
DOCUMENTS DE TREBALL  

DE LA FACULTAT D’ECONOMIA I EMPRESA 

 

 

Col.lecció d’Economia 
E10/243 

 

 

 

 Multi-sided Böhm-Bawerk assignment markets: the nucleolus and the 
core-center 

 
 
 

Oriol Tejada and Marina Núñez 
 
 

 
 
 
 
 
 
 

Department of Actuarial, Financial and Economic Mathematics 
Universitat de Barcelona, Av.Diagonal, 690, E-08034 Barcelona, Spain 
e-mail: oriol.tejada@ub.edu, mnunez@ub.edu 
 
 
 
 
Agraïments: We would like to thank Carles Rafels for his very helpful comments. The authors 
acknowledge the support of the Barcelona GSE Research Network and of the Government of Catalonia, 
of Ministerio de Ciencia e Innovación and FEDER, under grant ECO2008-02344/ECON, and Generalitat 
de Catalunya, under grant 2009SGR0960. Support from grant Program FPU of Ministerio de 
Educaci\'{o}n of the Spanish Goverment is also acknowledged. 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de la Universitat de Barcelona

https://core.ac.uk/display/16204278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tots els treballs publicats en els “Documents de Treball de la Facultat d’Economia i 
Empresa” han passat i superat un procès d’avaluació anònima i externa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2010 by  Oriol Tejada and Marina Núñez 
ISSN: 1136-8365 
Dipòsit Legal: B-29452-2010 



Multi-sided Böhm-Bawerk assignment markets: the nu
leolus andthe 
ore-
enterAbstra
t: We show that, 
ontrary to the bilateral 
ase, for multi-sidedBöhm-Bawerk assignment markets the nu
leolus and the 
ore-
enter, i.e.the mass 
enter of the 
ore, do not 
oin
ide in general. To do so, we provethat both the nu
leolus and the 
ore-
enter of an m-sided Böhm-Bawerkassignment market 
an be respe
tively 
omputed from the nu
leolus and the
ore-
enter of a 
onvex game de�ned on the set of m se
tors. Even more, inthe 
al
ulus of the nu
leolus of this latter game only singletons and 
oalitions
ontaining all agents but one need to be taken into a

ount. These resultssimplify the 
omputation of the nu
leolus of a multi-sided Böhm-Bawerkassignment market with large number of agents.Keywords: multi-sided assignment games, 
ore, nu
leolus, 
ore-
enterJEL Classi�
ation: C71, C78Resum: En aquest treball mostrem que, a diferèn
ia del 
as bilateral, perals mer
ats multilaterals d'assigna
ió 
oneguts amb el nom de Böhm-Bawerkassignment games, el nu
leolus i el 
ore-
enter, i.e. el 
entre de masses del
ore, no 
oin
ideixen en general. Per a demostrar-ho provem que donat un
m-sided Böhm-Bawerk assignment game les dues solu
ions anteriors podemobtenir-se respe
tivament del nu
leolus i el 
ore-
enter d'un jo
 
onvex de�niten el 
onjunt format pels m se
tors. En
ara més, provem que per a 
al
ularel nu
leolus d'aquest últim jo
 només les 
oali
ions formades per un jugadoro m-1 jugadors són importants. Aquests resultats simpli�quen el 
àl
ul delnu
leolus d'un multi-sided Böhm-Bawerk assignment market amb un númeromolt elevat d'agents.



1 Introdu
tionThe bilateral Böhm-Bawerk horse market (Böhm-Bawerk, 1923) is a modelfor a two-sided market with no produ
t di�erentiation, and it is thus a par-ti
ular 
ase of a bilateral assignment game. The bilateral assignment gamewas introdu
ed by Shapley and Shubik (1972) as a 
ooperative game modelfor a two-sided market with transferable utility. In their paper, the 
ase ofthe bilateral Böhm-Bawerk horse market is also analyzed.In the present paper we 
onsider a market with an arbitrary �nite numberof se
tors. One se
tor 
onsists of a �nite number of buyers and ea
h one of theremaining se
tors 
onsists of a �nite number of sellers. Then ea
h seller o�ersone unit of a good and ea
h buyer demands one bundle formed by one goodof ea
h se
tor. This market 
an be studied within the framework of multi-sided assignment games, whi
h are introdu
ed by Quint (1991). Contraryto two-sided assignment games, multi-sided assignment games may have anempty 
ore (Kaneko and Wooders, 1982). Multi-sided assignment gameshave been studied, among others, by Quint (1991), Stuart (1997), Sherstyuk(1999) and Tejada and Rafels (2010).The parti
ular 
ase where ea
h buyer pla
es the same valuation on all thebundles is introdu
ed in Tejada (2010) with the name of multi-sided Böhm-Bawerk assignment market, extending the bilateral Böhm-Bawerk horse mar-ket to multilateral markets. There, an analysis of multi-sided Böhm-Bawerkassignment markets is done and it is shown that the 
ore is nonempty and itis 
ompletely determined by the 
ore of a 
onvex game played by the se
torsinstead of the agents.For the 
lassi
al two-sided Böhm-Bawerk game it is well-known that the
ore is nonempty and redu
es to a segment. A study of single-valued solu-tions for this game is done in Núñez and Rafels (2005), to 
on
lude that, with-out additional information about the bargaining 
apabilities of the agents,the 
lassi
al 
ooperative theory seems to re
ommend the midpoint of the
ore segment. This assertion is supported by the fa
t that, among othersingle-valued solutions, the nu
leolus (S
hmeidler, 1969) 
oin
ides with themidpoint of the 
ore segment, that is, with the mass-
enter of the 
ore.The mass-
enter of the 
ore was introdu
ed by Gonzalez-Díaz and Sán
hez-Rodríguez (2007), with the name of 
ore-
enter, as a single-valued solutionfor arbitrary 
oalitional games.The aim of the present paper is to analyze the nu
leolus and the 
ore-
enter of multi-sided Böhm-Bawerk assignment markets. We show that boththe nu
leolus and the 
ore-
enter of a multi-sided Böhm-Bawerk assignmentmarket 
an be respe
tively 
omputed from the nu
leolus and the 
ore-
enter2



of the asso
iated se
tors game, this being a game with many less players.Even more, only singletons and 
oalitions 
ontaining all agents but one needto be taken into a

ount in the 
al
ulation of the nu
leolus of this lattergame. These results simplify the 
omputation of the nu
leolus of a multi-sided Böhm-Bawerk assignment market with large number of agents. As a
onsequen
e we show that, 
ontrary to the 
ase of two-sided Böhm-Bawerkmarkets, the nu
leolus does not 
oin
ide in general with the 
ore-
enter inthe 
ase of multi-sided Böhm-Bawerk assignment markets.The stru
ture of the paper is as follows. The preliminaries on 
oalitionalgames and multi-sided Böhm-Bawerk assignment games are presented inSe
tion 2. In Se
tion 3 we determine whi
h 
oalitions are to be taken intoa

ount for the 
omputation of the nu
leolus of a multi-sided Böhm-Bawerkassignment game and we also show that its nu
leolus 
an be obtained fromthe nu
leolus of the related se
tors game. Se
tion 4 establishes a parallelresult for the 
ore-
enter. An example is used throughout the paper toillustrate both the model and our results.2 Preliminaries and notationA 
oalitional game (a game) is a pair (N, v), where N is the �nite set ofplayers and, for all S ⊆ N , v(S) ∈ R is the worth that 
oalition S 
anobtain without the 
ooperation of agents in N \ S, being v(∅) = 0. Let
|S| denote de 
ardinality of 
oalition S ⊆ N . An imputation is a payo�ve
tor x ∈ RN , where xi stands for the payo� to player i ∈ N , that ise�
ient, ∑i∈N xi = v(N), and individually rational, xi ≥ v({i}) for all
i ∈ N . The set of imputations is denoted by I(v). The 
ore of a gameis the set of imputations that satisfy 
oalitional rationality and thus arenot blo
ked by any 
oalition. Formally, given (N, v), the 
ore is the set
C(v) = {x ∈ RN | x(N) = v(N) and x(S) ≥ v(S) for all S ⊂ N}, whereas usual x(S) =

