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Multi-sided Bohm-Bawerk assignment markets: the nucleolus and
the core-center

Abstract: We show that, contrary to the bilateral case, for multi-sided
Bohm-Bawerk assignment markets the nucleolus and the core-center, i.e.
the mass center of the core, do not coincide in general. To do so, we prove
that both the nucleolus and the core-center of an m-sided Bohm-Bawerk
assignment market can be respectively computed from the nucleolus and the
core-center of a convex game defined on the set of m sectors. Even more, in
the calculus of the nucleolus of this latter game only singletons and coalitions
containing all agents but one need to be taken into account. These results
simplify the computation of the nucleolus of a multi-sided Bohm-Bawerk
assignment market with large number of agents.

Keywords: multi-sided assignment games, core, nucleolus, core-center
JEL Classification: C71, C78

Resum: En aquest treball mostrem que, a diferéncia del cas bilateral, per
als mercats multilaterals d’assignacié coneguts amb el nom de Bohm-Bawerk
assignment games, el nucleolus i el core-center, i.e. el centre de masses del
core, no coincideixen en general. Per a demostrar-ho provem que donat un
m-sided Bohm-Bawerk assignment game les dues solucions anteriors podem
obtenir-se respectivament del nucleolus i el core-center d’un joc convex definit
en el conjunt format pels m sectors. Encara més, provem que per a calcular
el nucleolus d’aquest tltim joc només les coalicions formades per un jugador
o m-1 jugadors sén importants. Aquests resultats simplifiquen el calcul del
nucleolus d’un multi-sided Bohm-Bawerk assignment market amb un niimero
molt elevat d’agents.



1 Introduction

The bilateral Bohm-Bawerk horse market (Bohm-Bawerk, 1923) is a model
for a two-sided market with no product differentiation, and it is thus a par-
ticular case of a bilateral assignment game. The bilateral assignment game
was introduced by Shapley and Shubik (1972) as a cooperative game model
for a two-sided market with transferable utility. In their paper, the case of
the bilateral Bohm-Bawerk horse market is also analyzed.

In the present paper we consider a market with an arbitrary finite number
of sectors. One sector consists of a finite number of buyers and each one of the
remaining sectors consists of a finite number of sellers. Then each seller offers
one unit of a good and each buyer demands one bundle formed by one good
of each sector. This market can be studied within the framework of multi-
sided assignment games, which are introduced by Quint (1991). Contrary
to two-sided assignment games, multi-sided assignment games may have an
empty core (Kaneko and Wooders, 1982). Multi-sided assignment games
have been studied, among others, by Quint (1991), Stuart (1997), Sherstyuk
(1999) and Tejada and Rafels (2010).

The particular case where each buyer places the same valuation on all the
bundles is introduced in Tejada (2010) with the name of multi-sided Bohm-
Bawerk assignment market, extending the bilateral Bohm-Bawerk horse mar-
ket to multilateral markets. There, an analysis of multi-sided Bohm-Bawerk
assignment markets is done and it is shown that the core is nonempty and it
is completely determined by the core of a convex game played by the sectors
instead of the agents.

For the classical two-sided Bohm-Bawerk game it is well-known that the
core is nonempty and reduces to a segment. A study of single-valued solu-
tions for this game is done in Nunez and Rafels (2005), to conclude that, with-
out additional information about the bargaining capabilities of the agents,
the classical cooperative theory seems to recommend the midpoint of the
core segment. This assertion is supported by the fact that, among other
single-valued solutions, the nucleolus (Schmeidler, 1969) coincides with the
midpoint of the core segment, that is, with the mass-center of the core.
The mass-center of the core was introduced by Gonzalez-Diaz and Sanchez-
Rodriguez (2007), with the name of core-center, as a single-valued solution
for arbitrary coalitional games.

The aim of the present paper is to analyze the nucleolus and the core-
center of multi-sided Bohm-Bawerk assignment markets. We show that both
the nucleolus and the core-center of a multi-sided B6hm-Bawerk assignment
market can be respectively computed from the nucleolus and the core-center



of the associated sectors game, this being a game with many less players.
Even more, only singletons and coalitions containing all agents but one need
to be taken into account in the calculation of the nucleolus of this latter
game. These results simplify the computation of the nucleolus of a multi-
sided Bohm-Bawerk assignment market with large number of agents. As a
consequence we show that, contrary to the case of two-sided Bohm-Bawerk
markets, the nucleolus does not coincide in general with the core-center in
the case of multi-sided Bohm-Bawerk assignment markets.

The structure of the paper is as follows. The preliminaries on coalitional
games and multi-sided Bohm-Bawerk assignment games are presented in
Section 2. In Section 3 we determine which coalitions are to be taken into
account for the computation of the nucleolus of a multi-sided Bohm-Bawerk
assignment game and we also show that its nucleolus can be obtained from
the nucleolus of the related sectors game. Section 4 establishes a parallel
result for the core-center. An example is used throughout the paper to
illustrate both the model and our results.

2 Preliminaries and notation

A coalitional game (a game) is a pair (N,v), where N is the finite set of
players and, for all S C N, v(S) € R is the worth that coalition S can
obtain without the cooperation of agents in N \ S, being v(&) = 0. Let
|S| denote de cardinality of coalition S C N. An imputation is a payoff
vector € RV, where z; stands for the payoff to player i € N, that is
efficient, Y.y 2; = v(N), and individually rational, z; > v({i}) for all
i € N. The set of imputations is denoted by I(v). The core of a game
is the set of imputations that satisfy coalitional rationality and thus are
not blocked by any coalition. Formally, given (IN,v), the core is the set
C(v) = {x € RN | (N) = v(N) and z(S) > v(S) for all S C N}, where
as usual 2(S) = > ,cgz; and x(@) = 0. A game is balanced if the core is
nonempty. A subgame of (N,v) is any game (N’ ,v’) where N’ C N and o’
is the restriction of v to the subsets of N'. A game is totally balanced if the
core of any subgame is nonempty. A game (N,v) is convez if for all i € N
and for all S C T C N\{i} we have v(S U {i}) — v(S) <v(T U{i}) —v(T).
The core is an example of set-solution concept. A single-valued solution (or
point-solution) on a given set of games I is a rule « that assigns to each game
(N,v) in this set T' an efficient payoff vector a(v) € RV. Examples of single-
valued solutions are the nucleolus and the core-center. Each one of these two
solutions selects a core allocation that occupies a somehow “central” position



in the core. Although for arbitrary coalitional games, these two solutions
do not coincide, they do coincide for the particular situation of two-sided
Bohm-Bawerk markets.

2.1 Multi-sided assignment games and the Bohm-Bawerk
case

An m-sided assignment problem (m-SAP) denoted by (N',.. N™;A), is
given by m > 2 different nonempty finite sets (or types) of agents, N, ..., N,
and a nonnegative m-dimensional matrix A = (ag)pepp | v#- With some

abuse of notation, let it be N¥ = {1,2,...,n;} for all k, 1 < k < m. We shall
refer to the i" agent of type k as i € N*¥. We name any m-tuple of agents
EelliL, N¥ an essential coalition. Each entry ag > 0 represents the profit
associated to the essential coalition £. Again with slight abuse of notation,
we also use E to denote the set of agents that form the essential coalition.
An m-SAP is square if ny = .... = nyy,.

