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Preface

Since publishing the First Edition of polyolefin fibres: industrial and medical appli-

cations tremendous advances have been made in polymer science and engineering

particularly in the important fields of nanocomposites and biomaterials. The import

of polyolefins remains very strong and concerted demands have led to the publish-

ing of the second edition of the book titled, Polyolefin fibres: Structure, Properties

and Industrial Applications. Polyethylene and polypropylene (PP) are very impor-

tant polyolefin polymers and the fastest growing polymer family. Polyolefins cost

less to produce and process than many other plastics and materials they replace.

Indeed, PP is a versatile and widely used synthetic polymer for hygienic applica-

tions like food packaging, surgical masks, diapers, hygiene bands, filters, automo-

tive parts, and medical devices. Polyolefins are also important for fibres and films;

PP fibres are used widely in upholstery fabrics, geotextiles, and carpet backing.

Evidently, because of the low cost, high strength, high toughness, and resistance to

chemicals, PP fibres find a broad spectrum of use in the industrial, home furnishing

sectors, and medical applications. Thus our knowledge in engineering nanocompo-

site polyolefin materials has proved invaluable in improving the range of commer-

cially available products. However, PP fibres do not enjoy comparable popularity in

the apparel sector of the textile industry; one of the main reasons being lack of

dyeability.

Specifically, this Second Edition is made up of three parts, namely: Part I:

Structure and properties of polyolefin fibres with special emphasis on the types of

polyolefin fibres, their structure and chemical properties, detailed discussion on the

structural mechanics of polyolefin fibrous materials and nanocomposites, polyole-

fins and the environment, the use of polyolefins in industrial and medical applica-

tions, and advances in polyolefin-based fibres for hygienic and medical

applications.

Part II: Improving the functionality of polyolefins places emphasis primarily on

the production methods for polyolefin fibres, enhancing the hygiene/antimicrobial

properties of polyolefins, improving their use in nonwovens, testing and quality

control of polyolefins, the current status of polyolefin nanocomposite fibres and

films and efforts geared towards improving the coloration/dyeability of polyolefin

fibres.

Part III: Enhanced applications and uses of polyolefin fibres focus on various

topics dealing with improving the wear resistance of polyolefins; improving thermal

and flame resistance properties of polyolefins; discussions about the various poly-

olefin automotive components, the use of polyolefins in geotextiles and engineering



applications; the increasing use of polyolefins in biomedical applications and also

the use of polyolefins in hygienic applications.

I am most grateful to all the contributors for their time, determination, and

enthusiasm in insuring that the deadline of the editorial team was met. I am

indebted to all the members of my family for their support, interest, and encourage-

ment in the realization of this book project. Many of my graduate students and vis-

iting scientists from various universities across the globe have made contributions

through our shared research projects over the years and their efforts are duly

acknowledged.

I believe this book provides excellent information not only for researchers, aca-

demics, and professionals in the biomaterials, nonwoven, and medical areas but

also for technologists, engineers, product designers, marketers, and mangers in the

polymer, textile, and allied industries.

Samuel C.O. Ugbolue1,2
1Scudin LP, Taunton, MA, United States

2Edwin Clark University, Kiagbodo, Nigeria
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polyolefin fibres



4Polyolefins and the environment
Oluranti Agboola1, Rotimi Sadiku2, Touhami Mokrani1,

Ismael Amer1 and Odunayo Imoru3

1University of South Africa, Johannesburg, South Africa,
2Tshwane University of Technology, Pretoria, South Africa,
3Federal University of Technology, Minna, Nigeria

4.1 Introduction

4.1.1 Polyolefins

Polyolefins (PO) are the leading and largest volume industrial polymer in the world

and they are used for the production of a wide range of commercial products that

are used in nearly every aspect of our daily lives, such as household bottles, pipes,

automobile parts, packaging films, etc. [1]. PO derive their physical properties from

the arrangement or the entanglement of the atoms in the chain molecules.

Branching caused by radical transfer influences the physical properties as well as

the molecular distribution [2]. They are based on low-cost petrochemicals or natural

gas and the required monomers are produced by cracking or refining of crude oil

and therefore, resource depletion may become a determining factor in the future

production of PO [3]. It is, therefore, highly desirable that PO material does not

have any negative effect on the environment during its transformation into articles

or components or during service [4]. It is important to avoid any negative effects at

the end of the life cycle of PO (see Fig. 4.1).

PO are saturated hydrocarbon polymers, based on ethylene; high-density poly-

ethylene (HDPE), low-density polyethylene (LDPE) and linear low-density polyeth-

ylene (LLDPE), propylene and higher α-olefins or combinations of these

monomers. PO also take great advantage of their chemical nature, being composed

by carbon and hydrogen only, with respect to other plastics, such as poly(vinyl

chloride) (PVC), polyamides, and polyurethanes [5]. PO, intended as polymers and

copolymers of ethylene and propylene, represent more than 40% of plastics pro-

duced every year, with a clear tendency to increase such percentage. As the use of

the material widens, so does the amount of waste disposed off into the environment

[5]. Therefore PO play a major role in environmental issue and every progress

achieved for them is a substantial progress for the whole issue [6]. Chemical and

biological inertness of polyolefins were seen, originally as advantages. The high

stability of these compounds and resistance to degradation has led to their accumu-

lation in the environment, considerably increasing visible pollution and contributing

to the clogging of drains during heavy rains, among other problems [7�10].

Environmental appearance is becoming an important factor that impacts on the mar-

ket position of polyolefins, thus the appearance depends on the raw materials and

Polyolefin Fibres. DOI: http://dx.doi.org/10.1016/B978-0-08-101132-4.00004-7

Copyright © 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/B978-0-08-101132-4.00004-7


the processes employed for the manufacture of these materials. Furthermore, prod-

uct recyclability or biodegradability and the use of renewable resources need to be

considered.

4.1.1.1 Polyethylene

Polyethylene (PE), a member of the important family of polyolefin resin, is the

most widely used plastic in the world. They are prepared by the catalytic polymeri-

zation of ethylene [11]. It is a thermoplastic polymer consisting of long chains, pro-

duced by combination of the monomer molecules, i.e., ethylene. Depending on the

mode of polymerization, three basic types of PE are frequently used: linear HDPE,

branched LDPE, and LLDPE [12]. PEs are crystalline thermoplastics that possess

toughness, excellent chemical resistance and excellent electrical insulating proper-

ties, near-zero moisture absorption, low coefficient of friction and ease of proces-

sing. Their heat deflection temperatures are reasonable but not high.

HDPE possesses greater stiffness, rigidity, improved heat resistance, and

increased resistance to permeability than LDPE and LLDPE. HDPE has a low

degree of branching and thus greater intermolecular forces and tensile strength. It

can be produced by chromium/silica catalysts, Ziegler-Natta catalysts or metallo-

cene catalysts [13]. HDPE is produced in molecular weights (MWs), ranging from

10,000 to several million. It has a linear polymeric chain (see Fig. 4.2), combined

with a high density and melting point [14]. HDPE is used in the production of milk

jugs, detergent bottles, margarine tubs, garbage containers, toys, and water pipes

and in packaging.

Low-density PE is manufactured under high temperature and pressure using per-

oxide initiators. On the other hand, LLDPE is manufactured under low pressure.

LLDPE is prepared by introducing short branching via copolymerization with

Oil, natural gas 
and H2O as input
resources

Sourcing of 
raw materials

Treatment of 
components of 
crude oil natural 
gas in (cracking 
process or process 
of refining crude 
oil)

Conversion of these 
components into 
hydrocarbon 
monomers (ethylene 
& propylene)

Distribution
Use, 
maintenance,
reuse

Pollution 
such as H2O,
air and waste

Figure 4.1 Polyolefins product life cycle.

90 Polyolefin Fibres



a small amount of long-chain olefin. It is linear (see Fig. 4.3), but have a significant

number of branches introduced by using comonomers, such as butene-1 or octene-

1. Usually the comonomer content is between 8% and 10% at a density of

920 g cm23. The linearity provides strength, while the branching provides tough-

ness. The modulus and ultimate tensile properties of LLDPE are significantly

improved over the branched LDPE [14]. The branching in LLDPE and LDPE

decreases the crystallinity and lowers the density [15]. LDPE or LLDPE form is

preferred for film packaging and for electrical insulation.

Figure 4.2 High-density polyethylene.

Figure 4.3 Low-density polyethylene.
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4.1.1.2 Polypropylene

Polypropylene (PP) is a synthetic resin produced via the polymerization of propyl-

ene. PP films are widely used in packaging, textile, stationaries, and in a variety

of other applications due to their great potentials in such areas as barrier proper-

ties, brilliance, dimensional stability, and processability. In many aspects, PP is

similar to PE, especially in respect to their electrical properties and dissolution

behavior. The properties of PP depend on the MW and molecular weight distribu-

tion (MWD), crystallinity, type and proportion of comonomer (if used). The

mechanical properties of PP are strongly dependent on its crystallinity. Increasing

crystallinity enhances stiffness, yield stress, and flexural strength; however,

toughness and impact strength decrease [13]. The PP manufacturing process con-

sists of a raw material, refining process, polymerization process, after treatment

process, and granulation process. Propylene can also be polymerized with ethyl-

ene to produce an elastic ethylene�propylene copolymer. A large proportion of

PP production is melt-spun into fibres. PP fibre is a major factor in home furnish-

ings, such as upholstery and indoor�outdoor carpets [16]. The propene molecule

is asymmetrical (see Fig. 4.4).

When polymerized, three basic chain structures can be formed and they are

dependent on the position of the methyl groups: two are stereo-regular (isotactic

and syndiotactic) and the third does not have a regular structure and it is termed

atactic, as shown in Fig. 4.5 [17].

4.1.2 Polyolefin degradation

The negative change of properties (tensile strength, color, etc.) of a polymer or a

polymer-based product under the influence of one or more environmental factors is

known as polymer degradation. Naturally the degradation of plastics is a very slow

process and it is a function of environmental factors such as temperature, humidity

of air and moisture in the polymer, pH, and solar energy; polymer properties and

biochemical factors. Degradation gives rise to changes in material properties such

as optical, mechanical, or electrical characteristics which are evidenced as crazing,

cracking, erosion, discoloration, and phase separation. The most problematic plas-

tics are polyolefins as they are resistant to microbial attack (fungi and bacteria,

etc.), due to the absence of any active functional groups [18]. This means that the

surface of polyolefin material or articles made from polyolefins are hydrophobic,

thus inhibit the growth of microflora on them [19]. Depending on the environmental

factor, types of polyolefin degradation have been classified as photo-oxidative deg-

radation, thermal degradation, ozone-induced degradation, mechanochemical degra-

dation, catalytic degradation, and biodegradation [20].