∑

i∈S xi and x(∅) = 0. A game is balan
ed if the 
ore isnonempty. A subgame of (N, v) is any game (N ′, v′) where N ′ ⊆ N and v′is the restri
tion of v to the subsets of N ′. A game is totally balan
ed if the
ore of any subgame is nonempty. A game (N, v) is 
onvex if for all i ∈ Nand for all S ⊆ T ⊆ N\{i} we have v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ).The 
ore is an example of set-solution 
on
ept. A single-valued solution (orpoint-solution) on a given set of games Γ is a rule α that assigns to ea
h game
(N, v) in this set Γ an e�
ient payo� ve
tor α(v) ∈ RN . Examples of single-valued solutions are the nu
leolus and the 
ore-
enter. Ea
h one of these twosolutions sele
ts a 
ore allo
ation that o

upies a somehow �
entral� position3



in the 
ore. Although for arbitrary 
oalitional games, these two solutionsdo not 
oin
ide, they do 
oin
ide for the parti
ular situation of two-sidedBöhm-Bawerk markets.2.1 Multi-sided assignment games and the Böhm-Bawerk
aseAn m-sided assignment problem (m-SAP) denoted by (N1, ..., Nm;A), isgiven by m ≥ 2 di�erent nonempty �nite sets (or types) of agents, N1, ..., Nm,and a nonnegative m-dimensional matrix A = (aE)E∈
∏m

k=1 Nk . With someabuse of notation, let it be Nk = {1, 2, ..., nk} for all k, 1 ≤ k ≤ m. We shallrefer to the ith agent of type k as i ∈ Nk. We name any m-tuple of agents
E ∈∏m

k=1 Nk an essential 
oalition. Ea
h entry aE ≥ 0 represents the pro�tasso
iated to the essential 
oalition E. Again with slight abuse of notation,we also use E to denote the set of agents that form the essential 
oalition.An m-SAP is square if n1 = .... = nm.Amat
hing among N1, ..., Nm is a set of essential 
oalitions, µ = {Er}t
r=1with t = min1≤k≤m |Nk|, su
h that any agent belongs at most to one 
oali-tion in µ. We denote by M(N1, ..., Nm) the set of all mat
hings among

N1, ..., Nm. An agent i ∈ Nk, for some k ∈ {1, ...,m}, is unmat
hed under µif it does not belong to any of its essential 
oalitions. A mat
hing is optimalif it maximizes∑E∈µ aE in M(N1, ..., Nm). We denote by M∗
A(N1, ..., Nm)the set of all optimal mat
hings of (N1, ..., Nm;A).For ea
h multi-sided assignment problem (N1, ..., Nm;A), the asso
iatedmulti-sided assignment game (m-SAG) is the 
ooperative game (N,ωA) withset of players 
omposed of all agents of all types, N = ∪m

k=1N
k, and 
hara
-teristi
 fun
tion(1) ωA(S) = max

µ∈M(N1∩S,...,Nm∩S)

{∑

E∈µ
aE

} , for any S ⊆ N ,where the summation over the empty set is zero.It is known that the 
ore of a multi-sided assignment game, C(ωA),
oin
ides with the set of e�
ient nonnegative ve
tors x = (x11, ..., x1n1
;

...;xm1, ..., xmnm), with xki standing for the payo� to agent i ∈ Nk, thatsatisfy x(E) ≥ aE for all E ∈ ∏m
k=1 Nk. As a 
onsequen
e, the above in-equality must be tight if E belongs to some optimal mat
hing, and xki = 0if agent i ∈ Nk is unmat
hed under some optimal mat
hing. Observe thatthese two latter 
onditions guarantee the e�
ien
y of the 
ore allo
ations.A parti
ular 
ase of multi-sided assignment games are multi-sided Böhm-Bawerk markets, introdu
ed in Tejada (2010). In these markets, ea
h se
tor4



k, for k ∈ {1, 2, . . . ,m − 1} is 
omposed of a �nite set Nk of sellers, andse
tor m is 
omposed of a �nite set Nm of buyers. Ea
h seller ik ∈ Nkhas one good of type k to sell, with a reservation pri
e ckik . Ea
h buyer
i ∈ Nm wants to buy a bundle formed by one good of ea
h type, withthe singularity that, from her point of view, goods of the same type arehomogeneous. We denote by wi the value that buyer i pla
es on an arbitrarybundle (i1, . . . , im−1) ∈

∏m−1
k=1 Nk.Thus, an m-sided Böhm-Bawerk market (or problem) 
an be summarizedby a pair (c;w) where c = (c1, . . . , cm−1) ∈ RN1 ×· · ·×RNm−1 are the sellers'valuations and w = (w1, ..., wnm) ∈ RNm are the buyers' valuations.From now on, in order to simplify the analysis of the model, we willassume that valuations of the sellers of ea
h se
tor are arranged in a nonde-
reasing way and valuations of the buyers are arranged in a nonin
reasingway, i.e.(2)

ck1 ≤ ck2 ≤ ... ≤ cknk
, for all k ∈ {1, 2, ...,m − 1} , and w1 ≥ w2 ≥ ... ≥ wnm .Given an m-sided Böhm-Bawerk problem (c;w), we denote by A(c;w) the

m-dimensional matrix de�ned by(3) aE = max

{

0, wim −
m−1∑

k=1

c
kik

}

, for all E = (i1, ..., im) ∈
m∏

k=1

Nk.Noti
e that, by (2), for all E,E′ ∈∏m
k=1 Nk,(4) E ≤ E′ =⇒ aE ≥ aE′ .When no 
onfusion may arise, we write simply A instead of A(c;w).Then, (N,ωA(c;w)), where N is 
omposed of all sellers and buyers, is themulti-sided assignment game -see (1)- asso
iated to the multi-sided Böhm-Bawerk market (c;w), whi
h we 
all the multi-sided Böhm-Bawerk assign-ment game asso
iated to (c;w). From Tejada (2010), (N,ωA(c;w)) is a totallybalan
ed game.For all i ∈ N, we introdu
e the notation Di = (i, ..., i) ∈ Rm. By (2),the diagonal mat
hing µ = {Di | 1 ≤ i ≤ n} is an optimal mat
hing, where

n = min1≤k≤m nk. Then, the 
ore C(ωA(c;w)) of (N,ωA(c;w)) 
oin
ides withthe following set:(5) 


x ∈ RN1

+ × · · · × RNm

+

∣
∣
∣
∣
∣
∣

x(Di) = aDi for all 1 ≤ i ≤ n,
x(E) ≥ aE for all E ∈∏m

k=1 Nk and
xki = 0 for all i ∈ Nk, k ∈ M and i > n.  .5



Let us de�ne r as the highest buyer's position that obtains a positivepro�t when mat
hed with all the sellers in the same position r:(6) r = max
1≤i≤n

{i | ai...i > 0} ,with the 
onvention that r = 0 if all entries of A(c;w) are zero. For ea
h
k ∈ {1, ..,m}, agents i ∈ Nk with 1 ≤ i ≤ r are said to be a
tive, whileagents i ∈ Nk with i > r are 
alled ina
tive. It is not di�
ult to 
he
k thatany mat
hing formed by essential 
oalitions with all agents a
tive is optimal.In Tejada (2010), a new game de�ned on the set of se
tors M = {1, ...,m}is asso
iated to ea
h multi-sided Böhm-Bawerk assignment game. The worthin this game of a 
oalition S of se
tors is the pro�t that in the related market
an be obtained by the rth agents of the se
tors in S together with the
r + 1th agents of the se
tors not in S. To this end, for any S ⊆ M let usde�ne ES = r1S + (r + 1)1M\S ∈ Rm, where, for ea
h T ⊆ M , 1T ∈ Rmis the ve
tor su
h that 1T (k) = 1 if k ∈ T and 1T (k) = 0 if k /∈ T . Itis important to point out that the 
ase where there is no r + 1th agent forsome of the se
tors in M\S must be treated apart. Observe that, in this
ase, ES ∈ Rm 
an still be de�ned but ES is not an essential 
oalition of N ,i.e. ES /∈∏m

k=1 Nk. The formal de�nition of the se
tors game is introdu
ednext.De�nition 1 Given an m-sided Böhm-Bawerk assignment game (N,ωA(c;w)),the asso
iated se
tors game (M,vM
c;w) is the 
oalitional game with set of play-ers M = {1, 2, ...,m} 
omposed of all se
tors and 
hara
teristi
 fun
tionde�ned, for ea
h S ⊆ M , by(7) vM

c;w(S) =

{
aES if ES ∈∏m

k=1 Nk

0 if ES /∈∏m
k=1 Nkif r > 0 and vM

c;w(S) = 0 if r = 0.By de�nition, whenever r > 0 we have vM
c;w(M) = aDr > 0 and vM

c;w(∅) =

0. When no 
onfusion may arise we write vM instead of vM
c;w.It is shown in Tejada (2010) that (M,vM

c;w) is a 
onvex game and it isstrongly related to (N,ωA(c;w)). To be more pre
ise, ea
h 
ore allo
ation ofthe multi-sided Böhm-Bawerk assignment game is uniquely determined by a
ore allo
ation of the se
tors game. Sin
e payo� ve
tors of both games 
orre-spond to di�erent spa
es (RN1×...×RNm versus RM ), we de�ne a fun
tion tomap payo�s of the se
tors game to payo�s of the multi-sided Böhm-Bawerk6



game. Given an m-sided Böhm-Bawerk assignment game (N,ωA(c;w)), weintrodu
e the repli
a operator Rc;w : RM −→ RN1 × ... × RNm de�ned by
R(x1, ..., xm) = (x1, ..., xm), where xk = (

r
︷ ︸︸ ︷

xk, ..., xk, 0, ..., 0) ∈ RNk for all
k ∈ {1, ...,m}. Noti
e that Rc;w is an inje
tive linear fun
tion.The main result in Tejada (2010) states that if (N,ωA(c;w)) is an m-sidedBöhm-Bawerk assignment game and (M,vM

