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ABSTRACT 

This study is design to examine the reversed estimation of variable step-size 

implementation for solving nonstiff ordinary differential equations. This is exclusively 

dependent on the principal local truncation error of both predictor and corrector 

formulae of the same order. Collocation and interpolation methods with the aid of 

power series as the approximate function is utilized in the construction of a class of 

predictor and corrector formulae of the same order with distinct. The computed 

results existed in literatures demonstrated the performance of the method over existing 

methods. The reversed estimation of predictor and corrector formulae is solely the 

predictor formulae and also, draws a lot of computational benefits which insures 

convergence, tolerance level, monitoring the step size and maximum errors.   

Key words: Predictor and corrector formulae, Tolerance level, Maximum errors, 

Distinct k-step, Principal local truncation error. 
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1. INTRODUCTION 

Concurring with
5
, several techniques have been devised to produce global error estimation. A 

distinctive approach, frequently employed if local error control is expended, is called 

tolerance reduction. This banks on the presumption of tolerance balance being correct. In 

solving a differential equation over the necessitated interval, a new result is achieved 

employing a decreased or increased tolerance. The deviations in the result, obtained at like 

points, can be used to approximate the global error. 

Computational methods for providing the solution of ODEs are ordinarily divided into 

single-step or multistep processes. From each one has its pros and cons, and many numerical 

analysts favour one or the other technique. Moreover, such a choice may originate from the 
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needs of the problem being worked out. Authors viewed generally that several types of 

numeric methods had better be equated to the user aims. See
5
. 

Considering the initial value problem of a first-order differential equation of the form 

( )yxfxy ,=)(
'

, αay =)( , 
[ ]bax ,∈  and RmRmRf →×:    (1) 

The solution to (1) is broadly written as  

fy
in

j

i iin

j

i i
h


 ∑∑

00
        (2) 

where the step size is h,  ,1 j  i
,  ji ,...,1,0 , 

j
 are unknown constants which are 

uniquely defined such that the formulae is of order j as discussed
2
. 

It is presumed that Rf  is sufficiently differentiable on ],[ bax and satisfies a global 

Lipchitz condition, i.e., there is a constant 0L  such that  

  ,,),(
'

yyLyxfyxf 
., Ryy   

Under this presumption, equation (1) assured the existence and uniqueness set on 

],[ bax  as well as viewed to fulfill the Weierstrass theorem, see for instance “[12], [15], 

[21], [23]” for details. 

Where a and b are finite and ],...,,[ )()(
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, originate in real life applications for problems in science and 

engineering such as fluid dynamics and motion of rocket as presented
19

. 

However, authors “[1], [6], [8], [11], [13], [14], [20], [21]”,proposed block multistep 

methods which were employed in predictor-corrector mode. Block multistep methods have 

the vantage of assessing at the same time at all points with the integration interval, thereby 

reducing the computational encumbrance when an evaluation is demanded at more than one 

point within the grid. Again, one step methods are employ starting values in order to estimate 

the corrector.  

Bookmen have proposed block predictor and corrector formulae for the numeric solution 

of nonstiff ODEs in the simple form of Adams type united with ( )EC
m

P  and ( ) EP EC
m

mode 

implemented using variable step size appear for example
3, 4, 17-18, 22

. Still, their implementation 

was geared towards Backward Differentiation Formula (BDF). This paper presents Milne’s 

implementation on block predictor-corrector method for solving nonstiff ODEs of (1) founded 

on variable step size technique implemented in ( )EC
m

P  or ( ) EP EC
m

mode. The Reversed 

Estimation of Variable Step Size Implementation for Solving Nonstiff ODEs comes with 

many numeric vantages as cited
21

. 
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A block-by-block method is a method for computing vectors ,...,
10 YY  in sequence. Let 

the r-vector (r is the number of points within the block) ,, FY 
 and G

, for n=mr, m=0, 

1,. . . be given as ),...,(),...,(
1

,
1 ffFyyY rnnrnn
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point methods for (1) are given by  
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where A
i)(

, B
i)(

, ji ,...,0  are r by r matrices as introduced
2, 8, 10

. 

Thusly, from the above account, a block method has the numeric vantage that in each 

practical application program, the solution is estimated at more than one point concurrently. 

The number of points depends on the construction of the block method. Hence, employing 

these methods can give quicker and faster solutions to the problem which can be managed to 

generate the desired accuracy. See
17, 19

. Therefore, the main objective of this paper is to 

propose the reversed estimation of variable step size implementation for solving nonstiff 

ODEs. 

The reversed estimation of variable step size implementation for solving nonstiff ODES is 

alone estimated in predictor alone and following variable step size technique. This technique 

possesses the vantages as stated
21

. 

Hence, the residual of this paper is harsh out as follows: in Section 2 Materials and 

Methods. Section 3 Results. Section 4 Conclusion as seen [2]. 

