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Abstract: The Ivancevic option pricing model (IOPM) is a nonlinear adaptive-wave alter-

native for the classical Black-Scholes option pricing model, representing a controlled Brownian

motion in an adaptive setting relating to nonlinear Schrödinger equation. Despite the appli-

cability and usefulness of the IOPM, analytical solutions of such model are barely found in

literature. Therefore, this paper obtains analytical solutions of the IOPM by means of a pro-

posed semi-analytical method referred to as projected differential transform method (PDTM).

Cases of nonzero adaptive market potential are considered. The proposed method is proven

to be direct, and effective as the obtained solutions tend rapidly to their exact forms.
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1. Introduction

In mathematical finance, the classical Black-Scholes model serves as hallmark
financial model; it describes the time-evolution of the market value of finan-
cial equity such as stock option [1, 2, 3]. The basic assumptions under which
this classical arbitrage pricing theory is formulated include the following: the
asset price S (or the underlying asset) following a geometric Brownian motion
(GBM), the drift parameter, µ and the volatility rate, σ are assumed constants,
lack of arbitrage opportunities (no risk-free profit), frictionless and competitive
markets [4, 5, 6]. Thus, the stock price S = S(t), at time t, (0 ≤ t ≤ T ) follows
the stochastic differential equation (SDE):

dS = S(µdt+ σdWt), S ∈ [0,∞) (1.1)

where µ, σ > 0, and Wt are mean rate of return of S, the volatility, and a
standard Brownian motion respectively.
So, for an option value u = u(S, t), the Black-Scholes partial differential equa-
tion (PDE) associated to (1.1) can be expressed as:

∂u

∂t
+ rS

∂u

∂S
+

1

2
S2σ2 ∂

2u

∂S2
− ru = 0 (1.2)

with u(0, t) = 0, u(S, t) → 0 as S → ∞, u(S, T ) = max(S − E, 0), E is a
constant and

S(t) = S0e
(µ−σ

2

2
)t+σWt , S0 = S(0). (1.3)

In literature, detailed and extensive work on the importance of (1.2) with re-
spect to exact, analytical, approximate or numerical methods of solutions have
been captured [7, 8, 9, 10].
Recently, Vukovic [11], established the interconnectedness of the Schrödinger
and the Black-Scholes equations via the tools of quantum physics in the sense
of Hamiltonian operator. It was noted that while the Black-Scholes Hamilto-
nian was anti-Hermitian causing the eigenvalues to be complex, the Schrödinger
Hamiltonian was Hermitian. It was further showed that the Black-Scholes equa-
tion can be derived from the Schrödinger equation via the application of quan-
tum mechanics tools [12, 13]. The facts incorporated include the points that:
the Schrödinger equation requires a complex state function while the Black-
Scholes equation is a real PDE that yields a real valued expression for the
option price at all time.
The Black-Scholes model (1.2) can be applied to a reasonable number of one di-
mensional option models ascribed to u and S, say for puts/calls and stocks/divi-
dends respectively [2]. As noted in [14, 15], one could consider the associated
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probability density function (PDF) resulting from the backward Fokker-Planck
equation using the classical Kolmogorov probability method instead of the mar-
ket value of an option obtained via the Black-Scholes equation.

2. The Ivancevic Option Pricing Model (IOPM) [16]

As an alternative method for obtaining the same PDF for the market value
of a stock option, Ivancevic [17] applied the quantum-probability formation as
a solution to a time-dependent Schrödinger equation (linear or nonlinear) for
the evolution of the complex-valued wave function, and proposed an adaptive,
wave-form nonlinear model [18, 19]. Henceforth, such nonlinear adaptive model
is referred to as Ivancevic option pricing model as follows:

i
∂w

∂t
+

1

2
σ2 ∂

2w

∂S2
+ β|w|2w = 0, i2 = −1 (2.1)

where w = w(S, t) denotes the option pricing wave-function at time t , |w|2 =
|w(S, t)|2 represents the PDF for the option price with regard to stock price and
time, σ represents a constant or stochastic process as the dispersion frequency
volatility coefficient while β is referred to as the Landau coefficient representing
adaptive market potential. The model (2.1) becomes linear if β = 0 . In this
work, a case of non-zero adaptive market potential (β 6= 0) will be considered in
terms of analytical solutions using a proposed semi-analytical method referred
to as projected differential transformation method (PDTM).

