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Abstract
Background  and  Objectives:  Softcodes  is   a   form   of   Mathematica   language   invented   for   the   successful   implementation   of
MPMD.  Technical  computing  is  an  aspect  of  computing  for  the  sole  purpose  of  computation  leading  to  better  accuracy.  This
paper  considers  softcode  of  multi-processing  Milne’s  device  for  estimating  first-order  Ordinary  Differential  Equations   (ODEs).
Materials and Methods: Multi-Processing Milne’s Device (MPMD) is source from Adams collection of predicting-correcting scheme
implemented via interpolation and collocation adopting multinomial finite sequence near resolution. This combination is mathematically
assembled  in MPMD pattern  and  analyzed  to  produce  the  order  of  the  MPMD  thereby  setting  up  the  chief  local  truncation  errors.
Results: The computational results generated were aided with Softcodes in Mathematica data format and setting the bounds of
convergency. Conclusion: The calculated results are compared with subsisting methods to enhance the viability and effectiveness of the
MPMD over others.
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INTRODUCTION

Softcode for providing approximate results to Ordinary
Differential Equations (ODEs) are very essential in technical
computing, since it is greatly utilized to prototype real life
applications1-4. Multi-processing Milne’s device for estimating
first-order differential equation is of the form Abell and
Braselton1, Ken et al.3, Bakoji et al.5 and Adejumo et al.6:

v' = g(t, z), z(u0) = α (1)

Arising from Eq. 1, there is a need to look for numerical
solution enclosed on u0[c, d] such that  c  and  d  are bounded
with  the  assumption  that  z  meets  the  considerations  as
seen in Akinfenwa et al.7, Anake et al.8, Anake and Adoghe9,
Jain et al.10, Lambert11,12, Sunday et al.13 and Xie and Tian14.
Thus, ensures that Eq. 1 possess a specific differential
coefficient at every point.

The universal multi-processing Milne’s device is instituted
as:

(2)
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According to Lambert11, Dormand16 and Faires and
Burden17, multi-processing Milne’s device is seen as an
alternative to multi-processing predicting-correcting scheme
on the account of the numerical vantages it features over
others. Generators such as Akinfenwa et al.2, Bakoji et al.5,
Anake  et  al.8,  Anake  and  Adoghe9,  Adesanya  et  al.15,  Majid
and Suleiman18 and Oghonyon et al.19-21 suggested multi-
processing  predictor-corrector  scheme  implemented  on
first-order ODEs. Multi-processing predicting-correcting
scheme derives shortcomings during computation/execution
and as such, unable to find a suitable length, resolve bounds
of convergency and lack of error maximization.

The motivation of this research study is founded on the
concept of generating certain qualities of the multi-processing
Milne’s device which are comparable to BDF for implementing
stiff ODEs and vibration problem as discussed in Anake et al.8,
Anake and Adoghe9, Jain et al.10, Sunday et al.13, Faires and
Burden17, Oghonyon et al.19-21, Ascher and Petzold 22, Ngwane
and Jator23-25 and Ibrahim et al.26. Again, softcodes of
Mathematica codes is projected for implementation1,3.

The main aim of this research work is to develop
softcodes of multi-processing Milne’s device for computing

first-order ODEs. Furthermore, this originality has been
established on various body of literatures as cited Lambert11,12,
Dormand16,   Faires   and   Burden17,   Oghonyon   et  al.19-21  and
Ascher  and  Petzold22  for  more  particulars.  This  includes
some  elements  like;  Adams  type,  multi-processing
predicting-correcting  scheme  of  the  like  range  and  chief
local  truncation  errors  as  remarked  above.

MATERIALS AND METHODS

Softcode for multi-processing Milne’s device is a
collection of multi-processing predicting-correcting scheme
of Adams type. This requires Adams-Bashforth-Adams-
Moulton (multi-processing predicting-correcting of ilk range)
scheme. This involves u-length multi-processing predicting
scheme and u-1-length multi-processing correcting scheme
of ilk range. This compendium is established as:
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Equation 3 and 4 determines the multi-processing
predicting-correcting scheme of multi-processing Milne’s
device.    Remarking     g(tm+i).gm+i,   g(xm+i,   gm+i).zm+i    having
j = 0, 1, 2. To attain Eq. 3 and 4, the approximative function is
penned below to evaluate the analytical resolution g(t) on
clear-cut time intervals of [tn, tn-j] by way of interpolation of the
form:

