
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/162043801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 OPEN ACCESS Asian Journal of Scientific Research

ISSN 1992-1454
DOI: 10.3923/ajsr.2018.553.559

Research Article
Softcode of Multi-Processing Milne’s Device for Estimating
First-Order Ordinary Differential Equations
1Jimevwo Godwin Oghonyon, 2Olaide Adetola Adesanya, 1Hudson Akewe and 1Hilary Izuchukwu Okagbue

1Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria
2Department of Mathematics, Modibbo Adama University of Technology, Yola, Nigeria

Abstract
Background and Objectives: Softcodes is a form of Mathematica language invented for the successful implementation of
MPMD. Technical computing is an aspect of computing for the sole purpose of computation leading to better accuracy. This
paper considers softcode of multi-processing Milne’s device for estimating first-order Ordinary Differential Equations (ODEs).
Materials and Methods: Multi-Processing Milne’s Device (MPMD) is source from Adams collection of predicting-correcting scheme
implemented via interpolation and collocation adopting multinomial finite sequence near resolution. This combination is mathematically
assembled in MPMD pattern and analyzed to produce the order of the MPMD thereby setting up the chief local truncation errors.
Results: The computational results generated were aided with Softcodes in Mathematica data format and setting the bounds of
convergency. Conclusion: The calculated results are compared with subsisting methods to enhance the viability and effectiveness of the
MPMD over others.

Key words: Softcode, MPMD, bounds of convergency, multi-processing, chief local truncation errors

Received: April 10, 2018 Accepted: July 26, 2018 Published: September 15, 2018

Citation: Jimevwo Godwin Oghonyon, Olaide Adetola Adesanya, Hudson Akewe and Hilary Izuchukwu Okagbue, 2018. Softcode of multi-processing Milne’s
device for estimating first-order ordinary differential equations. Asian J. Sci. Res., 11: 553-559.

Corresponding Author: Jimevwo Godwin, Oghonyon, Department of Mathematics, College of Science and Technology, Covenant University, P.M.B. 1023,
Ota, Ogun State, Nigeria Tel: +234-8139724200

Copyright : © 2018 Jimevwo Godwin Oghonyon et al. This is an open access article distributed under the terms of the creative commons attribution
License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/ajsr.2018.553.559&domain=pdf&date_stamp=2018-09-15

Asian J. Sci. Res., 11 (4): 553-559, 2018

INTRODUCTION

Softcode for providing approximate results to Ordinary
Differential Equations (ODEs) are very essential in technical
computing, since it is greatly utilized to prototype real life
applications1-4. Multi-processing Milne’s device for estimating
first-order differential equation is of the form Abell and
Braselton1, Ken et al.3, Bakoji et al.5 and Adejumo et al.6:

v' = g(t, z), z(u0) = α (1)

Arising from Eq. 1, there is a need to look for numerical
solution enclosed on u0[c, d] such that c and d are bounded
with the assumption that z meets the considerations as
seen in Akinfenwa et al.7, Anake et al.8, Anake and Adoghe9,
Jain et al.10, Lambert11,12, Sunday et al.13 and Xie and Tian14.
Thus, ensures that Eq. 1 possess a specific differential
coefficient at every point.

The universal multi-processing Milne’s device is instituted
as:

(2)
j j

' ' ' '
i m i i m i

i 0 i 0
g h z 

 

   

where, and are invariables implying that '
i

'
i

'
i 0, 

 Adesanya et al.15.' '
i i 0  

According to Lambert11, Dormand16 and Faires and
Burden17, multi-processing Milne’s device is seen as an
alternative to multi-processing predicting-correcting scheme
on the account of the numerical vantages it features over
others. Generators such as Akinfenwa et al.2, Bakoji et al.5,
Anake et al.8, Anake and Adoghe9, Adesanya et al.15, Majid
and Suleiman18 and Oghonyon et al.19-21 suggested multi-
processing predictor-corrector scheme implemented on
first-order ODEs. Multi-processing predicting-correcting
scheme derives shortcomings during computation/execution
and as such, unable to find a suitable length, resolve bounds
of convergency and lack of error maximization.