A(c;w)) is the asso
iated se
torsgame, then1(8) C(ωA(c;w)) =
−→
t c;w + Rc;w(C

(
vM
c;w

)
),where the translation ve
tor −→

t c;w = (t11, ..., t1n1
; ...; tm1, ..., tmnm) ∈ RN1 ×

... × RNm is de�ned by
tki = max{0, ckr − cki} for all 1 ≤ k ≤ m − 1 and 1 ≤ i ≤ nk,
tmi = max{0, wi − wr} for all 1 ≤ i ≤ nm.(9) In parti
ular, noti
e that (8) and (9) imply that, for all x ∈ C(ωA(c;w)),

k ∈ M and 1 ≤ i ≤ r, we have xki = xkr + tki. Later on in the paper anexample is introdu
ed to illustrate the above de�nitions and results.In the next two se
tions we show that an statement analogous to (8)holds for two singled-valued solutions that are tightly linked to the 
ore: thenu
leolus and the 
ore-
enter.3 The nu
leolusThe nu
leolus is a single-valued solution for 
oalitional games that was in-trodu
ed by S
hmeidler (1969). For any imputation x of (N, v) and any
oalition S ⊆ N the ex
ess of 
oalition S with respe
t to x is de�ned by
ev(S, x) = v(S) − x(S), and it is a measure of the satisfa
tion of 
oalition
S with respe
t to the allo
ation x. Given an imputation x, we de�ne theve
tor λ(x) ∈ R2n−2 of ex
esses of all nonempty 
oalitions di�erent from Narranged in a non-in
reasing order, so that those 
oalitions with a greater
omplaint o

upy the �rst positions in λ(x). That is, λk(x) = ev(Sk, x)for all k ∈ {1, ..., 2n − 2} and λk(x) ≥ λj(x) if 1 ≤ k < j ≤ 2n − 2, where
{S1, ..., Sk, ..., S2n−2} is the set of all nonempty 
oalitions of N di�erent from
N . The nu
leolus of the game (N, v) is the imputation η(N, v) (we write
η(v) for short when no 
onfusion regarding the player set 
an arise) that1Given A ⊆ Rk and t ∈ Rk, t + A = {y ∈ Rk | y = t + x, for some x ∈ A}.7



minimizes λ(x) with respe
t to the lexi
ographi
 order2 over the set of im-putations. That is, λ(η(v)) ≤Lex λ(x) for all x ∈ I(v). It is known thatthe nu
leolus is always a single point and, whenever the 
ore of the game isnonempty, it belongs to the 
ore.Mas
hler et al. (1979) give an alternative de�nition of the nu
leolusby means of a �nite pro
ess that iteratively redu
es the set of payo�s toa singleton, 
alled the lexi
ographi
 
enter of the game, that is proved to
oin
ide with the nu
leolus.Let us denote by C an arbitrary nonempty subset of 
oalitions of a bal-an
ed game (N, v), and 
onsider the algorithm in Mas
hler et al. (1979)restri
ted to 
oalitions in C. This restri
ted pro
edure 
onstru
ts a sequen
eof 
oalitions Σ0
C ⊇ Σ1

C ⊇ · · · ⊇ Σs+1
C and a sequen
e of subsets of payo�s

X 0
C ⊇ X 1

C ⊇ · · · ⊇ X s+1
C su
h that initially α0

C = 0, X 0
C = C(v), Σ0

C = C and
∆0

C = ∅ and, for t ∈ {0, ..., sC}, we de�ne re
ursively(10) (a) αt+1
C = minx∈X t

C
maxS∈Σt

C
ev(S, x),

(b) X t+1
C =

{

x ∈ X t
C | maxS∈Σt

C
ev(S, x) = αt+1

C

}

,

(c) ΣC
t+1 = {S ∈ Σt

C | ev(S, x) is 
onstant on x ∈ X t+1
C },

(d) Σt+1
C = Σt

C\ΣC
t+1and ∆t+1

C = ∆t
C ∪ ΣC

t+1,where sC is the last index for whi
h ΣsC 6= ∅. The set X sC+1 is 
alled the
C-lexi
ographi
 
enter of (N, v). When no 
onfusion is possible we omit thesupers
ript or subs
ript C. By Mas
hler et al. (1979), if we take C to bethe set 2N of all 
oalitions, the 2N -lexi
ographi
 
enter redu
es to only onepoint and it is the nu
leolus. For an arbitrary 
olle
tion C, the pro
edure iswell de�ned but X s+1 is not ne
essarily a single point, and even in that 
aseit might not 
oin
ide with the nu
leolus.Like in the bilateral 
ase, it is easy to 
he
k that in the 
ase of multi-sidedassignment games only essential 
oalitions, E = (i1, i2, . . . , im) ∈ ∏m

k=1 Nk,and singletons need to be 
onsidered in the 
omputation of the nu
leolus(Huberman, 1980). We denote the set of essential 
oalitions and singletonsby E .As it is done in Solymosi and Raghavan (1994) for bilateral assignmentgames, it 
an be proved3 that, for balan
ed multi-sided assignment games,the E-lexi
ographi
 
enter also redu
es to only one point and 
oin
ides withthe nu
leolus. Noti
e that |E| = n1 · · ·nm + n whi
h is mu
h lower than
|2N | = 2n.2Given x, y ∈ Rn, we say x <Lex y if there is some 1 ≤ i ≤ n su
h that xi < yi and
xj = yj for 1 ≤ j < i. Also, we say x ≤Lex y if x <Lex y or x = y.3This proof 
an be provided by the authors under request.8



In this se
tion we show that, in the 
ase of m-sided Böhm-Bawerk as-signment games, the set of 
oalitions to be 
onsidered in the 
omputation ofthe nu
leolus 
an be further restri
ted. To this end the following lemma isneeded.Lemma 1 Let (N, v) be a balan
ed game and C a subset of 
oalitions of Nsu
h that the C-lexi
ographi
 
enter 
oin
ides with the nu
leolus. Let F ⊆ Cbe a subset of C su
h that, for all S ∈ C\F , there is TS = {F1, ..., Fp} ⊆ Fand λS
1 , ..., λS

p , cS ∈ R satisfying that, for all x ∈ C(v),(i) ev(S, x) ≤ ev(Fl, x), for all l ∈ {1, ..., p},(ii) ev(S, x) = λS
1 ev(F1, x) + ... + λS

p ev(Fp, x) + cS.Then, the nu
leolus η(v) 
oin
ides with the F-lexi
ographi
 
enter.Proof. To simplify the notation, let it be X t, Σt, Σt and αt for t ∈
{0, 1, . . . , s}, the elements of the C-lexi
ographi
 
enter of (N, v), where sis the last index for whi
h Σs 6= ∅, and X t

F , Σt,F , Σt
F and αt

F for t ∈
{0, 1, ..., sF }, the 
orresponding elements of the F-lexi
ographi
 
enter of
(N, v), where sF is the last index for whi
h ΣsF

F 6= ∅. We 
laim that, underthe 
onditions of the lemma, we have s = sF and, for all t ∈ {0, 1, ..., s},
αt = αt

F , X t = X t
F and Σt ∩ F = Σt

F .We prove it by indu
tion on t. The 
ase t = 0 is trivial by the de�nitionof step t = 0 in (10) together with the fa
t that F ⊆ C and thus F ∩C = F .Hen
e, assume that αt = αt
F , X t = X t

F and Σt ∩ F = Σt
F , for some t < s.We shall prove that αt+1 = αt+1

F , X t+1 = X t+1
F and Σt+1 ∩ F = Σt+1

F .First we 
laim that for all S ∈ Σt there exists T ∈ Σt ∩ F su
h that, forall x ∈ X t, ev(S, x) ≤ ev(T, x). Observe that the inequality holds triviallyas an equality if S ∈ F . Hen
e, assume that S ∈ C\F . By hypothesis (i)and (ii), there are TS = {F1, ..., Fp} ⊆ F and λS
1 , ..., λS

p , cS ∈ R su
h that
ev(S, x) ≤ ev(Fl, x), for all l ∈ {1, ..., p}, and(11) ev(S, x) = λS

1 ev(F1, x) + · · · + λS
p ev(Fp, x) + cS ,for all x ∈ X t ⊆ C(v). If it is the 
ase that Fl /∈ Σt for all l ∈ {1, 2, . . . , p},then from Σt ∩ F = Σt

F we ne
essarily have F1, ..., Fp ∈ ∆t
F , whi
h by
onstru
tion of (10) implies that ev(F1, x), ..., ev(Fp, x) are 
onstant on X t