(5)
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Revising Eq. 5 in softcode format produces the softcode
approximate function as:

(6)               3
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where, x0, x1, x2 and x3 are parameters required to be settle in
a special manner. Presuming that Eq. 6 corresponds with the
precise result at approximately selected definite length of time
interval tn, tn-j to yield approximation as:

g(tn).gn, g(tn-j).gn-j (7)
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Taking that the approximating function (Eq. 6) gratifies
(Eq. 1) at more or less chosen points tn+j, j = 0, 1, 2 to obtain the
following approximates as:

g'(tn+j).zn+j,      j = 0, 1, 2 (8)

Merging Eq. 7 and 8 will generate quadruplet formations
which produces At = b:
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Figuring out the systems of equation applying
Mathematica 9 kernel, softcodes gives xj, j = 0, 1, 2, 3 and
putting back values of xj's into Eq. 6 will generates the
uninterrupted  multi-processing  prediction  scheme  and
multi-processing    correcting    scheme    of    Milne’s    device
as:
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Assessing the uninterrupted multi-processing prediction
scheme and multi-processing correcting scheme of Milne’s
device at some favourable grids, tn+j, j = 1, 2, 3 will originate
the multi-processing prediction Milne’s device and multi-
processing correcting Milne’s device as:

g(t) = gn-1+h1 (µ1 zi+µ2 zi-1+µ3 zi-2),
g(t) = gn-1+h1 (β1 zi+1+β2 zi+2+β3 zi+3) (13)

where,  $1,   $2,   $3,   µ1,   µ2   and   µ3   are   parametric
quantity1,4,11,12,16,17,23-25,27  for  more  details.

Devising bounds of convergence for multi-processing
Milne’s device: To set in motion numeric operation of multi-
processing Milne’s device, the r-length multi-processing
predicting  scheme  and   r-1-length   multi-processing
correcting  scheme  are  put  to  use  as  multi-processing
predicting-correcting   scheme   owns   alike   range
Locate11,12,16,17,19-22 for more. Uniting Lambert11,12, Dormand16,
Faires and Burden17, Oghonyon et al.19-21 and Ascher and
Petzold22, it is workable to find approximative chief local
truncation error of multi-processing predicting-correcting
scheme in absentia of higher order differential coefficients,
g(t). What is more, p1 = c1 where, p1 and c1 represents range of
multi-processing predicting and correcting schemes.
Straightaway, scheme of range p1, taking apart multi-
processing predicting   r-length  gives rise to the chief
principal local truncation errors:

(14)
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Likewise, looking  into  multi-processing  correcting
scheme  r-1-step  brings  forth  chief  local  truncation  errors
as:
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where,  continues as classified
1 2 3 1 2 3

[1] [2] [3] [1] [2] [3]
p +4 p +4 p +4 c +4 c +4 c +4P , P , P C , C Cand

quantity of length h1 and g(t) behave as analytic resolution to
higher derived function conforming to the initial stipulation
g(tn).gn. Look into Lambert11,12, Dormand16, Faires and
Burden17, Oghonyon et al.19-21 and Ascher and Petzold22 more
items.
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Further advancement for less precondition measures of
length h1 is reached  g(4) (tn).g(4) (tn)  and the potency of multi-
processing Milne’s device trusts instantly on this presumption
stated over.

Reducing in advance the chief the principal local
truncation errors of Eq. 14 and 15 over besides dismissing
considerations of range O(hp1+5). Thus, introduces no concern
achieving the numerical formulation of chief local truncation
errors of the multi-processing Milne’s device:

(16)
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estimations  founded  thru  multi-processing  Milne’s  device
of  order  p1,  even  though 
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1 2
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3
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truncation errors. τ1, τ2 and τ3 are bounds of convergency of
the multi-processing Milne’s device.

Advancing forward, these approximates of the chief local
truncation error (Eq. 16) is utilized to make decision on
acceptance or rejection thereby iterating with less or smaller
varying length. The length is sustain free-based on a try out
laid down by Eq. 16 11,12,16,17,19-22 for more details. The chief local
truncation errors (Eq. 16) is the bounds of convergence of the
multi-processing  Milne’s,  device  denoted  differently  as
multi-processing Milne’s device for adjusting to convergence.