The motivation of this research study is founded on the
concept of generating certain qualities of the multi-processing
Milne’s device which are comparable to BDF for implementing
stiff ODEs and vibration problem as discussed in Anake et al.8,
Anake and Adoghe9, Jain et al.10, Sunday et al.13, Faires and
Burden17, Oghonyon et al.19-21, Ascher and Petzold 22, Ngwane
and Jator23-25 and Ibrahim et al.26. Again, softcodes of
Mathematica codes is projected for implementation1,3.

The main aim of this research work is to develop
softcodes of multi-processing Milne’s device for computing

first-order ODEs. Furthermore, this originality has been
established on various body of literatures as cited Lambert11,12,
Dormand16, Faires and Burden17, Oghonyon et al.19-21 and
Ascher and Petzold22 for more particulars. This includes
some elements like; Adams type, multi-processing
predicting-correcting scheme of the like range and chief
local truncation errors as remarked above.

MATERIALS AND METHODS

Softcode for multi-processing Milne’s device is a
collection of multi-processing predicting-correcting scheme
of Adams type. This requires Adams-Bashforth-Adams-
Moulton (multi-processing predicting-correcting of ilk range)
scheme. This involves u-length multi-processing predicting
scheme and u-1-length multi-processing correcting scheme
of ilk range. This compendium is established as:

(3) 
j j

i m i 1 i m i
i 0 i 0

g t g h z 
 

    

(4)
j j

1 m ii im i
i 0 i 0

g(t) g h z 
 

   

Equation 3 and 4 determines the multi-processing
predicting-correcting scheme of multi-processing Milne’s
device. Remarking g(tm+i).gm+i, g(xm+i, gm+i).zm+i having
j = 0, 1, 2. To attain Eq. 3 and 4, the approximative function is
penned below to evaluate the analytical resolution g(t) on
clear-cut time intervals of [tn, tn-j] by way of interpolation of the
form:

(5)
ij

n
i

i 0 1

t tg(t) x
h

 
  

 


Revising Eq. 5 in softcode format produces the softcode
approximate function as:

(6)               3

1
3
1

t t n t t n
g t = x 0 + x 1 + x 2 + x 3

h h

 

where, x0, x1, x2 and x3 are parameters required to be settle in
a special manner. Presuming that Eq. 6 corresponds with the
precise result at approximately selected definite length of time
interval tn, tn-j to yield approximation as:

g(tn).gn, g(tn-j).gn-j (7)

554

Asian J. Sci. Res., 11 (4): 553-559, 2018

Taking that the approximating function (Eq. 6) gratifies
(Eq. 1) at more or less chosen points tn+j, j = 0, 1, 2 to obtain the
following approximates as:

g'(tn+j).zn+j, j = 0, 1, 2 (8)

Merging Eq. 7 and 8 will generate quadruplet formations
which produces At = b:

(9)

 
 
 
 

      
   

1, 1,1, 1 ,
0,1,0,0 ,

matrixa = ;
0,1, 2,3 ,
0,1, 4,12 ,

b = g n , z n 1 ,z n 2 ,z[n 3] ;

j,k,l,q = Inverse matrixa .b

 
 
 
 
 
  

 




  

(10)

 
 
 
 

      
   

1, 1,1, 1 ,
0,1,2,3 ,

matrixa = ;
0,1,4,12 ,
0,1,6,27

b = g n 1 , z n +1 ,z n + 2 ,z[n + 3] ;

j,k,l,q = Inverse matrixa .b

 
 
 
 
 




 

 

Figuring out the systems of equation applying
Mathematica 9 kernel, softcodes gives xj, j = 0, 1, 2, 3 and
putting back values of xj's into Eq. 6 will generates the
uninterrupted multi-processing prediction scheme and
multi-processing correcting scheme of Milne’s device
as:

              

         

       

1 2 3

2 3

2 3

2 3

2 3

2 3

t t n 3 t t n t t n5g t = 1 g n 1 + + + +
12 h 4h 6h

t t n t t n2f n h + f n 1 h +
3 h 3h

3 t t n t t n1 + + f n - 2 h
12 4h 6h



 
 