F =
X t. Hen
e, by (11), ev(S, x) is also 
onstant on X t, whi
h 
ontradi
ts S ∈
Σt. On
e the 
laim is proved, for all x ∈ X t it holds maxS∈Σt e(S, x) ≤
maxS∈Σt∩F e(S, x) and(12) Σt 6= ∅⇔ Σt ∩ F 6= ∅.9



Se
ondly, for all x ∈ X t,
max
S∈Σt

ev(S, x) ≤ max
S∈Σt∩F

ev(S, x) = max
S∈Σt

F

ev(S, x) ≤ max
S∈Σt

ev(S, x),where the equality follows from the indu
tion hypothesis and the last in-equality from Σt
F = Σt ∩ F ⊆ Σt. Hen
e,(13) max

S∈Σt
ev(S, x) = max

S∈Σt
F

ev(S, x).Thus αt+1 = minx∈X t maxS∈Σt ev(S, x) = minx∈X t
F

maxS∈Σt
F

ev(S, x) = αt+1
F ,sin
e X t = X t

F also by indu
tion hypothesis.Now, by (13) and X t = X t
F we obtain X t+1 = X t+1

F . Therefore Σt+1 ∩
F = Σt+1,F and hen
e Σt+1 ∩ F = Σt+1

F .Finally, by (12) we have s = sF . Thus, sin
e the C-lexi
ographi
 
enterof (N, v) 
oin
ides with the nu
leolus and X s+1 = X sF+1
F , we have that alsothe F-lexi
ographi
 
enter of (N, v) 
oin
ides with the nu
leolus.The above lemma is now applied to the m-sided Böhm-Bawerk assign-ment game to see that, besides some singletons formed by last a
tive agentsof some se
tors, only essential 
oalitions formed by either one (or m−1) lasta
tive agents of some se
tors and m−1 (or one) �rst non-a
tive agents of theremaining se
tors need to be taken into a

ount to 
ompute the nu
leolus.Formally, given (N,ωA(c;w)) an m-sided Böhm-Bawerk assignment game, let

FN = FN
m−1 ∪ FN

1 be the subset of 
oalitions of N de�ned by(14) FN
m−1 =

{

ES

∣
∣
∣
∣
∣
S ⊆ M, |S| = m − 1 and ES ∈

m∏

k=1

Nk

}and
FN

1 =

{

ES

∣
∣
∣
∣
∣
S ⊆ M, |S| = 1, ES ∈

m∏

k=1

Nk

}

∪
{

{r ∈ N l}
∣
∣
∣
∣
∣
E{l} /∈

m∏

k=1

Nk

} ,(15)where re
all that ES = r1S +(r + 1)1M\S . Observe that FN
m−1 is 
omposedof all essential 
oalitions (only if exist) formed by the r + 1th agent of onese
tor and the rth agent of the remaining m−1 se
tors, whereas FN

1 is formedby all essential 
oalitions 
omposed by the rth agent of one se
tor, let us say
l ∈ M , and the r+1th agents of the remaining m−1 se
tors, whenever theseessentials 
oalitions exist, i.e. E{l} ∈ ∏m

k=1 Nk, or the singleton formed by10



the rth agent of se
tor l otherwise, i.e. when E{l} /∈∏m
k=1 Nk.4 In parti
ularobserve that |FN

m−1| ≤ m and |FN
1 | = m, and hen
e this time |FN | ≤ 2mwhi
h is mu
h lower than |E| = n1...nm + n.Theorem 2 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment game.Then the nu
leolus η

(
ωA(c;w)

) 
oin
ides with the FN -lexi
ographi
 
enter of
(N,ωA(c;w)).Proof. Consider the E-lexi
ographi
 
enter of (N,ωA), whi
h is known to
oin
ide with the nu
leolus η (ωA). It 
an be easily 
he
ked that at step t = 1in (10) we obtain α1 = 0, X 1 = C(ωA), Σ1 = ∆1 = {S ∈ E | e(S, x) is 
onstant in C(ωA)}and Σ1 = E\Σ1. Hen
e, we 
an start the algorithm of the E-lexi
ographi

enter with α0 = 0, X 0 = C(ωA) and(16) Σ0 = ∆0 = {S ∈ E | e(S, x) is 
onstant in C(ωA)} and Σ0 = E\Σ0.Sin
e any essential 
oalition formed by either only a
tive agents or onlyina
tive agents belongs to some optimal mat
hing, by (5) ea
h su
h 
oalitionre
eives a 
onstant payo� in C(ωA), and hen
e, in the above algorithm,
Σ0 is 
omposed of all essential 
oalitions 
ontaining both a
tive agents andina
tive agents, and all singletons formed by one a
tive agent (if there exist).Let x ∈ C(ωA) be an arbitrary 
ore allo
ation. To prove the theorem wewill show that FN satis�es the assumptions of Lemma 1, i.e. for ea
h S ∈
Σ0\FN there is TS = {F1, ..., Fp} ⊆ FN su
h that eωA

(S, x) ≤ eωA
(Ft, x)for all t ∈ {1, ..., p} and eωA

(S, x) = λS
1 eωA

(F1, x) + ... + λS
p eωA

(Fp, x) + cSfor some λS
1 , ..., λS

p , cS ∈ R whi
h do not depend on x. Thus, let it be S ∈
Σ0\FN . We distinguish two 
ases, depending on whether S is an essential
oalition or a singleton.Case 1: S = E = (i1, ..., im) ∈

∏m
k=1 Nk.Consider a set of se
tors asso
iated to E de�ned by SE = {k ∈ M |

1 ≤ ik ≤ r}. By (16), we have ∅  SE  M . Due to the non-symmetri
alnotation of buyers' and sellers' valuations, we must write separately the 
ase
m ∈ SE and m /∈ SE. Nevertheless, the proof of the latter 
ase is analogousto the proof of the former and hen
e we assume m ∈ SE, whereas the 
ase
m /∈ SE is left to the reader. Let us also denote by E′ =

∑

k∈SE
ik1{k} +

(r + 1)1M\SE
the essential 
oalition obtained from E by repla
ing agents of4We 
ould add a null agent with an arbitrarily high 
ost if it is a seller, or a nullagent with an arbitrary low valuation if it is a buyer, to those se
tors k ∈ M with

nk = r, hen
e ensuring the existen
e of the r + 1
th agent for ea
h se
tor. In that 
ase,

FN
m−1 =

{
ES | S ⊆ M, |S| = m − 1

} and FN
1 =

{
ES | S ⊆ M, |S| = 1

}.11



ea
h se
tor k ∈ M\SE by the r+1th agent of the same se
tor. Sin
e E′ ≤ E,by (2) we have aE ≤ aE′ . We start proving that(17) eωA
(E, x) ≤ eωA

(ESE , x).Indeed,
eωA

(E, x)

= aE −
m∑

k=1

xkik ≤ aE′ −
∑

k∈SE

xkik −
∑

k∈M\SE

xkik = aE′ −
∑

k∈SE

xkik

= aE′ − (xmr + (wim − wr)) −
∑

k∈SE\{m}

(xkr + (ckr − ckik))

= max






0, wim −

∑

k∈SE\{m}

ckik −
∑

k∈M\SE

ck(r+1)







− (xmr + (wim − wr)) −
∑

k∈SE\{m}

(xkr + (ckr − ckik))

= max






0, wr −

∑

k∈SE\{m}

ckr −
∑

k∈M\SE

ck(r+1) + (wim − wr) +
∑

k∈SE\{m}

(ckr − ckik)







−



(wim − wr) +
∑

k∈SE\{m}

(ckr − ckik)



−
∑

k∈SE

xkr

= max






−



(wim − wr) +
∑

k∈SE\{m}

(ckr − ckik)



 , wr −
∑

k∈SE\{m}

ckr −
∑

k∈M\SE

ck(r+1)







−
∑

k∈SE

xkr

≤ max






0, wr −

∑

k∈SE\{m}

ckr −
∑

k∈M\SE

ck(r+1)






−
∑

k∈SE

xkr

= aESE −
∑

k∈SE

xkr = eωA
(ESE , x),where the se
ond and the third equalities hold by (5) and (8), the �fthequality holds adding and subtra
ting wr −

∑

k∈SE\{m} ckr to the se
ondterm in the maximum operator, and the last inequality holds by (2). We
ontinue by distinguishing two sub
ases.12



Case 1.1: aESE > 0.Sin
e E ∈ ∏m
k=1 Nk, it trivially follows ESE ∈ ∏m

k=1 Nk. Re
all that by(16), SE  M . We now prove that, for ea
h k′ /∈ SE,(18) eωA
(ESE , x) ≤ eωA

(EM\{k′}, x).Before proving (18) observe that, sin
e x ∈ C(ωA), by (5) we have
x(EM ) =

