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ABSTRACT 

Background and Objectives: The idea of estimating oscillating vibration problems 

via multinomial basis function haven been seen by some authors as a convenient 

approach but not appropriate. This is as result of the behavior of the problem and as 

such depends largely on the step size and frequency. This research article is geared 

towards computing oscillating vibrations employing exponentially fitted block Milne’s 

device (COVEFBMD). Materials and Methods: This is specifically designed using 

interpolation and collocation via exponentially fitted method as the approximate 

solution to generate COVEFBMD, thereby finding the tolerance level of the method. 

Results: Some numerical examples were selected and implemented on Mathematica 

kernel 9 to show speed, technicality and accuracy. Conclusion: The completed 

solutions show that COVEFBMD performs better than the existing methods because of 

its ability to design a worthy step size; decide the tolerance level resulting to 

maximized errors.  

Keywords: COVEFBMD, exponentially fitted method, tolerance level, principal local 

truncation errors. 
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1. INTRODUCTION 

Computing oscillating vibrations employing exponentially fitted block Milne’s device is built 

with the intent of approximating the oscillating vibrations. Particularly, when the final 

outcome shows oscillating vibrations. That is while exponentially fitted block Milne’s device 
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is more preferred to non-fitted methods as cited 
2
, 

26
. In this study, effort is directed at finding 

suitable approximate solution of oscillating vibrations of the form 
2
, 

11 

     (   )   ( )        ( )    
  

for    [   ],            (1) 

where          ,   is the magnitude of the forcible system. 

Nevertheless, it is dared that Rf   is sufficiently differentiable to a certain level on 

  [   ] and gratifies a world-wide Lipchitz consideration, i.e., there is an invariant quantity 

     such that  

| (   )   (   ̅|   |   ̅|        ̅     

Below this given, par (1) checked the world-wide and singularity fixed on   [   ] 
likewise viewed to satisfy the Weierstrass theorem, see

6, 8, 11, 28
 for details. 

Certainly, oscillating vibrations predominantly occurs in fields of scientific discipline and 

applied science such as Newton’s laws of motion, celestial bodies and universe, quanta 

theory, control theory, electrical circuit and biologic science. Different techniques instituted 

on the use of multinomial expression have been discovered for evaluating oscillating 

vibrations. Trenchant techniques established on exponentially fitted method whose outcome is 

acknowledged beforehand have been proposed. Search
2, 16-20, 23-27

 for more info. However, 

their implementation is been done using fixed step-size strategy aside adjusting to 

convergence. Look
2, 16-20, 23-27

 for more items. The motivation of this study is based on a more 

amplified exponentially fitted method is require to address oscillatory vibrations problem 

unlike multinomial basis routine for approximation. Oscillatory vibration solvents guarantee 

step size and established frequence. Unique ODEs having oscillatory vibrations call for 

proficiency which is the characteristics of COVEFBMD. Thus, exponentially fitted block 

Milne’s device becomes more advantageous. Examine
2, 16-20, 23-27

. Moreover, block Milne’s 

device is designed for varying the step-size, deciding tolerance level and error control as 

cited
3-5, 11-12, 21-22, 29

 for more items. 

The primary objective of this study is to formulate a suited exponential fitted block 

Milne’s device for oscillating vibrations which recognized the final outcome and frequency in 

anticipation. In addition, this novelty has been demonstrated on several literatures as 

discussed
3-5, 11-12, 21-22

 for more items. Elements for developing this novelty includes; Adams 

type, block predictor-corrector formula of the same order and principal local truncation errors 

as remarked
3-5, 11-12, 21-22

.   

Definition 1:                       . If k refers to the block size and h is the pace 

size, then block size in time is   . Let           form the block number and let     , 

then the        ,         method can be composed in the next  general class: 

   ∑         ∑       
 
   

 
   ,        (2) 

where  

   [                  ]  

   [                  ]  

   and    are     constants matrices. See
7, 10, 22

. 

Therefore, commencing from the above report, a block method possesses the numerical 

vantages that each one taking off from the supra account, a block method has the 

computational benefits that for each practical application, the end result is valuated to a 
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greater extent at the same time. The amount of values relies on the structure of the block 

method. Hence, applying these techniques can generate more immediate and quicker results 

which can be dealt to provide the needed accuracy. See
13-15, 21-22

 for more information. 