2. MATERIALS AND METHODS 

Development of the Methods: Employing
2
 in this section, the main aim is to derive the chief 

explicit block method of the form (2). To advance by seeking an approximation of the exact 

solution )(xy  by presuming a continuous solution )(xY  of the form  

)()(
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xxY
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such that ],[ bax , d i
 are unknown coefficients and )(x

i  are polynomial basis 

functions of degree kq  , where q  is the number of interpolation point and the collocation 

points k are respectively chosen to satisfy 3≥= jq and 1k . The integer 1≥j  denotes the 

step number of the method. Thus, we construct a 1j -step explicit block multistep method 

with 

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where y
in
 is he approximation for the exact solution ),,(),( yxfx inininin

fy


  n is 

the grid index and ihxx nin



. It should be observed that equations (4) and (5) leads to a 

system of 1q  equations of the AX=B where  
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      (6) 

Evaluating equation (6) using Mathematica, we get the coefficients of d i
and replacing the 

values of d i
into (4) and after some algebraic computation, the explicit block multistep 

method is obtained as 
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where  i
 and 


i  are continuous coefficients.  

Overview of Block Predictor and Corrector Formulae: Concurring with
15-16

, the Predictor-

Corrector Formulae is  
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There are different ways or modes, in which the pair (8) can be applied. First, utilize the 

predictor to provide the initial guess 
 

y
kn

0


, then permit the looping (2) to continue till 

convergence is attained (in practical applications, some criterion comparable 
   







yy

v

kn

v

kn

1

, where   is of the order of round-off error, is met). This is called the mode 

of correcting to convergence. In this mode, the predictor represents a very auxiliary role, and 

the local truncation error and stability characteristics of the predictor-corrector pair are those 

of the corrector exclusively. Nevertheless, this mode is unattempting in practical applications 

because one cannot assure ahead the looping numbers of the corrector and thus the numbers 

of function evaluations will be needed at each step. 

A practically more satisfactory process is to express ahead the numbers of looping of the 

corrector are to be allowed at each step. Ordinarily this number is small, commonly 1 or 2. 

The local truncation error and stability characteristics of the predictor and corrector method in 
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such a bounded mode depend on both the predictor and the corrector formulae.  A reliable 

mnemonic for depicting modes of this form can be built by applying P  and C  to indicate 

single application program of the predictor or corrector respectively, and P  to represent a 

single evaluation of the function f , given x and y .  Presuppose the predictor is employ to 

appraise 
 
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kn
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mode is then named as PEC  . When the looping is done a second time to incur 
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. There is one father conclusion to make. At the final of the 
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Instead, the predictor and corrector formulae may be composed as  
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respectively, where 
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*

 and   possess a degree k  and 
*
 owns degree 1k  at most. 

With this notational system, the mode 
  EEC

tm

P
1

 may be redefined as  
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Theorem 1: If the multistep method (2) is convergent for pthorder equations, then the order 

of (2) is at least p . See [9]. 

Theorem 2: The order of a predictor-corrector method for first order equations must be ≥  1 

if it is convergent. See [9]. 

Theorems 1 and 2 draws the conclusion that the order and convergence of the method 

holds. 

3. RESULTS AND DISCUSSION 

Reverse Implementation of Predictor and Corrector Formulae: Following
5, 7

, as with 

former methods for resolving differential equations, the approximation of error in a Predictor-

Corrector method is all important for the decision of a suitable step-size. Luckily, in this 

instance where there are two approximates of the solution at each step, this is rather square. 

Distinct approaches to the error approximation process rely on the selection of Predictor-

Corrector formulae pairs. Together with an addition parameter available  b 1
 the Corrector 

can be constructed to possess a higher order than the Predictor, the deviation between them 

constituting an error approximate alike to that established on an embedded RK pair. Such a 

pair would, effectively, be executed in the local extrapolation mode with the higher order 

output supplying the starting value for the next step. The choice systematic plan of action is to 

select Predictor and Corrector formulae to be of the same order as sited
20-21

. In this example, 

the principal error terms of each formulae can be approximated by viewing the deviation 

between the predicted and the corrected values. Afterward, the Corrector error is then 

available, it is common to perform local extrapolation.  

Considering the error approximation process when both formulae possess the same order. 

Imagine that the local true solution fulfilling  yx nn
,  is )(xu ; then the local errors of the 

predictor and the corrector values are  

 
   hyhAACP

qq

n

q

CPnn
O

111

11






           (15) 
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Neglecting terms of degree 2q  and above, it is well-situated to constitute approximates 

of the local errors of the predicted and corrected values. These are 

 
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A
e nn
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Since equation (17) is entirely the predictor then it is referred to as the reversed estimation 

of correcting to convergence which is bounded by a prescribed tolerance  . While equation 

(18) is exclusively the corrector, this is called the estimation of correcting to convergence 

which is restricted by a prescribed tolerance   otherwise known as stopping criteria (tolerance 

level). 

Nevertheless, the procedure of summing on the error approximate or modifier is 

sometimes called Milne’s device but, to be uniform with more former terminology, it is more 

practiced identified as local extrapolation. 

4. CONCLUSIONS 

The reversed estimation of variable step size implementation for solving nonstiff ordinary 

differential equations has been analyzed. Block predictor-corrector formulae is a compendium 

of Adams family of the predictor-corrector formula which can be executed in ( )EC
m

P  and 

( ) EP EC
m

mode. The essential implications of this work is as follows: 

 Block predictor-corrector formulae are both of the same order. 

 The step-number of the predictor method is one step greater than the step-number of the 

corrector method. 

 The principal local truncation of both the predictor-corrector formulae is employed in the 

execution and evaluation of the maximum errors. 

 The convergence criteria or tolerance level is a requirement for convergence and as well, 

decide whether the result is admitted or not. 

 The implementation of this method comes with many computational advantages as mentioned 

previously. 
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