C = C
H

H H

CH3

Figure 4.4 Propene molecule.
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4.1.2.1 Thermal degradation

During the process of polymeric materials degradation and oxygen diffusion prev-

alently occur in the amorphous regions, linking degradability to the thermal his-

tory of the material [21]. A process whereby the action of heat or elevated

temperature on a material, product, or assembly causes a loss of physical,

mechanical, or electrical properties is known as thermal degradation. The rate of

thermal degradation directly depends on the temperature, with high degradation

values achievable at high temperatures [22]. At high temperature the components

of the long-chain backbone of the polymer can begin to separate (molecular scis-

sion) and then react with one another to change the properties of the polymer.

The chemical reactions involved in thermal degradation lead to physical and opti-

cal property changes that are relative to the initially specified properties.

Generally, thermal degradation involves changes in the MW and the MWD of the

polymer. Other property changes include: chalking, color changes, cracking,

reduced ductility, and embrittlement [23].

The thermal degradation of polymers has become a progressively important

method for the conversion of waste plastics into valuable chemicals and fuel. It is

thus, important to have a good knowledge of the thermal degradation kinetics of

polymers in order to improve their thermal behavior. Studies on pyrolysis kinetics

Figure 4.5 Molecular structures of polypropylene [17].
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of polyolefin wastes have been carried out and most of these studies have been

developed on the assumption that the reaction can be described by an nth order

reaction model [24�30]. The assumption of an nth order reaction model would

result in the Arrhenius parameters deviating from the real models [31]. A method

of estimating the Arrhenius parameters as well as the reaction model of the pyroly-

sis of PP from isothermal kinetic results was described by some researchers

[32,33]. They introduced a custom-made thermobalance that is able to record

weight decrease with time under pure static condition. A best fit of experimental

reduced-time-plot to theoretical models led to a conclusion that the pyrolysis reac-

tion model and the Arrhenius parameters of PP vary with reaction temperature.

Mechanism of thermal degradation
In the last six decades, many investigations have been undertaken in order to clarify

the degradation mechanism of polyolefins. The mechanism of polymer degradation

is immensely complex, involving the simultaneous formation and decomposition of

hydroperoxides. Degradation is promoted by oxygen, humidity and strain and

results in such flaws as brittleness, cracking, and fading [34]. The thermal degrada-

tion of polymers consists of two distinct reactions, which occur simultaneously in

the reactor. One is a random scission of links, causing a MW reduction of the raw

polymer and the other is a chain-end scission of C�C bonds, generating volatile

products [35].

The chain-end scission occurs at the gas�liquid interface in the working reactor.

A continuous flow reactor for the thermal degradation of PE, PP, and polystyrene

(PS) has been investigated and discussed as a typical example for the chain-end

scission mechanism [36]. The nature and composition of the pyrolysis products pro-

vide important and profitable information about mechanism of thermal degradation

[37]. The chain-end degradation begins from the end of the chain and successively

releases the monomer units. The route of this type of degradation is also known as

depolymerization reaction. The reaction involves successive release of monomer

units from the chain ends. Such reactions are the opposite of the propagation step in

addition polymerization and they occur through free radical mechanism [35]. The

MW of the polymer in this type of degradation decreases slowly and large quantity

of the monomer is liberated simultaneously. Generally, chain-end degradation takes

place when the backbone bonds are weaker than the bonds of the side groups and

only with polymer molecules, carrying active chain ends with a free radical, cation,

anion, etc.

The degradation mechanism that is often attributed to the pyrolysis of a wide

number of polymers is random scission. In the random scission mechanism the

backbone of the polymer will break randomly; this can occur at any position of the

backbone, as a result of the rapid decrease in the MW. As new free radicals with

high reactivity are formed, monomers cannot be a product of this reaction; further-

more, intermolecular chain transfer and disproportion termination reactions can

occur. For random degradation to occur the polymer chain does not necessarily

require to carry any active site [38]. The mechanism of thermal degradation of PE

has also been discussed as an example for random scission type reactions [39]. PE
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also undergoes random degradation through migration of a hydrogen atom from

one carbon to another thus generating two fragments [40]. The kinetics of decom-

position of PP and PE are very significant, they serve as an example of a compli-

cated radical chain mechanism and design of waste incineration and other

recycling procedures. This is because PP and PE are respectively used in high

amounts for packaging and they constitute the main components of plastic waste

from domestic refuse.

Direct pyrolysis�mass spectrometry (Py�MS) is also applied in order to deter-

mine the primary structure of macromolecules and to further investigate selective

thermal degradation mechanisms. This technique allows the thermal decomposition

products of the polymer sample to be observed directly in the ion source of the

mass spectrometer, so that the evolving products are ionized and continuously

detected by repetitive mass scans almost simultaneously with their formation [41].

Methods of thermal degradation
Thermogravimetric analysis (TGA) method is one of the methods of thermal analy-

sis techniques used in characterizing a wide variety of materials. TGA is used to

measure the amount and rate of change in the mass of a sample as a function of

temperature or time in a controlled atmosphere. The measurements are used mainly

to determine the thermal and oxidative stabilities of polymeric materials and their

compositional properties [42]. The rate of degradation in TGA dα=dt
� �

is defined

as the rate of change of the degree of conversion. The degree of degradation or con-

version can be calculated in terms of mass as shown below [43]:

α5
wo 2w

wo 2wN
(4.1)

where wo, w, and wN are the initial weight, the actual weight at each point of the

curve, and the final weight measured at the end of the degradation process, respec-

tively. In a TGA instrument, sample is submitted to constant heating rate from

room temperature to 600�C or more, under the nitrogen flow. The reaction products

can be analyzed by gas chromatography [35]. TGA was used to investigate the

kinetic analysis of thermal degradation of polyolefin mixture between PP and

LDPE under pyrolysis atmosphere at different compositions [30]. It was found that

thermal degradation process of polyolefin mixture was a triple step process and an

addition of PP reduced the degradation temperature.

Pyrolysis�gas chromatography�mass spectrometry (Py�GS/MS) method is an

instrumental method of chemical analysis in which the sample is heated to decom-

position in order to produce smaller molecules and more analytical useful fragments

that are separated by gas chromatography and detected using mass spectrometry

[44]. As Py�GC/MS decomposes instantly, aggregates of pyrolysates and other

side products rarely occur. Thus chemically unchanged pyrolysates can be exam-

ined. Py�GC/MS can be used to examine the composition of polymer materials

that are difficult to dissolve in a solvent, investigate resin deterioration, and analyze

volatile additives [45]. This method of analysis involves putting the sample in the
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inactivated sample holder of the microfurnace, dropping the sample holder into the

reactor core, which is wrapped with high frequency coils, and filled with helium as

the carrier gas using a switch, and then pyrolyzing it. The pyrolysis results are

rather stable due to the comparatively low dispersion temperature changes resulting

from the sample holder’s small capacity [46].

Batch reactor method: Chemical reactions take place almost everywhere in the

environment; nonetheless chemical reactors are defined as devices well designed to

contain chemical reactions under controlled conditions toward specified products.

These devices are designed to maximize the net present value of a given reaction.

Reactor design also plays a fundamental role, as it has to overcome problems

related to the low thermal conductivity and high viscosity of molten polymers [41].

The thermal degradation of waste plastic can take place in a glass reactor under

atmospheric pressure with definite weight of sample that is loaded into bottom of

the reactor for thermal degradation. The purging of the reactor with nitrogen gas at

a flow rate of 10 mL/min at 120�C for 60 min is required to remove the physically

adsorbed water from the plastic sample. After the nitrogen flow is stopped the reac-

tor temperature is increased to the degradation temperature (430�C) at a heating

rate of 3�C min21 and the waste plastic bed temperature is taken as the temperature

of the degradation. The gaseous products can be condensed (using a cold-water con-

denser) to liquid products and trapped in a measuring jar [35]. The compositions of

the pyrolysis products of pure LDPE and PS and their mixtures were investigated

over a temperature range from 300 to 500�C. The pyrolysis experiments were car-

ried out in a closed batch reactor pressurized autoclave under inert nitrogen atmo-

sphere in order to study the effects of reaction temperature and residence time. The

main objective was to convert the waste plastics to oil products for use as a hydro-

carbon fuel oil or raw chemical feedstock. The effects of temperature and residence

time were studied in order to ascertain the optimum conditions necessary for the

production of oil and to investigate the effects of these parameters on the composi-

tions of reaction products, with a special emphasis on the oil. LDPE was thermally

degraded to oil at 425�C and the thermal cracking of LDPE in a batch reactor

resulted in production of a broad range of hydrocarbon compounds where the yield

of aromatics and aliphatics (olefins and paraffins) deeply depended on the pyrolysis

temperature and residence time [47]. As waste, HDPE was pyrolyzed in a batch

reactor at a temperature of between 400�C and 550�C at a heating rate of 20�C/min

with the aim of optimizing the liquid product yield at a temperature range of

between 400�C and 550�C. The results of the pyrolysis experiments showed that, at

a temperature of 450�C and below, the major product of the pyrolysis was oily

liquid which became a viscous liquid or waxy solid at temperatures above 475�C.
The yield of the liquid fraction obtained increased with the residence time for waste

HDPE. The liquid fractions obtained were analyzed for composition using FTIR

and GC�MS [48]. The kinetics of virgin and waste PP and LDPE were recently

studied by a modified Coats-Redfern method. Afterward the thermal cracking of

these materials in a semibatch reactor under atmospheric pressure in nitrogen was

investigated. Both virgin and waste plastics are decomposed at 4202 460�C. In
order to help in the understanding of the processes for polyolefin degradation the
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main reaction paths and the mechanisms for the thermal cracking of polyolefins in

a semibatch reactor under atmospheric pressure, though thermal reactions occur-

ring in a reactor are complex and this investigated by Ya et al. [49]. Owing to the

short residence time and atmospheric pressure in the pyrolysis process, the high

yield of the gaseous product and high yield of unsaturated hydrocarbons in both

gaseous and liquid products can be obtained in a semibatch reactor. The results

confirmed that chain scission reactions are predominant degradation mechanisms

in the thermal cracking process. They concluded that the reaction of the intramo-

lecular hydrogen and the β-scission of the end or middle chain radicals are respon-

sible for the reduction in gaseous and liquid products. In the case of LDPE the

reaction of intermolecular hydrogen and β-scission, followed by intramolecular

hydrogen reaction may be contributed to form the 1-alkane and 1-alkene with

same carbon number.