∑

l∈M
xlr = aEM = wr −

∑

l∈{1,...,m−1}
clrand, for ea
h k ∈ M \ {m},

x(EM\{k}) =
∑

l∈M\{k}
xlr ≥ aEM\{k} ≥ wr − ck(r+1) −

∑

l∈M\{k,m}
clr.Combining the two above expressions we obtain(19) xkr −

(
ck(r+1) − ckr

)
≤ 0, for all k ∈ M \ {m}.Then, for ea
h k′ /∈ SE,

eωA
(ESE , x) = aESE −

∑

k∈SE

xkr = wr −
∑

k∈SE\{m}

ckr −
∑

k∈M\SE

ck(r+1) −
∑

k∈SE

xkr

= wr − ck′(r+1) −
∑

k∈M\{k′,m}

ckr −
∑

k∈M\{k′}

xkr +
∑

k∈(M\{k′})\SE

(
xkr −

(
ck(r+1) − ckr

))

≤ wr − ck′(r+1) −
∑

k∈M\{k′,m}

ckr −
∑

k∈M\{k′}

xkr

≤ max






0, wr − ck′(r+1) −

∑

k∈M\{k′,m}

ckr






−

∑

k∈M\{k′}

xkr

= aEM\{k′} −
∑

k∈M\{k′}

xkr = eωA
(EM\{k′}, x),where the se
ond equality follows from the assumption aESE > 0, the thirdequality is obtained by adding and subtra
ting ∑k∈(M\{k′})\SE

(xkr + ckr)and the �rst inequality holds by (19). Therefore (18) indeed holds.Next, sin
e E = (i1, ..., im) ∈ ∏m
k=1 Nk, for any k′ ∈ M\SE we have

ik′ ≥ r + 1 and thus agent ik′ ∈ Nk′ exists, whi
h implies EM\{k′} is also anessential 
oalition, i.e. EM\{k′} ∈ ∏m
k=1 Nk. Therefore, we 
an 
onsider thefollowing nonempty subset of FN

m−1 ⊆ FN ,(20) TS =
{

EM\{k} | k ∈ M\SE

}

.13



Noti
e that the 
ardinality of TS is the same as that of M\SE . For ea
h
k ∈ M\SE let Fk ∈ TS denote the asso
iated 
oalition M\{k} of TS . From(17) and (18), we obtain that eωA

(E, x) ≤ eωA
(Fk, x) for all Fk ∈ TS , whi
himplies that property (i) of Lemma 1 is satis�ed for S = E, taking F = FN .Further, we prove that also property (ii) of Lemma 1 is satis�ed. Firstof all observe that

x(ESE ) =
1

|M\SE |
∑

k∈M\SE

x(ESE )

=
1

|M\SE |
∑

k∈M\SE

(

x(EM\{k}) − x(E(M\{k})\SE )
)

=
1

|M\SE |




∑

k∈M\SE

x(EM\{k}) −
∑

k∈M\SE

x(E(M\{k})\SE )





=
1

|M\SE |
∑

k∈M\SE

x(EM\{k}) −
( |M\SE | − 1

|M\SE|

)

x(EM\SE )

=
1

|M\SE |
∑

k∈M\SE

x(EM\{k}) −
( |M\SE | − 1

|M\SE|

)

(aEM − x(ESE )),where the last equality holds sin
e, by (5), x(ESE ) + x(EM\SE ) = x(EM ) =
aEM . Therefore,(21) x(ESE ) =

∑

k′∈M\SE

x(EM\{k′}) − (|M\SE| − 1) aEM .and
x(E) =

∑

k∈SE

xkik +
∑

k∈M\SE

xkik =
∑

k∈SE

xkik = x(ESE ) +
∑

k∈SE

tkik

=
∑

k′∈M\SE

x(EM\{k′}) − (|M\SE | − 1) aEM +
∑

k∈SE

tkik ,(22)where the se
ond and third equalities hold by (8) and the last equality holdsby (21). To 
on
lude, by (22), the ex
ess eωA
(E, x) is an a�ne 
ombination

14



of the ex
esses asso
iated to 
oalitions of TS:
eωA

(E, x) = aE − x(E)

= aE −
∑

k∈M\SE

x(EM\{k}) + (|M\SE | − 1) aEM −
∑

k∈SE

tkik

=
∑

k∈M\SE

(

aEM\{k} − x(EM\{k})
)

+

cS

︷ ︸︸ ︷

aE −
∑

k∈SE

tkik −
∑

k∈M\SE

aEM\{k} + (|M\SE | − 1) aEM

=
∑

k∈M\SE

eωA
(Fk, x) + cS ,(23)where the third equality is obtained by adding and subtra
ting∑k∈M\SE

aEM\{k} .Therefore, as we 
laimed, the two requirements of Lemma 1 applied to S = E(under the assumptions of Case 1.1) are satis�ed for all x ∈ C(ωA), taking
F = FN and TS as in (20).Case 1.2: aESE = 0.In this 
ase, 
onsider the following nonempty subset of FN

1 ⊆ FN ,
TS =

{

{r ∈ N l}
∣
∣
∣
∣
∣
l ∈ SE and E{l} /∈

m∏

k=1

Nk

}

∪
{

E{l}

∣
∣
∣
∣
∣
l ∈ SE and E{l} ∈

m∏

k=1

Nk

}

.(24)For ea
h l ∈ SE let Fl ∈ TS denote the asso
iated 
oalition of TS . Noti
ethat the 
ardinality of TS is the same as the one of SE sin
e, for ea
h l ∈ SE,either E{l} /∈
∏m

k=1 Nk and we 
onsider the singleton formed by r ∈ N l or
E{l} ∈

∏m
k=1 Nk and we 
onsider the essential 
oalition E{l}. Noti
e alsothat in this se
ond 
ase 0 ≤ aE{l} ≤ aESE = 0. In any 
ase wA(Fl) = 0 forall Fl ∈ TS . For ea
h l ∈ SE ,(25) eωA

(ESE , x) = −
∑

k∈SE

xkr ≤ −xlr = ωA(Fl) − xlr = eωA
(Fl, x),and hen
e

eωA
(E, x) ≤ eωA

(ESE , x) ≤ eωA
(Fl, x),15



where the third inequality holds by (17). Hen
e property (i) of Lemma 1 issatis�ed for S = E, on the assumptions of Case 1.2, taking F = FN and TSas in (24). Further, property (ii) of Lemma 1 is also satis�ed. Indeed,
eωA

(E, x) = aE − x(E) = aE −
∑

l∈SE

xlil −
∑

l∈M\SE

xlil

= aE − x(ESE ) −
∑

l∈SE

tlil

=
∑

l∈SE

eωA
(Fl, x) +

cS

︷ ︸︸ ︷

aE −
∑

l∈SE

tlil ,(26)where the �rst equality holds by (8) and (5), and the last equality holds from
wA(Fl) = 0 for all Fl ∈ TS . Therefore, the two requirements of Lemma 1applied to S = E (under the assumptions of Case 1.2) are again satis�ed,taking F = FN and TS as in (24).Case 2: S = {i}.By (16), we 
an assume i ∈ N l, for some l ∈ M and i ≤ r. Let TS be thefollowing singleton of FN

1 ⊆ FN ,(27) TS = {F} =

{ {
E{l}

} if E{l} ∈∏m
k=1 Nk,

{r ∈ N l} if E{l} /∈∏m
k=1 Nk.By (8), we obtain

eωA
({i}, x) = −xli = −tli − xlr = eωA

(F, x) −
cS

︷ ︸︸ ︷

ωA(F ) − tli,where the last equality holds by adding and subtra
ting ωA(F ). Thereforeproperties (i) and (ii) of Lemma 1 are satis�ed for S = {i}, taking F = FNand TS as in (27).To sum up, the assumptions of Lemma 1 are satis�ed for all S ∈ E\FN ,to guarantee that the FN -lexi
ographi
 
enter 
oin
ides with the nu
leolus.The result in Theorem 2 simpli�es the 
omputation of the nu
leolus of amulti-sided Böhm-Bawerk assignment game. Indeed, 
onsider for instan
e amarket situation with eight sellers S1, ..., S8 ea
h of them owning one unit ofa homogenous software good, eight di�erent sellers H1, ...,H8 ea
h of themowning one unit of a homogenous hardware good and B1, ..., B10 ten po-tential buyers interested on a
quiring a bundle formed exa
tly by one unit16



of software and one unit of hardware. Table 1 below shows the valuationsof ea
h agent in this three-sided Böhm-Bawerk assignment market, whi
htranslates into a 26-person 
ooperative game. It is straightforward to 
he
kthat there are �ve a
tive agents on ea
h side of the market, that is r = 5,whi
h is marked in bold. Table 1Software (s) sellers Hardware (h) sellers Buyers
S1 values her good at 5 H1 values her good at 5 B1 values a s/h pair at 30

S2 values her good at 5 H2 values her good at 6 B2 values a s/h pair at 28

S3 values her good at 7 H3 values her good at 8 B3 values a s/h pair at 26

S4 values her good at 8 H4 values her good at 9 B4 values a s/h pair at 24

S5 values her good at 10.75 H5 values her good at 9.25 B5 values a s/h pair at 22