Numerical problems: Two problems tested are worked with
MPMD. The  bounds  of  convergency  considered  includes;
10G4, 10G6, 10G8, 10G10, 10G11 and   10G14.   Find   Sunday   et  al.13,
Rufai et al.28 and Sunday et al.29 for more actions. A computer
programming codes on MPMD is written utilizing
Mathematica 9 kernel. The act of accomplishment is carried
out in a multi-processing manner via MPMD  (Appendix).

Test      problem      1:      Consider      the      nonlinear     IVP,
g'(t) = -10(g(t)-1)^2, g(0) = 2.

Analytical result:   (2 +10t) .g t =
(1+10t)

Test problem 2: Consider Prothero-Robinson periodic
vibration ODE, g'(t) = L(g(t)-sin(t))+cos (t), L = -1, g(0) = 0.

Analytical result: g(t) = sin (t).

RESULTS AND DISCUSSION

Under  this  section,  the  computational  output  shows
the  execution  of  MPMD  for  solving  first-order  ODEs. The
final output supplied were obtained with the aid of
Mathematica 9 Kernel 64 on Microsoft windows (64 bit) to
demonstrate the efficiency and accuracy of the first-order
ODEs13,28,29.

Table  1  demonstrates  the  numerical  results  of
problems 1 and 2 using MPMD equated with existing
methods.

Table 1 presents a summary of the result displayed and
items considered. This includes; method utilized, computed
max errors and bounds of convergency. Again, shows the
comparison  with  other  existing  results  and  justifies MPMD
as a preferable proficiency in terms of the computed max
errors:

Table 1: Summary of results
Mutilized Maxerrors Bcov

ERR 3.296387e-004 10G4

ERR 2.983380e-004
ERR 2.819223e-004
MPMD 1.30546e-004 10G4

MPMD 1.31522e-004
MPMD 1.32503e-004
ERS 6.017101e-006 10G6

ERS 5.411308e-006
ERS 4.880978e-006
HBM 2.840882e-006 10G6

HBM 2.717126e-006
HBM 2.588157e-006
MPMD 1.04804e-006 10G6

MPMD 1.0511e-006
MPMD 1.06653e-006
ERR 1.429167e-008 10G8

ERR 1.283029e-008
ERR 1.159479e-008
MPMD 9.59886e-009 10G8

MPMD 9.70295e-009
MPMD 9.80786e-009
ERA 2.0e-010 10G10

ERA 3.0e-010
ERA 3.0e-010
MPMD 1.02131e-010 10G10

MPMD 1.06689e-010
MPMD 1.31986e-010
ERS 1.803588e-011
MPMD 1.04299e-011 10G11

MPMD 1.10816e-011
MPMD 1.17654e-011
ERR 7.155093e-014 10G14

ERR 5.921081e-014
ERR 8.457038e-014
MPMD 1.70636e-014 10G14

MPMD 1.78416e-014
MPMD 3.29997e-014
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C The signifiers mentioned on Table 1 are stated below:

MPMD: Computed max errors in MPMD (multi-processing
Milne’s device) for time-tested problems 1 and 2

Mutilized: Method utilized
Maxerrors: Magnitude of computed max errors in MPMD
Bcov: Bounds of convergency
1/6 HBM: Computed max errors in one-sixth HBM (1/6 hybrid

block method) for time-tested problem 1 28

ERR (BI): Computed max errors in ERR (BI) (block integrator)
for time-tested tested problem 1 and 2 13

ERR: Computed max errors in ERR (quarter-step method
of 10G4) for tested problem 1 29

Softcodes algorithm rule: A well written algorithmic rule that
will execute MMD and assess the computed max errors of
MPMD in the family of P(EC)j or P(EC)j E style, conditionally,
when the style is implemented as many times to ensure
convergence. Check out23:

Step 1: Take length for h
Step 2: The MPMD of predicting-correcting scheme must

have alike range
Step 3: The length of predicting must have higher length

than correcting scheme
Step 4: Estimate the chief local truncation errors of the

MPMD only when CLTE is reached
Step 5: Fix the bounds of convergency
Step 6: Generate the softcodes of MPMD utilizing

