
Noname manuscript No.
(will be inserted by the editor)

Organisational Adaptation of Multi-Agent Systems in a
Peer-to-Peer scenario (WAT2009)

Jordi Campos · Marc Esteva ·
Maite López-Sánchez · Javier Morales ·
Maria Salamó

Received: 26 January 2010 / Accepted: 4 September 2010

Abstract Organisations in Multi-Agent Systems (MAS) have proven to be
successful in regulating agent societies. Nevertheless, changes in agents' be-
haviour or in the dynamics of the environment may lead to a poor ful�lment
of the system's purposes, and so the entire organisation needs to be adapted. In
this paper we focus on endowing the organisation with adaptation capabili-
ties, instead of expecting agents to be capable of adapting the organisation by
themselves. We regard this organisational adaptation as an assisting service
provided by what we call the Assistance Layer. Our generic Two Level Assisted
MAS Architecture (2-LAMA) incorporates such a layer. We empirically evalu-
ate this approach by means of an agent-based simulator we have developed for

Jordi Campos · Maite López-Sánchez · Javier Morales · Maria Salamó
Universitat de Barcelona, MAIA Department
Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
Fax: +34-934021601

Jordi Campos
Tel.: +34-934039372
E-mail: jcampos@maia.ub.es

Maite López-Sánchez
Tel.: +34-934037154
E-mail: maite@maia.ub.es

Javier Morales
Tel.: +34-934037154
E-mail: jmorales@maia.ub.es

Maria Salamó
Tel.: +34-934039372
E-mail: maria@maia.ub.es

Marc Esteva
Arti�cial Intelligence Research Institute (IIIA), Spanish National Research Council (CSIC)
Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Tel.: +34-935809570
Fax: +34-935809661
E-mail: marc@iiia.csic.es

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Diposit Digital de la Universitat de Barcelona

https://core.ac.uk/display/16204257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

the P2P sharing network domain. This simulator implements 2-LAMA archi-
tecture and supports the comparison between di�erent adaptation methods,
as well as, with the standard BitTorrent protocol. In particular, we present
two alternatives to perform norm adaptation and one method to adapt agents'
relationships. The results show improved performance and demonstrate that
the cost of introducing an additional layer in charge of the system's adaptation
is lower than its bene�ts.

Keywords Adaptation · Organisation · Coordination · Norms · MAS · CBR

Mathematics Subject Classi�cation (2000) 68T42 · 68T05

1 Introduction

Brie�y, Multi-Agent Systems (MAS) can be de�ned as computational sys-
tems where a set of autonomous agents interact within an environment [31].
In such systems, in addition to the system design purpose, agents have in-
dividual goals and a certain autonomy to pursue them by/while interacting
with other agents. Depending on the nature of the MAS, agent interaction
can be collaborative, competitive or both at the same time. We refer to it
henceforth as coordination and assume that it is structured by means of a co-
ordination model. This coordination model may be explicitly designed or may
emerge implicitly as a result of agent interactions [43]. In particular, Organi-
sation Centred MAS (OCMAS [22]) approaches1 make coordination models of
this kind explicit through regulative structures called organisations [22]. An
organisation constrains the system evolution and allows agents to construe
other participants' behaviour by considering organisational components such
as social conventions or enacted roles. Thus, they help to face the inherent
complexity of MAS [27]. In fact, agent organizations are inspired by human
real-world organisations, which have also proved useful in structuring human
societies.