A matching among N, ..., N™ is a set of essential coalitions, y = {E" Py
with ¢ = minj<g<p, |N*|, such that any agent belongs at most to one coali-
tion in u. We denote by M(N', ..., N™) the set of all matchings among
N1, ...,N™. Anagent i€ N* forsomek € {1,...,m}, is unmatched under u
if it does not belong to any of its essential coalitions. A matching is optimal
if it maximizes >, ap in M(N?Y, ..., N™). We denote by M* (N1, ..., N™)
the set of all optimal matchings of (N1, ..., N™; A).

For each multi-sided assignment problem (N1, ..., N™; A), the associated
multi-sided assignment game (m-SAG) is the cooperative game (N, w4) with
set of players composed of all agents of all types, N = UL | N k and charac-
teristic function

= C
(1) wa(S) yeM(Nlrrrwl;).{..,Nmms) {ZE@ aE} , for any S C N,

where the summation over the empty set is zero.

It is known that the core of a multi-sided assignment game, C(wy),
coincides with the set of efficient nonnegative vectors x = (z11, ..., Z1n,;
i Ty ey Ty, ), With 2p; standing for the payoff to agent i € N¥, that
satisfy x(E) > ag for all E € [[j—, N*. As a consequence, the above in-
equality must be tight if £/ belongs to some optimal matching, and xg; = 0
if agent i € N* is unmatched under some optimal matching. Observe that
these two latter conditions guarantee the efficiency of the core allocations.

A particular case of multi-sided assignment games are multi-sided Bohm-
Bawerk markets, introduced in Tejada (2010). In these markets, each sector



k, for k € {1,2,...,m — 1} is composed of a finite set N* of sellers, and
sector m is composed of a finite set N™ of buyers. Each seller i, € N*
has one good of type k to sell, with a reservation price cg;, . Each buyer
i € N™ wants to buy a bundle formed by one good of each type, with
the singularity that, from her point of view, goods of the same type are
homogeneous. We denote by w; the value that buyer 7 places on an arbitrary
bundle (i1, ... ,im_1) € [I7= N*.

Thus, an m-sided Béhm-Bawerk market (or problem) can be summarized
by a pair (c;w) where ¢ = (c1,...,cm_1) € RM x... x RNm-1 are the sellers’
valuations and w = (wy, ..., wp,, ) € RV are the buyers’ valuations.

From now on, in order to simplify the analysis of the model, we will
assume that valuations of the sellers of each sector are arranged in a nonde-
creasing way and valuations of the buyers are arranged in a nonincreasing
way, 1.e.

(2)

cr1 < cpp < oo < gy, forall k€ {1,2,...,m — 1}, and wi > wa > ... > wy,,.

Given an m-sided Bohm-Bawerk problem (c;w), we denote by A(c;w) the
m-dimensional matrix defined by

m—1 m
(3) agp= max{O,wim — Z c,ﬂ.k} , for all B = (i1,...,0m) € HNk.
k=1 k=1

Notice that, by (2), for all E, E' € [[}~, N*,
(4) ESE/:>QEZCLE/.

When no confusion may arise, we write simply A instead of A(c;w).

Then, (N,w4(c:w)), where N is composed of all sellers and buyers, is the
multi-sided assignment game -see (1)- associated to the multi-sided Bohm-
Bawerk market (c;w), which we call the multi-sided Béhm-Bawerk assign-
ment game associated to (c;w). From Tejada (2010), (N, w g(c;w)) 18 a totally
balanced game.

For all i € N, we introduce the notation D? = (4,...,4) € R™. By (2),
the diagonal matching = {D? | 1 <i < n} is an optimal matching, where
n = minj<p<m ng. Then, the core C(w(ciw)) of (IV, W 4(cw)) coincides with
the following set:

X (DY) = ap: for all 1 <i < n,
(5) { v € RY x---fom z(E) > ag for all E € [[}~, N* and
zp =0 foralli e Nk ke M and i > n.



Let us define r as the highest buyer’s position that obtains a positive
profit when matched with all the sellers in the same position r:

(6) r= max {i]a; >0},
with the convention that r = 0 if all entries of A(c;w) are zero. For each
k € {1,..,m}, agents i € N* with 1 < i < r are said to be active, while
agents i € N* with i > r are called inactive. It is not difficult to check that
any matching formed by essential coalitions with all agents active is optimal.
In Tejada (2010), a new game defined on the set of sectors M = {1,...,m}
is associated to each multi-sided Bohm-Bawerk assignment game. The worth
in this game of a coalition S of sectors is the profit that in the related market
can be obtained by the r'" agents of the sectors in S together with the
r + 1t" agents of the sectors not in S. To this end, for any S C M let us
define F% = rlg+ (r+1) 1yns € R™, where, for each T'C M, 17 € R™
is the vector such that 17(k) = 1if K € T and 170(k) = 0if k ¢ T. It
is important to point out that the case where there is no r + 1** agent for
some of the sectors in M\S must be treated apart. Observe that, in this
case, ES € R™ can still be defined but E® is not an essential coalition of IV,
ie. BS ¢ [y, N*. The formal definition of the sectors game is introduced
next.

Definition 1 Given an m-sided Béhm-Bawerk assignment game (N, w A(cyw));
the associated sectors game (M, vé\;/[w) 1s the coalitional game with set of play-

ers M = {1,2,....m} composed of all sectors and characteristic function
defined, for each S C M, by

s : S m_ Nk
) RO R A A

if r >0 and v},(S)=0ifr=0.

By definition, whenever 7 > 0 we have v2., (M) = apr > 0 and v}, (@) =

M instead of vé\;/[w.

0. When no confusion may arise we write v

It is shown in Tejada (2010) that (M,v2.,) is a convex game and it is
strongly related to (N, w A(c;w)). To be more precise, each core allocation of
the multi-sided Bohm-Bawerk assignment game is uniquely determined by a
core allocation of the sectors game. Since payoff vectors of both games corre-
spond to different spaces (R "X xRN versus RM ), we define a function to

map payoffs of the sectors game to payoffs of the multi-sided Béhm-Bawerk



game. Given an m-sided Bohm-Bawerk assignment game (IV,w A(c;w)), we

introduce the replica operator Re.. : RM — RV x ... x RNV™ defined by
T

R(ZT1, ..y Tm) = (21, ..., ), where z = (T, ..., Tk, 0,...,0) € RN for all
ke {1,...,m}. Notice that R, is an injective linear function.

The main result in Tejada (2010) states that if (N, w 4(c;)) is an m-sided
Bohm-Bawerk assignment game and (M, vi‘{{c;w)) is the associated sectors
game, then!

8) Cwaemw)) = T e + Resw(C (v3L)),

where the translation vector ?C;w = (t11y ooy tlng 5 oo tmdy oo by ) € RV x
... x RN™ is defined by

tri = max{0,cp —cpif forall 1 <k <m—1and 1 <7< mny,
(9)  tmi = max{0,w; —w,} forall 1 <i < ny,.

