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Abstract. In this study, approximate solutions of a system of time-fractional 
coupled Burger equations were obtained by means of a local fractional operator 
(LFO) in the sense of the Caputo derivative. The LFO technique was built on the 
basis of the standard differential transform method (DTM). Illustrative examples 
used in demonstrating the effectiveness and robustness of the proposed method 
show that the solution method is very efficient and reliable as – unlike the 
variational iteration method – it does not depend on any process of identifying 
Lagrange multipliers, even while still maintaining accuracy. 
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1 Introduction 

Burgers’ equations mostly appear in applied sciences such as fluid mechanics, 
mathematical modeling of turbulence, and approximate theory of flow via a 
shockwave travelling in a viscous fluid [1-3]. The one-dimensional coupled 
Burger equation is seen as a simple model of sedimentation and/or evolution of 
scaled volume concentrations of two types of particles in fluid suspensions and 
colloids under the effect of gravity. Several researchers have proposed 
analytical and numerical approaches for solving the one-dimensional Burger 
and coupled Burger equations. These approaches include the Variational 
Iteration Method (VIM), the Adomian Decomposition Method (ADM), the 
Homotopy Analysis Method (HAM), the Differential Transformation Method 
(DTM), the Reduced Differential Transform Method (RDTM), the modified 
extended tanh-function method, the Chebyshev spectral collocation method, and 
so on [4-12]. 

In general, the one-dimensional coupled nonlinear Burger equation of integer 
order is of the form: 
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subject to initial conditions (Eq. (2)) and the Dirichlet boundary conditions (Eq. 
(3)) as follows: 
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where ݔ ∈ ݐ  ߗ ൐ 0 for Ω ൌ ሼݔ: ݔ ∈ ሾܿ, ݀ሿሽ as the computational domain while  
>ଵ, >ଵ,  and 0 are arbitrary constants that ߛ ଶ are real constants, andߤ and	ଵߤ
depend on the system’s parameters. 

In what follows, the extension of Eq. (1) to time-fractional order will be 
considered. Hence, the time-fractional coupled Burger equation (TFCBE) is of 
the form: 

 
 
 

1 2

1 1

0

0
t xx x x

t xx x x

u u uu uv

v v vv uv





  

  

   

   





,  0,1  . (4) 

Even though fractional derivatives (FDs) may appear old as a subject, they have 
received a remarkable interest in recent years for handling complex phenomena 
in applied sciences and engineering [13,14]. There are several types or forms of 
FDs, viz.: Caputo, Riemann-Liouville, Riesz, Weyl, Grunward, Coimbra, 
Canavati, Marcharud, Hadamard, Chen, Davidson-Essex, and Osler [15-17]. 

Recently, Yang [18], for the first time in the literature, has considered a class of 
FDs of constant and variable orders where the proposed formulas find vital 
expression in the description of fractional-order heat transfer equations in 
complex media. For recent work on LFOs, the reader is referred to [19] and the 
references therein. The notion of fractional Burger equations serves as a 
response for an expression that can be varied to describe the order of the 
derivative. In a generalized form, Momani [20] considered by means of ADM, 
the non-perturbation analytical solutions of the Burger’s equation with time- 
and space-fractional orders. Yang, et al. [21] investigated a family of local 
fractional two-dimensional Burger-type equations by means of the local 
fractional Riccati differential equation method. Other reports on Burger 
equations include [22-25]. In the present work, we considered a one-
dimensional time-fractional coupled Burger equation of the form in Eq. (4) via a 
local fractional differential operator (LFDO) based on the MDTM for 
approximate-analytical solution. This method involves less computational work 
and requires less computational time. 
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2 Preliminaries and Notations on Fractional Calculus 

In fractional calculus, the power of the differential operator is considered a real 
or complex number. Here, a brief introduction to fractional calculus will be 
given. For more notes and details regarding the definitions and properties of 
fractional calculus the reader is referred to [14-17, 26-28]. 

Suppose ܦ ൌ ݀′ሺ∙ሻ and ܬ are differential and integral operators respectively. 
Then the following definitions hold: 

Definition (a):  Let ሺݔሻ, ݔ ൐ 0 be a real function, then ሺݔሻ is said to belong to 
the space ܥ௩, ݒ ∈ Թ if there exists ߣ ∈ Թ ሺߣ ൐ ሻݔሻ such that ሺݒ ൌ  ሻݔఒሺݔ

where    1 0,x C  . In addition,  x  is said to be in the space  if and 

only if Cv
  , . 