In addition to de�ning the coordination model, most organisational ap-
proaches provide an operational framework. This framework includes domain-
independent infrastructure services in charge of enhancing both system devel-
opment and deployment [20,29]. Therefore, we can de�ne Coordination Sup-
port [7] as a mechanism that aids agent interaction �i.e. coordination� by en-
compassing services that enable the operability of the system. These services
range from connectivity services that support data exchange to organisational
services devoted to role enactment or rule enforcement. Moreover, our notion
of Coordination Support can be extended by a new set of services located in
an Assistance layer [7] which assists coordination rather than merely enabling

1 OCMAS [22] as opposed to ACMAS (Agent Centred MAS), which follow the emergence
approach.

3

it. Thus, instead of �making coordination happen�, these services �help to co-
ordinate seamlessly�. A number of assistance services have been identi�ed [8].
Nevertheless, our research focuses on the Organisational Adaptation service,
which adapts the organisation in order to achieve its design objectives. This
service is particularly useful when environmental or agent population changes
distract the organisation from its goals. As a matter of fact, organisation adap-
tation has been studied for more than a decade now [15,26,28,25] and it still
constitutes a major research topic [34,44], since it can help to obtain the sys-
tem's expected performance under changing circumstances and/or in dynamic
environments. Runtime adaptation is also in line with the computational or-
ganisational theory, which claims that the best organisation designs are domain
�and context� dependent [13]. As a further remark, when regarding the MAS
as a whole, the organisational adaptation can be related to recon�guration
in autonomic computing, since it allows the whole MAS to recon�gure itself
without human intervention [33].

As far as organisational adaptation is concerned, most studies consider co-
operative agents that happen to be designed in-house [18,49]. The control over
the whole system in these approaches allows adaptation to be conducted by
supervisor agents in charge of redistributing new tasks among agents. How-
ever, task assignment somewhat limits agents' autonomy and requires them
to be cooperative, and therefore, it is an unsuitable approach when dealing
with self-interested autonomous agents. Furthermore, task decomposition ap-
proaches cannot be applied for domains lacking a direct mapping between the
system's goals and agents' tasks. Thus, for example, in a tra�c scenario, a
goal of collision minimisation cannot be directly mapped into car agents' basic
driving tasks. Alternatively, rather than assigning tasks, norms can regulate
agents' activity and still preserve much of their autonomy and individual in-
terests. Afterwards, under changing circumstances, these norms and/or the
relationships among agents can be adapted to better accomplish the system
goals. As previously stated, we consider OCMAS and ACMAS as alternative
approaches �see [22] for de�nitions. From an ACMAS perspective, organi-
sational changes are expected to emerge from agents' activity. In contrast,
OCMAS perspective supports to reason about the organisation and to adapt
it so as to induce changes in agents' activity. In particular, when dealing with
adaptive OCMAS systems, some research questions arise: how the organisa-
tion is speci�ed; to what extend it in�uences agents' behaviour; who de�nes
it; how it can be adapted; who is in charge of adaptation; when adaptation
occurs; how to deal with transition periods; and last but not least, what is the
cost of change adoption.

We can design the Assistance layer mentioned above by following an ab-
stract architecture with a distributed meta-level providing di�erent assistance
services to a domain-speci�c MAS, which we call the domain-level. This pa-
per focuses on �and formalises� the Organisational Adaptation service, which
perceives domain-level activity and adapts its organisation to improve the
system's performance �see Figure 1. In particular, the meta-level is com-
posed of several assistant agents which reason at a higher level of abstrac-

4

Meta-Level

Organisation
Ag1

… Agn

Domain-Level

Environment

Fig. 1 Meta-Level perceiving Domain-Level's activity and adapting its organisation.

tion than regular MAS participants and provide them with assistance services
in a distributed manner2. Thus, we call our approach "Two Level Assisted
MAS Architecture (2-LAMA)". We evaluate an implementation of our overall
approach in a Peer-to-Peer sharing network (P2P) as a representative case
study of a dynamic MAS, with no direct mapping between goals and tasks,
and where agent autonomy is preserved. In such a network, a set of third-
party developed agents contact each other to share data. Their organisation
requires adaptation, since changes in agent population and network load due
to message transmission make it necessary to adjust their coordination model.
Finally, we use a simulator that we have developed to perform an empiric eval-
uation of di�erent alternatives to organisational adaptation, such as adapting
norms by using heuristics or machine learning �currently Case-Based Reason-
ing (CBR). Moreover, as base-line, we also compare our adaptive approaches
to a non-adaptive approach widely used in P2P: the BitTorrent protocol [4].