4.1.2.2 Photo-oxidation degradation

A natural weathering that has great effect produced by oxygen and light radiation is

technically referred to as photo-oxidation [50]. Photo-oxidation is therefore the deg-

radation of the surface of a polymer/material in the presence of oxygen or ozone

radiation. It is one of the leading chemical degradation mechanisms in photoactive

materials and occurs when organic materials are exposed to air and light. Materials

that are subjected to oxygen are degraded faster in the presence of radiation than in

the absence. The chemical changes that occur during degradation cause disruption

of the π conjugation of the polymers and reduce photo absorbance in a process

called photo bleaching [51]. The effect is facilitated by radiant energy such as artifi-

cial or UV light. The chemical changes reduce polymer’s MW and as a conse-

quence of this change, the materials become more brittle with a reduction in its

tensile, impact, and elongation strength.

The most common photoreaction for all materials is photo-oxidation. Usually

free radicals are generated as transient species in photolytic processes. Since

oxygen reacts readily with most free radicals, peroxyl radicals will be formed.

Photolysis, therefore, can give rise to autoxidative free radical chain reaction. For

example, the primary reaction steps for photo-oxidation of polyolefins are as shown

in Eqs. (4.2)�(4.15). The steps involve initiation, propagation, chain branching, and

termination.

During the mechanism of initiation, the absorption of UV light that has sufficient

energy to break the chemical bonds in the main polymer is responsible for polymer

degradation. It involves a radical chain mechanism for the formation of initial radi-

cal. For the photo initiated oxidation of many commercial polymers this reaction is

considered to be very important due to the presence of peroxide groups as chemi-

cally bound impurities, originating from processing at a very high temperature in

the presence of oxygen. In general, initiation reaction occurs by random chain scis-

sion or chain-end initiation. This step is followed by depropagation step forming

monomer [35], as depicted below.
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RH!O2
R;H2 O

d
;H2O2 (4.2)

H2O2 ! 2O
d
H (4.3)

O
d
H1RH ! H2O1Rd (4.4)

The propagating reactions of auto-oxidation cycle are common to all carbon

backbone polymers. Propagation is a process in which a reactive intermediate is

continuously regenerated during the course of chemical reactions. These reactions

lead to generation of hydroperoxide species and are not directly led to backbone

cleavage but they are the key intermediates to stimulate reactions. The key reaction

in the propagation sequence is the formation of polymer peroxy radicals (ROO�).

The next propagation step is the abstraction of hydrogen atom by the polymer

peroxy radicals (ROO�) in order to generate new polymer alkyl radical (R�) and

polymer hydroperoxide (ROOH) [52]. Hydroperoxide species generated in the prop-

agating step lead to backbone degradation through the cleavage of hydroperoxide

O�O bond followed by β-scission [35].

Rd 1O2 ! ROOd (4.5)

ROOd 1RH ! ROOH1Rd (4.6)

ROOH1RH ! R5O1H2O1Rd (4.7)

R5O ! R2C
d 5O1CdH2R2 (4.8)

HOd
2 1RH ! HOOH1Rd (4.9)

Branching in polymer occurs by the replacement of a substituent, e.g., a hydro-

gen atom, on a monomer subunit, by another covalently bonded chain of that poly-

mer. In chain branching, polymer oxy radicals (RO�) and hydroxyl radicals (HO�)

are formed by photolysis. The oxidation of polyolefin is a radical chain type mecha-

nism. At processing temperature, above ambient temperature polymer radicals R�

are formed. The radicals react with oxygen to form peroxide radicals ROO� which

abstract hydrogen from the polymer backbone in order to form a hydroperoxide

(ROOH) and other radicals [53].

ROOH ! ROd 1 dOH (4.10)

Termination of polymer radicals occurs by a bimolecular recombination. The ter-

mination of photodegradation process is achieved by “mopping up” the free radicals

in order to create inert products. This occurs naturally by combining free radicals or

assisted by using stabilizers in the plastic [35].
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In here, crosslinking is a result of the reaction of different free radicals with

each other. When the oxygen pressure is high, the termination reaction almost

occurs by the reaction in Eq. (4.13). At low oxygen pressure, other termination

reactions occur to some extent [52].

Rd 1Rd ! RR (4.11)

ROOd 1Rd ! ROOR (4.12)

2ROOd 1Rd ! R5O1H2O1O2 (4.13)

2HOd
2 ! HOOH1O2 (4.14)

ROd
2 1HOd

2 ! ROOH1O2 (4.15)

Hydroperoxide groups are formed in the propagation reaction as shown in

Eq. (4.16). At wavelengths below 300 nm hydroperoxides are photolytically decom-

posed [54]. The most damaging UV wavelength for a specific plastic depends on

the bonds present and maximum degradation therefore occurs at different wave-

lengths for different types of plastics, e.g., it is around 300 nm for PE and

B370 nm for PP [35].

ROOH1 hv ! ROd 1 dOH (4.16)

PO are often used for outdoor applications. By virtue of the weather conditions

the material age and therefore change their properties (cracking of the surface, color

changes, embrittlement, decrease of the mechanical features, etc.). Weathering of

polymers may be caused by various factors, for example mechanical stress, oxida-

tion, heat-, or biodegradation. One of the most severe factors contributing to photo-

oxidation degradation is ultraviolet (UV) radiation [54]. Most of the synthetic poly-

mers are susceptible to degradation initiated by UV and visible light. Normally the

near-UV radiations (wavelength 290�400 nm) in the sun determine the lifetime of

polymeric materials in outdoor applications [55]. When PE and PP films are

exposed to solar UV radiation, they readily lose their extensibility, mechanical

strength, and mechanical integrity along with decrease in their average MW

[56,57]. The deleterious effects of solar UV radiation in particular on biopolymers,

and polymers are well known. The phenomenon is of special interest to the building

industry, which relies on polymer building products that are routinely exposed

to sunlight during use. Most of the common polymers used in such applications

contain photo-stabilizers in order to control photo-damage and to ensure

acceptable lifetimes under outdoor exposure conditions [58].

Photochemical oxidation degradation
Photochemical oxidation which is initiated by light is considered the reaction of a

chemical change in a substance which causes it to lose electrons. Photochemical
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oxidation processes generally involve the generation and use of relatively powerful

nonselective transient oxidizing species, primarily the hydroxyl radical ( �OH) and
in some cases the singlet oxygen which can be generated by photochemical means.

The following processes can be considered photochemical oxidation process.

� UV/oxidation processes
� Vacuum ultraviolet (VUV) photolysis
� The photo-fenton process
� Sensitized photochemical oxidation processes

Research on polymer degradation has proof that practically all polymers and

polymer-based materials are oxidized by atmospheric oxygen. The reactions

induced in polymers by UV irradiation depend on different factors such as

internal and external impurities, physical state of the sample, chain structure

and characteristics of the radiation source, etc. Hydrogen atom abstraction

could occur to a certain extent when impurities in the polymer create macrora-

dical sites. These will react with oxygen, thus producing peroxy radicals

and subsequently hydroperoxides, which are thermally and photochemically

unstable and will induce further breakdown. Again, polymer degradation

results in chemically irreversible reactions or physical changes, the knowledge

of the processes involved is important to prevent the premature failure of these

materials [59].

Oxidation processes based on the use of ozone (O3), hydrogen peroxide (H2O2),

and UV irradiation are currently employed for wastewater treatment as chemical

oxidation processes (O3/H2O2, O3, H2O2/Fe
21) or photochemical oxidation

processes (H2O2/UV, O3/UV) [60]. Some researchers have studied photochemical

oxidation processes of some polymers. Sörensen et al. [61] investigated the degra-

dation pathway for the oxidation of ethylenediaminetetraacetate (EDTA) in the

UV/H2O2-process. In absence of iron ions the mineralization of EDTA was domi-

nated by the reaction of the HO�radicals generated by the photolysis of H2O2. In

the presence of iron ions, photolytic decarboxylation processes inside the complex

get an important role during degradation, and the organic degradation products

ethylenediaminetriacetate, ethylenediaminediacetate, ethylenediaminemonoacetate

were found. By combining product studies with balances of carbon and nitrogen

the degradation pathway in the UV/H2O2-process could be elucidated. No toxic

degradation products were identified. Therefore the process was well suited for the

elimination of EDTA in water treatment.

Kinetics of photochemical oxidation of polyolefins
The kinetics of decomposition of PE and PP are very important because they pro-

vide insight into a complex radical chain mechanism, relevant for the design of

waste incineration and other recycling procedures. The kinetics of photochemical

oxidation of polyolefin has been investigated by some researchers [62�64].

Photochemical oxidation can be described by a very close mechanistic scheme dif-

fering only by their initiation step. In any quantitative approach to the kinetics of

photochemical oxidation of a polymer the control of the initiation rate is of major
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importance. Polymers, in which the absorbing species are not identified, the absorp-

tion of light, are essentially dependent on the sample studied [65].

A mathematical expression for the oxidation rate was obtained through the con-

ventional concepts of chemical kinetics by making four simplifying assumptions:

(1) unicity of reactive site, i.e., oxidation occurs exclusively on the most labile CH

bond; (2) low conversion ratios of oxidation process, i.e., concentration of reactive

sites remains virtually constant; (3) constancy of initiation rate in the case of oxida-

tion induced by an extrinsic factor; (4) steady-state for radicals concentrations in all

oxidation cases, but also for hydroperoxides concentration in the case of pure ther-

mal oxidation [66]. Cunliffe and Davis [67], Furneaux et al. [68], and Audouin

et al. [69] developed kinetics model with the aim of describing other oxidation

regimes of lower oxygen concentration than oxygen excess. These authors included

other possible termination reactions such as bimolecular combinations of

alkyl�alkyl and alkyl�peroxy radicals, to the previous mechanistic scheme. Long

kinetic chain and the existence of an interrelationship between termination rate con-

stants were assumed. They obtained a hyperbolic expression for the oxidation rate

by making two additional simplifying assumptions; this was added to the previous

four assumptions. With this model the oxygen concentration dependence of the oxi-

dation rate of thin polymer films was described and the critical value of the oxygen

partial pressure above which oxygen is in excess was determined. There are other

new developed kinetic models. The introduction of a term of photo-induced initia-

tion in a numerical model has been performed by Kiil [70] in the case of the photo-

oxidation of epoxy coatings, but the corresponding initiation rate has been

described through an empirical law.

Mechanism of photodegradation of polyolefins
Photo-oxidation is the result of the absorption of light, which leads to the formation

of radicals that induce oxidation of the material. For polyolefins (PE and PP, espe-

cially), photo-oxidation is the dominating mechanism because these polymers do

not have an inherent absorption at wavelengths present in terrestrial sunlight

(. 290�400 nm), therefore, photolysis cannot play an important role. Although,

irradiation of these polymers with terrestrial wavelengths results in accelerated deg-

radation; especially for PP, this can be attributed to the impurities that are formed

during storage and processing. The steps of photo-oxidation have been described in

Section 4.2.2.