Mathematica 9 kernel
Step 7: Adopt single step technique to kick start the

procedure if necessary, otherwise avoid 7 and go to
step 8

Step 8: Perform  the  MPMD  in  the  family  of  P(EC)j  or
P(EC)j E style as j increases

Step 9: When step 8 did not attain convergency,
ingeminate the process once again and half the
length (h) from step 1 or otherwise, go on to step 10

Step 10: Calculate the computed max errors when
convergency is fulfilled

Step 11: Publish computed max errors
Step 12: Use this equation below to devise a new length only

when convergency is  attained

 1 1

10
40

1
[1] [1]
p +4 p +4

τrh =
2 P C

CONCLUSION

The computed results displayed MPMD is reached
utilizing the bounds of convergency. This bounds of
convergency examine the acceptance or rejection of the
looping with a smaller length. The mathematical outputs
establish  the  performance  of  MPMD  is  remarked  to
showcase a more acceptable computed max error at all
bounds   of   convergency.   This   is   made   possible   by
seeking  a  suitable/changing  length,  determining  the
bounds   of   convergency   as   compare   to  subsisting
schemes  implemented  without  these  features.  This
proficiency for a better result is executed at all examined
bounds  of  convergency  such  as  10G4,  10G6,  10G8,  10G10,
10G11  and  10G14.  Thence,  it  will  be   concluded  that MPMD
is  worthy  for  estimating  ODEs.  Furthermore,  MPMD is
better and preferred to schemes such as block predictor-
corrector methods, block implicit method, block hybrid
method because their applications are based on fixed step
size, no bounds of convergency and always implemented in
predictor-corrector method. Continuous research can be
carried out to increase the order of MPMD for examining
performance.

SIGNIFICANT STATEMENT

The significant of this study is as follows:

C A new basis function approximation is designed in form
of Softcodes for yielding interpolation and collocation
estimates

C The scientific community will benefit by using Softcodes
in Mathematica format, encrypted for the successful
implementation of MPMD

C The accuracy of MPMD is validated on nonlinear IVP and
vibration problem

C MPMD advances the utilization of the chief local
truncation error outside showing the order

C The MPMD is considered as an option to Backward
Differentiation Formula (BDF) on account of some similar
advantages it possesses
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Appendix: The softcodes of problem 1 and 2 implemented via MPMD is given
below

Softcodes of multi-processing predictor method
clear[g];
soln=DSolve[{g'[t]==-10(g[t]-1)^2,g[0]==2},g[t],t];
Simplify[soln]
g[t_]=(2+10t)/(1+10t)
h=given values
x[n]=given values
t=given values
g[1]=g[0]+h(g'[0])+(h^2/2)g''[0]+(h^3/6)g'''[0]+(h^4/24)g''''[0]
g[2]=g[1]+h(g'[x[n]])+(h^2/2)g''[x[n]]+(h^3/6)g'''[x[n]]+(h^4/24)g''''[x[n]]
g[3]=g[2]+h(g'[x[n]+h])+(h^2/2)g''[x[n]+h]+(h^3/6)g'''[x[n]+h]+(h^4/24)g''''[x
[n]+h]
g[4]=g[3]+h(g'[x[n]+2h])+(h^2/2)g''[x[n]+2h]+(h^3/6)g'''[x[n]+2h]+(h^4/24)g
''''[x[n]+2h]

t=x[n]+h
g[3]=g[1]+h((1/3)g'[t-x[n]-h]-(2/3)g'[t-x[n]]+(7/3)g'[t])
t=x[n]+3h
g[5]=g[2]+h((9/4)g'[t-x[n]-h]-(6)g'[t-x[n]]+(27/4)g'[t])
t=x[n]+5h
g[7]=g[3]+h((20/3)g'[t-x[n]-h]-(52/3)g'[t-x[n]]+(44/3)g'[t])

t=x[n]+4h
g[6]=g[4]+h((1/3)g'[t-x[n]-h]-(2/3)g'[t-x[n]]+(7/3)g'[t])
t=x[n]+6h
g[8]=g[5]+h((9/4)g'[t-x[n]-h]-(6)g'[t-x[n]]+(27/4)g'[t])
t=x[n]+8h
g[10]=g[6]+h((20/3)g'[t-x[n]-h]-(52/3)g'[t-x[n]]+(44/3)g'[t])