S6 values her good at 11 H6 values her good at 10.5 B6 values a s/h pair at 21

S7 values her good at 12 H7 values her good at 13 B7 values a s/h pair at 20

S8 values her good at 13 H8 values her good at 13 B8 values a s/h pair at 18

B9 values a s/h pair at 17

B10 values a s/h pair at 15As a result of Theorem 2, in order to 
al
ulate the nu
leolus of the 
or-responding 
oalitional game (N,ωA(c;w)) with 226 
oalitions we only have to
onsider 
oalitions in FN = FN
1 ∪FN

2 , where FN
1 = {(5, 6, 6), (6, 5, 6), (6, 6, 5)}and FN

2 = {(6, 5, 5), (5, 6, 5), (5, 5, 6)}. However, the number of agents is stillhigh, 26, whi
h means that we have to solve several linear programs with 26variables. The pro
edure 
an be simpli�ed further by exploiting the 
onne
-tion between the 
ores of the multi-sided assignment game and its relatedse
tors game (M,vM
c;w). To this end Lemma 1 is applied to the se
tors gameto show that only singletons and 
oalitions of size m− 1 are needed to 
om-pute its nu
leolus η
(
vM
c;w

). This fa
t reinfor
es the idea that the se
torsgame is a quite spe
ial 
onvex game. As a 
onsequen
e, the relationshipbetween the nu
leolus of the m-sided Böhm-Bawerk game (N,ωA(c;w)) andthat of its se
tors game is established.Given the 
orresponding se
tors game (M,vM
c;w), let us 
onsider the sub-set of 
oalitions of M de�ned by FM = FM

1 ∪ FM
m−1, where(28) FM

m−1 = {S ∈ M, |S| = m − 1} ,and(29) FM
1 = {S ∈ M, |S| = 1} .17



Theorem 3 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment gameand let (M,vM
c;w) be its asso
iated se
tors game. Let also η(ωA(c;w)) and

η
(
vM
c;w

) be the 
orresponding nu
leolus. Then,(a) η
(
vM
c;w

) 
oin
ides with the FM -lexi
ographi
 
enter of (M,vM
c;w).(b) η(ωA(c;w)) =

−→
t c;w + Rc;w

(
η
(
vM
c;w

)).Proof. To start proving statement (a) of the theorem, re
all the notation
ES = r1S +(r + 1)1M\S for all S ⊆ M and let us see that (M,vM ), C = 2Nand FM are on the assumptions of Lemma 1. Let it be ∅  S  M and x ∈
C
(
vM
) an arbitrary 
ore allo
ation of the se
tors game. If ES ∈ ∏m

k=1 Nk,by De�nition 1 and (8), it is straightforward to 
he
k that(30) evM (S, x) = eωA
(ES , x),where x =

−→
t c;w+Rc;w(x). As before, let us de�ne for ea
h essential 
oalition

E the set SE = {k ∈ M | 1 ≤ ik ≤ r}. The reader 
an 
he
k that SES = S.We distinguish two 
ases.Case a.1: vM (S) > 0.By De�nition 1, vM (S) > 0 implies ES ∈ ∏m
k=1 Nk. Let us 
onsider thenonempty set of 
oalitions TS = {M\{k} | k ∈ M\S}, whi
h is a subset of

FM
m−1. Observe that TS is in one-to-one 
orresponden
e with the set de�nedin (20). Now, for all k ∈ M\S,

evM (S, x) = eωA
(ES , x) ≤ eωA

(EM\{k}, x) = evM (M\{k}, x),where the inequality holds by (18) and both equalities hold by (30). Fur-thermore, from (23) and making use of (30), we dedu
e that evM (S, x) =
∑

F∈TS
evM (F, x) + cS , where cS is de�ned in (23) . Therefore the two re-quirements of Lemma 1 applied to S are satis�ed, taking F = FM and the
olle
tion TS above de�ned.Case a.2: vM (S) = 0.Noti
e that, by De�nition 1, either ES ∈∏m

k=1 Nk and vM (S) = aES = 0or ES /∈∏m
k=1 Nk. In either 
ase, let us 
onsider the nonempty set of 
oali-tions TS = {{l} | l ∈ S}, whi
h is a subset of FM

1 . Observe that TS is in one-to-one 
orresponden
e with the set de�ned in (24). On the one hand, if ES ∈
∏m

k=1 Nk , by (25) and (30) we easily dedu
e that evM (S, x) ≤ evM (F, x) forall F ∈ TS. Furthermore, making use of (30), we dedu
e that evM (S, x) =
∑

F∈TS
evM (F, x) + cS , where cS is de�ned in (26). On the other hand, if18



ES /∈∏m
k=1 Nk we have evM (S, x) = −∑k∈S xk =

∑

F∈TS
evM (F, x). There-fore the two requirements of Lemma 1 applied to S are satis�ed, taking

F = FM and the 
olle
tion TS above de�ned.Thus, Lemma 1 guarantees that η
(
vM
c;w

) 
oin
ides with the FM -lexi
ographi

enter of (M,vM
c;w) and hen
e we �nish the proof of statement (a).Next we prove statement (b) of the theorem. Let X t

N , ΣN
t , Σt

N and αt
N for

t ∈ {0, 1, . . . , sN}, be the elements in the algorithm of the FN -lexi
ographi

enter of (N,ωA(c;w)), where sN is the last index for whi
h ΣsN

N 6= ∅. Letalso X t
M , ΣM

t , Σt
M and αt

M for t ∈ {0, 1, . . . , sM}, be the elements in thealgorithm of the FM -lexi
ographi
 
enter of (M,vM
c;w), where sM is the lastindex for whi
h ΣsM

M 6= ∅.Re
all the de�nitions of FN and FM at (14), (15), (29) and (28), and letus 
onsider the mapping Ψ : FN→ FM that assigns ea
h 
oalition of FN
m−1to a 
oalition of FM

m−1 and ea
h 
oalition of FN
1 to a 
oalition of FM

1 in thefollowing way:(31) Ψ(T ) =

{
S if T = ES ∈ FN , for some S ⊆ M ,
{l} if T = {r} ∈ FN and r ∈ N l.Observe that, by 
onstru
tion of Ψ and the de�nitions of FN and FM , Ψ isinje
tive. Moreover, the restri
tion of Ψ to FN

1 is bije
tive, sin
e all S ⊆ Mwith |S| = 1 belong to Ψ(FN ). When there exists the r + 1th agent of ea
hof the m se
tors, Ψ is a bije
tion.By (30) and De�nition 1, for all T ∈ FN and all x ∈ C(ωA),(32) evM (Ψ(T ), x) = eωA
(T, x),where x ∈ C(vM ) satis�es x =

−→
t c;w + Rc;w(x).We 
laim that αt

N = αt
M , X t

N =
−→
t c;w + Rc;w(X t

M ) and Ψ
(
Σt

N

)
⊆ Σt

M ,for all t ∈ {0, ..., s}, and as a 
onsequen
e sM = sN = s. We prove it byindu
tion on t. For t = 0 we only have to prove that X 0
N =

−→
t c;w+Rc;w(X 0

M ),whi
h holds by (8).Now assume that αt
N = αt

M , X t
N =

−→
t c;w +Rc;w(X t

M ) and Ψ(Σt
N ) ⊆ Σt

M ,for some t < sN . We prove that αt+1
N = αt+1

M , X t+1
N =

−→
t c;w + Rc;w(X t+1

M ),and Ψ
(
Σt+1

N

)
⊆ Σt+1

M .In the �rst pla
e, we 
laim that, for ea
h x ∈ X t
M ,(33) max

T∈Σt
N

evM (Ψ(T ), x) = max
S∈Σt

M

evM (S, x).Indeed, by indu
tion hypothesis Ψ(Σt
N ) ⊆ Σt

M , and hen
e maxT∈Σt
N

evM (Ψ(T ), x) ≤
maxS∈Σt

M
evM (S, x). If this latter inequality were stri
t, there would exist19



S ∈ Σt
M\Ψ(Σt

N ) su
h that(34) evM (S, x) > max
T∈Σt

N

evM (Ψ(T ), x) = max
T∈Σt

N

eωA
(T, x),where x =

−→
t c;w + Rc;w(x) and the equality holds by (32).Let us �rst prove that ne
essarily S ∈ FM\Ψ(FN ). Otherwise, supposethat S ∈ Ψ(FN ) and let T ∈ FN be su
h that S = Ψ(T ). Sin
e S /∈ Ψ(Σt

N ),by 
onstru
tion of (10), T ∈ ∆t
N . Thus, eωA

(T, x) is 
onstant on X t
N . Butthen, sin
e X t

N =
−→
t c;w+Rc;w(X t

M ) by the indu
tion hypothesis and by (32),
evM (S, x) is also 
onstant on X t

M . Therefore S ∈ ∆t
M , whi
h 
ontradi
ts

S ∈ Σt
M .On
e established that S ∈ FM\Ψ(FN ), we ne
essarily have |S| = m− 1and ES /∈∏m

k=1 Nk, whi
h implies vM (S) = 0 by De�nition 1. Then, for all
k ∈ S,(35) evM (S, x) = 0 − x(S) ≤ −xk ≤ vM ({k}) − xk = evM ({k}, x).Suppose that {k} /∈ Σt