The photodegradation mechanism [71,72] of PP occurs when primary events fol-

lowing irradiation of PP with UV light in vacuum are bond-scission and crosslink-

ing as shown in Fig. 4.6.

CH3

-CH2-CH-CH2-CH               -CH2-CH   + CH2-CH-

CH3 CH3 CH3

Figure 4.6 Chain scission of polypropylene.
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The dissociation of carbon�hydrogen bonds at the tertiary carbon is another pos-

sible reaction (see Fig. 4.7).

This could lead to chain scission by a disproportionation reaction (see Fig. 4.8).

Crosslink is formed by the reaction of two propylene radicals (Fig. 4.9).

Pure PE is a relatively stable material in the absence of oxygen, under UV radia-

tion. Chain scission and hydrogen abstraction occur after a long exposure to UV

light of short wavelength (254 nm) in a nitrogen atmosphere or in vacuum.

Crosslinking and evolution [72] of hydrogen can also be observed (see Fig. 4.10).

Methods of photodegradation
The most important factors of photodegradation are sunlight, atmospheric oxygen,

air pollutants, moisture, and changes of temperature. Sunlight is of particular signif-

icance as it often triggers polymer degradation [74]. Since the weatherability of a

material solely relies on its resistance to all weather factors, the radiation from the

sun, especially the UV part is mainly responsible for limiting the lifetime of materi-

als exposed to the environment. Therefore organizing the scope of weathering test

CH3

-CH2-C   -CH2-CH               -CH2=CH   +   CH2-CH-

CH3 CH3 CH3

Figure 4.7 Dissociation of carbon�hydrogen bond.

CH3

-CH2-CH-CH2-CH               -CH2-C + CH2-CH-+H

CH3 CH3 CH3

Figure 4.8 Chain scission of PP as a result of disproportionation reaction.

2-CH2- C*- CH2 - CH  -CH2 -C = CH2 - CH-

CH3 CH3

CH3

CH3 -CH2 -C - CH2-CH-CH3

CH3

Disproportionation+

2-CH2- C*- CH2 - CH  -CH2 -C - CH2 - CH-

CH3 CH3

CH3

CH3
-CH2 -C + CH2-CH-CH3

CH3

Recombination

Figure 4.9 Crosslinking of polypropylene radicals [73].
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methods into logical order will assist in visualizing the tools that are available for

weathering tests.

Artificial weathering method Artificial weather testing process can be greatly

accelerated through the use of specially designed weathering environmental cham-

bers. Although this speeds up the time needed to get results, however, the condi-

tions are not always representative of real-world conditions. Artificial light sources

can also be used to approximately replicate outdoor conditions but with a greatly

reduced test time under highly controlled conditions. The use of plastics in outdoor

applications has greatly increased in the past six decades. With this increment, there

is a great need of using a good method in for the prediction of the outdoor durabil-

ity of potential outdoor product. One of the most common methods employed for

this purpose is the artificial weathering devices. Most of the commercialized

devices used are gas-discharged lamp, fluorescent lamp, and electric arc (carbon) in

order to simulate/accelerate the effect of sunlight. These devices use a variety of

light sources in combination with programmed spray cycle with the aim of simulta-

neously simulating and accelerating outdoor weathering conditions [75]. The accel-

erated weathering of fibre-filled PE composites has been studied in order to

evaluate the relative durability of natural fibre-filled high-density polyethylene

composites (NF-HDPE) intended for exterior roofing applications based on a single

accelerated weathering protocol [76].

Natural weathering method Natural weathering test is conducted under natural

environmental conditions and is done by placing of samples on inclined racks ori-

ented towards the sun. The directions in which these racks are placed are very

important. These racks are at an angle of 45�C in a Southerly direction of the

Northern Hemisphere and 45�C in the Northerly direction of the Southern

Hemisphere. The exposure to the full spectrum of solar radiation, from infrared to

ultraviolet is established by this angle. Sites used for this type of testing should be

areas with very high temperature. UV intensity and humidity are needed for maxi-

mum degradation. Ojeda et al. [10] studied the degradability of linear polyolefins

under natural weathering in order to assess the abiotic degradability of HDPE,

LLDPE, and PP extruded blown films with low or zero concentrations of antioxi-

dant additives. They further studied the abiotic degradability of HDPE/LLDPE

blend containing a prooxidant additive (oxo-biodegradable blend), during 1 year of

-CH2- CH2- CH2 – CH2 - CH2 - CH2
. + .CH2 - CH2 -

-CH2 –CH. - CH2-CH2- + H.

-CH2- CH. - CH2 – CH2 - CH2 - CH + CH2 - CH2 -

-CH2 –CH. - CH2-CH2- - CH2 - CH - CH2 - CH2 -
+

H. + .H     H2

Figure 4.10 Chain scission and crosslinking of polypropylene.
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natural weathering period. Their study showed that the real durability of olefin

polymers may be much shorter than centuries. In less than 1 year the mechanical

properties of all samples decreased virtually to zero, as a consequence of severe

oxidative degradation, that resulted in substantial reduction in molar mass accompa-

nied by a significant increase in content of the carbonyl groups.

4.1.2.3 Ozone-induced degradation

Ozone is an immensely reactive form of oxygen occurring around electrical dis-

charges. It is also present in the atmosphere, but in small quantities. The presence

of ozone, even in very small concentrations, in the atmosphere significantly

increases the rate of polymeric materials aging [77]. Atmospheric ozone usually

causes the degradation of polymers under conditions that may be considered as nor-

mal; when other oxidative aging processes are very slow and the polymer retains its

properties for a rather longer time [78�80]. Exposure of polyolefins to ozone gas

causes change in the mechanical properties of LLDPE; oriented PP. Degradation

can also be induced deliberately in order to assist in structural determination. This

structural determination includes the specification of molecular geometry; when

feasible and necessary, the electronic structure of the target molecule or other solids

can be determined.

Mechanism of ozone-induced degradation
The oxidation mechanism of polyolefin and other polymers in the presence of

ozone is well reported [81�83]. In the presence of oxygen, almost all polymers

degrade faster than in an inert environment. The presumed ozone oxidation mecha-

nism is due to the radical-based oxidation process where atomic oxygen is initially

formed by degradation of ozone [82]. An atomic oxygen arising from ozone decom-

position attacks polymers, thereby producing carbon and hydroxyl radicals. The car-

bon radicle reacts almost immediately with the oxygen molecule, giving a peroxyl

radicle. The carbonyl oxide is considered to be the key intermediate in the C5C

bond ozonolysis mechanism. The produced peroxyl radicle further interacts

with the PE to produce carbonyl groups in the chain [81]. The concentration of the

peroxy groups depended on the ozone concentration and the exposure time of the

surface to ozone [84].

Methods of ozone-induced degradation
Ozone testing is a method used to determine a rubber or polymers resistance to

ozone degradation. The resistance level is determined by the physical appearance

and the severity of the cracks on the surface of the material sample. The polymers

samples are placed in a special chamber that exposes them to ozone at a specified

concentration, temperature and duration by doing a specification testing or standard.

A sample that does not stand up to the effects of ozone exposure will crack at the

surface and sometimes break in two. During this test a material sample will undergo

accelerated time/exposure ozone tests. The results of these tests are used to predict

the reaction of a material sample under dynamic or static surface tensile strain con-

ditions in an atmosphere containing specified levels of ozone. The extent of
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reaction of polyolefins with ozone depends on the extent of agitation of the slurry,

the slurry temperature, solid consistency, and ozone concentration in the gas.

Because these tests are accelerated and only simulate long-term outdoor ozone

exposure, actual real-world exposure results may vary [85,86].

4.1.2.4 Mechanochemical degradation

Mechanochemical degradation of polymers is an aspect of polymer degradation

that takes place under mechanical stress and by strong ultrasonic irradiations. The

molecular chains breakdown as a result of a mechanical force or under shear; this

process is often aided by oxidation which is known as mechanochemical degrada-

tion. This type of degradation is common in machining process, such as mastica-

tion, grinding, and ball milling [87]. Rubber mastication, which leads to chain

breakage and development of plasticity under shear, is an example of mechano-

chemical degradation. Mastication of rubber in the atmosphere of nitrogen at ordi-

nary temperature does not change the plasticity and MW appreciably, but with the

presence of oxygen, degradation occurs immediately and rapidly. Under mechani-

cal shear the rubber molecules break into radicals and react with oxygen in the

atmosphere leading to permanent chain breakage. In nitrogen, however, the primary

radicals formed under shear immediately recombine to give no effective chain

breakage [88].

Mechanism of mechanochemical degradation
It is known that input of mechanical energy to polymers does not only produce

mechanical effects, it does produce chemical effect too. This effect is called the

mechanochemical effect. Polymeric materials show an exceptional range of

mechanical responses, which depend on the chemical and physical structure of the

polymer chains. The mechanical response of thermoplastic polymers is highly influ-

enced by the molecular mass, chain entanglements, chain alignment, and degree of

crystallinity. High intensity ultrasounds can induce mechanochemical degradation

in polymeric materials. Polymer in such a case is subjected to very high vibrations,

which are only mechanical forces. As ultrasonic waves pass through the solution,

the localized shear gradient produces tear of molecules leading to chain scission

and decrease in MW [35].

It has been reported that the superposition of ultrasonic waves in extrusion

could greatly decrease the viscosity of polymer melts and improve production rate

[89�91]. Ultrasonic oscillations can also greatly enhance the compatibility and

mechanical properties of HDPE/PS blends due to the in situ formation of inter-

chain copolymer of PS�HDPE. The effects of ultrasonic irradiation intensity and

the depth of ultrasonic irradiation on the mechanochemical degradation of HDPE

have been discussed [92]. The development of MWD of HDPE melt during ultra-

sonic degradation was also studied. The average MW of HDPE decreases with

increasing of ultrasonic intensity. A further increase in trends of under-graded

HDPE was observed with the increase of distance from ultrasonic probe tip, indi-

cating that attenuation of ultrasonic intensity in HDPE melt is very quick. It was
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found that the weight average MW and MWD of HDPE depend, strongly on the

time of irradiation [92].

Methods of mechanochemical degradation
The method of ball milling is a widely used process in which mechanical force is

used to achieve chemical processing and transformations. In the past eight decades,

some work in understanding the response of polymeric materials to mechanical

stress was published by Staudinger and Bondy [93], who observed a decrease in the

MW of polymers in response to mastication. It was suggested that the MW reduc-

tion resulted from the homolytic carbon�carbon bond cleavage due to mechanical

force. This suggestion was supported by electron spin resonance (ESR) experiments

of polymers cleaved by ball milling [93]. Sohma [94] stated that polymer molecules

in a liquid phase are scissioned by mechanical actions, such as either ultrasonic

waves or high-speed stirring. Although the main chain scissions generate free radi-

cals (mechano radicals) of polymers in the liquid phase, however, the lifetimes of

these mechano radicals in a liquid phase are too short to be detected by the conven-

tional ESR technique.