3. The Overview of the PDT Method [20, 21]

In this section, an overview of the PDTM is being presented.

3.1. A Note on Some Basic Theorems of the PDTM

In consideration, let u(x, t) be an analytic function at (x∗, t∗) in a domain D ,
then in considering the Taylor series of u(x, t), we give regard to some variables
sv = t instead of all the variables as seen in the classical DTM. Thus, the
projected DTM of u(x, t) with respect to t at t∗ is defined and denoted by:

U(x, h) =
1

h!

[∂hu(x, t)

∂th

]

t=t∗
(3.1)
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such that

U(x, h) =

∞
∑

h=0

U(x, h)(t − t∗)
h (3.2)

where (3.2) is referred to as the projected differential inverse transform (PDIT)
of with respect to the time parameter t.

3.2. Some Basic Properties and Theorems of the PDTM

(a) If m(x, t) = αma(x, t) + βmb(x, t), then M(x, h) = αMa(x, h) + βMb(x, h).

(b) If m(x, t) = α
∂nm∗(x,t)

∂tn
, then M(x, h) = α

(h+n)!
h! M∗(x, h+ n).

(c) If m(x, t) = α
∂m∗(x,t)

∂t
, then M(x, h) = α

(h+1)!
h! M∗(x, h+ 1).

(d) If m(x, t) = p(x)∂
nm∗(x,t)
∂xn , then M(x, h) = p(x)∂

nM∗(x,h)
∂xn .

(e) If m(x, t) = p(x)m2
∗(x, t), then M(x, h) = p(x)

∑h
r=0M∗(x, r)M∗(x, h− r).

(f) If p(x, y) = xryr
∗

, then P (k, h) = δ(k − r, h − r∗) = δ(k − r)δ(h− r∗),
where δ is the Kronecker delta. Thus, u(x, t) =

∑∞
h=0 U(x, h)th.

4. The PDTM and the Ivancevic Option Pricing Model

In this subsection, the PDTM will be applied to the model equation (2.1) as
follows. According to [16], (2.1) will be subjected to a plane function, w(S, 0) =
f(S) as an initial condition, thereby yielding the following initial value problem
(IVP):

{

i∂w
∂t

+ 1
2σ

2 ∂2w
∂S2 + β|w|2w = 0,

w(S, 0) = f(S),
(4.1)

where w = w(S, t) denotes the option pricing wave function at time t , σ

represents a constant or stochastic process as the dispersion frequency volatility
coefficient while β is referred to as the Landau coefficient representing adaptive
market potential.
For simplicity, we re-expressed (4.1) as:

{

∂w
∂t

= i
(

1
2σ

2 ∂2w
∂S2 + β|w|2w

)

,

w(S, 0) = f(S).
(4.2)

Transforming (4.2) using PDTM yields:

{

(k + 1)W (S, k + 1) = i
(

1
2σ

2WSS(S, k) + βH(s)
)

,

W (S, 0) = f(S).
(4.3)
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where W (·) denotes the complex conjugate of W (·), and

H(s) =

k
∑

r=0

k−r
∑

n=0

W (S, r)W (S, n)W (S, k − r − n).

