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Multi-sided Böhm-Bawerk assignment markets: the nuleolus andthe ore-enterAbstrat: We show that, ontrary to the bilateral ase, for multi-sidedBöhm-Bawerk assignment markets the nuleolus and the ore-enter, i.e.the mass enter of the ore, do not oinide in general. To do so, we provethat both the nuleolus and the ore-enter of an m-sided Böhm-Bawerkassignment market an be respetively omputed from the nuleolus and theore-enter of a onvex game de�ned on the set of m setors. Even more, inthe alulus of the nuleolus of this latter game only singletons and oalitionsontaining all agents but one need to be taken into aount. These resultssimplify the omputation of the nuleolus of a multi-sided Böhm-Bawerkassignment market with large number of agents.Keywords: multi-sided assignment games, ore, nuleolus, ore-enterJEL Classi�ation: C71, C78Resum: En aquest treball mostrem que, a diferènia del as bilateral, perals merats multilaterals d'assignaió oneguts amb el nom de Böhm-Bawerkassignment games, el nuleolus i el ore-enter, i.e. el entre de masses delore, no oinideixen en general. Per a demostrar-ho provem que donat un
m-sided Böhm-Bawerk assignment game les dues soluions anteriors podemobtenir-se respetivament del nuleolus i el ore-enter d'un jo onvex de�niten el onjunt format pels m setors. Enara més, provem que per a alularel nuleolus d'aquest últim jo només les oaliions formades per un jugadoro m-1 jugadors són importants. Aquests resultats simpli�quen el àlul delnuleolus d'un multi-sided Böhm-Bawerk assignment market amb un númeromolt elevat d'agents.



1 IntrodutionThe bilateral Böhm-Bawerk horse market (Böhm-Bawerk, 1923) is a modelfor a two-sided market with no produt di�erentiation, and it is thus a par-tiular ase of a bilateral assignment game. The bilateral assignment gamewas introdued by Shapley and Shubik (1972) as a ooperative game modelfor a two-sided market with transferable utility. In their paper, the ase ofthe bilateral Böhm-Bawerk horse market is also analyzed.In the present paper we onsider a market with an arbitrary �nite numberof setors. One setor onsists of a �nite number of buyers and eah one of theremaining setors onsists of a �nite number of sellers. Then eah seller o�ersone unit of a good and eah buyer demands one bundle formed by one goodof eah setor. This market an be studied within the framework of multi-sided assignment games, whih are introdued by Quint (1991). Contraryto two-sided assignment games, multi-sided assignment games may have anempty ore (Kaneko and Wooders, 1982). Multi-sided assignment gameshave been studied, among others, by Quint (1991), Stuart (1997), Sherstyuk(1999) and Tejada and Rafels (2010).The partiular ase where eah buyer plaes the same valuation on all thebundles is introdued in Tejada (2010) with the name of multi-sided Böhm-Bawerk assignment market, extending the bilateral Böhm-Bawerk horse mar-ket to multilateral markets. There, an analysis of multi-sided Böhm-Bawerkassignment markets is done and it is shown that the ore is nonempty and itis ompletely determined by the ore of a onvex game played by the setorsinstead of the agents.For the lassial two-sided Böhm-Bawerk game it is well-known that theore is nonempty and redues to a segment. A study of single-valued solu-tions for this game is done in Núñez and Rafels (2005), to onlude that, with-out additional information about the bargaining apabilities of the agents,the lassial ooperative theory seems to reommend the midpoint of theore segment. This assertion is supported by the fat that, among othersingle-valued solutions, the nuleolus (Shmeidler, 1969) oinides with themidpoint of the ore segment, that is, with the mass-enter of the ore.The mass-enter of the ore was introdued by Gonzalez-Díaz and Sánhez-Rodríguez (2007), with the name of ore-enter, as a single-valued solutionfor arbitrary oalitional games.The aim of the present paper is to analyze the nuleolus and the ore-enter of multi-sided Böhm-Bawerk assignment markets. We show that boththe nuleolus and the ore-enter of a multi-sided Böhm-Bawerk assignmentmarket an be respetively omputed from the nuleolus and the ore-enter2



of the assoiated setors game, this being a game with many less players.Even more, only singletons and oalitions ontaining all agents but one needto be taken into aount in the alulation of the nuleolus of this lattergame. These results simplify the omputation of the nuleolus of a multi-sided Böhm-Bawerk assignment market with large number of agents. As aonsequene we show that, ontrary to the ase of two-sided Böhm-Bawerkmarkets, the nuleolus does not oinide in general with the ore-enter inthe ase of multi-sided Böhm-Bawerk assignment markets.The struture of the paper is as follows. The preliminaries on oalitionalgames and multi-sided Böhm-Bawerk assignment games are presented inSetion 2. In Setion 3 we determine whih oalitions are to be taken intoaount for the omputation of the nuleolus of a multi-sided Böhm-Bawerkassignment game and we also show that its nuleolus an be obtained fromthe nuleolus of the related setors game. Setion 4 establishes a parallelresult for the ore-enter. An example is used throughout the paper toillustrate both the model and our results.2 Preliminaries and notationA oalitional game (a game) is a pair (N, v), where N is the �nite set ofplayers and, for all S ⊆ N , v(S) ∈ R is the worth that oalition S anobtain without the ooperation of agents in N \ S, being v(∅) = 0. Let
|S| denote de ardinality of oalition S ⊆ N . An imputation is a payo�vetor x ∈ RN , where xi stands for the payo� to player i ∈ N , that ise�ient, ∑i∈N xi = v(N), and individually rational, xi ≥ v({i}) for all
i ∈ N . The set of imputations is denoted by I(v). The ore of a gameis the set of imputations that satisfy oalitional rationality and thus arenot bloked by any oalition. Formally, given (N, v), the ore is the set
C(v) = {x ∈ RN | x(N) = v(N) and x(S) ≥ v(S) for all S ⊂ N}, whereas usual x(S) =

∑

i∈S xi and x(∅) = 0. A game is balaned if the ore isnonempty. A subgame of (N, v) is any game (N ′, v′) where N ′ ⊆ N and v′is the restrition of v to the subsets of N ′. A game is totally balaned if theore of any subgame is nonempty. A game (N, v) is onvex if for all i ∈ Nand for all S ⊆ T ⊆ N\{i} we have v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ).The ore is an example of set-solution onept. A single-valued solution (orpoint-solution) on a given set of games Γ is a rule α that assigns to eah game
(N, v) in this set Γ an e�ient payo� vetor α(v) ∈ RN . Examples of single-valued solutions are the nuleolus and the ore-enter. Eah one of these twosolutions selets a ore alloation that oupies a somehow �entral� position3



in the ore. Although for arbitrary oalitional games, these two solutionsdo not oinide, they do oinide for the partiular situation of two-sidedBöhm-Bawerk markets.2.1 Multi-sided assignment games and the Böhm-BawerkaseAn m-sided assignment problem (m-SAP) denoted by (N1, ..., Nm;A), isgiven by m ≥ 2 di�erent nonempty �nite sets (or types) of agents, N1, ..., Nm,and a nonnegative m-dimensional matrix A = (aE)E∈
∏m

k=1 Nk . With someabuse of notation, let it be Nk = {1, 2, ..., nk} for all k, 1 ≤ k ≤ m. We shallrefer to the ith agent of type k as i ∈ Nk. We name any m-tuple of agents
E ∈∏m

k=1 Nk an essential oalition. Eah entry aE ≥ 0 represents the pro�tassoiated to the essential oalition E. Again with slight abuse of notation,we also use E to denote the set of agents that form the essential oalition.An m-SAP is square if n1 = .... = nm.Amathing among N1, ..., Nm is a set of essential oalitions, µ = {Er}t
r=1with t = min1≤k≤m |Nk|, suh that any agent belongs at most to one oali-tion in µ. We denote by M(N1, ..., Nm) the set of all mathings among