The rest of the paper is structured in seven sections. Our general model
of the Assistance layer and its Organisational adaptation service is described
in section 2, which also includes the de�nition of our proposed architecture
2-LAMA. This architecture is applied to the P2P case study in section 3 by
modelling it as a MAS with our two-level perspective, and by specifying both
the interaction protocol and the network model that support agent commu-
nications. Afterwards, section 4 details how the Organisational adaptation is
conducted in this case study, including both norms and relationships among
agents according to their social structure. It focuses on norm adaptation and
provides a detailed description of our heuristic and machine learning adapta-
tion approaches. In section 5, the empirical evaluation of di�erent adaptation
alternatives using our simulator is described and discussed. Section 6 discusses
related work so as to further contextualise and justify our approach. Finally,
section 7 presents our conclusions and future work.

2 Assistants are internal agents considered as trusted third parties by external participant
agents so that they can consider their directions to be trustworthy.

5

2 General Model

This section is devoted to describe our Coordination Support model and its
strati�cation by means of a two-layer abstract architecture. Although it pro-
vides di�erent coordination support services, we further elaborate on the for-
malisation of the organisational adaptation service. Along this section, con-
cepts are illustrated in a tra�c scenario.

2.1 Notation

Before presenting the formalisation of our model, it may be useful to introduce
the following notation conventions.

� Upper-case denotes types whereas lower-case denotes type instances �it
is worth mentioning we consider types as sets. As an illustration, in order
to de�ne the function that returns the speed of a given agent, we de�ne
a relation between the set of agents (Ag) and the natural numbers as
speed : Ag → N . Hence, speed(ag) returns the speed of agent ag ∈ Ag.

� Superscripts are used to di�erenciate among di�erent grouping levels. In
particular, an empty superscript denotes individual level, a 'S' superscript
stands for system level, and a 'C' superscript denotes an intermediate level
between individual and system levels. For instance, ag stands for an agent,
agC denotes a cluster of agents (i.e. AgC is the type of such a set), and
agS stands for all the agents in the system (i.e. AgS is the type of such a
set).

� Subscripts are used to di�erenciate among elements in a set. For instance,
agj ∈ agCi stands for the jth agent of ith cluster. Usually, we use superscript
i to index clusters and superscript j to index agents.

� In general, n denotes the total number of clusters (i.e. usually i �the index
of clusters� stands for a value among 1 and n), whereasmi denotes the total
number of agents within ith cluster (i.e. usually j �the index of agents�
stands for a value among 1 and mi).

2.2 Coordination Support

We use the term Coordination Support [7] to denote those services that are
useful for agent coordination. Services o�ered by currently available infras-
tructures in OCMAS approaches range from elemental connectivity to organi-
sational mechanisms. However, we propose to provide new services that assist
coordination rather than just enabling it. We illustrate this concept in Figure
2, where these services are classi�ed in two layers: an Organisational Layer
that provides coordination enabling services, and an Assistance Layer on top
of it, which provides coordination assistance services �by counting on pre-
vious layer services to provide its functionalities. The latter (sub)subsections
detail both layers and the services they comprise.

6

Organisational Layer

Assistance Layer

to enable

to assist

C
oo

rd
in

at
io

n
S

up
po

rt

Fig. 2 Coordination Support layers.

2.2.1 Organisational Layer

Within organisation-centred MAS (OCMAS) approaches, we de�ne an Or-
ganisational Layer that provides a variety of domain-independent enabling
services. These services are meant to enhance both system development and
deployment. They can range from basic connectivity services that support
data exchange to higher-level organisational services devoted, for instance, to
role enactment or rule enforcement. In order to support agent coordination,
organisational services require an organisation to be de�ned. In fact, its ex-
plicit speci�cation will allow the layer on top (see 2.2.2) to perform its assisting
tasks3. We assume an organisation is characterised by three main components:

De�nition 1 We de�ne an organisation as:

Org = SocStr × SocConv ×Goals (1)

where:

� SocStr is a social structure consisting of a set of roles (Rol), groups (Group)
and the relationships (Rel) among agents playing certain roles / belong-
ing to certain groups. As an illustration, we detail them in a tra�c sce-
nario. In this scenario, there are two types of agents: car agents and police
agents �i.e. Rol = {Car, Police}. We also de�ne two groups of vehicles
oil-powered/electric-powered that may include agents of both roles �i.e.
Group = {Oil, Electric}. Besides, we de�ne a relation of visibility be-
tween two cars and a relation of surveillance between a police agent and a
car �i.e. Rel = {Visibility(car, car), Surveillance(police, car)}.

� SocConv stands for the social conventions agents should conform and ex-
pect others to conform [36]. Social conventions are expressed as a set of
interaction protocols (Prot) and a set of norms (Norms). Following our
tra�c scenario, we de�ne a protocol (Prot = {Turning}) that describes
the valid sequence of actions �concerning the use of blinkers� required to
turn in a crossroads. Regarding norms, we can de�ne one limiting the speed
so that Norms = {Speed_limit}.

� Goals is a set of goals that describe the purpose of the organisation design
in terms of desired values for certain observable properties. For instance,
in our tra�c example, the goals are �uid tra�c �ow and lack of collisions
�i.e. Goals = {traffic_flow = fluid, number_collisions = 0}

3 Having explicit components makes easier to perform computational re�ection �that is
to build software that observes and modi�es its own structure [45].

7

Fig. 3 Organisation model.

As an illustration, Figure 3 depicts an organisation regulating the activ-
ities of a set of agents. The social structure de�nes roles, groups and their
relationships. Based on that, other organisational components can refer to
participant agents in a generic manner. Therefore, social conventions include
protocols and norms that restrict the behaviour of speci�c roles. Protocols
do that by de�ning legitimate sequences of actions whereas norms de�ne per-
missions, prohibitions and obligations expressed as �rst-order deontic logic
formulae. Notice that social conventions constrain possible actions but it is
still an agent's decision to choose which actions to execute in each speci�c
situation, and thus, agent autonomy is preserved. In addition, we assume the
organisation has explicit goals that describe its design purpose �which may
di�er from a participant's individual goals. They are expressed as a function
over the system's observable properties and may include reference values they
should approach. In this way, system performance can be evaluated by using
these goals to determine the extent to which the system is ful�lling its design
objectives.

2.2.2 Assistance Layer

Our proposal consists on adding an Assistance Layer �on top of previous one�
in charge of facilitating the enrolment of third-party agents and/or adapting
their organisation. This layer provides two main types of services: assisting
individual agents to achieve their goals under current organisation and context,
(Agent Assistance); and adapting the organisation to varying circumstances
(Organisational Assistance).

The former includes services to provide agents with useful information to
participate in the MAS (Information service); to provide justi�cations of the
consequences of their actions, for example, when an agent action is not allowed
(Justi�cation service); to suggest alternative plans that conform social con-
ventions (Advice service) and to estimate the possible consequences of certain
actions due to current conventions (Estimation service). As an illustration,
in our tra�c example, an information service noti�es cars about updates in
the speed limit norm. Afterwards, if a police agent �nes a car for exceeding
this speed limit, a justi�cation service can detail the violated norm and the
detection circumstances. Additionally, an advice service provides alternative
routes, whose trip time can be approximated by the corresponding estimation
service.

The latter, the Organisational Assistance, consists in adapting the exist-
ing organisation to improve the system's performance under varying circum-

8

S
y
s
te
m

D
L

M
L

Interface

Protocols
ML

Norms
ML

∘−−−−
∘−−−−

…
role

ML
1

role
ML

i

role
ML

m

SocStr
ML

O
rg

M
L

Protocols
DL

Norms
DL

∘−−−−
∘−−−−

…
role

DL
1

role
DL

i

role
DL

m

SocStr
DL

O
rg

D
L

SocConv
ML

SocConv
DL

Ag
DL
p

Ag
DL
m

Ag
DL
k

Ag
DL
1

….. ..