 





 
 
 
 

 
 
 
 

 


 
  

 

(11)

              

            

          

1 2 3

2 3

1 2 3

2 3

1 2 3

2 3

3 t t n 5 t t n t t n53g t = 1 g n 1 + + - +
12 h 4h 6h

3 t t n 2 t t n t t n16f n +1 h + + f n + 2 +
3 h h 3h

t t n 3 t t n t t n23 + + f n + 3
12 h 4h 6h



  


 

 
 
 
 

 
 
 
 

 
 
 
 


  

  


(12)

Assessing the uninterrupted multi-processing prediction
scheme and multi-processing correcting scheme of Milne’s
device at some favourable grids, tn+j, j = 1, 2, 3 will originate
the multi-processing prediction Milne’s device and multi-
processing correcting Milne’s device as:

g(t) = gn-1+h1 (µ1 zi+µ2 zi-1+µ3 zi-2),
g(t) = gn-1+h1 (β1 zi+1+β2 zi+2+β3 zi+3) (13)

where, $1, $2, $3, µ1, µ2 and µ3 are parametric
quantity1,4,11,12,16,17,23-25,27 for more details.

Devising bounds of convergence for multi-processing
Milne’s device: To set in motion numeric operation of multi-
processing Milne’s device, the r-length multi-processing
predicting scheme and r-1-length multi-processing
correcting scheme are put to use as multi-processing
predicting-correcting scheme owns alike range
Locate11,12,16,17,19-22 for more. Uniting Lambert11,12, Dormand16,
Faires and Burden17, Oghonyon et al.19-21 and Ascher and
Petzold22, it is workable to find approximative chief local
truncation error of multi-processing predicting-correcting
scheme in absentia of higher order differential coefficients,
g(t). What is more, p1 = c1 where, p1 and c1 represents range of
multi-processing predicting and correcting schemes.
Straightaway, scheme of range p1, taking apart multi-
processing predicting r-length gives rise to the chief
principal local truncation errors:

(14)

         
         
         

111 1

1

222 2

2

333 3

3

qp +4p +4 p +5[1]
p +4 1 n n+1 n+1 1

qp +4p +4 p +5[1]
p +4 2 n n+2 n+2 2

qp +4p +4 p +5[3]
p +4 3 n n+3 n+3 3

P h g t = g t g + O h ,

P h g t = g t g + O h

P h g t = g t g + O h







Likewise, looking into multi-processing correcting
scheme r-1-step brings forth chief local truncation errors
as:

(15)

         
         
         

111 1

1

222 2

2

333 3

3

sc +4c +4 c +5[1]
c +4 1 n n+1 n+1 1

sc +4c +4 c +5[2]
c +4 2 n n+2 n+2 2

sc +4c +4 c +5[3]
c +4 3 n n+3 n+3 3

C h g t = g t g + O h ,

C h g t = g t g + O h ,

C h g t = g t g + O h ,







where, continues as classified
1 2 3 1 2 3

[1] [2] [3] [1] [2] [3]
p +4 p +4 p +4 c +4 c +4 c +4P , P , P C , C Cand

quantity of length h1 and g(t) behave as analytic resolution to
higher derived function conforming to the initial stipulation
g(tn).gn. Look into Lambert11,12, Dormand16, Faires and
Burden17, Oghonyon et al.19-21 and Ascher and Petzold22 more
items.

555

Asian J. Sci. Res., 11 (4): 553-559, 2018

Further advancement for less precondition measures of
length h1 is reached g(4) (tn).g(4) (tn) and the potency of multi-
processing Milne’s device trusts instantly on this presumption
stated over.