N1, ..., Nm. An agent i ∈ Nk, for some k ∈ {1, ...,m}, is unmathed under µif it does not belong to any of its essential oalitions. A mathing is optimalif it maximizes∑E∈µ aE in M(N1, ..., Nm). We denote by M∗
A(N1, ..., Nm)the set of all optimal mathings of (N1, ..., Nm;A).For eah multi-sided assignment problem (N1, ..., Nm;A), the assoiatedmulti-sided assignment game (m-SAG) is the ooperative game (N,ωA) withset of players omposed of all agents of all types, N = ∪m

k=1N
k, and hara-teristi funtion(1) ωA(S) = max

µ∈M(N1∩S,...,Nm∩S)

{∑

E∈µ
aE

} , for any S ⊆ N ,where the summation over the empty set is zero.It is known that the ore of a multi-sided assignment game, C(ωA),oinides with the set of e�ient nonnegative vetors x = (x11, ..., x1n1
;

...;xm1, ..., xmnm), with xki standing for the payo� to agent i ∈ Nk, thatsatisfy x(E) ≥ aE for all E ∈ ∏m
k=1 Nk. As a onsequene, the above in-equality must be tight if E belongs to some optimal mathing, and xki = 0if agent i ∈ Nk is unmathed under some optimal mathing. Observe thatthese two latter onditions guarantee the e�ieny of the ore alloations.A partiular ase of multi-sided assignment games are multi-sided Böhm-Bawerk markets, introdued in Tejada (2010). In these markets, eah setor4



k, for k ∈ {1, 2, . . . ,m − 1} is omposed of a �nite set Nk of sellers, andsetor m is omposed of a �nite set Nm of buyers. Eah seller ik ∈ Nkhas one good of type k to sell, with a reservation prie ckik . Eah buyer
i ∈ Nm wants to buy a bundle formed by one good of eah type, withthe singularity that, from her point of view, goods of the same type arehomogeneous. We denote by wi the value that buyer i plaes on an arbitrarybundle (i1, . . . , im−1) ∈

∏m−1
k=1 Nk.Thus, an m-sided Böhm-Bawerk market (or problem) an be summarizedby a pair (c;w) where c = (c1, . . . , cm−1) ∈ RN1 ×· · ·×RNm−1 are the sellers'valuations and w = (w1, ..., wnm) ∈ RNm are the buyers' valuations.From now on, in order to simplify the analysis of the model, we willassume that valuations of the sellers of eah setor are arranged in a nonde-reasing way and valuations of the buyers are arranged in a noninreasingway, i.e.(2)

ck1 ≤ ck2 ≤ ... ≤ cknk
, for all k ∈ {1, 2, ...,m − 1} , and w1 ≥ w2 ≥ ... ≥ wnm .Given an m-sided Böhm-Bawerk problem (c;w), we denote by A(c;w) the

m-dimensional matrix de�ned by(3) aE = max

{

0, wim −
m−1∑

k=1

c
kik

}

, for all E = (i1, ..., im) ∈
m∏

k=1

Nk.Notie that, by (2), for all E,E′ ∈∏m
k=1 Nk,(4) E ≤ E′ =⇒ aE ≥ aE′ .When no onfusion may arise, we write simply A instead of A(c;w).Then, (N,ωA(c;w)), where N is omposed of all sellers and buyers, is themulti-sided assignment game -see (1)- assoiated to the multi-sided Böhm-Bawerk market (c;w), whih we all the multi-sided Böhm-Bawerk assign-ment game assoiated to (c;w). From Tejada (2010), (N,ωA(c;w)) is a totallybalaned game.For all i ∈ N, we introdue the notation Di = (i, ..., i) ∈ Rm. By (2),the diagonal mathing µ = {Di | 1 ≤ i ≤ n} is an optimal mathing, where

n = min1≤k≤m nk. Then, the ore C(ωA(c;w)) of (N,ωA(c;w)) oinides withthe following set:(5) 


x ∈ RN1

+ × · · · × RNm

+

∣
∣
∣
∣
∣
∣

x(Di) = aDi for all 1 ≤ i ≤ n,
x(E) ≥ aE for all E ∈∏m

k=1 Nk and
xki = 0 for all i ∈ Nk, k ∈ M and i > n.  .5



Let us de�ne r as the highest buyer's position that obtains a positivepro�t when mathed with all the sellers in the same position r:(6) r = max
1≤i≤n

{i | ai...i > 0} ,with the onvention that r = 0 if all entries of A(c;w) are zero. For eah
k ∈ {1, ..,m}, agents i ∈ Nk with 1 ≤ i ≤ r are said to be ative, whileagents i ∈ Nk with i > r are alled inative. It is not di�ult to hek thatany mathing formed by essential oalitions with all agents ative is optimal.In Tejada (2010), a new game de�ned on the set of setors M = {1, ...,m}is assoiated to eah multi-sided Böhm-Bawerk assignment game. The worthin this game of a oalition S of setors is the pro�t that in the related marketan be obtained by the rth agents of the setors in S together with the
r + 1th agents of the setors not in S. To this end, for any S ⊆ M let usde�ne ES = r1S + (r + 1)1M\S ∈ Rm, where, for eah T ⊆ M , 1T ∈ Rmis the vetor suh that 1T (k) = 1 if k ∈ T and 1T (k) = 0 if k /∈ T . Itis important to point out that the ase where there is no r + 1th agent forsome of the setors in M\S must be treated apart. Observe that, in thisase, ES ∈ Rm an still be de�ned but ES is not an essential oalition of N ,i.e. ES /∈∏m

k=1 Nk. The formal de�nition of the setors game is introduednext.De�nition 1 Given an m-sided Böhm-Bawerk assignment game (N,ωA(c;w)),the assoiated setors game (M,vM
c;w) is the oalitional game with set of play-ers M = {1, 2, ...,m} omposed of all setors and harateristi funtionde�ned, for eah S ⊆ M , by(7) vM

c;w(S) =

{
aES if ES ∈∏m

k=1 Nk

0 if ES /∈∏m
k=1 Nkif r > 0 and vM

c;w(S) = 0 if r = 0.By de�nition, whenever r > 0 we have vM
c;w(M) = aDr > 0 and vM

c;w(∅) =

0. When no onfusion may arise we write vM instead of vM
c;w.It is shown in Tejada (2010) that (M,vM

c;w) is a onvex game and it isstrongly related to (N,ωA(c;w)). To be more preise, eah ore alloation ofthe multi-sided Böhm-Bawerk assignment game is uniquely determined by aore alloation of the setors game. Sine payo� vetors of both games orre-spond to di�erent spaes (RN1×...×RNm versus RM ), we de�ne a funtion tomap payo�s of the setors game to payo�s of the multi-sided Böhm-Bawerk6



game. Given an m-sided Böhm-Bawerk assignment game (N,ωA(c;w)), weintrodue the replia operator Rc;w : RM −→ RN1 × ... × RNm de�ned by
R(x1, ..., xm) = (x1, ..., xm), where xk = (

r
︷ ︸︸ ︷

xk, ..., xk, 0, ..., 0) ∈ RNk for all
k ∈ {1, ...,m}. Notie that Rc;w is an injetive linear funtion.The main result in Tejada (2010) states that if (N,ωA(c;w)) is an m-sidedBöhm-Bawerk assignment game and (M,vM