Polymers in an extruder are in a molten state and are under strong shearing

forces, i.e., the mechanical forces that will break the molecule of polymers. The

molten state is something between two extremes, i.e., a solid phase and an ordi-

nary liquid of considerably less viscosity [94]. It has been found that mechanical

degradation reduces the average MW of the polymer [95]. The mechanochemical

degradation response of polymers to mechanical force is characterized [93] by a

variety of measures, including tensile strength, failure strain, stress, fracture

toughness (resistance to crack growth), and elastic modulus (initial slope of the

stress�strain curve).

4.1.2.5 Biodegradation

Biodegradation can be defined as nature’s way of recycling wastes, or breaking

down organic matter into nutrients that can be used by other organisms, i.e., biodeg-

radation is the disintegration of materials by fungi, algae, bacteria, and other biolog-

ical means. Biodegradation is considered a type of degradation involving biological

activity. Biodegradation is expected to be the major mechanism of loss for most

chemicals released into the environment. This process refers to the degradation and

assimilation of polymers by living microorganisms in order to produce degradation

products [96]. Biodegradable materials degrade into biomass, carbon dioxide, and

methane. In the case of synthetic polymers, microbial utilization of its carbon back-

bone as a carbon source is required [97]. It has been stated that research has focused

on developing biodegradable polymers since most of the polymers are resistant to

degradation [98]. The newly developed polymers are degraded and catabolized ulti-

mately to carbon dioxide and water by bacterial and fungi under natural environ-

ment. During the degradation process, they should not generate any harmful

substances.
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Polymers degrade in microbial environments either by anaerobic or aerobic bio-

degradation and sometimes, a combination of the two. Aerobic biodegradation is

the degradation of polymer material by microorganisms in the presence of oxygen

with the subsequent conversion of carbon into carbon dioxide, biomass, and by-

products. On the other hand, anaerobic biodegradation is the degradation of poly-

mer material by microorganisms in the absence of oxygen with the subsequent

conversion of carbon into carbon dioxide, methane or other hydrocarbons, biomass

and by-products [97]. The biodegradation that occurs in each environment is char-

acterized by the total carbon conservation. The mass balance equation for aerobic

biodegradation of polymers [97] is given in Eq. (4.17):

CT 5CO2 1CR 1CB (4.17)

where CT is the total carbon content of the polymer material, CR is any residue of

the polymer that is left or any by-product that is formed during the degradation pro-

cess, CO2 is the measurable gaseous product, and CB is the biomass produced by

the microorganisms through reproduction and growth. For the anaerobic environ-

ment the total carbon equation can be written as shown in Eq. (4.18).

CT 5CO2 1CH4 1CR 1CB (4.18)

In this process the gaseous product is divided between carbon dioxide and meth-

ane. Both anaerobic and aerobic degradation can occur simultaneously in some

environments. The process of mineralization occurs during the conversion of biode-

gradable materials or biomass to gases (such as carbon dioxide, methane, and nitro-

gen compounds), water, salts, minerals, and residual. Mineralization is complete

when all the biodegradable materials or biomass are consumed and all the carbon is

converted to carbon dioxide [99].

The important bacteria in the biodegradation process include, interalia, Bacillus

(capable of producing thick-walled endospores that are resistant to heat, radiation,

and chemical disinfection), Pseudomonas, Klebsiella, Actinomycetes, Nocardia,

Streptomyces, Thermoactinomycetes, Micromonospora, Mycobacterium, Rhodococcus,

Flavobacterium, Comamonas, Escherichia, Azotobacter, and Alcaligenes (some of

them can accumulate polymer up to 90% of their dry mass) [97,100,101]. Fungi

that are active in the biodegradation process are Sporotrichum, Talaromyces,

Phanerochaete, Ganoderma, Thermoascus, Thielavia, Paecilomyces, Thermomyces,

Geotrichum, Cladosporium, Phlebia, Trametes, Candida, Penicillium, Chaetomium, and

Aerobasidium [102,103].

Polyolefin polymers are hydrophobic with high MW and are therefore not easily

degraded by abiotic or biotic factors. These molecules are unable to enter microbial

cells to be digested by intracellular enzymes due to their massive size and they are

inaccessible to the action of extracellular enzymes produced by microorganisms

due to their excellent barrier properties. Exposure to UV and heat is known to pro-

mote degradation of most polymers, however, polyolefins degrade very slowly

under environmental conditions [104]. Abiotic and biotic degradation of PEs using
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plastic bags of HDPE and LLDPE formulated with prooxidant additives as test

materials have been evaluated. These packaging materials were exposed to natural

weathering and periodically analyzed with respect to changes in mechanical and

structural properties. After a year of exposure, residue samples of the bags were

incubated in substrates (compost of urban solid waste, perlite, and soil) at 58�C and

at 50% humidity. The biodegradation of the materials was estimated by their miner-

alization to CO2. The molar mass of the prooxidant-activated PE decreased and

oxygen incorporation into the chains increased significantly during natural weather-

ing. These samples showed a mineralization level of 12.4% after 3 months of incu-

bation with compost. Higher extents of mineralization were obtained for saturated

humidity than for natural humidity. The growth of fungi of the genera Aspergillus

and Penicillium was observed on PE films containing prooxidant additives exposed

to natural weathering for 1 year or longer. Conventional PE films exposed to natu-

ral weathering showed marginally little biodegradation [105].

Oxo-biodegradations
Oxo-biodegradable process involves the transition of metals (some of which are

regulated) that theoretically foster oxidation and chain scission in plastics when

exposed to heat, air, and/or light. Thus oxo-biodegradable polymers contain pro-

oxidants and pro-degrading compounds [105] that are integrated into the polymer

chain in order to accelerate thermo or photo-oxidation [105,106]. These pro-

oxidants are metal ions or oxides, such as titanium oxide, that catalyze photo- or

thermo-oxidation of the polymer [105�108]. During photodegradation (pro-oxidant

photocatalytic oxidation), free radicals obtained from the reactions catalyzed

by pro-oxidant causes polymer chain scission [106,107], speeding up microbial deg-

radation [106]. UV light serves as a catalyst that speeds up the process of photo-

catalytic oxidation [108]. Literature has reported that polymers that degrade by

peroxidation followed by bioassimilation of the oxidation products (oxo-biodegrad-

able polymers) are in general more environmental acceptable (“green”) than some

biologically produced hydro-biodegradable polymers [109].

Microbial degradation
The use of bioremediation and biotransformation methods to harness the naturally

occurring ability of microbial xenobiotic metabolism to degrade, transform, or accu-

mulate environmental pollutants is known as microbial degradation. PO are charac-

teristically inert and are resistant to microbial attack, leading to their accumulation

in the environment. Several studies have investigated the biodegradability of polyo-

lefins containing pro-oxidants in the presence of microbial consortium present in

the environment and the selected microbial species in defined medium under con-

trolled laboratory conditions [110�114]. Microbial populations that have the ability

of degrading contaminants in the subsurface depend on a variety of physical, chem-

ical, and biological factors that influence their metabolic activity, their growth, and

their existence. The characteristics and the properties of the environments in which

the microorganisms function have a serious impact on the microbial population, the
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rate of microbial transformations, the pathways of products of biodegradation, and,

of course, the persistence of contaminants.

The microbial degradation process of polymers is initiated by the secretion of

enzymes which cause a chain cleavage of the polymer into monomers [115].

During microbial activity, the microorganisms release protein structures [21],

called enzymes; these enzymes are responsible for metabolism or transformation/

breakdown of a substance into another (enzymatic dissimilation of the macromole-

cules from the chain ends). The microorganisms participating in the degrading pro-

cess attack the surface and settle in a biofilm-like colony, which produces

alterations as it comes into contact with the polymer [116]. Biofilms are embedded

in the polymer at source, consisting basically of extracellular polysaccharides, pro-

teins, and microorganisms [21,116]. In general, bacteria, fungi, alga, and protozoa

may be identified in biofilms. The formation of biofilms is a prerequisite to sub-

stance corrosion and/or material deterioration. Some polymers are susceptible to

direct biodegradation via enzymes and/or microorganisms, while others may allow

degradation only after a hydrolytic stage or scission of the oxidant chain [117].

Generally, an increase in the MW results in a decline of polymer degradability

by microorganisms. In contrast, monomers, dimers, and oligomers of a polymer’s

repeating units are much easily degraded and mineralized. High MWs result in a

sharp decrease in solubility making them unfavorable for microbial attack because

bacteria require the substrate to be assimilated through the cellular membrane and

then further degraded by cellular enzymes [118]. During degradation, exoenzymes

from microorganisms breakdown complex polymers yielding smaller molecules of

short chains, e.g., oligomers, dimers, and monomers, that are small enough to pass

the semipermeable outer bacterial membranes to be utilized as carbon and energy

sources. The process is called depolymerization [118]. It is now widely accepted

that abiotic oxidative degradation of high MW polyolefin into low MW compounds

is necessary to facilitate action of microorganisms and/or enzymes [104].

Enzymatic biodegradation
Enzymes are biological macromolecules that speed up chemical reactions without

themselves undergoing any permanent change. The molecules at the beginning of

the process upon which enzymes may act are called substrate and the enzyme con-

verts these into different molecules, known as product. Enzymes are very selective

in their choice substrates, so that they bind to the specific substrates, thereby lower-

ing the activation energy and thus inducing an increase in the reaction rates in an

environment otherwise unfavorable for chemical reactions. Some enzymes do not

need any additional component for their optimal activity and others require nonpro-

tein molecules called cofactors, to be bound for activity. Inorganic cofactors include

metal ions such as sodium, potassium, magnesium, or calcium and organic cofac-

tors, also known as coenzymes [104].

Substrates of MW higher than the cut off limit of the various transport systems

have to be depolymerized by enzymes outside the cell membrane before entrance

and terminal mineralization can complete the degradation process. Enzymes are

transported across the membrane but those remaining in the periplasm or anchored
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to the cell wall are called ectoenzymes, while those excreted into the surrounding

media are called extracellular enzymes [119]. Extracellular enzymes may be

excreted intentionally by living cells, enter the media by lysis or cell damage, or can

result from grazing activity by zooplankton and protozoan [120]. High MW poly-

mers are not easily susceptible to enzymatic biodegradation as they are unable to

enter microbial cells due to their large size. In order to accomplish scission, microor-

ganisms secrete specific enzymes or generate free radicals, which act on polymer

chains and break them down into oligomers, dimers, and/or monomers [104].