Reducing in advance the chief the principal local
truncation errors of Eq. 14 and 15 over besides dismissing
considerations of range O(hp1+5). Thus, introduces no concern
achieving the numerical formulation of chief local truncation
errors of the multi-processing Milne’s device:

(16)

       

       

       

1 1 111

1

1 1

2 2 222

2

2 2

3 3 333

3

3 3

[1]
p +4 q sp +4p +4[1]

p +4 n n+1 n+1 1[1] [1]
p +4 p +4

[2]
p +4 q sp +4p +4[2]

p +4 n n+2 n+2 2[2] [2]
p +4 p +4

[3]
p +4 q sp +4p +4[3]

p +4 n n+3 n+3 3[3] [3]
p +4 p +4

C
C h g t g g < τ ,

P C

C
C h g t g g < τ ,

P C

C
C h g t g g < τ

P C










   

   

   

Referring the avouchment that        1 1 2 2q s q s
n+1 n+1 n+2 n+2,g g g g 

and are named predicting and correcting   3 3q s
n+ j n+ jg g

estimations founded thru multi-processing Milne’s device
of order p1, even though

       1 21 2

1 2

p +4 p +4p +4 p +4[1] [2]
p +4 n p +4 n C h g t , C h g t

and are each separately called chief local   33

3

p +4p +4[3]
p +4 nC h g t

truncation errors. τ1, τ2 and τ3 are bounds of convergency of
the multi-processing Milne’s device.

Advancing forward, these approximates of the chief local
truncation error (Eq. 16) is utilized to make decision on
acceptance or rejection thereby iterating with less or smaller
varying length. The length is sustain free-based on a try out
laid down by Eq. 16 11,12,16,17,19-22 for more details. The chief local
truncation errors (Eq. 16) is the bounds of convergence of the
multi-processing Milne’s, device denoted differently as
multi-processing Milne’s device for adjusting to convergence.

Numerical problems: Two problems tested are worked with
MPMD. The bounds of convergency considered includes;
10G4, 10G6, 10G8, 10G10, 10G11 and 10G14. Find Sunday et al.13,
Rufai et al.28 and Sunday et al.29 for more actions. A computer
programming codes on MPMD is written utilizing
Mathematica 9 kernel. The act of accomplishment is carried
out in a multi-processing manner via MPMD (Appendix).

Test problem 1: Consider the nonlinear IVP,
g'(t) = -10(g(t)-1)^2, g(0) = 2.

Analytical result:   (2 +10t) .g t =
(1+10t)

Test problem 2: Consider Prothero-Robinson periodic
vibration ODE, g'(t) = L(g(t)-sin(t))+cos (t), L = -1, g(0) = 0.

Analytical result: g(t) = sin (t).

RESULTS AND DISCUSSION

Under this section, the computational output shows
the execution of MPMD for solving first-order ODEs. The
final output supplied were obtained with the aid of
Mathematica 9 Kernel 64 on Microsoft windows (64 bit) to
demonstrate the efficiency and accuracy of the first-order
ODEs13,28,29.

Table 1 demonstrates the numerical results of
problems 1 and 2 using MPMD equated with existing
methods.

Table 1 presents a summary of the result displayed and
items considered. This includes; method utilized, computed
max errors and bounds of convergency. Again, shows the
comparison with other existing results and justifies MPMD
as a preferable proficiency in terms of the computed max
errors:

Table 1: Summary of results
Mutilized Maxerrors Bcov

ERR 3.296387e-004 10G4

ERR 2.983380e-004
ERR 2.819223e-004
MPMD 1.30546e-004 10G4

MPMD 1.31522e-004
MPMD 1.32503e-004
ERS 6.017101e-006 10G6

ERS 5.411308e-006
ERS 4.880978e-006
HBM 2.840882e-006 10G6

HBM 2.717126e-006
HBM 2.588157e-006
MPMD 1.04804e-006 10G6

MPMD 1.0511e-006
MPMD 1.06653e-006
ERR 1.429167e-008 10G8

ERR 1.283029e-008
ERR 1.159479e-008
MPMD 9.59886e-009 10G8

MPMD 9.70295e-009
MPMD 9.80786e-009
ERA 2.0e-010 10G10

ERA 3.0e-010
ERA 3.0e-010
MPMD 1.02131e-010 10G10

MPMD 1.06689e-010
MPMD 1.31986e-010
ERS 1.803588e-011
MPMD 1.04299e-011 10G11

MPMD 1.10816e-011
MPMD 1.17654e-011
ERR 7.155093e-014 10G14

ERR 5.921081e-014
ERR 8.457038e-014
MPMD 1.70636e-014 10G14

MPMD 1.78416e-014
MPMD 3.29997e-014

556

Asian J. Sci. Res., 11 (4): 553-559, 2018

C The signifiers mentioned on Table 1 are stated below:

MPMD: Computed max errors in MPMD (multi-processing
Milne’s device) for time-tested problems 1 and 2

Mutilized: Method utilized
Maxerrors: Magnitude of computed max errors in MPMD
Bcov: Bounds of convergency
1/6 HBM: Computed max errors in one-sixth HBM (1/6 hybrid

block method) for time-tested problem 1 28

ERR (BI): Computed max errors in ERR (BI) (block integrator)
for time-tested tested problem 1 and 2 13

ERR: Computed max errors in ERR (quarter-step method
of 10G4) for tested problem 1 29

Softcodes algorithm rule: A well written algorithmic rule that
will execute MMD and assess the computed max errors of
MPMD in the family of P(EC)j or P(EC)j E style, conditionally,
when the style is implemented as many times to ensure
convergence. Check out23:

Step 1: Take length for h
Step 2: The MPMD of predicting-correcting scheme must

have alike range
Step 3: The length of predicting must have higher length

than correcting scheme
Step 4: Estimate the chief local truncation errors of the

MPMD only when CLTE is reached
Step 5: Fix the bounds of convergency
Step 6: Generate the softcodes of MPMD utilizing

Mathematica 9 kernel
Step 7: Adopt single step technique to kick start the

procedure if necessary, otherwise avoid 7 and go to
step 8

Step 8: Perform the MPMD in the family of P(EC)j or
P(EC)j E style as j increases

Step 9: When step 8 did not attain convergency,
ingeminate the process once again and half the
length (h) from step 1 or otherwise, go on to step 10

Step 10: Calculate the computed max errors when
convergency is fulfilled

Step 11: Publish computed max errors
Step 12: Use this equation below to devise a new length only

when convergency is attained

 1 1

10
40

1
[1] [1]
p +4 p +4

τrh =
2 P C

CONCLUSION

The computed results displayed MPMD is reached
utilizing the bounds of convergency. This bounds of
convergency examine the acceptance or rejection of the
looping with a smaller length. The mathematical outputs
establish the performance of MPMD is remarked to
showcase a more acceptable computed max error at all
bounds of convergency. This is made possible by
seeking a suitable/changing length, determining the
bounds of convergency as compare to subsisting
schemes implemented without these features. This
proficiency for a better result is executed at all examined
bounds of convergency such as 10G4, 10G6, 10G8, 10G10,
10G11 and 10G14. Thence, it will be concluded that MPMD
is worthy for estimating ODEs. Furthermore, MPMD is
better and preferred to schemes such as block predictor-
corrector methods, block implicit method, block hybrid
method because their applications are based on fixed step
size, no bounds of convergency and always implemented in
predictor-corrector method. Continuous research can be
carried out to increase the order of MPMD for examining
performance.

SIGNIFICANT STATEMENT

The significant of this study is as follows:

C A new basis function approximation is designed in form
of Softcodes for yielding interpolation and collocation
estimates

C The scientific community will benefit by using Softcodes
in Mathematica format, encrypted for the successful
implementation of MPMD

C The accuracy of MPMD is validated on nonlinear IVP and
vibration problem

C MPMD advances the utilization of the chief local
truncation error outside showing the order

C The MPMD is considered as an option to Backward
Differentiation Formula (BDF) on account of some similar
advantages it possesses

ACKNOWLEDGMENT

The authors would like to appreciate Covenant
University for financing this research work.