A(c;w)) is the assoiated setorsgame, then1(8) C(ωA(c;w)) =
−→
t c;w + Rc;w(C

(
vM
c;w

)
),where the translation vetor −→

t c;w = (t11, ..., t1n1
; ...; tm1, ..., tmnm) ∈ RN1 ×

... × RNm is de�ned by
tki = max{0, ckr − cki} for all 1 ≤ k ≤ m − 1 and 1 ≤ i ≤ nk,
tmi = max{0, wi − wr} for all 1 ≤ i ≤ nm.(9) In partiular, notie that (8) and (9) imply that, for all x ∈ C(ωA(c;w)),

k ∈ M and 1 ≤ i ≤ r, we have xki = xkr + tki. Later on in the paper anexample is introdued to illustrate the above de�nitions and results.In the next two setions we show that an statement analogous to (8)holds for two singled-valued solutions that are tightly linked to the ore: thenuleolus and the ore-enter.3 The nuleolusThe nuleolus is a single-valued solution for oalitional games that was in-trodued by Shmeidler (1969). For any imputation x of (N, v) and anyoalition S ⊆ N the exess of oalition S with respet to x is de�ned by
ev(S, x) = v(S) − x(S), and it is a measure of the satisfation of oalition
S with respet to the alloation x. Given an imputation x, we de�ne thevetor λ(x) ∈ R2n−2 of exesses of all nonempty oalitions di�erent from Narranged in a non-inreasing order, so that those oalitions with a greateromplaint oupy the �rst positions in λ(x). That is, λk(x) = ev(Sk, x)for all k ∈ {1, ..., 2n − 2} and λk(x) ≥ λj(x) if 1 ≤ k < j ≤ 2n − 2, where
{S1, ..., Sk, ..., S2n−2} is the set of all nonempty oalitions of N di�erent from
N . The nuleolus of the game (N, v) is the imputation η(N, v) (we write
η(v) for short when no onfusion regarding the player set an arise) that1Given A ⊆ Rk and t ∈ Rk, t + A = {y ∈ Rk | y = t + x, for some x ∈ A}.7



minimizes λ(x) with respet to the lexiographi order2 over the set of im-putations. That is, λ(η(v)) ≤Lex λ(x) for all x ∈ I(v). It is known thatthe nuleolus is always a single point and, whenever the ore of the game isnonempty, it belongs to the ore.Mashler et al. (1979) give an alternative de�nition of the nuleolusby means of a �nite proess that iteratively redues the set of payo�s toa singleton, alled the lexiographi enter of the game, that is proved tooinide with the nuleolus.Let us denote by C an arbitrary nonempty subset of oalitions of a bal-aned game (N, v), and onsider the algorithm in Mashler et al. (1979)restrited to oalitions in C. This restrited proedure onstruts a sequeneof oalitions Σ0
C ⊇ Σ1

C ⊇ · · · ⊇ Σs+1
C and a sequene of subsets of payo�s

X 0
C ⊇ X 1

C ⊇ · · · ⊇ X s+1
C suh that initially α0

C = 0, X 0
C = C(v), Σ0

C = C and
∆0

C = ∅ and, for t ∈ {0, ..., sC}, we de�ne reursively(10) (a) αt+1
C = minx∈X t

C
maxS∈Σt

C
ev(S, x),

(b) X t+1
C =

{

x ∈ X t
C | maxS∈Σt

C
ev(S, x) = αt+1

C

}

,

(c) ΣC
t+1 = {S ∈ Σt

C | ev(S, x) is onstant on x ∈ X t+1
C },

(d) Σt+1
C = Σt

C\ΣC
t+1and ∆t+1

C = ∆t
C ∪ ΣC

t+1,where sC is the last index for whih ΣsC 6= ∅. The set X sC+1 is alled the
C-lexiographi enter of (N, v). When no onfusion is possible we omit thesupersript or subsript C. By Mashler et al. (1979), if we take C to bethe set 2N of all oalitions, the 2N -lexiographi enter redues to only onepoint and it is the nuleolus. For an arbitrary olletion C, the proedure iswell de�ned but X s+1 is not neessarily a single point, and even in that aseit might not oinide with the nuleolus.Like in the bilateral ase, it is easy to hek that in the ase of multi-sidedassignment games only essential oalitions, E = (i1, i2, . . . , im) ∈ ∏m

k=1 Nk,and singletons need to be onsidered in the omputation of the nuleolus(Huberman, 1980). We denote the set of essential oalitions and singletonsby E .As it is done in Solymosi and Raghavan (1994) for bilateral assignmentgames, it an be proved3 that, for balaned multi-sided assignment games,the E-lexiographi enter also redues to only one point and oinides withthe nuleolus. Notie that |E| = n1 · · ·nm + n whih is muh lower than
|2N | = 2n.2Given x, y ∈ Rn, we say x <Lex y if there is some 1 ≤ i ≤ n suh that xi < yi and
xj = yj for 1 ≤ j < i. Also, we say x ≤Lex y if x <Lex y or x = y.3This proof an be provided by the authors under request.8



In this setion we show that, in the ase of m-sided Böhm-Bawerk as-signment games, the set of oalitions to be onsidered in the omputation ofthe nuleolus an be further restrited. To this end the following lemma isneeded.Lemma 1 Let (N, v) be a balaned game and C a subset of oalitions of Nsuh that the C-lexiographi enter oinides with the nuleolus. Let F ⊆ Cbe a subset of C suh that, for all S ∈ C\F , there is TS = {F1, ..., Fp} ⊆ Fand λS
1 , ..., λS

p , cS ∈ R satisfying that, for all x ∈ C(v),(i) ev(S, x) ≤ ev(Fl, x), for all l ∈ {1, ..., p},(ii) ev(S, x) = λS
1 ev(F1, x) + ... + λS

p ev(Fp, x) + cS.Then, the nuleolus η(v) oinides with the F-lexiographi enter.Proof. To simplify the notation, let it be X t, Σt, Σt and αt for t ∈
{0, 1, . . . , s}, the elements of the C-lexiographi enter of (N, v), where sis the last index for whih Σs 6= ∅, and X t

F , Σt,F , Σt
F and αt

F for t ∈
{0, 1, ..., sF }, the orresponding elements of the F-lexiographi enter of
(N, v), where sF is the last index for whih ΣsF

F 6= ∅. We laim that, underthe onditions of the lemma, we have s = sF and, for all t ∈ {0, 1, ..., s},
αt = αt

F , X t = X t
F and Σt ∩ F = Σt

F .We prove it by indution on t. The ase t = 0 is trivial by the de�nitionof step t = 0 in (10) together with the fat that F ⊆ C and thus F ∩C = F .Hene, assume that αt = αt
F , X t = X t

F and Σt ∩ F = Σt
F , for some t < s.We shall prove that αt+1 = αt+1

F , X t+1 = X t+1
F and Σt+1 ∩ F = Σt+1

F .First we laim that for all S ∈ Σt there exists T ∈ Σt ∩ F suh that, forall x ∈ X t, ev(S, x) ≤ ev(T, x). Observe that the inequality holds triviallyas an equality if S ∈ F . Hene, assume that S ∈ C\F . By hypothesis (i)and (ii), there are TS = {F1, ..., Fp} ⊆ F and λS
1 , ..., λS

p , cS ∈ R suh that
ev(S, x) ≤ ev(Fl, x), for all l ∈ {1, ..., p}, and(11) ev(S, x) = λS

1 ev(F1, x) + · · · + λS
p ev(Fp, x) + cS ,for all x ∈ X t ⊆ C(v). If it is the ase that Fl /∈ Σt for all l ∈ {1, 2, . . . , p},then from Σt ∩ F = Σt

F we neessarily have F1, ..., Fp ∈ ∆t
F , whih byonstrution of (10) implies that ev(F1, x), ..., ev(Fp, x) are onstant on X t

F =
X t. Hene, by (11), ev(S, x) is also onstant on X t, whih ontradits S ∈
Σt. One the laim is proved, for all x ∈ X t it holds maxS∈Σt e(S, x) ≤
maxS∈Σt∩F e(S, x) and(12) Σt 6= ∅⇔ Σt ∩ F 6= ∅.9



Seondly, for all x ∈ X t,
max
S∈Σt

ev(S, x) ≤ max
S∈Σt∩F

ev(S, x) = max
S∈Σt

F

ev(S, x) ≤ max
S∈Σt

ev(S, x),where the equality follows from the indution hypothesis and the last in-equality from Σt
F = Σt ∩ F ⊆ Σt. Hene,(13) max

S∈Σt
ev(S, x) = max

S∈Σt
F

ev(S, x).Thus αt+1 = minx∈X t maxS∈Σt ev(S, x) = minx∈X t
F

maxS∈Σt
F

ev(S, x) = αt+1
F ,sine X t = X t

F also by indution hypothesis.Now, by (13) and X t = X t
F we obtain X t+1 = X t+1