In particular, notice that (8) and (9) imply that, for all x € C(wa(c:w)),
ke M and 1 <17 < r, we have xp; = xkr + ;. Later on in the paper an
example is introduced to illustrate the above definitions and results.

In the next two sections we show that an statement analogous to (8)
holds for two singled-valued solutions that are tightly linked to the core: the
nucleolus and the core-center.

3 The nucleolus

The nucleolus is a single-valued solution for coalitional games that was in-
troduced by Schmeidler (1969). For any imputation = of (N,v) and any
coalition S C N the excess of coalition S with respect to x is defined by
ey(S, ) = v(S) — x(5), and it is a measure of the satisfaction of coalition
S with respect to the allocation z. Given an imputation z, we define the
vector A(x) € R?"~2 of excesses of all nonempty coalitions different from N
arranged in a non-increasing order, so that those coalitions with a greater
complaint occupy the first positions in A\(xz). That is, A\g(x) = €,(Sk,x)
for all k € {1,...,2" — 2} and Ag(x) > Aj(z) if 1 < k < j < 2" — 2, where
{S1, ..., Sk, ..., Son_o} is the set of all nonempty coalitions of N different from
N. The nucleolus of the game (N,v) is the imputation n(N,v) (we write
n(v) for short when no confusion regarding the player set can arise) that

'Given ACRF andt € R*, t + A= {y € R* | y = t + z, for some = € A}.



minimizes \(x) with respect to the lexicographic order? over the set of im-
putations. That is, A(n(v)) <resx A(z) for all x € I(v). It is known that
the nucleolus is always a single point and, whenever the core of the game is
nonempty, it belongs to the core.

Maschler et al. (1979) give an alternative definition of the nucleolus
by means of a finite process that iteratively reduces the set of payoffs to
a singleton, called the lexicographic center of the game, that is proved to
coincide with the nucleolus.

Let us denote by C an arbitrary nonempty subset of coalitions of a bal-
anced game (N,v), and consider the algorithm in Maschler et al. (1979)
restricted to coalitions in C. This restricted procedure constructs a sequence

of coalitions EO ) El cee D EZH and a sequence of subsets of payoffs
xXIoxiD---D XSH such that initially ad = 0, X2 = C(v), 2% = C and

Al =g and, for te {0, .., Sc }, we define recursively

LR = min, e vt MaxXgeyy, € (S, ),

(a) @
(10) (b) XtH {:17 e Xt maXgeyt, eo(S,z) = ab ¢,

(c) B¢, = {S € XL | ey(S, ) is constant on x € XtH}

(d) S5 = Sh\x¢ +1and At =ALusE ),
where s¢ is the last index for which X% # @. The set X*¢T! is called the
C-lexicographic center of (N,v). When no confusion is possible we omit the
superscript or subscript C. By Maschler et al. (1979), if we take C to be
the set 2V of all coalitions, the 2/V-lexicographic center reduces to only one
point and it is the nucleolus. For an arbitrary collection C, the procedure is
well defined but X**! is not necessarily a single point, and even in that case
it might not coincide with the nucleolus.

Like in the bilateral case, it is easy to check that in the case of multi-sided
assignment games only essential coalitions, E = (i1,42,...,im) € [[1o; NF
and singletons need to be considered in the computation of the nucleolus
(Huberman, 1980). We denote the set of essential coalitions and singletons
by €.

As it is done in Solymosi and Raghavan (1994) for bilateral assignment
games, it can be proved® that, for balanced multi-sided assignment games,
the E-lexicographic center also reduces to only one point and coincides with
the nucleolus. Notice that || = ny---ny + n which is much lower than
|2V = 2,

2Given z,y € R", we say © <pregs y if there is some 1 < i < n such that z; < y; and
xj=y; for 1 <j <i. Also, wesay & <pez ¥y if T <pex y or x =y.
3This proof can be provided by the authors under request.



In this section we show that, in the case of m-sided Bohm-Bawerk as-
signment games, the set of coalitions to be considered in the computation of
the nucleolus can be further restricted. To this end the following lemma is
needed.

Lemma 1 Let (N,v) be a balanced game and C a subset of coalitions of N
such that the C-lexicographic center coincides with the nucleolus. Let F C C
be a subset of C such that, for all S € C\F, there is Tg = {F1,...,F,} C F

and \Y, ..., )\5, c® € R satisfying that, for all z € C(v),

(1) ey(S,x) < ey(Fp,x), for alll € {1,...,p},
(ii) ey(S,x) = Aey(F1, @)+ ... + )\Sev(Fp,:n) + 5.
Then, the nucleolus n(v) coincides with the F-lexicographic center.

Proof. To simplify the notation, let it be Xt ¥;, X! and of for t €
{0,1,...,s}, the elements of the C-lexicographic center of (IV,v), where s
is the last index for which »° # &, and X]t_-, X F, Et]_- and atf for t €
{0,1,...,sx}, the corresponding elements of the F-lexicographic center of
(N,v), where sz is the last index for which ¥%F # @. We claim that, under
the conditions of the lemma, we have s = sz and, for all ¢t € {0,1,...,s},
al :at]_-, Xt :X} and Etﬁfzztf.

We prove it by induction on t. The case t = 0 is trivial by the definition
of step ¢t = 0 in (10) together with the fact that 7 C C and thus FNC = F.
Hence, assume that of = aly, X* = XL and ©' N F = X%, for some ¢ < s.
We shall prove that ot = a?l, Xl = X}H and X NF = E?Fl.

First we claim that for all S € X! there exists T € X! N F such that, for
all z € X, e,(S, 1) < ey(T,z). Observe that the inequality holds trivially
as an equality if S € F. Hence, assume that S € C\F. By hypothesis (i)
and (ii), there are Tg = {F},...,F,} C F and )\f,...,)\l‘?,cs € R such that
ey(S,x) < ey(Fp,z), forall I € {1,...,p}, and

(11) ey (S, ) :)\‘fev(Fl,az)+---+)\geU(Fp,:E)+cS,

for all z € X' C C(v). If it is the case that F} ¢ X! for all [ € {1,2,...,p},
then from X N F = E} we necessarily have Fi,...,F, € A}, which by
construction of (10) implies that e, (F1, ), ..., e, (F)p, x) are constant on Xk =
X*. Hence, by (11), e,(S,z) is also constant on X*, which contradicts S €
¥t Once the claim is proved, for all x € X! it holds maxgey: e(S,x) <
maxgestng e(S, ) and

(12) YA XNF£0.



Secondly, for all x € X,

max e, (S, z) < max e,(S,x) = max e,(S5,2) < maxe,(S,x
Sext (8, )_Seztmf (5:2) Sext, oS )_Sezt o(5,2),

where the equality follows from the induction hypothesis and the last in-
equality from X% = Xf N F C 2. Hence,

13 S, x) = S, z).
(13) gleazﬁgev( z) érelg;ev( z)

Thus o/t = min,c y+ maxgesy €,(S, ) = min,e vt Maxgeyye €y(S,z) = altt,
since Xt = X ]t_- also by induction hypothesis.