t=x[n]+7h
g[9]=g[7]+h((1/3)g'[t-x[n]-h]-(2/3)g'[t-x[n]]+(7/3)g'[t])
t=x[n]+9h
g[11]=g[8]+h((9/4)g'[t-x[n]-h]-(6)g'[t-x[n]]+(27/4)g'[t])
t=x[n]+11h
g[13]=g[9]+h((20/3)g'[t-x[n]-h]-(52/3)g'[t-x[n]]+(44/3)g'[t])

t=x[n]+10h
g[12]=g[10]+h((1/3)g'[t-x[n]-h]-(2/3)g'[t-x[n]]+(7/3)g'[t])
t=x[n]+12h
g[14]=g[11]+h((9/4)g'[t-x[n]-h]-(6)g'[t-x[n]]+(27/4)g'[t])
t=x[n]+14h
g[16]=g[12]+h((20/3)g'[t-x[n]-h]-(52/3)g'[t-x[n]]+(44/3)g'[t])
clear[y];
soln=DSolve[{y'[u]==-10(y[u]-1)^2,y[0]==2},y[u],u];
Simplify[soln]

Softcodes of multi-processing corrector method
y[u_]=(2+10u)/(1+10u)
h=given value
x[n]=given value
u=given value
y[1]=y[0]+h(y'[0])+(h^2/2)y''[0]+(h^3/6)y'''[0]+(h^4/24)y''''[0]
y[2]=y[1]+h(y'[x[n]])+(h^2/2)y''[x[n]]+(h^3/6)y'''[x[n]]+(h^4/24)y''''[x[n]]
y[3]=y[2]+h(y'[x[n]+h])+(h^2/2)y''[x[n]+h]+(h^3/6)y'''[x[n]+h]+(h^4/24)y''''[x[
n]+h]
y[4]=y[3]+h(y'[x[n]+2h])+(h^2/2)y''[x[n]+2h]+(h^3/6)y'''[x[n]+2h]+(h^4/24)y'''
'[x[n]+2h]

u=x[n]+h
y[3]=y[1]+h((19/3)y'[u+x[n]]-(20/3)y'[u+x[n]+h]+(7/3)
y'[u+x[n]+2h])

u=x[n]+3h
y[5]=y[2]+h((27/4)y'[u+x[n]]-(6)y'[u+x[n]+h]+(9/4)
y'[u+x[n]+2h])
u=x[n]+5h
y[7]=y[3]+h((20/3)y'[u+x[n]]-(16/3)y'[u+x[n]+h]+(8/3)
y'[u+x[n]+2h])

u=x[n]+4h
y[6]=y[4]+h((19/3)y'[u+x[n]]-(20/3)y'[u+x[n]+h]+(7/3)
y'[u+x[n]+2h])
u=x[n]+6h
y[8]=y[5]+h((27/4)y'[u+x[n]]-(6)y'[u+x[n]+h]+(9/4)
y'[u+x[n]+2h])
u=x[n]+8h
y[10]=y[6]+h((20/3)y'[u+x[n]]-(16/3)y'[u+x[n]+h]+(8/3)
y'[u+x[n]+2h])

u=x[n]+7h
y[9]=y[7]+h((19/3)y'[u+x[n]]-(20/3)y'[u+x[n]+h]+(7/3)
y'[u+x[n]+2h])
u=x[n]+9h
y[11]=y[8]+h((27/4)y'[u+x[n]]-(6)y'[u+x[n]+h]+(9/4)
y'[u+x[n]+2h])
u=x[n]+11h
y[13]=y[9]+h((20/3)y'[u+x[n]]-(16/3)y'[u+x[n]+h]+(8/3)
y'[u+x[n]+2h])

u=x[n]+10h
y[12]=y[10]+h((19/3)y'[u+x[n]]-(20/3)y'[u+x[n]+h]+(7/3)
y'[u+x[n]+2h])
u=x[n]+12h
y[14]=y[11]+h((27/4)y'[u+x[n]]-(6)y'[u+x[n]+h]+(9/4)
y'[u+x[n]+2h])
u=x[n]+14h
y[16]=y[12]+h((20/3)y'[u+x[n]]-(16/3)y'[u+x[n]+h]+(8/3)
y'[u+x[n]+2h])
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