Ag
ML
nAg

ML
1 ..

cluster
1

cluster
n

EnvP
DL

, AgP
DL Org

DL
'

G
o
a
ls

Fig. 4 Two Level Assisted MAS Architecture (2-LAMA).

stances. Within a rational world assumption, we propose adaptation to be
driven by the goal ful�lment criteria. Thus, in our tra�c example, the speed
limit norm can be updated with the aim of minimising average trip times
and number of collisions. In order to accomplish that, the Assistance Layer
requires some way (i) observing system evolution, (ii) comparing it with the
organisational goals and (iii) adapting the organisation accordingly. This pa-
per focuses on the organisational assistance service, nevertheless, we refer the
reader to [7] for further details of agent assistance enumerated services.

2.3 Proposed architecture: 2-LAMA

This section describes the abstract architecture we propose to distribute the
assistance layer services previously mentioned.

2.3.1 Abstract Architecture

An abstract Two Level Assisted MAS Architecture (2-LAMA) was proposed
[9] to implement a MAS with the assistance services described. Conceptually, it
consists of a distributedmeta-level (ML) that provides assistance to the part of
the system performing domain activities (i.e. the domain-level, DL). As shown
in Figure 4, both levels communicate through an interface. Furthermore, if
we assume a multi-agent system to be composed of a set of agents within an
environment that participate in an organisation (see equation 2), then we can
express this architectural strati�cation by means of subsequent equations 3, 4
and 54. Since agents at meta-level provide assistance services, we henceforth
refer to them as assistants. Notice that, it is possible to nest subsequent meta-
levels which update the previous level's organisation. Regarding the system's
design purposes (Goals ∈ Org), they are to an extend shared between both

4 ML an DL subscripts are introduced here to distinguish system main components
among those two levels. Nevertheless, in subsequent sections, there will be no ambigui-
ties when referring to them, and so these subscripts will be omitted for the sake of notation
simplicity.

9

levels, since they are speci�ed at domain level (GoalsDL ∈ OrgDL) and the
meta-level's goals (GoalsML ∈ OrgML) come down to help the domain level
to achieve theirs.

MAS = Ag ×Org × Env (2)

2LAMA =ML×DL (3)

ML = AgML ×OrgML × EnvML (4)

DL = AgDL ×OrgDL × EnvDL (5)

Equation 6 illustrates the idea that, since the ML needs to perceive DL's
activity, the whole DL could be considered as part of meta-level's environ-
ment. Obviously, observation �transmitted trough the interface� can only be
done over agent/environment observable properties (AgPSDL/EnvP

S
DL) and

the organisation speci�cation (OrgDL).

EnvML = EnvPML ×AgPSDL ×OrgDL × EnvPSDL (6)

Nevertheless, locality �a fundamental feature of any MAS� is also applied
to this architecture. In this manner, assistants are just �in charge of� assisting
a subset (a cluster hereafter) of domain-level agents (cluster ⊂ AgDL). This
leads to a partial information assumption, where assistants only perceive the
observable properties of both its assisted agents and the local environment
where they are situated. Clusters are de�ned depending on domain-speci�c
criteria. Considering our tra�c example, the meta-level (ML) corresponds to
a tra�c regulatory authority that dictates tra�c regulations over an (agent
populated) road network, the domain-level (DL). In this setting, clusters are
de�ned as the set of vehicle agents traversing a given road-network region.
Thus, an assistant can observe, among other properties, the speed of its as-
sisted cars (AgPDL) or the tra�c �ow density in its region (EnvPDL).

In general, as equation 7 shows, agents can be characterised by a set of
properties. All agents share the same properties (APropl ∈ AgP), but with
di�erent values (e.g. cars driving at di�erent speeds AgP = {Speed} in the
tra�c scenario). Thus, an assistant is able to observe the properties of all
agents in its cluster (see eq. 8). Similarly, equation 9 computes the set of
system-wide observed properties as the union of properties observed along
clusters. Regarding environment properties, we use an analogous notation to
denote the properties of the environment region where a cluster of agents are
located (EPropl ∈ EnvPC), and how they are aggregated at system level
(EnvPS) (see eq. 10 and 11). Again, in the tra�c example, an assistant can
measure the average tra�c density of the road-network region it is in charge
of. Afterwards, if assistants share their data, the global average value can be
computed.