2. MATERIALS AND METHODS 

The goal of this section is to develop exponentially fitted block Milne’s device. This block 

Milne’s device is a collection of        explicit (block predictor) method and          

implicit (block corrector) method of ilk order. This collection can be represented as 

 ( )  ∑   
 
          ∑   ( )    

 
   ,        (3) 

 ( )  ∑   
 
          ∑   

 ( )    
 
   .       (4) 

Par (3) and (4) defines the block predictor-corrector method of exponentially block 

Milne’s device with     ,    ( )         containing features that depends on changing 

the step size and frequence. Noting that      is the numerical approximate to the exact 

solutions  (    ) i.e.   (    )      , and       (         ) possessing        . To 

achieve par (3) and (4), the exponentially fitted method is spelt below to approximate the 

exact solution  ( ) on clear-cut time intervals of [       ]  via interpolation of the form 

 ( )            
     

       (  ).       (5) 

Rewriting (5) gives rise to the exponentially fitted method as 

 ( )  

     (
    

 
)    (

    

 
)
 
   (

    

 
)
 
   (   (

    

 
)  

  

 
(
    

 
)
 
   

  

 
(
    

 
)
 
 

  

  
(
    

 
)
 
),           (6) 

where             and    are parameters required to be settle in a special manner. 

Presuming that par (6) corresponds with the exact solution at some selected time interval  

        to yield the approximation as    

 (  )    ,      (    )      .         (7) 

Taking that the approximating function (6) gratifies par (1) some chosen points        

      to obtain the following approximates as 

  (    )            (    )                     (8) 

Merging par (7) and (8) will lead to quintuplicate systems of equation which produces 

At=b. Solving the systems of equation applying Mathematica 9 kernel will give      

          and replacing the values of       into (6) will generate the continuous block 

Milne’s device. Valuating the continuous block Milne’s device at some favoured points of 

             will develop the exponentially fitted block Milne’s device as 

 ( )            (  (   )     (   )       (   )    ),    (9) 

 ( )            (  (   )       (   )       (   )    ), 

where   is the frequency,   (   )   (   )    (   ),   (   ),   (   ) and   (   ) 

are parameters. See
4-5, 11-12, 16-20

 for more details. 
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2.1. Developing Tolerance level for Exponentially Fitted block Milne’s Device: 

To set up the mathematical operation of exponential fitted block Milne’s device, the        

explicit (block predictor) method and          implicit (block implicit) method are 

utilized as the block predictor-corrector method possessing ilk order as situated
3-5, 11-12, 21-22

. 

Merging
3-5, 11-12, 21-22

, it is practicable to approximate the principal local truncation error of the 

block predictor-corrector method in absence of finding the first and second derivatives of 

 ( ). Again, considering the fact that  ̃   ̅̅, where  ̅̅ and  ̃ shows the order of the block 

predictor and block corrector methods. Right away, for a method of order  ̃, the analysis of 

the block predictor         gives birth to the principal local truncation errors as 

 ̃ ̃  
[ ]

  ̃   ( ̃  )( ̃ )   (    )      
[  ]

  (  ̃  )   

 ̃ ̃  
[ ]

  ̃   (   )( ̃ )   (    )      
[  ]

  (  ̃  )      (10) 

 ̃ ̃  
[ ]

  ̃   (   )( ̃ )   (    )      
[  ]

  (  ̃  ).  

However, the same investigation of the block corrector method          produces the 

principal local truncation errors as 

 ̅
 ̅̅  

[ ]
     ( ̅̅  )(  ̅)   (    )      

[  ]
  (  ̅̅  )  

 ̅
 ̅̅  

[ ]
     ( ̅̅  )(  ̅)   (    )      

[  ]
  (  ̅̅  )      (11) 

 ̅
 ̅̅  

[ ]
     ( ̅̅  )(  ̅)   (    )      

[  ]
  (  ̅̅  ), 

where  ̃   
[ ]

  ̃   
[ ]

  ̃   
[ ]

   ̅
 ̅̅  

[ ]
  ̅

 ̅̅  

[ ]
 and  ̅

 ̅̅  

[ ]
 exists as separate entity of the step-size h 

and  ( ) behave as the exact solution to the higher derivatives gratifying the initial 

precondition  (  )    . Search into
3-5, 11-12, 21-22

 for more particulars. 

