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ABSTRACT 

The long run behaviour of solutions of Lipschitzian quantum stochastic differential 

equation (QSDE) with non-instantaneous impulse is studied. This is achieved by 

imposing some conditions on the coefficients associated with the map P. Using the 

fixed point approach, we show that a solution exists under the given conditions and 

subsequently establish Ulam's type stability. We present some examples to further 

justify its application. 
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1. INTRODUCTION 

Stability of solutions of impulsive ordinary differential equations (ODEs), partial differential 

equations (PDEs), Functional differential equations (FDEs), etc. have been of interest to many 

authors [1, 4-7, 9-13]. Wang and Feckan (2013) [13], established stability results for 

stochastic differential equations. [4, 5, 9] established similar results when the impulse 

conditions are combinations of the traditional initial value problems and the short term 

perturbations. However, the perturbation terms in these classes of equations cannot show the 

dynamic change of evolution processes as it should in some applications. To address some of 

these limitations, Liao and Wang (2014) in [7], studied generalized Ulam-Hyers-Rassias (U-

H-R) stability of solutions for a class of equations with non-instantaneous impulses and 

provided some examples to show their applications. 

Some results on existence of solution of impulsive quantum stochastic differential 

equations (IQSDEs) and quantum stochastic differential inclusions (QSDIs) have been 

established in [2, 3, 8]. So far, results on stability of these equations have not been 
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investigated. Considering the importance of the long run behaviour of systems in real life 

applications, is a motivation for this study. 

This paper is concerned with the study of U-H-R stability of the following QSDE (Also 

known as nonclassical ordinary differential equation (NODE)) with non-instantaneous 

impulse functions: 
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Where ( , ) ( , )( , )t P t     is well defined in [2, 3], ,  𝔻 𝔼 is arbitrary, 
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Note that the sesquilinear form valued map P is assumed to be real valued since
2C  , hence, the methods of [7, 12] are applicable to this setting. 

2. PRELIMINARIES 

1.    B   is a topological vector space. 

2. (𝔻 𝔼) is a complex space. 

3. ( , ), ( , )C I PC IB B  are spaces of continuous and piecewise continuous 

functions. 

4. Define 1( , ) : ( , ) : ( , )PC I PC I PC I   B B B   

5. The sesquilinear equivalent forms '( , ( )) and ( ,PC I sesq D E PC I sesq (𝔻 𝔼)) 

Of the above spaces are defined in a similar manner with the usual supremum 

norm defined in [2]. 

Definition 2.1. A stochastic process is called a solution of 

Eq. (1.1) if, it satisfies the following: 
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Subsequently,  , , ( )) and 1, ...,t I D E k m      except otherwise stated. 

Next we re-frame the concept of Ulam’s type stability for the purpose of this paper. 

Let 
 ( , ) : : ( ) 0 , , 0 and ( ) ( ,PC I t t PC I sesq        B B

(𝔻 𝔼)) 

The following inequality will be useful: 
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Definition 2.2. Equation (1.1) is U-H-R stable with respect to , ( ))t    if we can 

find 0M    such that for each solution ( , ) of (2.1),PC I  B  there exists a solution 

( , )PC I B  of Eq.(1.1) with 

( ) ( ) ( , )),                                (2.2)y t t M t I  
    

  

Eq. (1.1) has found applications in quantum stochastic control theory and 

quantum dynamical systems, see [2, 8].It is worth mentioning that this method will 

be more useful in many applications such as numerical analysis, Physics, especially 

when exact solutions are difficult to come  by. 

Definition 2.3. A stochastic process 1( , )PC I B    is a solution of (2.1) if and only if 

there exists a function 
1( , ( ))F PC I sesq D E     and 

1( ,F PC I sesq  (𝔻 𝔼)) such 

that 
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Definition 2.4. Also, ( , )PC I B   if is a solution of the (2.1), then it is also a solution of 

the following integral   inequality: 
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We state the following established result and refer the reader to [7] and the 

references therein: 

Lemma 2.1. Let , ,v a b  be real valued piecewise continuous functions, where a   is 

nondecreasing. Assume the following inequality holds: 
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following inequality also holds: 
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3. MAIN RESULTS 

We state the following useful hypotheses: 

1  Let K 0 be a constant such thatpS     

1 2 1 2( , ) ( , ) ,pP t P t K
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The following result is a consequence of definition 2.1. 

Theorem 3.1. Let the map P   in Eq. (1.1) be continuous for each and let the 

hypotheses 1 3S S  hold. Then equation (1.1) has a unique solution ( , )PC I  B  

provided 

{ , 1,... } 1                                    (3.1)p

kL K T k m  
 

Proof: The proof is an adaptation of the method employed in [2].  

We give a sketch as follows and refer the reader to the reference [2] for d e t a i l s . 

Transform the Eq. (1.1) to a fixed point problem by defining the map    as follows: 

 Let 
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Where (0) (0).y  Showing that (3.1) is satisfied and hence,   is a con- traction 

operator on ( ,PC I sesq (𝔻 𝔼)) and a fixed point exists, which is a unique solution of 

(1.1). 
Next, is the main result on stability. 

Theorem 3.2: Let the conditions 1 2S S  and (3.1) hold. Then Eq. (1.1) is 
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U-H-R stable. 

Proof: Let 

0 1
0

( , ) be a solution of Eq. (1.1). Then
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Applying Lemma 2.1, yields 

1 1( ) ( ) (1 )( ( ))(1 ) exp( ), ( , ].                  (3.3)m

t k kt y t l t L K t t s t    
        

 

Moreover, for ( , ],  we obtaink kt s t   

( ) ( ) ( ) ( , ( ))

                       + ( , ( )) ( , ( ))

                      ( ) ( )

1
                      , max{ , 1,..., } 1         (3.4)

1
q

q

t y t t q t t

q t t q t y t

L t y t

L L k m
L

 

  

  

 

  





  



   

    


 



S. A. Bishop, M. O. Ogundiran and O. P. Ogundile 

http://www.iaeme.com/IJMET/index.asp 372 editor@iaeme.com 

Again, for each 1[0, ]t t  , we obtain 
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By Gronwall’s Inequality, we get 
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where M is as defined in Definition 2.2 This implies that equation (1.1) is 

generalized U-H-R stable with respect to ( , ( )).t     

4. EXAMPLE 
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Where (0) (0).y   Let 1( , )y PC I B  be a solution of (4.2). Then, we find 
1(.) (1, )F PC  B  and 

1  such thatF B   
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Integrating (4.3), yields 
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By Theorem 3.1, (4.1) has a unique solution which we present by 
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5. CONCLUSION 

This shows that the solution of Eq. (1.1) is generalized U-H-R 

stable with 

21
 and ( ) .

2

tt e    
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