AgP = AProp1 × . . .×AProp#ag_prop (7)

10

AgPC =

mi⋃
j=1

AgPj (8)

AgPS =

n⋃
i=1

AgPCi (9)

EnvPC = EProp1 × . . .× EProp#env_prop (10)

EnvPS =

n⋃
i=1

EnvPCi (11)

2.3.2 Discussion

So far we have presented an abstract architecture containing a separated assis-
tance layer (theML) with a distributed design. Separation of concerns and dis-
tribution are two design decisions that follow the MAS paradigm5.Therefore,
they also bene�t from the same advantages of robustness and the lack of global-
information requirements. Separation of concerns allows assistants to reason
at a higher level of abstraction than domain-level agents since they can be
completely devoted to summarise and share local data. This is also bene�cial
for DL agents, since they do not need to increase their reasoning complexity.
Additionally, having assistants separated, allows to grant certain information
privileges such as having access to environmental properties (since it is not
always the case that, for example, cars have access to the average tra�c �ow
density). Similarly, their decision making involves system goals that may not
be available to domain-level agents. Furthermore, they can individually spe-
cialize to provide speci�c services or to reorganise their society so to best
�t the heterogeneity and dynamism of the needs of assisted agents. Finally,
other agents should regard them as trusted third-parties when accepting their
assistance or revealing information. Regarding distribution, it requires agent
communication, our proposal minimizes its costs by keeping most of it local
to clusters. In conclusion, the proposed architecture assumes assistants atML
to: have some information access rights; to be able to reason at a higher level
of abstraction; and to be reliable. In order to ful�l these requirements, we have
chosen an implementation for this abstract architecture that de�nes assistants
as sta� agents belonging to the organisation.

2.4 Organisational Assistance

As we stated above, this paper focuses on the Organisational Assistance as
a service of the Assistance Layer. In particular, we propose a service that
adapts the domain-level organisation to improve the system's performance
when there are environmental or agent population changes. Next, we formalise
the adaptation of the organisation and describe how it is distributed among
meta-level agents.

5 AOSE: Agent Oriented Software Engineering [47].

11

2.4.1 The adaptation function

We de�ne the adaptation of an organisation as a function αO that provides
an updated organisation (Org) depending on both the system's observable
properties (EnvPS and AgPS) and current organisation. Equation 12 below
de�nes the domain and range of this function:

αO : EnvPS ×AgPS ×Org → Org (12)

Depending on the organisation design, the adaptation of its components
will be totally dependent, partially related or completely independent. The
more dependent they are, the more information is required when making adap-
tation decisions. Our driving force behind adaptation is goal accomplishment,
and so Goals will be considered in the adaptation functions of all organisa-
tional components. Therefore we are taking an assumption of partial-relation.
If all components were dependent, then the whole organisation would be re-
quired to be considered when adapting. Obviously, such a case would also
imply an increase of the adaptation function complexity.

αSS : EnvPS ×AgPS ×Goals× SocStr → SocStr (13)

αSC : EnvPS ×AgPS ×Goals× SocConv → SocConv (14)

αP : EnvPS ×AgPS ×Goals× Prot→ Prot (15)

αN : EnvPS ×AgPS ×Goals×Norms→ Norms (16)

αG : EnvPS ×AgPS ×Goals→ Goals (17)