F . Therefore Σt+1 ∩
F = Σt+1,F and hene Σt+1 ∩ F = Σt+1

F .Finally, by (12) we have s = sF . Thus, sine the C-lexiographi enterof (N, v) oinides with the nuleolus and X s+1 = X sF+1
F , we have that alsothe F-lexiographi enter of (N, v) oinides with the nuleolus.The above lemma is now applied to the m-sided Böhm-Bawerk assign-ment game to see that, besides some singletons formed by last ative agentsof some setors, only essential oalitions formed by either one (or m−1) lastative agents of some setors and m−1 (or one) �rst non-ative agents of theremaining setors need to be taken into aount to ompute the nuleolus.Formally, given (N,ωA(c;w)) an m-sided Böhm-Bawerk assignment game, let

FN = FN
m−1 ∪ FN

1 be the subset of oalitions of N de�ned by(14) FN
m−1 =

{

ES

∣
∣
∣
∣
∣
S ⊆ M, |S| = m − 1 and ES ∈

m∏

k=1

Nk

}and
FN

1 =

{

ES

∣
∣
∣
∣
∣
S ⊆ M, |S| = 1, ES ∈

m∏

k=1

Nk

}

∪
{

{r ∈ N l}
∣
∣
∣
∣
∣
E{l} /∈

m∏

k=1

Nk

} ,(15)where reall that ES = r1S +(r + 1)1M\S . Observe that FN
m−1 is omposedof all essential oalitions (only if exist) formed by the r + 1th agent of onesetor and the rth agent of the remaining m−1 setors, whereas FN

1 is formedby all essential oalitions omposed by the rth agent of one setor, let us say
l ∈ M , and the r+1th agents of the remaining m−1 setors, whenever theseessentials oalitions exist, i.e. E{l} ∈ ∏m

k=1 Nk, or the singleton formed by10



the rth agent of setor l otherwise, i.e. when E{l} /∈∏m
k=1 Nk.4 In partiularobserve that |FN

m−1| ≤ m and |FN
1 | = m, and hene this time |FN | ≤ 2mwhih is muh lower than |E| = n1...nm + n.Theorem 2 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment game.Then the nuleolus η

(
ωA(c;w)

) oinides with the FN -lexiographi enter of
(N,ωA(c;w)).Proof. Consider the E-lexiographi enter of (N,ωA), whih is known tooinide with the nuleolus η (ωA). It an be easily heked that at step t = 1in (10) we obtain α1 = 0, X 1 = C(ωA), Σ1 = ∆1 = {S ∈ E | e(S, x) is onstant in C(ωA)}and Σ1 = E\Σ1. Hene, we an start the algorithm of the E-lexiographienter with α0 = 0, X 0 = C(ωA) and(16) Σ0 = ∆0 = {S ∈ E | e(S, x) is onstant in C(ωA)} and Σ0 = E\Σ0.Sine any essential oalition formed by either only ative agents or onlyinative agents belongs to some optimal mathing, by (5) eah suh oalitionreeives a onstant payo� in C(ωA), and hene, in the above algorithm,
Σ0 is omposed of all essential oalitions ontaining both ative agents andinative agents, and all singletons formed by one ative agent (if there exist).Let x ∈ C(ωA) be an arbitrary ore alloation. To prove the theorem wewill show that FN satis�es the assumptions of Lemma 1, i.e. for eah S ∈
Σ0\FN there is TS = {F1, ..., Fp} ⊆ FN suh that eωA

(S, x) ≤ eωA
(Ft, x)for all t ∈ {1, ..., p} and eωA

(S, x) = λS
1 eωA

(F1, x) + ... + λS
p eωA

(Fp, x) + cSfor some λS
1 , ..., λS

p , cS ∈ R whih do not depend on x. Thus, let it be S ∈
Σ0\FN . We distinguish two ases, depending on whether S is an essentialoalition or a singleton.Case 1: S = E = (i1, ..., im) ∈

∏m
k=1 Nk.Consider a set of setors assoiated to E de�ned by SE = {k ∈ M |

1 ≤ ik ≤ r}. By (16), we have ∅  SE  M . Due to the non-symmetrialnotation of buyers' and sellers' valuations, we must write separately the ase
m ∈ SE and m /∈ SE. Nevertheless, the proof of the latter ase is analogousto the proof of the former and hene we assume m ∈ SE, whereas the ase
m /∈ SE is left to the reader. Let us also denote by E′ =

∑

k∈SE
ik1{k} +

(r + 1)1M\SE
the essential oalition obtained from E by replaing agents of4We ould add a null agent with an arbitrarily high ost if it is a seller, or a nullagent with an arbitrary low valuation if it is a buyer, to those setors k ∈ M with

nk = r, hene ensuring the existene of the r + 1
th agent for eah setor. In that ase,

FN
m−1 =

{
ES | S ⊆ M, |S| = m − 1

} and FN
1 =

{
ES | S ⊆ M, |S| = 1

}.11



eah setor k ∈ M\SE by the r+1th agent of the same setor. Sine E′ ≤ E,by (2) we have aE ≤ aE′ . We start proving that(17) eωA
(E, x) ≤ eωA

(ESE , x).Indeed,
eωA

(E, x)

= aE −
m∑

k=1

xkik ≤ aE′ −
∑

k∈SE

xkik −
∑

k∈M\SE

xkik = aE′ −
∑

k∈SE

xkik

= aE′ − (xmr + (wim − wr)) −
∑

k∈SE\{m}

(xkr + (ckr − ckik))

= max






0, wim −

∑

k∈SE\{m}

ckik −
∑

k∈M\SE

ck(r+1)







− (xmr + (wim − wr)) −
∑

k∈SE\{m}

(xkr + (ckr − ckik))

= max






0, wr −

∑

k∈SE\{m}

ckr −
∑

k∈M\SE

ck(r+1) + (wim − wr) +
∑

k∈SE\{m}

(ckr − ckik)







−



(wim − wr) +
∑

k∈SE\{m}

(ckr − ckik)



−
∑

k∈SE

xkr

= max






−



(wim − wr) +
∑

k∈SE\{m}

(ckr − ckik)



 , wr −
∑

k∈SE\{m}

ckr −
∑

k∈M\SE

ck(r+1)







−
∑

k∈SE

xkr

≤ max






0, wr −

∑

k∈SE\{m}

ckr −
∑

k∈M\SE

ck(r+1)






−
∑

k∈SE

xkr

= aESE −
∑

k∈SE

xkr = eωA
(ESE , x),where the seond and the third equalities hold by (5) and (8), the �fthequality holds adding and subtrating wr −

∑

k∈SE\{m} ckr to the seondterm in the maximum operator, and the last inequality holds by (2). Weontinue by distinguishing two subases.12



Case 1.1: aESE > 0.Sine E ∈ ∏m
k=1 Nk, it trivially follows ESE ∈ ∏m

k=1 Nk. Reall that by(16), SE  M . We now prove that, for eah k′ /∈ SE,(18) eωA
(ESE , x) ≤ eωA

(EM\{k′}, x).Before proving (18) observe that, sine x ∈ C(ωA), by (5) we have
x(EM ) =

∑

l∈M
xlr = aEM = wr −

∑

l∈{1,...,m−1}
clrand, for eah k ∈ M \ {m},

x(EM\{k}) =
∑

l∈M\{k}
xlr ≥ aEM\{k} ≥ wr − ck(r+1) −

∑

l∈M\{k,m}
clr.Combining the two above expressions we obtain(19) xkr −

(
ck(r+1) − ckr

)
≤ 0, for all k ∈ M \ {m}.Then, for eah k′ /∈ SE,

eωA
(ESE , x) = aESE −

∑

k∈SE

xkr = wr −
∑

k∈SE\{m}

ckr −
∑

k∈M\SE

ck(r+1) −
∑

k∈SE

xkr

= wr − ck′(r+1) −
∑

k∈M\{k′,m}

ckr −
∑

k∈M\{k′}

xkr +
∑

k∈(M\{k′})\SE

(
xkr −

(
ck(r+1) − ckr

))

≤ wr − ck′(r+1) −
∑

k∈M\{k′,m}

ckr −
∑

k∈M\{k′}

xkr

≤ max






0, wr − ck′(r+1) −

∑

k∈M\{k′,m}

ckr






−

∑

k∈M\{k′}

xkr

= aEM\{k′} −
∑

k∈M\{k′}

xkr = eωA
(EM\{k′}, x),where the seond equality follows from the assumption aESE > 0, the thirdequality is obtained by adding and subtrating ∑k∈(M\{k′})\SE