M for all k ∈ S. Then, {k} ∈ ∆t
M for all k ∈ S, i.e.

evM ({k}, x) is 
onstant on X t
M , whi
h implies that xk is also 
onstant on X t

M .Sin
e |S| = m − 1 and x(M) = vM (M), we ne
essarily have that X t
M and

X t
N =

−→
t c;w + Rc;w(X t

M ) are 
omposed of a single point, i.e. t = sN = sM ,whi
h 
ontradi
ts t < sN . Thus it 
annot be the 
ase that {k} /∈ Σt
Mfor all k ∈ S. Hen
e let {k} ∈ Σt

M for some k ∈ S. By 
onstru
tion of
Ψ, there exists T ′ = Ψ−1 ({k}) ∈ FN . If T ′ /∈ Σt

N , i.e. T ′ ∈ ∆t
N , then

eωA
(T ′, x) is 
onstant on X t

N and, as above, by the indu
tion hypothesis andby (32) also evM ({k}, x) is 
onstant on X t
M , whi
h 
ontradi
ts {k} ∈ Σt

M .Therefore, T ′ ∈ Σt
N , whi
h together with (32) and (35) implies evM (S, x) ≤

evM ({k}, x) = eωA
(T ′, x), in 
ontradi
tion with (34). Hen
e (33) holds, aswe 
laimed.On
e the 
laim is proved, we show that αt+1

N = αt+1
M . Indeed,(36)

αt+1
N = min

x∈X t
N

max
T∈Σt

N

eωA
(T, x) = min

x∈X t
M

max
T∈Σt

N

evM (Ψ(T ), x) = min
x∈X t

M

max
S∈Σt

M

evM (S, x) = αt+1
M ,where the se
ond equality holds by (32) and the third equality holds by (33).Se
ondly, X t+1

N =
−→
t c;w +Rc;w(X t+1

M ) holds by (33) and (36) sin
e X t
N =

−→
t c;w + Rc;w(X t

M ) by the indu
tion hypothesis.In the third pla
e, suppose that Ψ
(
Σt+1

N

)
* Σt+1

M , i.e. there is T ∈
Σt+1

N = Σt
N\ΣN

t+1 su
h that Ψ(T ) /∈ Σt+1
M = Σt

M\ΣM
t+1. All this meansthat T ∈ Σt

N and, sin
e Ψ
(
Σt

N

)
⊆ Σt

M , also Ψ(T ) ∈ Σt
M . Thus, Ψ(T ) /∈20



Σt+1
M implies Ψ(T ) ∈ ΣM

t+1 ⊆ ∆t+1
M , and hen
e evM (Ψ(T ), x) is 
onstanton X t+1

M . We already know that X t+1
N =

−→
t c;w + Rc;w(X t+1

M ). Therefore,by (32), eωA
(T, x) is 
onstant on X t+1

N , where x =
−→
t c;w + Rc;w(x), whi
himplies T ∈ ∆t+1

N , and hen
e we rea
h a 
ontradi
tion with T ∈ Σt+1
N . As a
onsequen
e, Ψ

(
Σt+1

N

)
⊆ Σt+1

M .Finally, from the fa
t that X t
N =

−→
t c;w + Rc;w(X t

M ), we know that X t
Nredu
es to a single point if and only if also X t

M redu
es to a single point, andthus we 
on
lude that sN = sM = s and, from X s
N =

−→
t c;w + Rc;w(X s

M ), weobtain η(ωA(c;w)) =
−→
t c;w + Rc;w(η

(
vM
c;w

)
).Consider again the market in Table 1 and noti
e that to obtain the nu
le-olus of the three-sided Böhm-Bawerk assignment game (N,ωA) we essentiallyhave to 
ompute the nu
leolus η

(
vM
c;w

) of the se
tors game (M,vM ), whi
hin this 
ase is the three-person game given below:
vM ({1}) = a566 = 0 vM ({1, 2}) = a556 = 1
vM ({2}) = a656 = 0.75 vM ({1, 3}) = a565 = 0.75 vM ({1, 2, 3}) = a555 = 2.
vM ({3}) = a665 = 0.5 vM ({2, 3}) = a655 = 1.75It 
an be 
he
ked that η

(
vM
)

= (0.1250, 1.0625, 0.8125). This 
an bedone by means of the formulae provided in Moulin (1988) to 
al
ulate thenu
leolus of a three-person game. Then, from part (b) of Theorem 3 weobtain η(wA), as it is shown in the table below, where we write η
(
vM
)

= ηfor short. All this means that we have 
losed formulae to 
ompute thenu
leolus of a three-sided Böhm-Bawerk assignment game, no matter howlarge the number of agents is. Table 2Ag. t R(η) η(wA) Ag. t R(η) η(wA) Ag. t R(η) η(wA)

S1 5.75 0.125 5.875 H1 4.25 1.0625 5.3125 B1 8 0.8125 8.8125
S2 5.75 0.125 5.875 H2 3.25 1.0625 4.3125 B2 6 0.8125 6.8125
S3 3.75 0.125 3.875 H3 1.25 1.0625 2.3125 B3 4 0.8125 4.8125
S4 2.75 0.125 2.875 H4 0.25 1.0625 1.3125 B4 2 0.8125 2.8125
S5 0 0.125 0.125 H5 0 1.0625 1.0625 B5 0 0.8125 0.8125
S6 0 0 0 H6 0 0 0 B6 0 0 0
S7 0 0 0 H7 0 0 0 B7 0 0 0
S8 0 0 0 H8 0 0 0 B8 0 0 0

B9 0 0 0
B10 0 0 0Let us �nally point out that statement (a) in Theorem 3 provides aneven better simpli�
ation when the se
tors game 
onsists of more than three21



se
tors, that is m > 3, sin
e it guarantees that in the 
omputation of thenu
leolus of the se
tors game (M,vM ) not all proper 
oalitions of M haveto be 
onsidered, but only those of size 1 and m − 1.4 The 
ore 
enterGonzalez-Díaz and Sán
hez-Rodríguez (2007) study the 
ore-
enter (or mass
enter of the 
ore) of a 
oalitional balan
ed game de�ned as the the mathe-mati
al expe
tation of the uniform probability distribution over the 
ore. Let
U(A) denote the uniform distribution de�ned over the set A and E(P) theexpe
tation of the probability distribution P. Formally, given an arbitrarybalan
ed game (N, v), the 
ore-
enter is de�ned as Φ(v) = E[U(C(v))].The nu
leolus of a 
oalitional game has a 
entral position in the 
ore butdoes not ne
essarily 
oin
ide with its mass 
enter. However, for two-sidedBöhm-Bawerk assignment markets the nu
leolus 
oin
ides with the mass
enter, sin
e it is the midpoint of the 
ore segment. Thus it is natural toask whether this property extends to multi-sided Böhm-Bawerk assignmentmarkets. To this end it is ne
essary to simplify the 
omputation of the
ore-
enter, sin
e our markets typi
ally have many agents and there are noeasy-to-
ompute formulae that provide the 
enter of mass of a polytope.With this aim, we prove that, like the nu
leolus, the 
ore-
enter Φ(ωA(c;w))of a multi-sided Böhm-Bawerk assignment game (N,ωA(c;w)) and the 
ore-
enter Φ(vM

c;w) of the 
orresponding se
tors game (M,vM
c;w) are related by theinje
tive linear mapping −→

t c;w + Rc;w(·). Our result is proved on the �rmbasis provided by measure theory (see for instan
e, Federer, 1969).Theorem 4 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment gameand let (M,vM
c;w) be the asso
iated se
tors game. Let Φ(ωA(c;w)) and Φ

(
vM
c;w

)be the 
orresponding 
ore-
enters. Then, Φ(ωA(c;w)) =
−→
t c;w+Rc;w(Φ

(
vM
c;w

)
).Proof. Let us 
onsider the two metri
 spa
es (RN1 × · · · × RNm

, dN )and (RM , dM ), ea
h of them endowed with the 
orresponding eu
lidean dis-tan
e. The dimension dim(P ) of a 
onvex polytope P is the dimension ofthe minimal a�ne variety in whi
h P is 
ontained. From (8) we know that
C(ωA) ⊆ RN1 × · · · × RNm and C(vM ) ⊆ RM are 
onvex polytopes of thesame dimension k = dim(C(ωA)) = dim(C(vM )) ≤ m − 1.Given an arbitrary metri
 spa
e (Ω, d), the diameter of B ⊆ Ω is de�nedby δ(B) = sup{d(x, y) | x, y ∈ B}. Let δN and δM denote the diametersde�ned on the metri
 spa
es (RN1 × · · · ×RNm