Accordingly, we de�ne the adaptation of the Social Structure (αSS , see
Equation 13) as a function that provides an updated social structure depend-
ing on system's status �i.e. its observable properties�, the de�ned goals and
current social structure. Analogously, we de�ne the adaptation of the Social
Conventions (αSC , see Equation 14) and a function to adapt each one of its
components. Speci�cally, one function for the adaptation of interaction Pro-
tocols (αP) and another one for the adaptation of Norms (αN) as de�ned
in Equations 15-16. In the same manner, we de�ne the adaptation of Goals
(αG) as the function expressed in Equation 17. Overall, when having a speci�c
organisation org ∈ Org, its adaptation is de�ned as follows:

De�nition 2 Given an organisation org = (socstr, socconv, goals) ∈ Org
where socconv = (prot, norms), current values of environment properties
envpS , and current values of agent properties agpS , we de�ne the organisation
adaptation of org as:

αO
(
envpS , agpS , org

)
= org′, where :

org′ = (socstr′, (prot′, norms′), goals′)
socstr′ = αSS

(
envpS , agpS , goals, socstr

)
prot′ = αP

(
envpS , agpS , goals, prot

)
norms′ = αN

(
envpS , agpS , goals, norms

)
goals′ = αG

(
envpS , agpS , goals

)

12

Basically, these adaptation functions evaluate the current system's status
in order to modify speci�c organisational components. As mentioned above,
these changes are driven by system goals, so that changes are introduced with
the aim of inducing a higher accomplishment of current goals. Our proposal is
that assistants in the meta-level apply these adaptation functions when agents
at the domain-level fail to obtain the desired performance. In this sense, it can
be interpreted as a top-down adaptation approach. Nevertheless, the meta-
level could also be sensitive to changes in the agent population that may
require fundamental changes �such as goal adaptation. This case is closer
to a bottom-up approach, and thus, a hybrid adaptation approach may be
more �exible. Notice that the goals adaptation function (αG) requires special
attention since its outcomes a�ect the rest of adaptation functions (see sub-
sequent subsubsection on Frequency for a further discussion on that). More
importantly, it may change fundamental design goals, and so, some basic sys-
tem properties should be guaranteed by means of additional mechanisms such
as speci�c goal updating policies. Although this discussion goes beyond the
scope of this paper, we envision that measures related to the number of con-
vention violations �which may be related to agents' degree of satisfaction� may
motivate reconsidering some goals.

As an illustration, we provide some brief descriptions of these adaptation
functions in our tra�c scenario. This scenario has a social structure adaptation
function (αSS) that is able to add roles (e.g. rol′DL = rolDL ∪ {Ambulance})
and their relationships (e.g. rel′DL = relDL∪{PickInjured (ambulance, car)})
to deal with collisions and help in restoring tra�c �ow. What is more, it has
a protocol adaptation function (αP) that can update current turning proce-
dure to include safety distances (e.g. prot′DL = {TurningSafely}) to prevent
collisions. In addition, its norm adaptation function (αN) is able to decrease
the speed limit to avoid collisions when there are a large number of cars. Fi-
nally, a goal adaptation function (αG) may update goals to give more weight
to collisions than to tra�c �ow.

2.4.2 Distributed adaptation in 2-LAMA

In our 2-LAMA approach, the adaptation function (αO) de�ned in the above
subsection is performed by the meta-level to adapt the domain-level's organ-
isation. The distributed nature of meta-level raises some issues that we need
to take into account. First, each assistant perceives partial information about
system status and computes a summary that shares subsequently with other
assistants. Second, organisation adaptation is distributed between assistants.
In this manner, each assistant computes the desired adaptations for each com-
ponent, and later on, their adaptation proposals have to be combined to end
up with new organisational con�gurations. Finally, adaptation costs must be
taken into account when deciding the adaptation frequency. The rest of this
subsection is devoted to exploring each of these issues: information, decision
making and frequency.

13

Information

As mentioned in section 2.3, in 2-LAMA, each assistant perceives informa-
tion about the cluster of agents it assists and partial information about the
corresponding environment. We refer to this information as assistant's local in-
formation (agpCi , envp

C
i , i being the assistant's index). Afterwards, it shares

a summary of this information with other assistants. Thus, we de�ne as re-
mote assitant information all pieces of summary information received from
other assistants (sump1, . . . , sumpi−1, sumpi+1, . . . , sumpn). This way, each
assistant has an abstraction of overall information when taking its decisions.
Finally, we de�ne the knowledge of an assistant (knowpi) as the aggregation
of its local and remote pieces of information.