557

Asian J. Sci. Res., 11 (4): 553-559, 2018

Appendix: The softcodes of problem 1 and 2 implemented via MPMD is given
below

Softcodes of multi-processing predictor method
clear[g];
soln=DSolve[{g'[t]==-10(g[t]-1)^2,g[0]==2},g[t],t];
Simplify[soln]
g[t_]=(2+10t)/(1+10t)
h=given values
x[n]=given values
t=given values
g[1]=g[0]+h(g'[0])+(h^2/2)g''[0]+(h^3/6)g'''[0]+(h^4/24)g''''[0]
g[2]=g[1]+h(g'[x[n]])+(h^2/2)g''[x[n]]+(h^3/6)g'''[x[n]]+(h^4/24)g''''[x[n]]
g[3]=g[2]+h(g'[x[n]+h])+(h^2/2)g''[x[n]+h]+(h^3/6)g'''[x[n]+h]+(h^4/24)g''''[x
[n]+h]
g[4]=g[3]+h(g'[x[n]+2h])+(h^2/2)g''[x[n]+2h]+(h^3/6)g'''[x[n]+2h]+(h^4/24)g
''''[x[n]+2h]

t=x[n]+h
g[3]=g[1]+h((1/3)g'[t-x[n]-h]-(2/3)g'[t-x[n]]+(7/3)g'[t])
t=x[n]+3h
g[5]=g[2]+h((9/4)g'[t-x[n]-h]-(6)g'[t-x[n]]+(27/4)g'[t])
t=x[n]+5h
g[7]=g[3]+h((20/3)g'[t-x[n]-h]-(52/3)g'[t-x[n]]+(44/3)g'[t])

t=x[n]+4h
g[6]=g[4]+h((1/3)g'[t-x[n]-h]-(2/3)g'[t-x[n]]+(7/3)g'[t])
t=x[n]+6h
g[8]=g[5]+h((9/4)g'[t-x[n]-h]-(6)g'[t-x[n]]+(27/4)g'[t])
t=x[n]+8h
g[10]=g[6]+h((20/3)g'[t-x[n]-h]-(52/3)g'[t-x[n]]+(44/3)g'[t])

t=x[n]+7h
g[9]=g[7]+h((1/3)g'[t-x[n]-h]-(2/3)g'[t-x[n]]+(7/3)g'[t])
t=x[n]+9h
g[11]=g[8]+h((9/4)g'[t-x[n]-h]-(6)g'[t-x[n]]+(27/4)g'[t])
t=x[n]+11h
g[13]=g[9]+h((20/3)g'[t-x[n]-h]-(52/3)g'[t-x[n]]+(44/3)g'[t])

t=x[n]+10h
g[12]=g[10]+h((1/3)g'[t-x[n]-h]-(2/3)g'[t-x[n]]+(7/3)g'[t])
t=x[n]+12h
g[14]=g[11]+h((9/4)g'[t-x[n]-h]-(6)g'[t-x[n]]+(27/4)g'[t])
t=x[n]+14h
g[16]=g[12]+h((20/3)g'[t-x[n]-h]-(52/3)g'[t-x[n]]+(44/3)g'[t])
clear[y];
soln=DSolve[{y'[u]==-10(y[u]-1)^2,y[0]==2},y[u],u];
Simplify[soln]

Softcodes of multi-processing corrector method
y[u_]=(2+10u)/(1+10u)
h=given value
x[n]=given value
u=given value
y[1]=y[0]+h(y'[0])+(h^2/2)y''[0]+(h^3/6)y'''[0]+(h^4/24)y''''[0]
y[2]=y[1]+h(y'[x[n]])+(h^2/2)y''[x[n]]+(h^3/6)y'''[x[n]]+(h^4/24)y''''[x[n]]
y[3]=y[2]+h(y'[x[n]+h])+(h^2/2)y''[x[n]+h]+(h^3/6)y'''[x[n]+h]+(h^4/24)y''''[x[
n]+h]
y[4]=y[3]+h(y'[x[n]+2h])+(h^2/2)y''[x[n]+2h]+(h^3/6)y'''[x[n]+2h]+(h^4/24)y'''
'[x[n]+2h]

u=x[n]+h
y[3]=y[1]+h((19/3)y'[u+x[n]]-(20/3)y'[u+x[n]+h]+(7/3)
y'[u+x[n]+2h])

u=x[n]+3h
y[5]=y[2]+h((27/4)y'[u+x[n]]-(6)y'[u+x[n]+h]+(9/4)
y'[u+x[n]+2h])
u=x[n]+5h
y[7]=y[3]+h((20/3)y'[u+x[n]]-(16/3)y'[u+x[n]+h]+(8/3)
y'[u+x[n]+2h])