(xkr + ckr)and the �rst inequality holds by (19). Therefore (18) indeed holds.Next, sine E = (i1, ..., im) ∈ ∏m
k=1 Nk, for any k′ ∈ M\SE we have

ik′ ≥ r + 1 and thus agent ik′ ∈ Nk′ exists, whih implies EM\{k′} is also anessential oalition, i.e. EM\{k′} ∈ ∏m
k=1 Nk. Therefore, we an onsider thefollowing nonempty subset of FN

m−1 ⊆ FN ,(20) TS =
{

EM\{k} | k ∈ M\SE

}

.13



Notie that the ardinality of TS is the same as that of M\SE . For eah
k ∈ M\SE let Fk ∈ TS denote the assoiated oalition M\{k} of TS . From(17) and (18), we obtain that eωA

(E, x) ≤ eωA
(Fk, x) for all Fk ∈ TS , whihimplies that property (i) of Lemma 1 is satis�ed for S = E, taking F = FN .Further, we prove that also property (ii) of Lemma 1 is satis�ed. Firstof all observe that

x(ESE ) =
1

|M\SE |
∑

k∈M\SE

x(ESE )

=
1

|M\SE |
∑

k∈M\SE

(

x(EM\{k}) − x(E(M\{k})\SE )
)

=
1

|M\SE |




∑

k∈M\SE

x(EM\{k}) −
∑

k∈M\SE

x(E(M\{k})\SE )





=
1

|M\SE |
∑

k∈M\SE

x(EM\{k}) −
( |M\SE | − 1

|M\SE|

)

x(EM\SE )

=
1

|M\SE |
∑

k∈M\SE

x(EM\{k}) −
( |M\SE | − 1

|M\SE|

)

(aEM − x(ESE )),where the last equality holds sine, by (5), x(ESE ) + x(EM\SE ) = x(EM ) =
aEM . Therefore,(21) x(ESE ) =

∑

k′∈M\SE

x(EM\{k′}) − (|M\SE| − 1) aEM .and
x(E) =

∑

k∈SE

xkik +
∑

k∈M\SE

xkik =
∑

k∈SE

xkik = x(ESE ) +
∑

k∈SE

tkik

=
∑

k′∈M\SE

x(EM\{k′}) − (|M\SE | − 1) aEM +
∑

k∈SE

tkik ,(22)where the seond and third equalities hold by (8) and the last equality holdsby (21). To onlude, by (22), the exess eωA
(E, x) is an a�ne ombination

14



of the exesses assoiated to oalitions of TS:
eωA

(E, x) = aE − x(E)

= aE −
∑

k∈M\SE

x(EM\{k}) + (|M\SE | − 1) aEM −
∑

k∈SE

tkik

=
∑

k∈M\SE

(

aEM\{k} − x(EM\{k})
)

+

cS

︷ ︸︸ ︷

aE −
∑

k∈SE

tkik −
∑

k∈M\SE

aEM\{k} + (|M\SE | − 1) aEM

=
∑

k∈M\SE

eωA
(Fk, x) + cS ,(23)where the third equality is obtained by adding and subtrating∑k∈M\SE

aEM\{k} .Therefore, as we laimed, the two requirements of Lemma 1 applied to S = E(under the assumptions of Case 1.1) are satis�ed for all x ∈ C(ωA), taking
F = FN and TS as in (20).Case 1.2: aESE = 0.In this ase, onsider the following nonempty subset of FN

1 ⊆ FN ,
TS =

{

{r ∈ N l}
∣
∣
∣
∣
∣
l ∈ SE and E{l} /∈

m∏

k=1

Nk

}

∪
{

E{l}

∣
∣
∣
∣
∣
l ∈ SE and E{l} ∈

m∏

k=1

Nk

}

.(24)For eah l ∈ SE let Fl ∈ TS denote the assoiated oalition of TS . Notiethat the ardinality of TS is the same as the one of SE sine, for eah l ∈ SE,either E{l} /∈
∏m

k=1 Nk and we onsider the singleton formed by r ∈ N l or
E{l} ∈

∏m
k=1 Nk and we onsider the essential oalition E{l}. Notie alsothat in this seond ase 0 ≤ aE{l} ≤ aESE = 0. In any ase wA(Fl) = 0 forall Fl ∈ TS . For eah l ∈ SE ,(25) eωA

(ESE , x) = −
∑

k∈SE

xkr ≤ −xlr = ωA(Fl) − xlr = eωA
(Fl, x),and hene

eωA
(E, x) ≤ eωA

(ESE , x) ≤ eωA
(Fl, x),15



where the third inequality holds by (17). Hene property (i) of Lemma 1 issatis�ed for S = E, on the assumptions of Case 1.2, taking F = FN and TSas in (24). Further, property (ii) of Lemma 1 is also satis�ed. Indeed,
eωA

(E, x) = aE − x(E) = aE −
∑

l∈SE

xlil −
∑

l∈M\SE

xlil

= aE − x(ESE ) −
∑

l∈SE

tlil

=
∑

l∈SE

eωA
(Fl, x) +

cS

︷ ︸︸ ︷

aE −
∑

l∈SE

tlil ,(26)where the �rst equality holds by (8) and (5), and the last equality holds from
wA(Fl) = 0 for all Fl ∈ TS . Therefore, the two requirements of Lemma 1applied to S = E (under the assumptions of Case 1.2) are again satis�ed,taking F = FN and TS as in (24).Case 2: S = {i}.By (16), we an assume i ∈ N l, for some l ∈ M and i ≤ r. Let TS be thefollowing singleton of FN

1 ⊆ FN ,(27) TS = {F} =

{ {
E{l}

} if E{l} ∈∏m
k=1 Nk,

{r ∈ N l} if E{l} /∈∏m
k=1 Nk.By (8), we obtain

eωA
({i}, x) = −xli = −tli − xlr = eωA

(F, x) −
cS

︷ ︸︸ ︷

ωA(F ) − tli,where the last equality holds by adding and subtrating ωA(F ). Thereforeproperties (i) and (ii) of Lemma 1 are satis�ed for S = {i}, taking F = FNand TS as in (27).To sum up, the assumptions of Lemma 1 are satis�ed for all S ∈ E\FN ,to guarantee that the FN -lexiographi enter oinides with the nuleolus.The result in Theorem 2 simpli�es the omputation of the nuleolus of amulti-sided Böhm-Bawerk assignment game. Indeed, onsider for instane amarket situation with eight sellers S1, ..., S8 eah of them owning one unit ofa homogenous software good, eight di�erent sellers H1, ...,H8 eah of themowning one unit of a homogenous hardware good and B1, ..., B10 ten po-tential buyers interested on aquiring a bundle formed exatly by one unit16



of software and one unit of hardware. Table 1 below shows the valuationsof eah agent in this three-sided Böhm-Bawerk assignment market, whihtranslates into a 26-person ooperative game. It is straightforward to hekthat there are �ve ative agents on eah side of the market, that is r = 5,whih is marked in bold. Table 1Software (s) sellers Hardware (h) sellers Buyers
S1 values her good at 5 H1 values her good at 5 B1 values a s/h pair at 30

S2 values her good at 5 H2 values her good at 6 B2 values a s/h pair at 28

S3 values her good at 7 H3 values her good at 8 B3 values a s/h pair at 26

S4 values her good at 8 H4 values her good at 9 B4 values a s/h pair at 24

S5 values her good at 10.75 H5 values her good at 9.25 B5 values a s/h pair at 22

S6 values her good at 11 H6 values her good at 10.5 B6 values a s/h pair at 21

S7 values her good at 12 H7 values her good at 13 B7 values a s/h pair at 20

S8 values her good at 13 H8 values her good at 13 B8 values a s/h pair at 18

B9 values a s/h pair at 17

B10 values a s/h pair at 15As a result of Theorem 2, in order to alulate the nuleolus of the or-responding oalitional game (N,ωA(c;w)) with 226 oalitions we only have toonsider oalitions in FN = FN
1 ∪FN