This implies that:

{

W (S, k + 1) = i
(k+1)

(

1
2σ

2WSS(S, k) + βH(s)
)

,

W (S, 0) = w(S, 0).
(4.4)

Therefore, for W (S, ζ) = W (ζ) and, k = 0, 1, 2, 3, . . . , the following are
respectively obtained:











W (1) = i
(1

2
σ2WSS(0) + βW (0)W 2(0)

)

,

W (2) =
i

2

(1

2
σ2WSS(1) + β(2W (0)W (0)W (1) +W (1)W 2(0))

)

,

W (3) =
i

3

(1

2
σ2WSS(2) + β(2W (0)W (0)W (2) +W (0)W 2(1) + 2W (1)W (0)W (1)

+W (1)W 2(0))
)

,

W (4) =
i

4

(1

2
σ2WSS(3) + β(2W (0)W (0)W (3) + 2W (0)W (1)W (2)

+ 2W (1)W (0)W (2) +W (1)W 2(1) + 2W (2)W (0)W (1) +W (3)W 2(0))
)

,

W (5) =
i

5

(1

2
σ2WSS(4) + β(2W (0)W (0)W (4) + 2W (0)W (1)W (3) +W (0)W 2(2)

+ 2W (1)W (0)W (3) + 2W (1)W (1)W (2) + 2W (2)W (0)W (2)

+W (2)W 2(1) + 2W (3)W (0)W (1) +W (4)W 2(0))
)

,

and so on.

4.1. Numerical Illustrative Examples

In this subsection, we consider the following cases for numerical computation:

Case A: Suppose β = 2, σ =
√
2 and f(S) = e2iS . Then the corresponding

Ivancevic option pricing model is:

{

∂w
∂t

= i
(

∂2w
∂S2 + 2|w|2w

)

,

w(S, 0) = e2iS .
(4.5)
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So, applying the PDTM with the parameters in case A through (4.4) gives the
following:

W (0) = e2iS , W (1) = −2ie2iS , W (2) = −2e2iS , W (3) =
4i

3
e2iS ,

W (4) =
2

3
e2iS , W (5) = − 4i

15
e2iS , W (6) = − 4

45
e2iS , W (7) =

8i

315
e2iS ,

W (8) =
2

315
e2iS , W (9) = − 4i

2835
e2iS , and so on.

Whence,

w(S, t) =

∞
∑

n=0

W (n)tn

= W (0) +W (1)t+W (2)t2 +W (3)t3 +W (4)t4 + · · ·

= e2iS
(

1− 2it− 2t2 +
4i

3
t3 +

2

3
t4 − 4i

15
t5 − 4

45
t6 +

8i

315
t7 +

2

315
t8 − · · ·

)

= e2iS
(

1 + (−2it) +
(−2it)2

2!
+

(−2it)3

3!
+

(−2it)4

4!
+

(−2it)5

5!
+ · · ·

)

= e2iSe−2it

= cos2(S − t) + isin2(S − t).

Showing that

w(S, t) = e2i(S−t) (4.6)

satisfies (4.5) is obvious and straightforward.

Case B: Suppose β = 6, σ =
√
2 and f(S) = 1. Then the corresponding

Ivancevic option pricing model is:

{

∂w
∂t

= i
(

∂2w
∂S2 + 6|w|2w

)

,

w(S, 0) = 1
(4.7)

with an exact solution:

w(S, t) = e6it (4.8)

So, applying the PDTM with the parameters in case A through (4.4) gives the
following:

W (0) = 1, W (1) = 6i, W (2) = −18, W (3) = −36i, W (4) = 54,
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Table 1: Solutions of Case A (real parts).

t Re(wex) Re(wPDTM) Rel. error

0.5 0.540302 0.5393051 0.001845079

0.6 0.696707 0.6955375 0.001678611

0.7 0.825336 0.8240410 0.001569058

0.8 0.921061 0.9196927 0.001485569

0.9 0.980067 0.9786790 0.001416230

1.0 1.000000 0.9986486 0.001351400

1.1 0.980067 0.9788051 0.001287565

1.2 0.921061 0.9199398 0.001217292

1.3 0.825336 0.8243994 0.001134811

1.4 0.696707 0.6959928 0.001025108

1.5 0.540302 0.5398392 0.000856558

W (5) =
324i

5
, W (6) = −324

5
, W (7) = −1944i

35
, W (8) =

1458

35
,

W (9) =
972i

35
, W (10) = −2916

175
, W (11) = −17496i

1925
, W (12) =

8748

1925
,

and so on. Whence,

w(S, t) =
∞
∑

n=0

W (n)tn

= W (0) +W (1)t+W (2)t2 +W (3)t3 +W (4)t4 + · · ·

=
(

1− 18t2 + 54t4 − 324

5
t6 +

1458

35
t8 − 2916

175
t10 +

8748

1925
t12 + · · ·

)

+ i
(

6t− 36t3 +
324

5
t5 − 1944

35
t7 +

972

35
t9 − 17946

1925
t11 +

52488

25025
t13 + · · ·

)

.