To advance further, the consideration for small amounts of h is attained as  

 ( )( ̃ )   ( )(  ̅), 

and the authority of the exponentially fitted block Milne’s device relies at once on this 

consideration. 

Simplifying further the principal local truncation errors of (10) and (11) supra as well as 

ignoring terms of degree  (  ̿  ), it poses no difficulty to arrive at the mathematical 

expression of the principal local truncation errors of exponentially fitted block Milne’s device 

as  

 ̅
 ̿  
[ ]

  ̿   ( ̿  )(  ̅)  
 ̅

 ̿  
[ ]

 ̃ ̃  
[ ]

  ̅
 ̿  

[ ]
*    

[  ]
     

[  ]
+       

 ̅
 ̿  
[ ]

  ̿   ( ̿  )(  ̅)  
 ̅
 ̿  
[ ]

 ̃
 ̃  
[ ]

  ̅
 ̿  

[ ] *    
[  ]

     
[  ]

+            (12) 
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 ̿  
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  ̿   ( ̿  )(  ̅)  
 ̅
 ̿  
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 ̃
 ̃  
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  ̅
 ̿  

[ ] *    
[  ]

     
[  ]

+       . 

Referring the avouchment that     
[  ]

     
[  ]

,     
[  ]

     
[  ]

 and     
[  ]

     
[  ]

 are called the 

predicted and corrected approximations established by the exponentially fitted block Milne’s 

device of order p, altho  ̅
 ̿  
[ ]

  ̿   ( ̿  )(  ̅),  ̅
 ̿  
[ ]

  ̿   ( ̿  )(  ̅) and  ̅
 ̿  
[ ]

  ̿   ( ̿  )(  ̅) 
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are distinctly named the principal local truncation errors.       and    are the bounds of the 

tolerance level or tolerance level of the exponentially fitted block Milne’s device.  

In addition, the approximate of the principal local truncation error (12) is used to decide 

either to accept the iterated results or redo the iteration with a smaller changing step-size. The 

step is maintained based on a test established by par (12). See
3-5, 11-12, 21-22

 for more details. 

The principal local truncation errors (12) is the tolerance level of the exponentially fitted 

block Milne’s, device distinctly denoted as referred to as exponentially fitted block Milne’s 

device (approximate) for correcting to convergence 

Numerical examples: Two numerical examples were tested and worked out using 

COVEFBMD at distinctly tolerance level of     ,      ,     ,      ,     ,      ,     , 

     ,       ,       and      . Find9, 16-20 for more actions. A programming codes on 

exponentially fitted block Milne’s is composed utilizing Mathematica 9 kernel 64. This 

programming codes is implemented in a block by block fashion combine with the 

exponentially fitted block Milne’s device. 

Numerical example 1: Consider the following mildly stiff IVP  

                     ( )   ,   ( )            . 

Analytical Solution:   ( )     . 

Test problem 2: Consider the inhomogeneous IVP:  

   ( )              ( ),  ( )   ,   ( )    ,         . 

Analytical Solution:  ( )     (   )     (   )      ( ). 

3. RESULTS AND DISCUSSION 

Underneath this section, the mathematical final output demonstrates the performance of the 

exponentially block Milne’s device for resolving oscillatory vibrations. The terminal output 

provided were obtained with the technical support of Mathematica 9 Kernel 64 on Microsoft 

windows (64-bit) to show the viable efficiency and accuracy of the exponentially fitted block 

Milne’s device. The terminologies utilized are listed under: 

Table 1 and Table 2 proves the numerical final results of problems 1 and 2 using 

COVEFBMD equated with existing methods. The descriptors named on table 1 are located 

under. 

Table 1 

Memployed Maxerrors           

BHT               

COVEFBMD                  

COVEFBMD              

COVEFBMD              

HLMMs                  

COVEBMD                  

COVEBMD              

COVEBMD              

BHT               

COVEFBMD                  

COVEFBMD              

COVEFBMD              
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HLMMs                  