2 , where FN
1 = {(5, 6, 6), (6, 5, 6), (6, 6, 5)}and FN

2 = {(6, 5, 5), (5, 6, 5), (5, 5, 6)}. However, the number of agents is stillhigh, 26, whih means that we have to solve several linear programs with 26variables. The proedure an be simpli�ed further by exploiting the onne-tion between the ores of the multi-sided assignment game and its relatedsetors game (M,vM
c;w). To this end Lemma 1 is applied to the setors gameto show that only singletons and oalitions of size m− 1 are needed to om-pute its nuleolus η
(
vM
c;w

). This fat reinfores the idea that the setorsgame is a quite speial onvex game. As a onsequene, the relationshipbetween the nuleolus of the m-sided Böhm-Bawerk game (N,ωA(c;w)) andthat of its setors game is established.Given the orresponding setors game (M,vM
c;w), let us onsider the sub-set of oalitions of M de�ned by FM = FM

1 ∪ FM
m−1, where(28) FM

m−1 = {S ∈ M, |S| = m − 1} ,and(29) FM
1 = {S ∈ M, |S| = 1} .17



Theorem 3 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment gameand let (M,vM
c;w) be its assoiated setors game. Let also η(ωA(c;w)) and

η
(
vM
c;w

) be the orresponding nuleolus. Then,(a) η
(
vM
c;w

) oinides with the FM -lexiographi enter of (M,vM
c;w).(b) η(ωA(c;w)) =

−→
t c;w + Rc;w

(
η
(
vM
c;w

)).Proof. To start proving statement (a) of the theorem, reall the notation
ES = r1S +(r + 1)1M\S for all S ⊆ M and let us see that (M,vM ), C = 2Nand FM are on the assumptions of Lemma 1. Let it be ∅  S  M and x ∈
C
(
vM
) an arbitrary ore alloation of the setors game. If ES ∈ ∏m

k=1 Nk,by De�nition 1 and (8), it is straightforward to hek that(30) evM (S, x) = eωA
(ES , x),where x =

−→
t c;w+Rc;w(x). As before, let us de�ne for eah essential oalition

E the set SE = {k ∈ M | 1 ≤ ik ≤ r}. The reader an hek that SES = S.We distinguish two ases.Case a.1: vM (S) > 0.By De�nition 1, vM (S) > 0 implies ES ∈ ∏m
k=1 Nk. Let us onsider thenonempty set of oalitions TS = {M\{k} | k ∈ M\S}, whih is a subset of

FM
m−1. Observe that TS is in one-to-one orrespondene with the set de�nedin (20). Now, for all k ∈ M\S,

evM (S, x) = eωA
(ES , x) ≤ eωA

(EM\{k}, x) = evM (M\{k}, x),where the inequality holds by (18) and both equalities hold by (30). Fur-thermore, from (23) and making use of (30), we dedue that evM (S, x) =
∑

F∈TS
evM (F, x) + cS , where cS is de�ned in (23) . Therefore the two re-quirements of Lemma 1 applied to S are satis�ed, taking F = FM and theolletion TS above de�ned.Case a.2: vM (S) = 0.Notie that, by De�nition 1, either ES ∈∏m

k=1 Nk and vM (S) = aES = 0or ES /∈∏m
k=1 Nk. In either ase, let us onsider the nonempty set of oali-tions TS = {{l} | l ∈ S}, whih is a subset of FM

1 . Observe that TS is in one-to-one orrespondene with the set de�ned in (24). On the one hand, if ES ∈
∏m

k=1 Nk , by (25) and (30) we easily dedue that evM (S, x) ≤ evM (F, x) forall F ∈ TS. Furthermore, making use of (30), we dedue that evM (S, x) =
∑

F∈TS
evM (F, x) + cS , where cS is de�ned in (26). On the other hand, if18



ES /∈∏m
k=1 Nk we have evM (S, x) = −∑k∈S xk =

∑

F∈TS
evM (F, x). There-fore the two requirements of Lemma 1 applied to S are satis�ed, taking

F = FM and the olletion TS above de�ned.Thus, Lemma 1 guarantees that η
(
vM
c;w

) oinides with the FM -lexiographienter of (M,vM
c;w) and hene we �nish the proof of statement (a).Next we prove statement (b) of the theorem. Let X t

N , ΣN
t , Σt

N and αt
N for

t ∈ {0, 1, . . . , sN}, be the elements in the algorithm of the FN -lexiographienter of (N,ωA(c;w)), where sN is the last index for whih ΣsN

N 6= ∅. Letalso X t
M , ΣM

t , Σt
M and αt

M for t ∈ {0, 1, . . . , sM}, be the elements in thealgorithm of the FM -lexiographi enter of (M,vM
c;w), where sM is the lastindex for whih ΣsM

M 6= ∅.Reall the de�nitions of FN and FM at (14), (15), (29) and (28), and letus onsider the mapping Ψ : FN→ FM that assigns eah oalition of FN
m−1to a oalition of FM

m−1 and eah oalition of FN
1 to a oalition of FM

1 in thefollowing way:(31) Ψ(T ) =

{
S if T = ES ∈ FN , for some S ⊆ M ,
{l} if T = {r} ∈ FN and r ∈ N l.Observe that, by onstrution of Ψ and the de�nitions of FN and FM , Ψ isinjetive. Moreover, the restrition of Ψ to FN

1 is bijetive, sine all S ⊆ Mwith |S| = 1 belong to Ψ(FN ). When there exists the r + 1th agent of eahof the m setors, Ψ is a bijetion.By (30) and De�nition 1, for all T ∈ FN and all x ∈ C(ωA),(32) evM (Ψ(T ), x) = eωA
(T, x),where x ∈ C(vM ) satis�es x =

−→
t c;w + Rc;w(x).We laim that αt

N = αt
M , X t

N =
−→
t c;w + Rc;w(X t

M ) and Ψ
(
Σt

N

)
⊆ Σt

M ,for all t ∈ {0, ..., s}, and as a onsequene sM = sN = s. We prove it byindution on t. For t = 0 we only have to prove that X 0
N =

−→
t c;w+Rc;w(X 0

M ),whih holds by (8).Now assume that αt
N = αt

M , X t
N =

−→
t c;w +Rc;w(X t

M ) and Ψ(Σt
N ) ⊆ Σt

M ,for some t < sN . We prove that αt+1
N = αt+1

M , X t+1
N =

−→
t c;w + Rc;w(X t+1

M ),and Ψ
(
Σt+1

N

)
⊆ Σt+1

M .In the �rst plae, we laim that, for eah x ∈ X t
M ,(33) max

T∈Σt
N

evM (Ψ(T ), x) = max
S∈Σt

M

evM (S, x).Indeed, by indution hypothesis Ψ(Σt
N ) ⊆ Σt

M , and hene maxT∈Σt
N

evM (Ψ(T ), x) ≤
maxS∈Σt

M
evM (S, x). If this latter inequality were strit, there would exist19



S ∈ Σt
M\Ψ(Σt

N ) suh that(34) evM (S, x) > max
T∈Σt

N

evM (Ψ(T ), x) = max
T∈Σt

N

eωA
(T, x),where x =

−→
t c;w + Rc;w(x) and the equality holds by (32).Let us �rst prove that neessarily S ∈ FM\Ψ(FN ). Otherwise, supposethat S ∈ Ψ(FN ) and let T ∈ FN be suh that S = Ψ(T ). Sine S /∈ Ψ(Σt

N ),by onstrution of (10), T ∈ ∆t
N . Thus, eωA

(T, x) is onstant on X t
N . Butthen, sine X t

N =
−→
t c;w+Rc;w(X t

M ) by the indution hypothesis and by (32),
evM (S, x) is also onstant on X t

M . Therefore S ∈ ∆t
M , whih ontradits

S ∈ Σt
M .One established that S ∈ FM\Ψ(FN ), we neessarily have |S| = m− 1and ES /∈∏m

k=1 Nk, whih implies vM (S) = 0 by De�nition 1. Then, for all
k ∈ S,(35) evM (S, x) = 0 − x(S) ≤ −xk ≤ vM ({k}) − xk = evM ({k}, x).Suppose that {k} /∈ Σt

M for all k ∈ S. Then, {k} ∈ ∆t
M for all k ∈ S, i.e.