Remark: The results of Case A and Case B are presented in Tables 1-4
below. We use Re(wex), Re(wPDTM ), Im(wex), Im(wPDTM), and Rel. error

to denote real part of the exact solution, real part of the approximate solution,
imaginary part of the exact solution, imaginary part of the approximate solu-
tion, and relative error respectively. In Figure 1 and Figure 2, the real, and the
imaginary parts associated to the solution of Case A are graphically presented
respectively.
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Table 2: Solutions of Case A (imaginary parts).

t Im(wex) Im(wPDTM ) Rel. error

1.1 0.198669 0.198090 0.002915

1.2 0.389418 0.388600 0.002101

1.3 0.564642 0.563618 0.001814

1.4 0.717356 0.716166 0.001660

1.5 0.841471 0.840162 0.001555

1.6 0.932039 0.930665 0.001475

1.7 0.985450 0.984064 0.001406

1.8 0.999574 0.998232 0.001343

1.9 0.973848 0.972604 0.001278

2.0 0.909297 0.908201 0.001206

Table 3: Solutions of Case B (real parts).

t Re(wex) Re(wPDTM ) Rel. error

0.01 0.059964 0.0599640 0.000000000

0.02 0.992809 0.9928086 4.02897E-07

0.03 0.983844 0.9838437 3.04926E-07

0.04 0.971338 0.9713380 0.000000000

0.05 0.955336 0.9553365 5.23376E-07

0.06 0.935897 0.9358968 2.13699E-07

0.07 0.913089 0.9130889 1.09518E-07

0.08 0.886995 0.8869949 1.12740E-07

0.09 0.857709 0.8577087 3.49769E-07

0.10 0.825336 0.8253356 4.84651E-07

0.11 0.789992 0.7899922 2.53167E-07

0.12 0.751806 0.7518057 3.99039E-07

0.13 0.710914 0.7109135 7.03320E-07

0.14 0.667463 0.6674628 2.99642E-07

0.15 0.621610 0.6216100 0.000000000
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Figure 1: Solution graph of real part content of Case A

Figure 2: Solution graph of imaginary part content of Case A

5. Concluding Remarks

In this paper, we considered the Ivancevic option pricing model (IOPM). This
nonlinear adaptive-wave model serves as alternative for the classical Black-
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Table 4: Solutions of Case B (imaginary parts).

t Re(wex) Re(wPDTM ) Rel. error

0.01 0.059964 0.059964 0.000000

0.02 0.119712 0.119712 1.67E-06

0.03 0.179030 0.179030 2.23E-06

0.04 0.237703 0.237703 1.68E-06

0.05 0.295520 0.295520 6.77E-07

0.06 0.352274 0.352274 5.68E-07

0.07 0.407760 0.407761 1.23E-06

0.08 0.461779 0.461779 4.33E-07

0.09 0.514136 0.514136 0.000000

0.10 0.564642 0.564643 8.86E-07

0.11 0.613117 0.613117 1.63E-07

0.12 0.659385 0.659385 4.55E-07

0.13 0.703279 0.703279 5.69E-07

0.14 0.744643 0.744643 1.34E-07

0.15 0.783327 0.783327 1.28E-07

Scholes option pricing model based on a controlled Brownian motion in an adap-
tive setting relating to nonlinear Schrdinger equation. By considering cases of
nonzero adaptive market potential, analytical solutions of the IOPM by means
of a proposed semi-analytical method (projected differential transform method)
were obtained. Based on the results, the proposed method is proven to be di-
rect, and effective as the obtained solutions tend rapidly to their exact forms
without any form of linearization, perturbation, or discretization.
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