COVEFBMD                  

COVEFBMD              

COVEFBMD              

BHT 2.44          

COVEFBMD                  

COVEFBMD             

COVEFBMD             

BHT                

COVEFBMD                   

COVEFBMD              

COVEFBMD             

BHT                

HLMMs              

COVEFBMD                   

COVEFBMD              

COVEFBMD              

Table 2 

Memployed Maxerrors           

TSDM              

BHTFM          

BHT          

BHTRKKNM           

COVEFBMD                  

COVEFBMD              

COVEFBMD              

TSDM              

BHTFM          

BHMTB          

BHTRKKNM           

BHTRKKNM           

COVEFBMD                 

COVEFBMD             

COVEFBMD             

TSDM              

BHTFM          

BHMTB          

COVEFBMD                 

COVEFBMD             

COVEFBMD             

TSDM              

BHTFM                  

BHTFM            
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BHTRKKNM              

BHT               

BHT          

COVEFBMD                   

COVEFBMD              

COVEFBMD              

BHT               

COVEFBMD                   

COVEFBMD              

COVEFBMD              

COVEFBMD: errors in COVEFBMD (computing oscillating vibrations employing 

exponentially fitted block Milne’s device) for tested problems 1 and 2. 

Memployed: method employed. 

Maxerrors: the magnitude of the maximum errors of ETMBVSST. 

         : convergence criteria. 

BHT: errors in BHT (block hybrid trigonometrically fitted of       ) for numerical 

tested problems 1 and 2. See
19

. 

BHMTB: errors in BHMTB (block hybrid method with trigonometric basis) for numerical 

tested problem 2. See
16

. 

BHTFM: errors in BHTFM (block hybrid trigonometrically fitted method) for numerical 

tested problem 2. See
17

. 

BHTRKNM: errors in BHTRKNM (block hybrid trigonometrically fitted Runge-Kutta- 

Nystrom method of       ) for numerical tested problem 2. See
20

. 

HLMMs: errors in HLMMs (hybrid linear multistep methods) for tested problem 1. See
9
. 

TSDM: errors in TSDM (trigonometrically-fitted second derivative method) for numerical 

tested problem 2. See
18

. 

Algorithm: A scripted algorithmic program that will implement the block Milne’s device 

and valuate the maximum errors of the block Milne’s device in the class of ( )EC
m

P  or 

( ) EP EC
m

mode, if the mode is executed m times. Check out
20

. 

Step 1: Choose a step size for h. 

Step 2: The block Milne’s device of the block predictor-corrector method must possess 

the same. 

Step 3: The stepnumber of the predictor method must be one step greater than the 

corrector method. 

Step 4: Estimate the principal local truncation errors of the block Milne’s device after the 

principal local truncation errors are achieved. 

Step 5: Set the convergence criteria 

Step 6: Write the code of the block Milne’s device using Mathematica 9 kernel 64.  

Step 7: Apply any one step method to initialize the process when needed, if not omit step 

7 and move on to step 8. 

Step 8: Execute the block Milne’s device in the class of ( )EC
m

P  or ( ) EP EC
m

mode as m  

gains. 
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Step 9: If step 8 fails to reach convergence, reiterate the operation again and divide the 

step size (h) by 2 from step 0 or if not, move forward to step 10. 

Step 10: Valuate the maximum errors after convergence is attained. 

Step 11: Print maximum errors. 

Step 12: Utilize this formula posited under to invent a new step size after convergence is 

arrived at 

   |
 

 ( ̃     ̅   )
|

 

 
. 

4. CONCLUSION 

The superiority of this numerical result has shown that COVEFBMD is arrived at with the 

help of the tolerance level. Again, the tolerance levels examine whether the iterations should 

be accepted or reiterated again with a lesser step size. The computational results instituted the 

efficiency of the COVEFBMD is observed to show better maximum errors at all tolerance 

levels. This is as a result of  the suited/varying step size, finding out the tolerance level by that 

means maximize  errors than existing methods like the TSDM, BHMTM, BHT, BHTRKNM, 

BHTFM and HLMMs in all analyzed tolerance levels of     ,      ,     ,      ,     , 

     ,     ,      ,       ,       and       as stated
9, 16-20

. More work can be done in the 

area of increasing the order of COVEFBMD to test and improve efficiency. 

5. SIGNIFICANT STATEMENT 

The significant of this research work is presented as follows: 

 A more suitable exponentially fitted method is preferable to deal with oscillatory 

vibrations problem than considering any multinomial as basis function to 

approximate oscillatory vibration problems. 

 Oscillatory vibration solutions trust on step size and frequency. The COVEFBMD 

posses the vantage of designing suited step size and inbuilt frequence established 

from the exponentially fitted method. 

 Special ODEs in form of oscillatory vibration problems require technic which is 

the attributes of COVEFBMD. 
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