Definition (b): The Riemann-Liouville (R-L) fractional integration of ሺݔሻ of 

order ߙ ൒ 0, for ,  1vC v    is: 

  (5) 

Definition (c): The R-L fractional derivative of ሺݔሻ is: 

 . (6) 

Definition (d): The Caputo fractional derivative (CFD) of ሺݔሻ is: 
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Note: the link between the R-L operator and the Caputo fractional differential 
operator is: 
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 . (9) 

Definition (e): The Mittag-Leffler (M-L) function 

The M-L function, ܧఈሺݖሻ, is defined and denoted by the series representation 
as: 
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Remark. For ߙ ൌ  :ሻ in Eq. (10) becomesݖఈሺܧ ,1
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3 Analysis of Zhou’s Method (DTM)  

Zhou’s method [29], as remarked by many researchers in the literature, has been 
proven to be easier and simpler in terms of application for both linear and 
nonlinear differential models because it converts the said problems to their 
equivalents in algebraic recursive form, but this is not so when compared with 
other semi-analytical techniques, say VIM, ADM, HAM, and so on. DTM has 
received outstanding modifications for handling models of nonlinear types [30-
33]. 

3.1 Overview of Zhou’s Method (DTM) 

For an analytic function, ݄ሺݔሻ defined in a domain ܦ, the differential transform 
(DF) of ݄ሺݔሻ is defined and denoted by: 
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and as such: 
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Eq. (13) is referred to as the differential inverse transform (DIT) of ܪሺ݌ሻ, where 
݄ሺݔሻ and ܪሺ݌ሻ are the original and the transformed functions respectively. 
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P2: If    
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P4: (Modified DTM of a fractional derivative) 

If, ݂ሺݔሻ ൌ   ሻ thenݔ௫ఈ݄ሺܦ
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Setting ݍߙ ൌ 1 in Eq. (14) gives: 

    
  

 1
1

1 1

p
H p F p

p




 
 

  
. (15) 

As such, for ݄ሺݔሻ, ߙ-analytic at ݔ଴ ൌ 0,  
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3.3 Analysis of the Fractional DTM 

Consider the nonlinear fractional differential equation (NLFDE): 
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 is the fractional Caputo derivative of ݄ ൌ ݄ሺݔሻ, whose 

projected differential transform is ܪሺ݌ሻ, while ܮሼ∙ሽ and ܰሼ∙ሽ are differential 
operators (with respect to ݔ) of linear and nonlinear type respectively, and 
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We rewrite Eq. (17) as: 
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              ( ) ,  0 ( )x x xh x g x D L h x N h x q x h g x         . (19) 

Thus, when ݓሺݔሻ is expanded in terms of fractional power series, the inverse 
projected differential transform of ܪሺ݌ሻ is given as follows: 
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4 Illustrative Applications 

In this subsection, the proposed method is applied to an example of a coupled 
Burger equation of time-fractional order as follows: 

Case Example: Consider the TFCBE of the form Eq. (4) with >ଵ ൌ െ1,	>ଶ ൌ
െ2, ߤଵ ൌ െ1, ߤଶ ൌ െ2 & ߛ ൌ 0 ൌ 1. Thus yielding: 

 , (21) 

subject to: 
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In recurrence form we have: 
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Thus, for ݇ ൌ 0, ݇ ൌ 1, ݇ ൌ 2, ݇ ൌ 3, ݇ ൌ 4, ݇ ൌ 5 ..., we have respectively 
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and so on. 

Hence, using the initial condition: ݑሺݔ, 0ሻ ൌ ݔ݊݅ݏ ൌ ,ݔሺݒ 0ሻ with respect to the 
LFTM we obtain: 
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Similarly, 
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Note: when ߙ ൌ 1, we have ݑሺݔ, ሻݐ ൌ sinሺݔሻ expሺെݐሻ ൌ ,ݔሺݒ  ሻ, whichݐ
corresponds to the exact solution of the coupled Burger equation as contained in 
[1,4,35]. The exact and approximate solutions are presented graphically in 
Figure 1 through Figure 3. 

 

Figure 1 The solution graphs for ݐ ൌ 1 at ߙ ൌ 1. 
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Figure 2 The solution graphs for ݐ ൌ 1 at ߙ ൌ 0.8. 

 

Figure 3 The solution graphs for ݐ ൌ 1 at ߙ ൌ 0.8. 

5 Concluding Remarks 

We have successfully considered the approximate-analytic solutions of a system 
of time-fractional coupled Burger equations by means of a local fractional 
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operator (LFO) in the sense of the Caputo derivative. To demonstrate the 
effectiveness and robustness of the present technique, we used some illustrative 
examples; the solutions are provided in the form of convergent series. The 
method was shown to be efficient and reliable as it does not depend upon any 
process of identifying Lagrange multipliers, unlike the variational iteration 
method, even while still maintaining high-level accuracy. The method is 
therefore recommended for solving linear and nonlinear time-fractional 
differential equations (TFDEs) in other areas of applied science.  
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