Mechanism of biodegradation
Common mechanisms of biodegradation that involve bioassimilation from the

‘‘ends’’ of substrate molecules do exist. The primary mechanism for the biodegra-

dation of polymer with high MW is the oxidation or hydrolysis by enzyme in order

to create functional groups that improve its hydrophilicity. Consequently the main

chains of polymer are degraded, thereby resulting in a polymer of low MW and fee-

ble mechanical properties, thus, making it more accessible for further microbial

assimilation [121]. Since commercial polyolefins have relatively high molar mass

values, there are very few ends of molecules accessible on or near the surfaces of

materials made from these resins [19]. It has however been observed that the oxida-

tion products of polyolefins are biodegradable [122�124]. Such products have

molar mass values that are significantly reduced, and they incorporate polar,

oxygen-containing groups such as acid, alcohol, and ketone [125]. This is the basis

for the term oxo-biodegradable polyolefins [19]. The biodegradation of polyolefins

always follows photodegradation and chemical degradation.

PE is one of the synthetic polymers that exhibit high hydrophobic level and high

MW. Naturally, it is not biodegradable. Therefore their use in the production of

packing materials and disposal pose serious environmental problems. In order to

make PE biodegradable, modification of its crystalline level, MW and mechanical

properties that are responsible for PE resistance towards degradation is required

[126]. This can be achieved by improving PE hydrophilic level and/or reducing its

polymer chain length by oxidation in order to be accessible for microbial degrada-

tion [127]. The degradation of PE can occur by different molecular mechanisms;

chemical, thermal, photo, and biodegradation [119]. It is known that biodegradation

of PE occurs by two mechanisms: hydro-biodegradation and oxo-biodegradation.

These two mechanisms agree with the modifications due to the two additives, i.e.,

pro-oxidant and starch used in the synthesis of biodegradable PE. In case of the

pro-oxidant additive, biodegradation occurs following photodegradation and chemi-

cal degradation. If the pro-oxidant is a metal combination, after transition, metal

catalyzed thermal peroxidation, biodegradation of low MW oxidation products

occurs sequentially. The most commonly used additives are stearate (St) complexes

of transition metals such as zinc (ZnSt), copper (CuSt), silver (AgSt), cobalt (CoSt),

nickel (NiSt), manganese (MnSt), chromium (CrSt), and vanadium (VSt), or alka-

line earth metals such as magnesium (MgSt). Starch blended with PE has a continu-

ous starch phase that makes the material hydrophilic and therefore, catalyzed by
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amylase enzymes. Microorganisms can easily access, attack, and remove this part.

Thus the hydrophilic PE as matrix continues to be hydro-biodegraded [128].

PP films and bioriented polypropylene are widely used in packaging and in a

variety of other applications due to their great potential in terms of barrier proper-

ties, brilliance, dimensional stability, and processability. As the use of the material

widens so does the amount of waste disposed off into the environment [5,129]. PP

biodegradation is possible by microorganisms; this process takes a long time, i.e.,

over hundreds of years to fully decompose. The amorphous regions of PP are the

most susceptible to degradation and the impurities in the polymeric material can act

as a catalyst for photodecomposition. The energy absorbed by means of heat, light,

mechanical strain, etc. causes the β-scission, and the peroxide and hydroperoxides

radicals generated catalyze the process [130�132]. Owing to the presence of hydro-

gen linked to a tertiary carbon in the backbone chain, PP degrades preferentially by

chain scission with an overall shift of the MWD curve towards lower values [133].

As the total weight of the polymer used for gel permeation chromatography (GPC)

measurements is kept constant the area under the MWD curve is also kept constant.

The fragments of chains formed during scission are shorter than the original chains

and so during the (GPC) run they will be excluded from the higher MW side,

thereby reducing the weight fraction [dwt/d(MW)] at this point. They will be

retained for a long time in the GPC, while columns elute with other short chains,

thereby increasing the original weight fraction at this particular MW [133].

Methods of biodegradation
The usage of certain enzymes and organisms to degrade polymers are classified as

methods of biodegradation of polymers [98]. Appropriate selection of test procedure

based on the nature of plastic and the climatic conditions of the study environment

are the most important factors in the determination of biodegradation. Respirometry

tests can be used for aerobic microbes. During respirometry tests, a solid waste

sample is first place in a container with microorganisms and soil, and then the mix-

ture is aerated. Over the course of several days, microorganisms digest the sample

bit by bit and produce carbon dioxide and the resulting amount of CO2 serves as an

indicator of degradation. Biodegradability can also be measured by anaerobic

microbes and the amount of methane or alloy that they are able to produce. A lot of

test methods have been developed by the International Standard Organization (ISO)

in order to assess the potential biodegradability of plastics [134] and by the

American Society for Testing and Materials (ASTM) [135].

Biodegradation can also be characterized with loss of weight. During degrada-

tion the mass of the material may undergo changes, and these changes can be moni-

tored by comparing the mass before and after the degradation period. The material

should be dried to a constant mass before measuring the initial weight of the sample

in order to avoid residual moisture in the samples. The drying temperature should

not exceed the temperature at which the materials undergo irreversible changes

(e.g., melting temperature). After degradation the sample should be washed thor-

oughly with distilled or deionized water in order to remove traces of soluble degra-

dation products, such as, enzymes, salts, or other impurities and then dried under
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vacuum conditions until constant weight is attained. The extent of degradation is

commonly determined by calculating the percentage weight loss [136].

4.1.2.6 Catalytic degradation

Catalytic degradation of plastic waste offers considerable advantages when com-

pared to pure thermal degradation, as the latter demands relatively high tempera-

tures and its products require further processing for their quality to be upgraded

[137]. The advantages of catalytic degradation are (1) the low cracking temperature

due to low activation energy and a short cracking time is required, (2) the high

cracking ability of plastics, (3) the low concentration of solid residue in the product,

and (4) the narrow product distribution with peaks of light hydrocarbons in the boil-

ing point range of motor fuel and a high selectivity to liquid products [138]. Thus

the extreme effect of catalyzed decomposition of polymers has necessitated wave of

research in the area of catalysis and polymer degradation. Catalytic degradation

occurs at considerably low temperatures [139] and forms hydrocarbons in the range

of motor engine fuel [140,141] and thereby eliminating the necessity of further

processing. In such a recycling process, liquid fuel is the most valuable product.

Catalytic cracking applied to the breakdown of polyolefins has focused mainly

on polymer transformation into gaseous and liquid products of interest. For exam-

ple, research has shown that for PE, the mesoporous material Al-MCM-41 produces

hydrocarbons within the gasoline fraction while ZSM-5 governs the cracking

towards light compounds with a large production of gaseous and aromatic hydrocar-

bons [142]. When Al-MCM-41 is used as a catalyst, the cracking occurs by a mech-

anism of random scission as a result of its large pore size and medium acidity. The

zeolite HZSM-5, on the other hand, results in an end-chain cracking pathway as a

result of its small pore size and strong acidity [142]. It has been proven that the cat-

alyst’s particle size is very important in catalytic degradation; this was confirmed

by analyzing nanocrystalline zeolite ZSM-5 samples. A high cracking activity due

to their large external surface and low diffusional constraint was observed [142].

Furthermore, researchers have studied beta zeolites and found that the particles

with the smallest crystal size (B100 nm) give the best performance due to the big-

ger surface area and higher production of liquid compounds [143,144]. The addition

of a catalyst not only improves the quality of products obtained from pyrolysis of

plastic wastes, lowers the temperature of decomposition, but also enable a given

selectivity to a certain product to be achieved [35].

Mechanism of catalytic degradation
Demirbas [145] investigated the catalytic degradation of polyolefin using the TGA as

a potential method for screening catalysts and have found that the presence of catalyst

led to a decrease in the apparent activation energy. Different mechanisms (ionic and

free radical) for plastic pyrolysis proposed by different scientists are as given below.

Electrophilic catalysts cause marked changes in the kinetics of degradation of

polyolefins. There is a change in the gross mechanism, accompanied by a consider-

able increase in the rate and selectivity of the process [146]. The electrophilic
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catalytic degradation of polyolefins that occurs by a cationic mechanism [147] is

very interesting from the theoretical viewpoint as an example of the decomposition

of polymer products by terminal group or random mechanisms. In the last three

decades, studies on the catalytic degradation of polyolefins in the presence of

MAlCl4 complexes, a cationic process mechanism, have been carried out and inter-

preted on the basis of a possible single-electron oxidation of primary radicals

formed by the action of heat on the polymer [146].

1. Random thermal decomposition, with preference occurring at the weakest bonds, e.g.

(Fig. 4.11)

2. A redox reaction with the formation of the polymer carbocation; it is a mechanism which

would seem plausible only if M1 is relatively easily reduced (Fig. 4.12).

3. Depolymerization of the macroions with formation of monomer (Fig. 4.13):

4. Chain transfer to polymer with further depolymerization of the macroions starting from

end groups (Fig. 4.14):

Figure 4.11 Random thermal decomposition at the weakest bond.

Figure 4.12 A redox reaction with the formation of the polymer carbocation.

Figure 4.13 Depolymerization of the macroions with formation of monomer.

Figure 4.14 Chain transfer to polymer with further depolymerization of the macroions

starting from end groups.
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In catalysis by the hydrates of MAlCl4 salts the polyolefin degradation process is

initiated at the active site H1 [MAlCI4 � OH]—having the structure as shown in

Fig. 4.15.

The hydrate can initiate the degradation randomly along the chain and preferen-

tially at end groups. The interaction of the catalyst with the weak bonds of the poly-

mer chain is determined by the structure of the polyolefin. In PE the degradation

process is initiated mainly at the vinylidene and trans-vinylene internal double

bonds. The main initiation sites along the chain in butyl rubber are the coupling

points of the isobutylene fragments with the isoprene units. End group initiation

proceeds through the end double bonds [146]. It can be completely stated that the

processes of initiation of electrophilically catalyzed polyolefin degradation may be

expressed by the following structures:

1. End group processes, where R denotes CH3 and H for (polyisobutylene, butyl rubber),

and PE, respectively (Fig. 4.16).

2. Random hydride abstraction followed by chain cleavage (Fig. 4.17):

3. Or proton addition followed by chain cleavage (which is more probable for isobutyle-

ne�isoprene copolymer and PE) (Fig. 4.18):

It can be concluded that the electrophilic degradation of different polyolefins is

initiated by a few common pathways. Degradation may start either at double bond

end groups or at weak bonds along the chain. The path of the chain degradation

reaction is determined by the structure of the polyolefin.