, dN ) and (RM , dM ). We �rst22




laim that, for all B ⊆ C(vM ) ⊆ RM , we have(37) √
rδM (B) = δN

(−→
t c;w + Rc;w(B)

)

,where r is de�ned in (6). Indeed, if x, y ∈ C(vM ) and x, y are the 
orre-sponding elements of C(ωA) by (8), we have
dN (x, y) =




∑

k∈M

∑

i∈Nk

(xki − yki)
2





1/2

=




∑

k∈M

∑

i∈Nk,i≤r

(xk + tki − yk − tki)
2





1/2

=

(
∑

k∈M

r (xk − yk)
2

)1/2

=
√

rdM (x, y).Let µN : RN1 × ... × RNm −→ [0,+∞) and µM : RM −→ [0,+∞) bethe Hausdor� outer measures of dimension k that 
orrespond respe
tively to
(RN1 × ... × RNm

, dN ) and (RM , dM ), where re
all that k is the dimensionof C(ωA) and C(vM ). By de�nition,(38)
µN (A) = lim

δ→0

(

inf
{Bn}

+∞
n=1

{
+∞∑

n=1

(
δN (Bn)

)k
∣
∣
∣
∣

Bn ⊆ RN1 × · · · × RNm
, A ⊆ ∪+∞

n=1Bnand δN (Bn) < δ for all n ≥ 1

})for any A ⊆ RN1 × · · · × RNm , and(39)
µM (A) = lim

δ→0

(

inf
{Bn}

+∞
n=1

{
+∞∑

n=1

(
δM (Bn)

)k
∣
∣
∣
∣

Bn ⊆ RM , A ⊆ ∪+∞
n=1Bnand δM (Bn) < δ for all n ≥ 1

})for any A ⊆ RM . By (8) and (37), and using (38) and (39), for all B ⊆
C(vM ) ⊆ RM , we have(40) rk/2µM (B) = µN (

−→
t c;w + Rc;w(B)).With some abuse of notation let us also denote by µN and µM the restri
tionsof µN and µM to the borel sets of (RN1 × · · · × RNm

, dN ) and (RM , dM )respe
tively, whi
h are measures by the Carathéodory Extension Theorem.For any H ⊆ Rl, let IH : Rl −→ R be de�ned by IH(x) = 1 if x ∈ Hand IH(x) = 0 if x /∈ H. By de�nition of the Lebesgue integral, for allmeasurable set B ⊆ C(vM ) ⊆ RM ,(41)
rk/2

∫

IBdµM = rk/2µM (B) = µN (
−→
t c;w+Rc;w(B)) =

∫

I−→
t c;w+Rc;w(B)

dµN ,23



where the se
ond equality holds by (40). Moreover, for any simple fun
tion
s =

∑z
l=1 λlIBl

: RM → R de�ned on the measurable sets B1, ..., Bz ⊆
C(vM ) ⊆ RM ,
rk/2

∫

sdµM = rk/2

∫ z∑

l=1

λlIBl
dµM =

z∑

l=1

λlr
k/2

∫

IBl
dµM

=
z∑

l=1

λl

∫

I−→
t c;w+Rc;w(Bl)

dµN =

∫ z∑

l=1

λlI−→t c;w+Rc;w(Bl)
dµN

=

∫

sdµN ,(42)where s :
∑z

l=1 λlI−→t c;w+Rc;w(Bl)
: RN1 ×· · ·×RNm → R is the 
orrespondingsimple fun
tion de�ned on the measurable sets −→t c;w +Rc;w(B1), ...,

−→
t c;w +

Rc;w(Bz) ⊆ C(ωA) ⊆ RM by the 
onstants λ1,...,λz respe
tively. For allmeasurable nonnegative-valued fun
tion f : RM → R, by the 
onstru
tionof the Lebesgue integral we obtain
rk/2

∫

C(vM )

fdµM = sup
s:RM→R

s simple {rk/2

∫

IC(vM )sdµM | 0 ≤ s ≤ f

}

= sup
s:RM→R

s simple {∫ I−→
t c;w+Rc;w(C(vM ))

sdµN | 0 ≤ s ≤ f

}

= sup
s:RN1

×...×R
Nm

→R

s simple {∫

IC(ωA)sdµN | 0 ≤ s ≤ f

}

=

∫

C(ωA)

fdµN ,(43)where the se
ond equality holds by (42), f : RN1 × ... × RNm → R denotesthe measurable fun
tion that is zero elsewhere ex
ept in C(ωA), where itis de�ned as the 
omposition of the inverse of the inje
tive linear mapping−→
t c;w +Rc;w(·) with f , and the third equality is explained as follows. By (8),for any simple fun
tion s : RN1 × ... × RNm → R su
h that 0 ≤ s ≤ f thereis a simple fun
tion s : RM → R su
h that 0 ≤ s ≤ f and s(x) = s(x) for all
x ∈ C(vM ) and x = tc;w + Rc;w(x) ∈ C(ωA). Indeed, if s =

∑z
l=1 λlIBl

forsome measurable sets B1, ..., Bl ⊆ Rn we 
an take s =
∑z

l=1 λlIBl
, where forall l ∈ {1, ..., z} we de�ne Bl = (tc;w + Rc;w)−1(Bl ∩ C(ωA)).24



It is known that the k-dimensional Hausdor� measure agrees with the
lassi
al area of an embedded submanifold of Rk, k ≤ m. Therefore, ex
eptfor a 
onstant multipli
ative fa
tor that 
oin
ides with the area of C(ωA) and
C(vM ), dµN and dµM are the probability density fun
tions of the uniformdistributions over C(ωA) ⊆ RN1 ×· · ·×RNm and C(vM ) ⊆ RM respe
tively.Hen
e, by de�nition of the 
ore-
enter, for all k ∈ M and all i ∈ Nk su
hthat 1 ≤ i ≤ r,
tki + Φk

(
vM
)

= tki +

∫

C(vM )

xkdµM

∫

C(vM )

dµM
=

rk/2
∫

C(vM )

(tki + xk) dµM

rk/2
∫

C(vM )

dµM
=

∫

C(ωA)

xkidµN

∫

C(ωA)

dµN

= Φki(ωA(c;w)),where the se
ond equality holds by linearity of the Lebesgue integral and thethird equality holds by (43), using f(x) = xk + tki. The 
ase i > r is trivialsin
e ina
tive agents get a null payo� at any 
ore allo
ation.The above result allows us to 
ompute the 
ore-
enter of the three-sided Böhm-Bawerk assignment market (N,ωAc;w) of Table 1, sin
e we onlyneed to 
ompute the 
ore-
enter of the three-player asso
iated se
tors game
(M,vM

c;w). Figure 1 depi
ts the 
ore of this latter game. Observe that inorder to obtain the 
ore-
enter of C(vM
c;w) we need to 
ompute the area ofa bidimensional region embedded in R3. Nevertheless, a well-known resultin Measure Theory is that an invertible a�ne mapping f : Rn −→ Rn shiftsthe Lebesgue measure µ of Rn proportionally to the absolute value of thedeterminant of f , i.e. µ(f(A)) = |det(f)|µ(A) for all measurable set A ⊆ Rn.Hen
e, for our purpose of 
omputing the 
enter of mass of C(vM

c;w) it su�
esto 
al
ulate the 
enter of mass of the proje
tion of C(vM ) onto the (x1, x2)-plane, sin
e f(x1, x2, x3) = (x1, x2, 2 − x1 − x2 − x3) is an invertible a�nemapping from R3 to R3 with the image of C(vM ) 
ontained in the x3 = 0plane of R3. Noti
e that this latter 
omputation 
an be easily 
arried outusing the standard tools of integral 
al
ulus in R2, and we obtain
Φ
(
vM
)

= (0.1389, 1.0556, 0.8055).Figure 2 below depi
ts the proje
tion of C(vM ) onto the (x1, x2)-plane, to-gether with the 
ore-
enter Φ(vM ) and the nu
leolus η(vM ) that is obtainedat the end of Se
tion 3.Noti
e �rst from Φ(vM ) 6= η(vM ) that in general the 
ore-
enter of a
oalitional game di�ers from the nu
leolus, even in the 
ase of 
onvex games.Moreover, the Shapley value (Shapley, 1972) of the above se
tors game is25
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Figure 1: The 
ore of the se
tors game asso
iated to the three-sided Böhm-Bawerk assignment game of Table 1
(0.1667, 1.0417, 0.7917). Therefore, although the Shapley value o

upies a
entral position in the 
ore, it is in general also di�erent from the 
ore-
enter for 
onvex games. Finally, as a 
onsequen
e of Theorems 2 and 4, from
Φ(vM ) 6= η(vM ) we dedu
e that Φ(ωA) 6= η(ωA) and thus the nu
leolus ofa multi-sided Böhm-Bawerk assignment market does not 
oin
ide in generalwith the mass 
enter of the 
ore.

26
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