u=x[n]+4h
y[6]=y[4]+h((19/3)y'[u+x[n]]-(20/3)y'[u+x[n]+h]+(7/3)
y'[u+x[n]+2h])
u=x[n]+6h
y[8]=y[5]+h((27/4)y'[u+x[n]]-(6)y'[u+x[n]+h]+(9/4)
y'[u+x[n]+2h])
u=x[n]+8h
y[10]=y[6]+h((20/3)y'[u+x[n]]-(16/3)y'[u+x[n]+h]+(8/3)
y'[u+x[n]+2h])

u=x[n]+7h
y[9]=y[7]+h((19/3)y'[u+x[n]]-(20/3)y'[u+x[n]+h]+(7/3)
y'[u+x[n]+2h])
u=x[n]+9h
y[11]=y[8]+h((27/4)y'[u+x[n]]-(6)y'[u+x[n]+h]+(9/4)
y'[u+x[n]+2h])
u=x[n]+11h
y[13]=y[9]+h((20/3)y'[u+x[n]]-(16/3)y'[u+x[n]+h]+(8/3)
y'[u+x[n]+2h])

u=x[n]+10h
y[12]=y[10]+h((19/3)y'[u+x[n]]-(20/3)y'[u+x[n]+h]+(7/3)
y'[u+x[n]+2h])
u=x[n]+12h
y[14]=y[11]+h((27/4)y'[u+x[n]]-(6)y'[u+x[n]+h]+(9/4)
y'[u+x[n]+2h])
u=x[n]+14h
y[16]=y[12]+h((20/3)y'[u+x[n]]-(16/3)y'[u+x[n]+h]+(8/3)
y'[u+x[n]+2h])

REFERENCES

1. Abell, M.L. and J.P. Braselton, 2009. Mathematica By
Example. 4th Edn., Elsevier, USA., ISBN: 9780080921693,
Pages: 576.

2. Akinfenwa, O., S. Jator and N. Yoa, 2011. An eighth order
backward differentiation formula with continuous
coefficients for stiff ordinary differential equations. Int.
J. Math. Comput. Sci., 7: 160-165.

3. Ken, Y.L., I.F. Ismail and M. Suleiman, 2011. Block Methods for
Special Second Order ODEs. Lambert Academic Publishing,
Germany, ISBN-13: 978-3844384130, Pages: 196.

4. Ngwane, F.F. and S.N. Jator, 2013. Solving oscillatory
problems using a block hybrid trigonometrically fitted
method with two off-step points. Electron. J. Differ. Equations,
20: 119-132.

5. Bakoji, A.M., A.M. Bukar and M.I. Bello, 2014. Formulation
of predictor-corrector methods from 2-step hybrid
Adams methods for the solution of initial value problems
of ordinary differential equations. Int. J. Eng. Applied Sci.,
5: 9-13.

558

Asian J. Sci. Res., 11 (4): 553-559, 2018

6. Adejumo, G., M.T. Abioye and T.A. Anake, 2014. Adoption of
computer assisted language learning software among
Nigerian secondary school. Proceedings of the International
Conference on Education and New Learning Technologies,
July 7-9, 2014, Barcelona, Spain, pp: 950-955.

7. Akinfenwa, O.A., S.N. Jator and N.M. Yao, 2013. Continuous
block backward differentiation formula for solving stiff
ordinary differential equations. Comput. Math. Applic.,
65: 996-1005.

8. Anake, T.A., D.O. Awoyemi and A.O. Adesanya, 2012. One-step
implicit hybrid block method for the direct solution of general
second order ordinary differential equations. IAENG Int.
J. Applied Math., 42: 224-228.

9. Anake, T.A. and L.O. Adoghe, 2013. A four point block
integration method for the solutions of IVP in ODE. Aust.
J. Basic Applied Sci., 7: 467-473.

10. Jain, M.K., S.R.K. Iyengar and R.K. Jain, 2007. Numerical
Methods for Scientific and Engineering Computation.
5th Edn., New Age International (Pvt.) Ltd., New Delhi, India,
ISBN-13: 978-8122420012, Pages: 816.