Now, by (13) and X* = XL we obtain X**! = X!, Therefore £;11 N
F = Y117 and hence SN F = £

Finally, by (12) we have s = sz. Thus, since the C-lexicographic center
of (N,v) coincides with the nucleolus and X*+! = X}_fﬂ, we have that also
the F-lexicographic center of (N, v) coincides with the nucleolus. W

The above lemma is now applied to the m-sided Bohm-Bawerk assign-
ment game to see that, besides some singletons formed by last active agents
of some sectors, only essential coalitions formed by either one (or m — 1) last
active agents of some sectors and m — 1 (or one) first non-active agents of the
remaining sectors need to be taken into account to compute the nucleolus.
Formally, given (V,w A(c;w)) an m-sided Bohm-Bawerk assignment game, let
FN = FN_ L UFN be the subset of coalitions of N defined by

) FN, = {ES

SC M, ]S]:m—landESeHNk}
k=1

and

w-{

SCM,|S|=1,E%¢ HNk}u{{reNl}
k=1

E{l}géﬁ]\fk},

k=1

where recall that E° = r1g+(r + 1) 1pps- Observe that FN_| is composed
of all essential coalitions (only if exist) formed by the r + 1** agent of one
sector and the 7" agent of the remaining m—1 sectors, whereas ]-'fv is formed
by all essential coalitions composed by the 7" agent of one sector, let us say
| € M, and the 7+ 1*" agents of the remaining m — 1 sectors, whenever these
essentials coalitions exist, i.e. E{} I, NF*, or the singleton formed by

10



the 7" agent of sector [ otherwise, i.e. when E{} ¢ [, N* 4 In particular
observe that |[FN_;| < m and |F{| = m, and hence this time |FV| < 2m
which is much lower than |£] = ni..n,, +n.

Theorem 2 Let (N, wA(C;w)) be an m-sided Bohm-Bawerk assignment game.
Then the nucleolus n (wA(c;w)) coincides with the FN -lexicographic center of
(N7 wA(c;w))'

Proof. Consider the £-lexicographic center of (N,w4), which is known to

coincide with the nucleolus 7 (w4). It can be easily checked that at step t = 1

in (10) we obtain ol = 0, X' = C(w4), X1 = Al = {S € £ | e(S, z) is constant in C(wa)}
and X! = £\X;. Hence, we can start the algorithm of the £-lexicographic

center with o = 0, X° = C(w4) and

(16) o= A" ={S c &|e(S,z) is constant in C(w4)} and X0 = £\X.

Since any essential coalition formed by either only active agents or only
inactive agents belongs to some optimal matching, by (5) each such coalition
receives a constant payoff in C(w4), and hence, in the above algorithm,
»0 is composed of all essential coalitions containing both active agents and
inactive agents, and all singletons formed by one active agent (if there exist).

Let z € C'(wa) be an arbitrary core allocation. To prove the theorem we
will show that FV satisfies the assumptions of Lemma 1, i.e. for each S €
YONFN there is Tg = {Fy, ..., F,} € FVN such that e, ,(S,7) < ey, (Fi,z)
for all t € {1,...,p} and e, ,(S,z) = Aeu, (F1,z) + ... + )\fewA(Fp,x) + 8
for some A7, ...,)\g,cs € R which do not depend on x. Thus, let it be S €
YO\FN. We distinguish two cases, depending on whether S is an essential
coalition or a singleton.
Case 1: S = E = (i1, ...,im) € [ [, N*.

Consider a set of sectors associated to E defined by Sp = {k € M |
1 < <r}. By (16), we have @ & Sgp & M. Due to the non-symmetrical
notation of buyers’ and sellers’ valuations, we must write separately the case
m € Sp and m ¢ Sp. Nevertheless, the proof of the latter case is analogous
to the proof of the former and hence we assume m € Sg, whereas the case
m ¢ Sg is left to the reader. Let us also denote by E' = 37 o drlgy +
(r+1) 155, the essential coalition obtained from £ by replacing agents of

“We could add a null agent with an arbitrarily high cost if it is a seller, or a null
agent with an arbitrary low valuation if it is a buyer, to those sectors k& € M with
nk = r, hence ensuring the existence of the r + 1" agent for each sector. In that case,
Fmo1={E°|SCM, |S|=m—1}and 7' = {E | SC M, |S|=1}.
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each sector k € M\Sg by the 7+ 1" agent of the same sector. Since E' < E,
by (2) we have ag < ap. We start proving that

(17) ew, (B, x) < ewA(ESE,x).
Indeed,
ew,(E,x)
m
= ap— Zwkzk < ap — Z Thiy — Z Thiy, = Q' — Z Ti,
k=1 keSg kGM\SE keSE
= ag’ — ($mr + (wim - wr)) - Z (xkr + (Ckr - Ckzk))
keSg\{m}
= maxq 0,w;,, — Z Chiy, — Z Chk(r+1)
keSp\{m} keM\Sg
- ($mr + (wim - wr)) - Z ($kr + (Ckr - Ckzk))
keSg\{m}

= max < 0, w, — Z Clr — Z Chk(r+1) + (wim - wr) + Z (Ckr - Ckik)

keSp\{m} keEM\SE keSp\{m}

- (wim - wr) + Z (Ckr - Ckik) - Z Ty

keSg\{m} keSg

= max — (wim - 'LUT’) + Z (Ckr — Ckik) , Wy — Z Clr — Z Ck(r+1)

keSp\{m} keSg\{m} keM\Sg
-
keSg
T T DI T SEP T S P
keSg\{m} keM\Sg keSg

S

= Opsp — Z Lkr :ewA(E Eax),

keSg

where the second and the third equalities hold by (5) and (8), the fifth
equality holds adding and subtracting w, — ZkeSE\{m} cgr to the second
term in the maximum operator, and the last inequality holds by (2). We
continue by distinguishing two subcases.
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Case 1.1: agsy > 0.
Since E € [[pL, N¥, it trivially follows E°% € [[j_, N*. Recall that by
(16), Sg & M. We now prove that, for each k¥’ ¢ Sp,

(18) Cwn (B, 2) < ey, (EM\F) 1),
Before proving (18) observe that, since x € C(w4), by (5) we have
My _ _ — " —
o(ET) = ZIEM T = apM =W Zle{l,...,m—l} Cr
and, for each k € M \ {m},
M\{k}y _
(BN = g T Z OB Z W ) =D €
Combining the two above expressions we obtain
(19) Ty — (Cr(r41) — Chr) <0, for all k € M\ {m}.

Then, for each k' ¢ Sg,

S
EWA(E E,$) = CLESE — Z Ller :wr — Z Clr — Z Ck(r+1) — Z Tler

keSg keSg\{m} keM\Sg keSg

= w' - Crk/(r+1) — Z Ckr — Z Thr + Z ($kr - (Ck(r—i-l) - Ckr))

ke M\{k',m} ke M\{k'} ke(M\{k'H\SE
< W =) — Z Chr — Z Ter

ke M\{k';m} keM\{k'}
< max 0,w" — Ck/(r41) — Z Ckr ¢ — Z Lkr

ke M\ {k',m} keM\{k'}

- aEAI\{k’} - Z xkr - ewA (EM\{kl}7x)7

keM\{k'}

where the second equality follows from the assumption apsy, > 0, the third
equality is obtained by adding and subtracting Zke( M\{E P\ S5 (Tkr + Crr)
and the first inequality holds by (19). Therefore (18) indeed holds.

