interaction that 

would yield better aluminosilicate bonds [35]. 
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Fig. 4 Graph of compressive strength against the curing days 

3.6 The relationship between the compressive strength and the density of the GPC 

A standard statistical software tool (Matlab 2017a) was employed to determine the relationship that exists 

between the compressive strength and the density of the geopolymer concrete at both 7 and 28 days 

curing. The polynomial regression model at degree 2 was used. The regression equations are presented in 

Figure 5 and Figure 6 for 7 and 28 days respectively. With respect to compressive strength, the 

coefficients of determination (R2) are 82.28% and 92.19% for density at 7 and 28 days respectively. 

These infer that the models are 82% and 92% significantly fit to predict the 7 and 28 relationships 

respectively and also, compressive strength largely depends on the density at 95% confidence bounds. 

 

Fig.5: Relationship between the compressive strength and the density at 7 days 
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Fig.6 Relationship between the compressive strength and the density at 28 days 

4. Conclusions 

Geopolymer concrete shows a higher compressive strength when compared with the Portland cement 

concrete. Comparing with the PCC, the optimal replacement level of both GGBFS and CCA for optimum 

strength is obtained at 60% and 40% respectively. GGBFS and CCA-based GPC shows an emerging 

sustainability in place of PCC which can be utilized in general construction as a structural and non-load 

bearing concretes. Therefore, it is of great realistic importance to state that this study contributed to the 

engineering and emerging innovation for a sustainability world. It utilized the chemistry of materials for 

sustainable buildings, cities, and communities. Also, it established model equations to predict the 

compressive strength with respect to the density of the concrete. 
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