Al

Cl

Cl

ClCl

O

H

HNa

Figure 4.15 Structure of polyolefin degradation process is initiated at the active site H1

[MAlCI4 � OH].

Figure 4.16 End group processes.

Figure 4.17 Random hydride abstraction.
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Sekine and Fujimoto [148] investigated the function of Fe and activated carbon

(AC) as a catalyst by comparing Fe/AC with Fe/SiO2 or AC. Furthermore, the

effect of H2 as a reaction gas on the product distribution in the catalytic degradation

of PP was investigated. The reaction mechanism shown in Fig. 4.19, explains the

reactions since Fe/AC is neither an acidic nor a basic catalyst, but a neutral catalyst.

Initially (1) the random scission of the C�C bond of the main chain occurs with

heat, to produce hydrocarbon radicals (HCRs). This process initiates the reaction.

Then, (2) the HCR decomposes to produce small hydrocarbons such as propylene,

followed by β-scission or (3) pulls out H radicals from other hydrocarbons to pro-

duce a new HCR. The former is called intramolecular radical transfer, and the latter

is called intermolecular radical transfer. The three processes stated above are chain

reactions. The termination reactions are (4) disproportionation or (5) recombination

of two HCRs. In these mechanisms, (1) and (2) are the reactions in which the MWs

decrease, (3) and (4) show no change, and (5) is the reaction in which, no MWs

increase. In the case of catalytic degradation with Fe/AC in a H2 atmosphere, (6) is

Figure 4.19 The sequence of radical chain reactions [148].

Figure 4.18 Proton addition followed by chain cleavage.
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the hydrogenation of HCR (and olefin) and the pulling out of the H radical from

hydrocarbon (7) or HCR (8) by AC. They concluded that supported Fe promotes H2

consumption to decompose solid residues, and AC support degrades heavy oil to

produce light oil. As a result, using Fe/AC as a catalyst gives the maximum yield

of the liquid product.

Methods of catalytic degradation
The Taguchi technique is a method used for the designing of experiments to

investigate how different parameters affect the mean and variance of a process

performance characteristic that defines how well the process is functioning. The

Taguchi method involves reducing the variation in a process through robust

design of experiments (DOEs). The overall objective of the method is to produce

high quality product at low cost to the manufacturer [149]. In literature, para-

meters such as temperature, catalyst concentration, and catalyst type have been

identified. These parameters influence the decomposition of waste PP in a batch

process and the Taguchi method was used to optimize the process parameters for

the production of liquid fuel from waste PP. With the help of regression modeling

an equation was developed for the yield of liquid fuel as a function of tempera-

ture, catalyst concentration, and catalyst type [149]. Researchers have further

used the Taguchi experimental design to obtain optimum condition on catalytic

degradation of the polymers [150]. The purpose of their research was to determine

the maximum quantity of gasoline production from the degradation of mixed PE

and PP using the Taguchi technique as a DOE method. Their findings suggested

that the Taguchi is the most promising DOE method in order to investigate the

optimum condition to produce a maximized factor such as gasoline. Their second

major finding was that B51% of the polymers can be degraded to gasoline com-

ponents which can be used as automobile fuel. Finally, Taguchi suggested that

420�C and 50% catalyst is the most promising condition for maximum production

of the gasoline from 40%, 20%, and 40% HDPE, PP, and LDPE as mixed

polymers, respectively [150].

Catalytic degradation of plastic sample can also be performed in a batch auto-

clave. In order to determine the effect of temperature and a new catalyst on convert-

ing the polyolefins in present of PVC into liquid fuel, the semibatch reactor with

ambient atmospheric conditions was designed. Also factorial design was employed

as the DOE’s method. The analysis of variance for the liquid and the gas showed

that the main effects of temperature, catalyst percentage and PVC composition are

significant. Also there is a significant interaction between temperature and catalyst

percentage to liquid and gas production. Similarly, survey of interaction among the

other factors indicated that there is not a significant interaction [151]. The effects of

catalysts on the catalytic degradation of polymer have also been investigated by

contacting melted polymers with catalyst in fixed bed reactors [152,153], heating

mixtures of polymer, and catalyst powders in reaction vessels [154,155], and

passing the products of polymer pyrolysis through fixed bed reactors containing

cracking catalysts [156].
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4.1.3 Factors affecting polyolefins degradation

4.1.3.1 Chemical composition

Chemical composition of polyolefins or polyolefins-based products play a very rele-

vant role in their degradation. The presence of complete long carbon chains in the

thermoplastic polyolefins makes these polymers nonsusceptible to degradation by

microorganisms. Despite this the inclusion of hetero-groups such as oxygen in the

polymer chains, polymeric substances are made labile to thermal degradation and

biodegradation [38]. This is because many unsaturated polymers can undergo degra-

dation from a range of sources, such as oxygen absorption, which leads to the

release of organic peroxides. Linear saturated polyolefins are resistant to oxidative

degradation. The presence of unsaturation in the polymer chain makes them suscep-

tible to oxidation, for example natural rubber is more susceptible to degradation

than PE [157].

4.1.3.2 Size of molecules/molecular structure

Literatures have shown that degradation rate is dependent on the size of the

polyolefin being studied. Hydrogen has been used as a chain-transfer agent to

control the molecular mass of the polymer for the commercial production of

polyolefins such as PP and PE [158,159]. The particle size distribution of poly-

mer particles was shifted to lower sizes by increasing the hydrogen concentra-

tion [159]. The size of the molecules in the polymers affects their mechanical

degradation, thermal degradation, and biodegradation. These degradations

increase as the size of the molecule decreases [38]. Paik and Kar [160,161] dis-

covered that the particle size of PP and PE influences the thermal stability of

these polymers, but they did not consider the molecular mass of the samples.

Abbas-Abadi et al. [162] investigated the molecular mass of particle size on the

thermal degradation of a commercial HDPE powder and they found that the big-

gest particles (. 200 nm) with highest molecular mass maintained superior ther-

mal stability of these particles. Their results showed that molecular mass is not

the only key factor and in smaller sizes, bulk density, and heat transfer can affect

the thermal stability.

Structure has a strong influence on the other properties of polyolefins. Thermal

oxidation is complex process, including chain oxidation of HCRs, destruction of

macrochains and structure formation (crosslinking, crystallization). Thermal oxi-

dation is accompanied by structural�physical processes, leading to structure

change (structural reconstruction) under the action of high temperature. The

mechanism of these processes will depend on the polymer’s morphology and in it

turn, will influence the oxidation kinetics. The effect of a polymer crystallites in

vacuum and on air: the effect of high temperature may lead to perfection of crys-

tallites structure, rise of temperature and melting heat, at the same time at long

high temperature effect the destruction of chains occurs and crystallites are

decomposed [163].
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4.1.3.3 Molecular weight

The MW is also important for biodegradability because it determines many physical

properties of the polymer. Increasing the MW of the polymer decreased its degrad-

ability [164]. It has been reported in the literature that some microorganisms, for

their growth, attack and utilize faster, polyolefins with low MW when compared to

high MW polyolefins [165]. Linear polyolefins with MW lower than B620 support

microbial growth [166]. Degradation of plastic polymers can further lead to low

MW polymer fragments, such as monomers and oligomers can lead to the formation

of new end groups, especially carboxylic acids [167]. As the MW of the polymers

is reduced, the material becomes brittle [168] and it is more susceptible to fragmen-

tation which makes a higher surface area available for further reactions. Owing to

the high MW and the lack of functional groups biodegradation of long polyolefin

chains is limited. [169,170]. Therefore high MW PE, PP, and PS polymers must be

broken down by abiotic degradation to smaller pieces before biodegradation at a

measurable rate takes place. If the polymers are too large, they cannot pass through

the microbial cellular membranes [171].

4.1.3.4 Functionality

Polymers bearing polar functionalized side groups are highly desired materials,

due to their unique and rapidly expanding range of material properties. When

compared to their nonfunctionalized analogues they exhibit beneficial properties

with respect to adhesion, toughness, print/paintability, miscibility, and rheological

properties [172].

Nonfunctionalized polyolefins (i.e., polyethene and polypropene) have found

their way in many (commodity) applications due to their outstanding properties,

such as solvent resistance and thermal stability. Nowadays, these materials can eas-

ily be obtained in large scales and at low cost with very high precision of the poly-

mer microstructures. However, due to the lack of functional groups in these

polymers, they perform badly when surface chemistry is involved [173]. Thus func-

tional polyolefins such as polyethene or polypropene that bear functional groups are

highly desired materials, due to their beneficial surface properties. The incorpo-

ration of only a small amount of functionalized monomers, randomly placed in the

polymer backbone, has a large effect on the surface properties of the resulting poly-

mers, while the beneficial properties of the original nonfunctionalized polyolefins

are retained [174,175]. The properties of the resulting materials can be further tuned

by varying the structure of the functional groups, the amount of incorporation and

the distribution of the polar functionalities along the polymer chain [173].

The choice of materials that will be incorporated onto PO is very important.

Introduction of carbonyl groups in PO makes these polymers susceptible to photo-

degradation. As the number of chromophores increases the rate of photodegradation

increases due to the extra sites, which are available to absorb more photons and to

initiate the reaction for degradation. PO undergo slow sulfonation and oxidative

degradation by reagents based on concentrated sulfuric acid. In chromic acid,
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sulfonation results, in the more rapid oxidative degradation of PP with a slower

attack on PE [35]. Obtaining functionalized polymers via direct copolymerization

of nonfunctionalized olefins and polar vinyl monomers is of particular interest,

since the control over the amount of polar monomers and their distribution along

the chain could in principle be achieved by exploiting the reactivity differences of

both monomers [175�177].

4.1.4 Controlling polyolefins degradation rate

4.1.4.1 Effect of pigments and dyes

Organic pigments and dyes are widely used in the coloration of polymer materials

for many commercial applications. However, the presence of dyes and pigments

can dramatically influence the chemistry of oxidation, degradation, and stabilization

processes involved in a polymer and will quite often dominate the stability of the

end-product. For example, by absorbing and/or scattering of UV light, pigments can

induce a marked protective effect. The absorption of light by organic dyes and pig-

ments is followed by various chemical and physical interactions which result from

the dye or pigment molecules being promoted to an excited state which is more

reactive than the ground state [77].

Pigments are colored, white or black materials, which are practically insoluble in

the medium in which they are applied. Pigment is incorporated into the polymer by

a dispersion process and forms in the material, a separate phase. They are conve-

niently classified as either inorganic or organic types. The properties of a pigment

are primarily dependent on its chemical structure, i.e., the way in which the mole-

cules pack in their crystal lattice [178]. Certain pigments, e.g., copper phthalocya-

nine, exist in different polymorphic forms with significantly different optical and

stability properties. Other important factors, especially in influencing the strength

or intensity of color of pigments, are particle shape and size.