Next, since E = (i1, ...,im) € [[1ey N for any k' € M\Sg we have
iy > r—+ 1 and thus agent iy € N¥ exists, which implies EM\{F} ig also an
essential coalition, i.e. EM\{K} ¢ | N*. Therefore, we can consider the
following nonempty subset of fn]\{_l c FN,

(20) Ts = {EM\{k} ke M\SE} .
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Notice that the cardinality of 7g is the same as that of M\Sg. For each
k € M\SE let F), € Ts denote the associated coalition M\{k} of 7g. From
(17) and (18), we obtain that e, ,(E,z) < e, ,(F),z) for all Fj, € Tg, which
implies that property (i) of Lemma 1 is satisfied for S = E, taking F = FV.

Further, we prove that also property (i) of Lemma 1 is satisfied. First
of all observe that

1
ESE) — ESE
") = pas 2 T
k)EM\SE
1
521 kE%SE (w(BE) — o ))
_ 1 S (B -3 p(pONDSE)
M\ S| keM\Sg keM\SE
1 |[M\Sg| -1 s
S H(EM\RY) <7> £(EM\SE)
[M\SE| ke%SE |M\SE|
1 |[M\Sg| -1
- EM\R) _<7> _ o(B5FY),

where the last equality holds since, by (5), z(ES#) + 2(EM\58) = 2(EM) =
apm. Therefore,

(21) p(BSF) = Y a(BMFh) — (IM\Sp| - 1) apu.
kK'eM\Sg

z(E) = Z Thiy, + Z Lhiy, = Z Thiy, = 2(B°F) + Z Eriy

keSg keM\Sg keSg keSg
(22) = > w(BMFH — (IM\Sp| - Dapy + Y thi,
kIEM\SE keSE

where the second and third equalities hold by (8) and the last equality holds
by (21). To conclude, by (22), the excess e, , (F,z) is an affine combination
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of the excesses associated to coalitions of 7g:

ew,(E,x) = ap—xz(E)
= ap— Y a(E) 4+ (M\SEl -1 apn — Y tr,
keM\SE keSg

= > (aEM\{k} - x(EM\{k}))

k‘EM\SE
CS
+ap— Y thiy,— Y g+ ([M\Se| — 1) agu
k€S keM\Sg
(23) = Z e (Fp, ) + ¢,

k‘EM\SE

where the third equality is obtained by adding and subtracting > _; M\Sp GEM\{k}-
Therefore, as we claimed, the two requirements of Lemma 1 applied to S = F
(under the assumptions of Case 1.1) are satisfied for all x € C(wy4), taking
F =7FN and Tg as in (20).
Case 1.2: ags, = 0.

In this case, consider the following nonempty subset of .7-"{\7 c FN,

Ts = {{r ENl}

l € Sg and EW ¢ HNk}
k=1

(24) U {E{l}

l€Spand B ¢ HNk}.
k=1

For each | € Sg let F; € Tg denote the associated coalition of 7g. Notice
that the cardinality of 7g is the same as the one of Sg since, for each [ € Sg,
cither B ¢ [[7, N* and we consider the singleton formed by r € N' or
EW ¢ [TiL, N* and we consider the essential coalition E} . Notice also
that in this second case 0 < apuy < apsy = 0. In any case wa(F;) = 0 for
all F; € Tg. For each | € Sg,

(25) ewA(ESEu‘T) = - Z Ller < — Ty = wA(E) — Ty = ewA(Eu‘T)7
keSg

and hence
ewA(Ea$) < ewA(ESny) < ewA(F‘lyx)v
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where the third inequality holds by (17). Hence property (i) of Lemma 1 is
satisfied for S = E, on the assumptions of Case 1.2, taking F = FV and Tg
as in (24). Further, property (i) of Lemma 1 is also satisfied. Indeed,

ews(B,x) = ap—x(E)=ag— Yz — Y

leSE leM\SE
= ap —x(E%F) - Z ti,
leSE
S
—
(26) = Z ewa(F1,2) +ap — Ztlin
lESE leSE

where the first equality holds by (8) and (5), and the last equality holds from
wa(Fy) = 0 for all F; € Tg. Therefore, the two requirements of Lemma 1

applied to S = E (under the assumptions of Case 1.2) are again satisfied,
taking F = FV and Tg as in (24).

Case 2: S = {i}.
By (16), we can assume i € N, for some | € M and i < r. Let 7g be the
following singleton of F C FN

N [ {BWY i BU e[, N,
(27) = = { (reNl} it B0 g [, NE.

By (8), we obtain

oS

) ——N—
ew,({i},2) = —ay = —ti; — xpp = €y, (Fr ) —wa(F) — ty,

where the last equality holds by adding and subtracting w4 (F'). Therefore
properties (i) and (%) of Lemma, 1 are satisfied for S = {i}, taking F = FVN
and 7g as in (27).

To sum up, the assumptions of Lemma 1 are satisfied for all S € E\FY,
to guarantee that the FV-lexicographic center coincides with the nucleolus.
|

The result in Theorem 2 simplifies the computation of the nucleolus of a
multi-sided Béhm-Bawerk assignment game. Indeed, consider for instance a
market situation with eight sellers 57, ..., Sg each of them owning one unit of
a homogenous software good, eight different sellers Hy, ..., Hg each of them
owning one unit of a homogenous hardware good and Bi, ..., Big ten po-
tential buyers interested on acquiring a bundle formed exactly by one unit
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of software and one unit of hardware. Table 1 below shows the valuations
of each agent in this three-sided Bohm-Bawerk assignment market, which
translates into a 26-person cooperative game. It is straightforward to check
that there are five active agents on each side of the market, that is » = 5,

which is marked in bold.

Table 1

Software (s) sellers

Hardware (h) sellers

Buyers

S1 values her good at 5

Hy values her good at 5

B values a s/h pair at 30

So values her good at 5

Hy values her good at 6

By values a s/h pair at 28

S3 values her good at 7

Hj values her good at 8

B3 values a s/h pair at 26

S4 values her good at 8

H}y values her good at 9

B, values a s/h pair at 24

S5 values her good at 10.75

Hp values her good at 9.25

Bs values a s/h pair at 22

S values her good at 11

Hg values her good at 10.5

Bg values a s/h pair at 21

S7 values her good at 12

H7 values her good at 13

By values a s/h pair at 20

Sg values her good at 13

Hyg values her good at 13

Bg values a s/h pair at 18

By values a s/h pair at 17

By values a s/h pair at 15

As a result of Theorem 2, in order to calculate the nucleolus of the cor-
responding coalitional game (IV,w A(C;w)) with 226 coalitions we only have to
consider coalitions in ¥ = FNUFY  where ¥ = {(5,6,6), (6,5,6), (6,6,5)}
and F¥ = {(6,5,5), (5,6,5), (5,5,6)}. However, the number of agents is still
high, 26, which means that we have to solve several linear programs with 26
variables. The procedure can be simplified further by exploiting the connec-
tion between the cores of the multi-sided assignment game and its related
sectors game (M, vé‘f’w). To this end Lemma 1 is applied to the sectors game
to show that only singletons and coalitions of size m — 1 are needed to com-
pute its nucleolus 7 (vé‘/"w) This fact reinforces the idea that the sectors
game is a quite special convex game. As a consequence, the relationship
between the nucleolus of the m-sided Bshm-Bawerk game (IV,w g(c;u)) and
that of its sectors game is established.