evM ({k}, x) is onstant on X t
M , whih implies that xk is also onstant on X t

M .Sine |S| = m − 1 and x(M) = vM (M), we neessarily have that X t
M and

X t
N =

−→
t c;w + Rc;w(X t

M ) are omposed of a single point, i.e. t = sN = sM ,whih ontradits t < sN . Thus it annot be the ase that {k} /∈ Σt
Mfor all k ∈ S. Hene let {k} ∈ Σt

M for some k ∈ S. By onstrution of
Ψ, there exists T ′ = Ψ−1 ({k}) ∈ FN . If T ′ /∈ Σt

N , i.e. T ′ ∈ ∆t
N , then

eωA
(T ′, x) is onstant on X t

N and, as above, by the indution hypothesis andby (32) also evM ({k}, x) is onstant on X t
M , whih ontradits {k} ∈ Σt

M .Therefore, T ′ ∈ Σt
N , whih together with (32) and (35) implies evM (S, x) ≤

evM ({k}, x) = eωA
(T ′, x), in ontradition with (34). Hene (33) holds, aswe laimed.One the laim is proved, we show that αt+1

N = αt+1
M . Indeed,(36)

αt+1
N = min

x∈X t
N

max
T∈Σt

N

eωA
(T, x) = min

x∈X t
M

max
T∈Σt

N

evM (Ψ(T ), x) = min
x∈X t

M

max
S∈Σt

M

evM (S, x) = αt+1
M ,where the seond equality holds by (32) and the third equality holds by (33).Seondly, X t+1

N =
−→
t c;w +Rc;w(X t+1

M ) holds by (33) and (36) sine X t
N =

−→
t c;w + Rc;w(X t

M ) by the indution hypothesis.In the third plae, suppose that Ψ
(
Σt+1

N

)
* Σt+1

M , i.e. there is T ∈
Σt+1

N = Σt
N\ΣN

t+1 suh that Ψ(T ) /∈ Σt+1
M = Σt

M\ΣM
t+1. All this meansthat T ∈ Σt

N and, sine Ψ
(
Σt

N

)
⊆ Σt

M , also Ψ(T ) ∈ Σt
M . Thus, Ψ(T ) /∈20



Σt+1
M implies Ψ(T ) ∈ ΣM

t+1 ⊆ ∆t+1
M , and hene evM (Ψ(T ), x) is onstanton X t+1

M . We already know that X t+1
N =

−→
t c;w + Rc;w(X t+1

M ). Therefore,by (32), eωA
(T, x) is onstant on X t+1

N , where x =
−→
t c;w + Rc;w(x), whihimplies T ∈ ∆t+1

N , and hene we reah a ontradition with T ∈ Σt+1
N . As aonsequene, Ψ

(
Σt+1

N

)
⊆ Σt+1

M .Finally, from the fat that X t
N =

−→
t c;w + Rc;w(X t

M ), we know that X t
Nredues to a single point if and only if also X t

M redues to a single point, andthus we onlude that sN = sM = s and, from X s
N =

−→
t c;w + Rc;w(X s

M ), weobtain η(ωA(c;w)) =
−→
t c;w + Rc;w(η

(
vM
c;w

)
).Consider again the market in Table 1 and notie that to obtain the nule-olus of the three-sided Böhm-Bawerk assignment game (N,ωA) we essentiallyhave to ompute the nuleolus η

(
vM
c;w

) of the setors game (M,vM ), whihin this ase is the three-person game given below:
vM ({1}) = a566 = 0 vM ({1, 2}) = a556 = 1
vM ({2}) = a656 = 0.75 vM ({1, 3}) = a565 = 0.75 vM ({1, 2, 3}) = a555 = 2.
vM ({3}) = a665 = 0.5 vM ({2, 3}) = a655 = 1.75It an be heked that η

(
vM
)

= (0.1250, 1.0625, 0.8125). This an bedone by means of the formulae provided in Moulin (1988) to alulate thenuleolus of a three-person game. Then, from part (b) of Theorem 3 weobtain η(wA), as it is shown in the table below, where we write η
(
vM
)

= ηfor short. All this means that we have losed formulae to ompute thenuleolus of a three-sided Böhm-Bawerk assignment game, no matter howlarge the number of agents is. Table 2Ag. t R(η) η(wA) Ag. t R(η) η(wA) Ag. t R(η) η(wA)

S1 5.75 0.125 5.875 H1 4.25 1.0625 5.3125 B1 8 0.8125 8.8125
S2 5.75 0.125 5.875 H2 3.25 1.0625 4.3125 B2 6 0.8125 6.8125
S3 3.75 0.125 3.875 H3 1.25 1.0625 2.3125 B3 4 0.8125 4.8125
S4 2.75 0.125 2.875 H4 0.25 1.0625 1.3125 B4 2 0.8125 2.8125
S5 0 0.125 0.125 H5 0 1.0625 1.0625 B5 0 0.8125 0.8125
S6 0 0 0 H6 0 0 0 B6 0 0 0
S7 0 0 0 H7 0 0 0 B7 0 0 0
S8 0 0 0 H8 0 0 0 B8 0 0 0

B9 0 0 0
B10 0 0 0Let us �nally point out that statement (a) in Theorem 3 provides aneven better simpli�ation when the setors game onsists of more than three21



setors, that is m > 3, sine it guarantees that in the omputation of thenuleolus of the setors game (M,vM ) not all proper oalitions of M haveto be onsidered, but only those of size 1 and m − 1.4 The ore enterGonzalez-Díaz and Sánhez-Rodríguez (2007) study the ore-enter (or massenter of the ore) of a oalitional balaned game de�ned as the the mathe-matial expetation of the uniform probability distribution over the ore. Let
U(A) denote the uniform distribution de�ned over the set A and E(P) theexpetation of the probability distribution P. Formally, given an arbitrarybalaned game (N, v), the ore-enter is de�ned as Φ(v) = E[U(C(v))].The nuleolus of a oalitional game has a entral position in the ore butdoes not neessarily oinide with its mass enter. However, for two-sidedBöhm-Bawerk assignment markets the nuleolus oinides with the massenter, sine it is the midpoint of the ore segment. Thus it is natural toask whether this property extends to multi-sided Böhm-Bawerk assignmentmarkets. To this end it is neessary to simplify the omputation of theore-enter, sine our markets typially have many agents and there are noeasy-to-ompute formulae that provide the enter of mass of a polytope.With this aim, we prove that, like the nuleolus, the ore-enter Φ(ωA(c;w))of a multi-sided Böhm-Bawerk assignment game (N,ωA(c;w)) and the ore-enter Φ(vM

c;w) of the orresponding setors game (M,vM
c;w) are related by theinjetive linear mapping −→

t c;w + Rc;w(·). Our result is proved on the �rmbasis provided by measure theory (see for instane, Federer, 1969).Theorem 4 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment gameand let (M,vM
c;w) be the assoiated setors game. Let Φ(ωA(c;w)) and Φ

(
vM
c;w

)be the orresponding ore-enters. Then, Φ(ωA(c;w)) =
−→
t c;w+Rc;w(Φ

(
vM
c;w

)
).Proof. Let us onsider the two metri spaes (RN1 × · · · × RNm

, dN )and (RM , dM ), eah of them endowed with the orresponding eulidean dis-tane. The dimension dim(P ) of a onvex polytope P is the dimension ofthe minimal a�ne variety in whih P is ontained. From (8) we know that
C(ωA) ⊆ RN1 × · · · × RNm and C(vM ) ⊆ RM are onvex polytopes of thesame dimension k = dim(C(ωA)) = dim(C(vM )) ≤ m − 1.Given an arbitrary metri spae (Ω, d), the diameter of B ⊆ Ω is de�nedby δ(B) = sup{d(x, y) | x, y ∈ B}. Let δN and δM denote the diametersde�ned on the metri spaes (RN1 × · · · ×RNm

, dN ) and (RM , dM ). We �rst22



laim that, for all B ⊆ C(vM ) ⊆ RM , we have(37) √
rδM (B) = δN

(−→
t c;w + Rc;w(B)

)