The patent US 4360606 discussed organic dyes being used as photosensitizers

[179]. Examples, such as acridine orange and yellow, congo red, crystal violet, bril-

liant green, bromothymol blue, alizarin, azure B, N,N-dimethyl-p-phenylazoaniline,

and methylene blue, were given. The chemical structures of some of these dyes

show some comparability to some of the structures listed as prodegradants, for

example, alizarin is based on an anthraquinone type structure. Most other dyes con-

tain highly conjugated unsaturated ethylene double bond groups [104]. In addition

to organic dyes, inorganic pigments such as TiO2 and ZnO that are often added to

whiten the polymer can influence the degradation rate. As mentioned in the earlier

section of this report, the photo activity of these additives is dependent on particle

size, surface treatment, and crystalline form as well as any metal ion dopants that

may be used [104].

Investigations on pigment�polymer stability interactions have been carried out

with polyolefins, but there are limited studies which actually indicate that the pig-

ments can have effect on the light stability of other polymers too [77]. Black,

brown, and red pigments were recommended to improve color and physical
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properties of Acrylonitrile-Butadiene-styrene rubber under weather aging. In rigid

PVC, most pigments contributed to improved light stability on outdoor exposure. It

was found that the surfaces degraded a lot faster than the bulk of the polymer with

only minor differences in surface protection by the various organic and inorganic

pigments (phthalocyanine blue, iron oxide red, channel black, P. Red 48, P. Yellow

83) [180�182].

4.1.5 Controlling environmental degradation of polyolefins

PO are known to degrade by an oxo-biodegradation mechanism and there is a single

standard test method developed and published, namely, ASTM D6954-04, is a stan-

dard guide for exposing and testing plastics that degrade into the environment by a

combination of oxidation and biodegradation. This guide provides a framework to

compare and rank controlled laboratory rates of degradation and the degree of phys-

ical property changes of polymers by thermal and photo-oxidation processes and

the biodegradation and ecological impacts in defined applications and the disposal

environments after degradation. There are conditions selected for oxidation (UV or

thermal at 20�70oC) in order to speed up the degradation likely to occur in a cho-

sen application and disposal environment. The resulting residues from abiotic oxi-

dation are then exposed to appropriate disposal or use environments in standard

biometric test methods in order to measure the rate and degree of biodegradation.

Lastly, the end-residues must be submitted to aquatic and terrestrial toxicity tests

(E 1440, OCED guideline 207, and OCED guideline 208) in order to ensure that

they are environmentally benign and not persistent [77]. Each degradation stage

during polyolefins processes should be independently evaluated in order to allow a

combined evaluation of polyolefins environmental performance under controlled

laboratory settings. According to the standard of the control of environmental deg-

radation of polyolefins the results of laboratory exposure cannot be directly extrapo-

lated to estimate absolute rate of deterioration by the environment because the

acceleration factor is material dependent and can be significantly different for each

material and for different formulations of the same material. However, the exposure

of a similar material of known outdoor performance (as a control) at the same time

as the test specimens, allows comparison of the durability relative to that of the

control under the test conditions [77].

In a growing number of cases the controlled degradation of a polymer in the

environment is the desired result in the polymer processing industries. Electron irra-

diation technique is a well-known technique for crosslinking, graft-linking, and

polymerization in the polymer industry [183]. Controlling the degree of degradation

in the environment, with a consistent MWD of polymers, savings achieved in the

use of chemicals (in conventional methods), reduced costs and environmentally

friendly processes are the beneficial effects of using radiation technology in the

polymer industries. Efforts should thus, be expanded to reducing the cost of irradia-

tion required in such technologies. For example, advantages of employing high

energy radiation to crosslink PE are that: (1) it can be performed at room tempera-

ture, (2) it offers increased flexibility in product processing, (3) varying degrees of
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cure can be obtained without changing the product formulation, and (4) no impuri-

ties in the form of catalyst fragments are introduced into the material. In addition

the production rate is higher and not subject to as many potential equipment pro-

blems as the thermal process [184].

Future progress in the capability to control the radiation-induced degradation of

polymers is dependent on the understanding of the fundamental processes underly-

ing degradation phenomena. Radiation degradation mechanisms are exceedingly

complex, and constitute numerous chemical reaction sequences that result in

changes to molecular structure. Significant changes in material morphology can

also occur. The economics of controlled degradation process depends strongly on

the doses involved to achieve a certain degree of MW change. The anticipated level

of degradation should therefore be achieved at the lowest possible doses. The use

of some oxidizing agents in small amounts has proven to help in reducing the

required doses to economically acceptable lower levels [185].

4.1.6 Challenges for new generation of polyolefins

New generation of polyolefins plays a major role in the environmental issue and

every progress achieved for them is a substantial progress for the whole issue. The

modern approach to environmental issues deeply involves a wide sector of materi-

als. Beside the several aspects that common to other parts of the processing indus-

try, such as the use of friendly chemicals, clean and safe processes, and very low or

zero emissions, other questions must be taken into consideration. It is highly desir-

able that the material does not have any negative effect on the environment during

processing and during its transformation into articles or components. Again, it is

very important to avoid similar negative effects on polyolefins at the end of their

life [186].

Polyolefin-based materials are widely used in almost every aspect of processing

industries due to their excellent properties, the ease of processing, recyclability, and

of course a good performance cost. Compounding ingredients, such as mineral fil-

lers, glass fibres, elastomers, flame retardants, pigments, or carbon black, are incor-

porated into the polymer according to its future application. With regards to this

composition the analysis of polymeric materials turns out to be a challenging ana-

lytical task. Stabilizers are used at various stages of a polymer life cycle. It starts

with controlling reaction rates or avoiding early polymerization in the actual poly-

mer formation. Thus the analysis of stabilizers is very significant on multiple levels.

Firstly, it is evident that the quantity of stabilizers is a matter of analytical concern

because the concentration of these stabilizers determines how long a polymer will

be stabilized sufficiently; thus formulating these stabilizers can be challenging.

Secondly, stabilizers might be degraded by reactions unrelated to any stabilization.

This decreases the concentration of intact stabilizer in the polymer and is hence

undesirable. A knowledge on the formation of the degradation products helps to

identify these degradation pathways of the stabilizers and to avoid them [187].

Lastly, degradation products of stabilizers generated when protecting the polymer
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should be identified in order to have a better insight into involved reactions. If they

are quantified, it is possible to determine the original level of stabilization.

4.1.7 Long-term performance of polyolefins
in different environments

In the aspect of polyolefins processing; material performance has evolved signifi-

cantly. This has enabled the demonstration and the validation of long-term perfor-

mance of these new materials. Understanding the mechanisms of aging for any

material and the key factors influencing the performance of polyolefins in their end

use, is very important in knowing the capacity of how the material will be best

applied and in the development of the methodologies that will be used in projecting

the long-term performance of the product in service.

Antioxidants, UV stabilizers, and other protective additives have been developed

in the past in order to improve the long-term durability of polyolefins, particularly

in the outdoor environment. It is important for polyolefins to retain its useful prop-

erties through one or more fabrication procedures, e.g., extrusion, blending, injec-

tion molding, and palletizing and the final product must have a reasonable storage

life. It is the end of the product service life that the controlled lifetime of polyole-

fins must degrade in whatever environment it is discarded [188]. The long-term per-

formance of stabilized polyolefins in different environments has been studied with

a focus on antioxidant consumption and migration [189]. The study was divided

into two parts: In the first part, the migration behavior of three similar bifunctional

phenolic antioxidants in two types of PE, in different media, was studied. Focus

was then set on the antioxidants migration behavior due to factors such as media,

antioxidant structure, morphology, and surface properties of the PE. The author

[189] found that the structure of the antioxidants was similar; still the surrounding

media had to be taken into account as a factor to influence the migration behavior.

The more polar antioxidant showed a fast loss to the surrounding medium in the

shape of water, both water saturated with air and water saturated with nitrogen. The

chemical consumption of antioxidant was observed and the direct presence of oxy-

gen as in air was the opposite of inert atmosphere, this was not playing a significant

role in the migration behavior of antioxidant. The presence of oxygen however, as

in water saturated with air, when compared to water saturated with nitrogen gas,

had an impact on the migration behavior with an increase of loss of antioxidant due

a high loss rate from the polymer boundary. The linear polyethylene samples

showed in all cases, the fast loss of antioxidant when compared with the branched

(BPE) samples. The large molecular size of the phenolic antioxidants was suggested

as a reason. The amorphous area next to the crystal lamellae, interfacial component,

was suggested to be more difficult to penetrate for the diffusant due to its large size

and rigidity.

In the second part, polyolefin, pressurized pipes were exposed to chlorinated

water at elevated temperatures. The author found that the PE pipes were stabilized

with hindered phenols and phosphates. Measurement of the oxidation induction
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time, using the DSC showed that the stabilizing system was rapidly consumed,

chemically by the action of chlorinated water. Extensive polymer degradation was

confined strictly to the surface and to the amorphous phase of the semicrystalline

polymer. The growth of the highly degradated layer was constant in time. For the

poly butene-1 (PB-1) pipes the chlorinated water caused an early depletion of the

antioxidant system, with polymer degradation at the inner wall material, resulting

to an early pipe failure. The reduction in the antioxidant concentration was essen-

tially independent of the chlorine concentration in the range 0.5�1.5 ppm of Cl.

The lifetime shortening in the isotactic poly(butene-1) pipes exposed to chlorinated

water (0.5�3 ppm) was approximately by a factor of 10 with respect to that

obtained with pure water. The lifetime shortening was significant even at low chlo-

rine concentrations (0.5 ppm) and a further increase in chlorine content led only to

a moderate additional decrease of lifetime [189].

4.1.8 Conclusion

Plastic wastes are of universal concern because of their long-term environmental

and economic impacts and waste management problem. Degradation of plastic

waste by various means and further assimilation into the environment is one of the

ways that can be employed to curtail waste management problems. The degradation

of polyolefins materials is caused by exposure to various factors such as heat, irra-

diation ozone, UV light, mechanical stress, and microbes. Degradation is further

promoted by oxygen, humidity, and strain and led to such negative effects as brittle-

ness, cracking, and fading. The mechanism of polymer degradation is highly com-

plicated, involving simultaneous formation and decomposition of hydroperoxides.

Understanding the mechanism of polymer degradation can go a long way in assist-

ing researchers and the technologists to induce the different types of degradation

in polyolefins. The addition of additives in polymers and the capacity to know the

various factors responsible for these degradations could help to intensify these

degradations.
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