Given the corresponding sectors game (M, vé\;/[w), let us consider the sub-
set of coalitions of M defined by FM = FM y FM | " where

(28) f%—lz{S€M7 ’S’:m_1}7
and
(29) FM —{SeM, |S|=1}.
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Theorem 3 Let (N, wA(C;w)) be an m-sided Béhm-Bawerk assignment game
and let (M,v2,) be its associated sectors game. Let also n(wa(ca)) and
n (vé‘f’w) be the corresponding nucleolus. Then,

(a) n(vih,) coincides with the FM -lexicographic center of (M, vé\;/[w).

(b) n(wA(c;w)) = ?c;w + Rc;w (77 (vé\f[w))

Proof. To start proving statement (a) of the theorem, recall the notation
ES =rlg+(r+1) 1pps for all S € M and let us see that (M, oM), ¢ =2V
and FM are on the assumptions of Lemma 1. Let it be @ € S ¢ M and T €
C (UM) an arbitrary core allocation of the sectors game. If E° € | = NF,
by Definition 1 and (8), it is straightforward to check that

(30) epm (S,T) = ey, (ES,:E),

where x = ?c;w—i—Rc;w(E). As before, let us define for each essential coalition
E the set Sp ={k € M |1 <1, <r}. The reader can check that Sps = S.
We distinguish two cases.

Case a.1: vM(S) > 0.

By Definition 1, v™(S) > 0 implies ¥ € [[}~, N*. Let us consider the
nonempty set of coalitions 7g = {M\{k} | k € M\S}, which is a subset of
FM | Observe that 7Tg is in one-to-one correspondence with the set defined
in (20). Now, for all k € M\S,

e,m(S,T) = ewA(ES,x) < ewA(EM\{k},a:) =e,m (M\{k},T),

where the inequality holds by (18) and both equalities hold by (30). Fur-
thermore, from (23) and making use of (30), we deduce that e,n(S,Z) =
> rers o (Fx) + ¢, where ¢® is defined in (23) . Therefore the two re-
quirements of Lemma 1 applied to S are satisfied, taking F = FM and the
collection 7g above defined.

Case a.2: vM(S) =0.

Notice that, by Definition 1, either B € [[{~,; N* and v™(S) = ags = 0
or % ¢ [[i, N*. In either case, let us consider the nonempty set of coali-
tions Tg = {{I} | I € S}, which is a subset of 7M. Observe that 7 is in one-
to-one correspondence with the set defined in (24). On the one hand, if £ €
[Tie, N*¥ | by (25) and (30) we easily deduce that e, (S,F) < e u (F, ) for
all F' € Tg. Furthermore, making use of (30), we deduce that e v (S,Z) =
> rers €oM (Fy2) + ¢, where ¢ is defined in (26). On the other hand, if
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ES ¢ i, N* we have e,n (S, %) = — Y e Th = > Fets €om (I, T). There-
fore the two requirements of Lemma 1 applied to S are satisfied, taking
F = FM and the collection Tg above defined.

Thus, Lemma 1 guarantees that n ( ) coincides with the F -lexicographic
center of (M,v2.,) and hence we finish the proof of statement (a).

Next we prove statement (b) of the theorem. Let X%, 2 ¥4 and ol for
t €{0,1,...,sx}, be the elements in the algorithm of the FV-lexicographic
center of (N,w4(cw)), Where sy is the last index for which X3 # @. Let
also XJ{Z[, Ziw, Eﬁw and 045\/1 for t € {0,1,...,sp}, be the elements in the
algorithm of the 7 -lexicographic center of (M,vl,), where sy is the last
index for which X3} # @.

Recall the definitions of 7V and FM at (14), (15), (29) and (28), and let
us consider the mapping ¥ : FN— F M that assigns each coalition of fﬁ_l
to a coalition of F | and each coalition of F{¥ to a coalition of FM in the
following way:

S ifT=FEecFN forsomeSC M,
(31) ‘I’(T)—{ (0} T={r}erY andre N.

Observe that, by construction of ¥ and the definitions of VY and FM, ¥ is
injective. Moreover, the restriction of ¥ to .7-"{\7 is bijective, since all S C M
with |S| = 1 belong to W(FY). When there exists the r + 1** agent of each
of the m sectors, ¥ is a bijection.

By (30) and Definition 1, for all '€ FV and all z € C(w4),

(32) eom (¥(T),T) = ey, (T, x),

where T € C(vM) satisfies z = ?C;w + Re.w(T).

We claim that oly = o, XL = 7 e +Rcw(XM) and ¥ (Zf) C 54,
for all t € {0,...,s}, and as a consequence sy; = sy = S We prove it by
induction on t. For t = 0 we only have to prove that XN —_— cwtRe; w(XM)
which holds by (8).

Now assume that oy = of;, X§ = ¢ cw—i—Rcw( X},) and U(Xh,) C ¢,
for some t < sy. We prove that af\}Ll = f\}l Xt“ = ?cw + Rc;w(Xﬂl),
and ¥ (S € 24

In the first place, we claim that, for each T € X%,

(33) %Ié%}t( em(¥(T),T) = 5{161%%({ e m (S, ).
Indeed, by induction hypothesis ¥(3%,) C 3¢, and hence maXpesy €, (U(T),7) <
maxgeyt e,m (S, 7). If this latter inequality were strict, there would exist
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S e 38, \¥(ZY) such that

(34) e,m (S,7T) > max e,n (V(T),T) = max e, , (T, x),
Texl, Texl,

where z = ?C;w + Re.w(T) and the equality holds by (32).

Let us first prove that necessarily S € FM\W(FV). Otherwise, suppose
that S € U(FN) and let T € FV be such that S = ¥(T). Since S ¢ ¥(XY),
by construction of (10), T' € AY,. Thus, e,, (T, x) is constant on X}. But
then, since X}, = 7c;w+Rc;w(X}§/j) by the induction hypothesis and by (32),
e,m (S, T) is also constant on X},. Therefore S € Af,, which contradicts
S ext,.

Once established that S € FM\W(FVN), we necessarily have |S| =m — 1
and B ¢ [[1, N¥, which implies v*(S) = 0 by Definition 1. Then, for all
kes,

(35) eort (S,T) = 0 —7(S) < —7p < oM ({k}) — Tp, = e,ur ({k}, 7).