11. Lambert, J.D., 1973. Computational Methods in Ordinary
Differential Equations. John Wiley and Sons, New York, USA.,
ISBN: 9780471511946, pp: 87-88.

12. Lambert, J.D., 1991. Numerical Methods for Ordinary
Differential Systems: The Initial Value Problem. 1st Edn., John
Wiley and Sons, New York, USA., ISBN: 9780471929901,
pp: 103-105.

13. Sunday, J., M.R. Odekunle, A.A. James and A.O. Adesanya,
2014. Numerical solution of stiff and oscillatory differential
equations using a block integrator. Br. J. Math. Comput. Sci.,
4: 2471-2481.

14. Xie, L. and H. Tian, 2014. Continuous parallel block methods
and their applications. Applied Math. Comput., 241: 356-370.

15. Adesanya, A.O., A.A. James and J. Sunday, 2014. Hybrid block
predictor-hybrid block corrector for the solution of first-order
ordinary differential equations. Eng. Math. Lett., 13: 1-12.

16. Dormand, J.R., 1996. Numerical Methods for Differential
Equations: A Computational Approach. CRC Press, Boca
Raton, FL., ISBN: 9780849394331, pp: 10, 142-143, 231.

17. Faires, J.D. and R.L. Burden, 2012. Initial-value problems for
ODEs, variable step-size multistep methods. Dublin City
University, Dublin, Republic of Ireland, pp: 2-32.

18. Majid, Z.A. and M. Suleiman, 2011. Predictor-corrector block
iteration method for solving ordinary differential equations.
Sains Malays., 40: 659-664.

19. Oghonyon, J.G., S.A. Okunuga and O.O. Agboola, 2015. K-step
block predictor-corrector methods for solving first order
ordinary differential equations. Res. J. Applied Sci.,
10: 779-785.

20. Oghonyon, J.G., S.A. Okunuga and S.A. Iyase, 2016. Milne’s
implementation on block predictor-corrector methods.
J. Applied Sci., 16: 236-241.

21. Oghonyon, J.G., S.A. Okunuga and S.A. Bishop, 2017. A
variable-step-size block predictor-corrector method for
ordinary differential equations. Asian J. Applied Sci.,
10: 96-101.

22. Ascher, U.M. and L.R. Petzold, 1998. Computer Methods for
Ordinary Differential Equations and Differential-Algebraic
Equations. SIAM, Philadelphia, USA., ISBN-13: 9780898714128,
Pages: 314.

23. Ngwane, F.F. and S.N. Jator, 2014. Trigonometrically-fitted
second derivative method for oscillatory problems.
SpringerPlus, Vol. 3. 10.1186/2193-1801-3-304

24. Ngwane, F.F. and S.N. Jator, 2015. Solving the telegraph and
oscillatory differential equations by a block hybrid
trigonometrically fitted algorithm. Int. J. Differ. Equations,
Vol. 2015. 10.1155/2015/347864

25. Ngwane, F.F. and S.N. Jator, 2017. A Trigonometrically fitted
block method for solving oscillatory second-order initial value
problems and hamiltonian systems. Int. J. Differ. Equations,
Vol. 2017. 10.1155/2017/9293530

26. Ibrahim, Z.B., K. Othman and M. Suleiman, 2007. Variable step
block backward differentiation formula for solving first-order
stiff ODEs. Proceedings of the World Congress on
Engineering, July 2-4, 2007, London, UK., pp: 2-6.

27. Ngwane, F.F. and S.N. Jator, 2013. Block hybrid method using
trigonometric basis for initial value problems with oscillating
solutions. Numer. Algorithm, 63: 713-725.

28. Rufai, M.A., M.K. Duromola and A.A. Ganiyu, 2016. Derivation
of one-sixth hybrid block method for solving general first
order ordinary differential equations. IOSR J. Math., 12: 20-27.

29. Sunday, J., D. Yusuf and J.N. Andest, 2016. Integration of
first-order modeled differential equations using a quarter-
step method. Adv. Res., 7: 1-8.

559

	AJSR.pdf
	Page 1