,where r is de�ned in (6). Indeed, if x, y ∈ C(vM ) and x, y are the orre-sponding elements of C(ωA) by (8), we have
dN (x, y) =




∑

k∈M

∑

i∈Nk

(xki − yki)
2





1/2

=




∑

k∈M

∑

i∈Nk,i≤r

(xk + tki − yk − tki)
2





1/2

=

(
∑

k∈M

r (xk − yk)
2

)1/2

=
√

rdM (x, y).Let µN : RN1 × ... × RNm −→ [0,+∞) and µM : RM −→ [0,+∞) bethe Hausdor� outer measures of dimension k that orrespond respetively to
(RN1 × ... × RNm

, dN ) and (RM , dM ), where reall that k is the dimensionof C(ωA) and C(vM ). By de�nition,(38)
µN (A) = lim

δ→0

(

inf
{Bn}

+∞
n=1

{
+∞∑

n=1

(
δN (Bn)

)k
∣
∣
∣
∣

Bn ⊆ RN1 × · · · × RNm
, A ⊆ ∪+∞

n=1Bnand δN (Bn) < δ for all n ≥ 1

})for any A ⊆ RN1 × · · · × RNm , and(39)
µM (A) = lim

δ→0

(

inf
{Bn}

+∞
n=1

{
+∞∑

n=1

(
δM (Bn)

)k
∣
∣
∣
∣

Bn ⊆ RM , A ⊆ ∪+∞
n=1Bnand δM (Bn) < δ for all n ≥ 1

})for any A ⊆ RM . By (8) and (37), and using (38) and (39), for all B ⊆
C(vM ) ⊆ RM , we have(40) rk/2µM (B) = µN (

−→
t c;w + Rc;w(B)).With some abuse of notation let us also denote by µN and µM the restritionsof µN and µM to the borel sets of (RN1 × · · · × RNm

, dN ) and (RM , dM )respetively, whih are measures by the Carathéodory Extension Theorem.For any H ⊆ Rl, let IH : Rl −→ R be de�ned by IH(x) = 1 if x ∈ Hand IH(x) = 0 if x /∈ H. By de�nition of the Lebesgue integral, for allmeasurable set B ⊆ C(vM ) ⊆ RM ,(41)
rk/2

∫

IBdµM = rk/2µM (B) = µN (
−→
t c;w+Rc;w(B)) =

∫

I−→
t c;w+Rc;w(B)

dµN ,23



where the seond equality holds by (40). Moreover, for any simple funtion
s =

∑z
l=1 λlIBl

: RM → R de�ned on the measurable sets B1, ..., Bz ⊆
C(vM ) ⊆ RM ,
rk/2

∫

sdµM = rk/2

∫ z∑

l=1

λlIBl
dµM =

z∑

l=1

λlr
k/2

∫

IBl
dµM

=
z∑

l=1

λl

∫

I−→
t c;w+Rc;w(Bl)

dµN =

∫ z∑

l=1

λlI−→t c;w+Rc;w(Bl)
dµN

=

∫

sdµN ,(42)where s :
∑z

l=1 λlI−→t c;w+Rc;w(Bl)
: RN1 ×· · ·×RNm → R is the orrespondingsimple funtion de�ned on the measurable sets −→t c;w +Rc;w(B1), ...,

−→
t c;w +

Rc;w(Bz) ⊆ C(ωA) ⊆ RM by the onstants λ1,...,λz respetively. For allmeasurable nonnegative-valued funtion f : RM → R, by the onstrutionof the Lebesgue integral we obtain
rk/2

∫

C(vM )

fdµM = sup
s:RM→R

s simple {rk/2

∫

IC(vM )sdµM | 0 ≤ s ≤ f

}

= sup
s:RM→R

s simple {∫ I−→
t c;w+Rc;w(C(vM ))

sdµN | 0 ≤ s ≤ f

}

= sup
s:RN1

×...×R
Nm

→R

s simple {∫

IC(ωA)sdµN | 0 ≤ s ≤ f

}

=

∫

C(ωA)

fdµN ,(43)where the seond equality holds by (42), f : RN1 × ... × RNm → R denotesthe measurable funtion that is zero elsewhere exept in C(ωA), where itis de�ned as the omposition of the inverse of the injetive linear mapping−→
t c;w +Rc;w(·) with f , and the third equality is explained as follows. By (8),for any simple funtion s : RN1 × ... × RNm → R suh that 0 ≤ s ≤ f thereis a simple funtion s : RM → R suh that 0 ≤ s ≤ f and s(x) = s(x) for all
x ∈ C(vM ) and x = tc;w + Rc;w(x) ∈ C(ωA). Indeed, if s =

∑z
l=1 λlIBl

forsome measurable sets B1, ..., Bl ⊆ Rn we an take s =
∑z

l=1 λlIBl
, where forall l ∈ {1, ..., z} we de�ne Bl = (tc;w + Rc;w)−1(Bl ∩ C(ωA)).24



It is known that the k-dimensional Hausdor� measure agrees with thelassial area of an embedded submanifold of Rk, k ≤ m. Therefore, exeptfor a onstant multipliative fator that oinides with the area of C(ωA) and
C(vM ), dµN and dµM are the probability density funtions of the uniformdistributions over C(ωA) ⊆ RN1 ×· · ·×RNm and C(vM ) ⊆ RM respetively.Hene, by de�nition of the ore-enter, for all k ∈ M and all i ∈ Nk suhthat 1 ≤ i ≤ r,
tki + Φk

(
vM
)

= tki +

∫

C(vM )

xkdµM

∫

C(vM )

dµM
=

rk/2
∫

C(vM )

(tki + xk) dµM

rk/2
∫

C(vM )

dµM
=

∫

C(ωA)

xkidµN

∫

C(ωA)

dµN

= Φki(ωA(c;w)),where the seond equality holds by linearity of the Lebesgue integral and thethird equality holds by (43), using f(x) = xk + tki. The ase i > r is trivialsine inative agents get a null payo� at any ore alloation.The above result allows us to ompute the ore-enter of the three-sided Böhm-Bawerk assignment market (N,ωAc;w) of Table 1, sine we onlyneed to ompute the ore-enter of the three-player assoiated setors game
(M,vM

c;w). Figure 1 depits the ore of this latter game. Observe that inorder to obtain the ore-enter of C(vM
c;w) we need to ompute the area ofa bidimensional region embedded in R3. Nevertheless, a well-known resultin Measure Theory is that an invertible a�ne mapping f : Rn −→ Rn shiftsthe Lebesgue measure µ of Rn proportionally to the absolute value of thedeterminant of f , i.e. µ(f(A)) = |det(f)|µ(A) for all measurable set A ⊆ Rn.Hene, for our purpose of omputing the enter of mass of C(vM

c;w) it su�esto alulate the enter of mass of the projetion of C(vM ) onto the (x1, x2)-plane, sine f(x1, x2, x3) = (x1, x2, 2 − x1 − x2 − x3) is an invertible a�nemapping from R3 to R3 with the image of C(vM ) ontained in the x3 = 0plane of R3. Notie that this latter omputation an be easily arried outusing the standard tools of integral alulus in R2, and we obtain
Φ
(
vM
)

= (0.1389, 1.0556, 0.8055).Figure 2 below depits the projetion of C(vM ) onto the (x1, x2)-plane, to-gether with the ore-enter Φ(vM ) and the nuleolus η(vM ) that is obtainedat the end of Setion 3.Notie �rst from Φ(vM ) 6= η(vM ) that in general the ore-enter of aoalitional game di�ers from the nuleolus, even in the ase of onvex games.Moreover, the Shapley value (Shapley, 1972) of the above setors game is25
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Figure 1: The ore of the setors game assoiated to the three-sided Böhm-Bawerk assignment game of Table 1
(0.1667, 1.0417, 0.7917). Therefore, although the Shapley value oupies aentral position in the ore, it is in general also di�erent from the ore-enter for onvex games. Finally, as a onsequene of Theorems 2 and 4, from
Φ(vM ) 6= η(vM ) we dedue that Φ(ωA) 6= η(ωA) and thus the nuleolus ofa multi-sided Böhm-Bawerk assignment market does not oinide in generalwith the mass enter of the ore.
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