Suppose that {k} ¢ X, for all k € S. Then, {k} € A}, for all k € S, ie.
e,m ({k},T) is constant on X%, which implies that Ty, is also constant on X?%,.
Since |S| = m — 1 and (M) = v™ (M), we necessarily have that X, and
XL = ?c;w + Rew(X},) are composed of a single point, i.e. ¢ = sy = sur,
which contradicts ¢ < sy. Thus it cannot be the case that {k} ¢ X,
for all k € S. Hence let {k} € X%, for some k € S. By construction of
U, there exists 7/ = UL ({k}) € FN. If T" ¢ ¥, i.e. T' € Al then
€w, (1", x) is constant on X% and, as above, by the induction hypothesis and
by (32) also e, ({k},T) is constant on X%,, which contradicts {k} € ¥Y,.
Therefore, T” € X%, which together with (32) and (35) implies e, (S, T) <
e, ({k},T) = e, (T",2), in contradiction with (34). Hence (33) holds, as
we claimed.
Once the claim is proved, we show that a’;\Jfl = a’}\}rl. Indeed,

(36)
1 _

ay’ = min max e, ,(T,z) = min max e,n(¥(7T),7) = min max e,um(S5,T)

zeXf, Texth, TEX], TeXY, zeXxt, Sext,

where the second equality holds by (32) and the third equality holds by (33).
Secondly, X1t = ?C;w + Reaw(Xif 1) holds by (33) and (36) since X =
?c;w + Reyw(X},) by the induction hypothesis.
In the third place, suppose that ¥ (E'E\Jfl) ¢ Eﬁ\}rl, i.e. there is T €
St = BASN, such that U(T) ¢ S0Pt = S5 \SM, . All this means
that T € ¥4 and, since ¥ (3%) C ¥, also ¥(T) € ¥Y,. Thus, ¥(T) ¢
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S implies U(T) € M, C AL and hence e, (¥(T),7) is constant
on X}f}l. We already know that X]tVH = ?c;w + Rc;w(X]t\j'l). Therefore,
by (32), ew, (T, ) is constant on X5, where 2 = ?c;w + Re.w(T), which
implies T' € A’}\J{l, and hence we reach a contradiction with T' € E’}\J{l. As a
consequence, ¥ (23\4{1) - E’;}l.

Finally, from the fact that X} = 7C;w + Rew (X)), we know that X%
reduces to a single point if and only if also X%, reduces to a single point, and
thus we conclude that sy = sy = s and, from AR, = 7C;w + Reaw(Xjy), we
obtain W(WA(c;w)) = ?c;w + Rc;w(n (Ué‘,{y)) u

Counsider again the market in Table 1 and notice that to obtain the nucle-
olus of the three-sided Bohm-Bawerk assignment game (N, w 4) we essentially
have to compute the nucleolus n (Ué\;/[w) of the sectors game (M, v™), which
in this case is the three-person game given below:

o™ ({1}) = ase6 = 0 vM({1,2}) = ass6 = 1
vM({2}) = agss = 0.75 vM({1,3}) = ase5 = 0.75  vM({1,2,3}) = azz5 = 2.
UM({?’}) = ages = 0.5 UM({z, 3}) = agz5 = 1.75

It can be checked that n (v*) = (0.1250,1.0625,0.8125). This can be
done by means of the formulae provided in Moulin (1988) to calculate the
nucleolus of a three-person game. Then, from part (b) of Theorem 3 we
obtain n(wy4), as it is shown in the table below, where we write 7 (’UM) =
for short. All this means that we have closed formulae to compute the
nucleolus of a three-sided Bohm-Bawerk assignment game, no matter how
large the number of agents is.

Table 2
Ag. t R(n) | n(wa) || As. t R(m) | n(wa) || Ag. | t | R(n) | n(wa)
S1 | 5.75 | 0.125 | 5.875 || H1 | 4.25 | 1.0625 | 5.3125 || B1 | 8 | 0.8125 | 8.8125
Ss | 5.75 | 0.125 | 5.875 || H2 | 3.25 | 1.0625 | 4.3125 || B2 | 6 | 0.8125 | 6.8125
Ss | 3.75 | 0.125 | 3.875 || Hs | 1.25 | 1.0625 | 2.3125 || B3 | 4 | 0.8125 | 4.8125
Ss | 2.75 | 0.125 | 2.875 || Hs | 0.25 | 1.0625 | 1.3125 || Ba | 2 | 0.8125 | 2.8125
Ss 0 | 0.125 | 0.125 || Hs 0 | 1.0625 | 1.0625 || Bs | 0 | 0.8125 | 0.8125
Se 0 0 0 Hg 0 0 0 Bs | 0 0 0
Sr 0 0 0 Hy 0 0 0 Br | 0 0 0
Ss 0 0 0 Hs 0 0 0 Bs | 0 0 0
By | 0 0 0
Bio | 0 0 0

Let us finally point out that statement (a) in Theorem 3 provides an
even better simplification when the sectors game consists of more than three
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sectors, that is m > 3, since it guarantees that in the computation of the
nucleolus of the sectors game (M,v™) not all proper coalitions of M have
to be considered, but only those of size 1 and m — 1.

4 The core center

Gonzalez-Diaz and Sanchez-Rodriguez (2007) study the core-center (or mass
center of the core) of a coalitional balanced game defined as the the mathe-
matical expectation of the uniform probability distribution over the core. Let
U(A) denote the uniform distribution defined over the set A and E(P) the
expectation of the probability distribution P. Formally, given an arbitrary
balanced game (IV,v), the core-center is defined as ®(v) = E[U(C(v))].
The nucleolus of a coalitional game has a central position in the core but
does not necessarily coincide with its mass center. However, for two-sided
Bohm-Bawerk assignment markets the nucleolus coincides with the mass
center, since it is the midpoint of the core segment. Thus it is natural to
ask whether this property extends to multi-sided Béhm-Bawerk assignment
markets. To this end it is necessary to simplify the computation of the
core-center, since our markets typically have many agents and there are no
easy-to-compute formulae that provide the center of mass of a polytope.
With this aim, we prove that, like the nucleolus, the core-center ®(w A(C;w))
of a multi-sided Bohm-Bawerk assignment game (N, w A(c .w)) and the core-
center ®(v))) of the correspondlng sectors game (M, v} .w) are related by the

injective hnear mapping t c:w + Reaw(+). Our result is proved on the firm
basis provided by measure theory (see for instance, Federer, 1969).

Theorem 4 Let (N, W A(c;w)) be an m-sided Béhm-Bawerk assignment game
and let (M, v2l,) be the associated sectors game. Let ®(w a(cy)) and @ (v2L,)

be the corresponding core-centers. Then, ®(w 4(caw)) = 7C;W+Rc;w(<b (vé“’w))

Proof. Let us consider the two metric spaces (RY Do x RN N )
and (RM,dM), each of them endowed with the corresponding euclidean dis-
tance. The dimension dim(P) of a convex polytope P is the dimension of
the minimal affine variety in which P is contained. From (8) we know that
Clwa) CRN x--. x RN™ and C(vM) C RM are convex polytopes of the
same dimension k = dim(C(w,)) = dim(C(vM)) <m — 1.

Given an arbitrary metric space (€2, d), the diameter of B C € is defined
by 0(B) = sup{d(x,y) | z,y € B} Let 6V and 6" denote the diameters
defined on the metric spaces (}RN x RN™ dN) and (RM,dM). We first
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claim that, for all B C C(v™) C RM | we have
(37) VISM (B) = 8 (¥ e + Rew(B))

where 7 is defined in (6). Indeed, if 7,7 € C(v™) and z,y are the corre-
sponding elements of C'(w4) by (8), we have

1/2 1/2
Ny) = (DD w—wmd)? | =D D @+ th— T —tr)
keM ieNk keEM ie Nk i<r
1/2
- (Z " @ - mﬁ) = Vrd¥ (z.3).
keM

Let p : RN x . x RN™ — [0,+00) and p™ : RM — [0, +00) be
the Hausdorff outer measures of dimension k that correspond respectively to
(RN" % .. x RN™ dN) and (RM,d™), where recall that k is the dimension
of C(wa) and C(v™). By definition,

(38)
+oo 1 m
N . . N k| B, CRY x .- xRN" ACUlXB,
A)=1 f 6 (B, ) n=1
we(A) 520 (‘{Bﬁflf‘i {7; (07(Bn)) and 6"V(B,) < ¢ for all n > 1
for any A CRV x .. x RN™  and
(39)
oo M +00
M T . M k BngR ,Agunlen
wr(A) = (%1_1% ({ngﬁ {;_:1 (07(Bn)) and 6™ (B,,) < 6 for all n > 1

for any A C RM. By (8) and (37), and using (38) and (39), for all B C
C(vM) C RM | we have

(40) M (B) = N (F e + Req(B))-

With some abuse of notation let us also denote by Y and p the restrictions

of u and M to the borel sets of (RV' x -+« x RN™ gV and (RM, dM)

respectively, which are measures by the Carathéodory Extension Theorem.
For any H C R, let Iy : R — R be defined by Ig(z) = 1 if z € H

and Iy(x) = 0 if x ¢ H. By definition of the Lebesgue integral, for all

measurable set B C C(vM) C RM,

(41)

Tk/Z /IBdMM — Tk/QNM(B) — ,UN(?c;w"i_Rc;w(B)) — /I7C;w+'Rc;w(B)d,uN7
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where the second equality holds by (40). Moreover, for any simple function
5 =7 ,Mp : RM — R defined on the measurable sets By, ...,B, C
C(M) CRM,

rk/z/EduM — Tk/Q/Z)\lIBldMM :Z}\lTk/Q/IBldluM
=1 =1

- Z)\I/I?c;w'FRc;w(Bl)dlu - /VZ)\l]:7><:;w""RCﬂU(Bl)dlu
=1 =1
(42) = /Sd,llN,

where s : Y7 Mg Rew(B
simple function defined on the measurable sets ?c;w + Rew(Bi), - ?c;w +
Rew(B:) € C(wa) C RM by the constants Ap,...,\, respectively. For all
measurable nonnegative-valued function f : RM — R, by the construction
of the Lebesgue integral we obtain

rk/2 / fd,uM = sup {rk/2/IC(UM)§d,uM | 0 §§§7}

s:RM SR
C(vM) 5 simple

- o 13 sdpV |[0<5<T
s:RMER{/ T cput Reg (C (M) S | 0 <5 < f}
s simple

= sup {/IC(WA)sduN [0<s< f}

SRV X xRN™ SR
s simple

(43) = [ s,

C(wa)

) RM x...xRN™ = Ris the corresponding

where the second equality holds by (42), f : RY' x ... x RN™ — R denotes
the measurable function that is zero elsewhere except in C(wa), where it
ii defined as the composition of the inverse of the injective linear mapping
t c;w+Rew(-) with f, and the third equality is explained as follows. By (8),
for any simple function s : RN x ... x RN™ — R such that 0 < s < f there
is a simple function 3 : R — R such that 0 <3 < f and 3(Z) = s(x) for all
T € C(wM) and 2 = tey + Rew(T) € Clwa). Indeed, if s = 37, N1, for
some measurable sets By, ..., By C R™ we can take 5§ = lezl )‘lIE’ where for
all [ € {1,...,2} we define B) = (teaw + Rew) LB N C(wa)).
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It is known that the k-dimensional Hausdorff measure agrees with the
classical area of an embedded submanifold of R¥, k < m. Therefore, except
for a constant multiplicative factor that coincides with the area of C'(w4) and
C(vM), du™V and du™ are the probability density functions of the uniform
distributions over C(w4) € RV x -+« x RN™ and C(v™) C RM respectively.
Hence, by definition of the core-center, for all k € M and all i € N* such
that 1 <4 <,

[ Tpdp™ 2 [ (4 +T) dpM [ wgdp®™

MY C(vM) . C(vM) _ C(wa)
thi + Px (V) = i+ T i R =T 4N
C(vM) C(vM) C(wa)
= (I)ki(wA(c;w))7

where the second equality holds by linearity of the Lebesgue integral and the
third equality holds by (43), using f(T) = Ty + tx;. The case i > r is trivial
since inactive agents get a null payoff at any core allocation. W

The above result allows us to compute the core-center of the three-
sided Bohm-Bawerk assignment market (IV,w4,,,) of Table 1, since we only
need to compute the core-center of the three-player associated sectors game
(M, vé‘f’w). Figure 1 depicts the core of this latter game. Observe that in
order to obtain the core-center of C’(vé\f[w) we need to compute the area of
a bidimensional region embedded in R3. Nevertheless, a well-known result
in Measure Theory is that an invertible affine mapping f : R® — R" shifts
the Lebesgue measure p of R™ proportionally to the absolute value of the
determinant of f,i.e. u(f(A)) = |det(f)|u(A) for all measurable set A C R".
Hence, for our purpose of computing the center of mass of C (vé‘f’w) it suffices
to calculate the center of mass of the projection of C(v™) onto the (Zy,T)-
plane, since f(Z1,T2,T3) = (T1,T2,2 — T1 — T2 — T3) is an invertible affine
mapping from R? to R? with the image of C(v™) contained in the T3 = 0
plane of R3. Notice that this latter computation can be easily carried out
using the standard tools of integral calculus in R?, and we obtain

® (v™) = (0.1389, 1.0556, 0.8055).

Figure 2 below depicts the projection of C(v™) onto the (Z1,T2)-plane, to-
gether with the core-center ®(v™) and the nucleolus n(v™) that is obtained
at the end of Section 3.

Notice first from ®(vM) # n(vM) that in general the core-center of a
coalitional game differs from the nucleolus, even in the case of convex games.
Moreover, the Shapley value (Shapley, 1972) of the above sectors game is
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(0,0,2)

Figure 1: The core of the sectors game associated to the three-sided Bohm-
Bawerk assignment game of Table 1

(0.1667,1.0417,0.7917). Therefore, although the Shapley value occupies a
central position in the core, it is in general also different from the core-
center for convex games. Finally, as a consequence of Theorems 2 and 4, from
O (vM) £ n(vM) we deduce that ®(w4) # n(wa) and thus the nucleolus of
a multi-sided Bohm-Bawerk assignment market does not coincide in general
with the mass center of the core.
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1/4 71

Figure 2: The (Z1,T2) projection of the core of the sectors game associated
to the three-sided Bohm-Bawerk assignment game of Table 1
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