This modelling requires us to de�ne two processes: how local information
is summarised and how an assistant aggregates its local and remote informa-
tion. First, we de�ne a summary function (σ, see eq. 18) which constructs a
summary (sumpi ∈ SumP 6, see eq. 19) out of an assistant's local information.
Thus, statistical functions, such as mean or average, are good candidates for
summary functions. Second, we de�ne the aggregation function (λ, see equa-
tion 20) as the process that combines an assistant's local information with
pieces of remote information (i.e. a set of summaries) to obtain an assistant's
knowledge (knowpi in equation 21). This knowledge is of type KnowP and
will be used in subsequent adaptation functions.

σ : EnvPC ×AgPC → SumP (18)

sumpi = σ(envpCi , agp
C
i) (19)

λ : EnvPC ×AgPC × (SumP)
n−1 → KnowP (20)

knowpi = λ(envpCi , agp
C
i , {sump1, . . . , sumpi−1, sumpi+1, . . . , sumpn})

(21)
As an example, in the tra�c scenario,where an assistant is in charge of

a region of a road-network, the summary function (σ) consists in computing
the average tra�c �ow density in this region as well as the average speed
of the cars traversing it (i.e. SumP = R × R, sumpi = (avg({densityr|r ∈
Areai}), avg({speedi,j |j = 1..mi}))). Similarly, the aggregation function (λ)
is an average of the summary of local information plus all remote information
received (i.e. KnowP = R×R, knowi = (avg(sumpdensityi ∪{sumpdensityx |x 6=
i}, avg(sumpspeedi ∪ {sumpspeedx |x 6= i}))).

Finally, it is worth noticing that, although previous formulae assume assis-
tants receive remote information from all other assistants (i.e., (otherSumPi =
{sumpx|x 6= i})), it is not required to be the case. Actually, it depends on:
whether or not the meta-level's social structure is fully connected, the reliabil-
ity of communications, and the assistants' capacity to gather local information.

6 Notice that SumP , the type of this information summary, is not quali�ed by the cluster
(C) superscript because there is no need to di�erentiate it from SumPS .

14

Obviously, the lack of information may a�ect assistant's (and thusML's) per-
formance.

Decision making

Distribution at meta-level concerns both information and decision making. As
mentioned above, assistants initially make their individual decisions based on
the available information and the system's goals. Afterwards, they reach an
agreement over the actual domain-level organisational changes. The equations
below formalise this process for the norm adaptation case . First, as shown in
equation 22, we de�ne the decision making of a single assistant i (i.e. a partial
norm adaptation function αNi), as a function with a similar domain and the
same range as the meta-level adaptation function previously introduced (αN ,
equation 16). In particular, when an assistant i applies its adaptation function
αNi , it uses its knowledge, the system's goals and organisational norms to make
its own decision about the de�nition of new norms. Afterwards, all assistants
perform an agreement process by means of a function (βαN) which takes as
many norm updates proposals as there are existing assistants and generates
the actual norm update as described in equation 23.

αNi : KnowP ×Goals×Norms→ Norms (22)

βαN : (Norms)
n → Norms (23)

Previous equation aggregates n di�erent decisions because it assumes
norms are global �at domain-level� and relevant to all assistants. Neverthe-
less, it could be the case that certain norms apply only to certain contexts,
and thus, just a�ected assistants should agree upon their update. Taking that
to the limit, it may be the case that a single involved assistant does not need
to agree with anyone else.Taking this into consideration, equation 24 shows
the overall meta-level norm adaptation function (αN) as the agreement of
partial norm adaptation functions αNi individually computed by assistants .
Following our tra�c example, the adaptation function (αN) that updates the
speed limit (see 2.4.1) applies a voting mechanism to reach an agreement (i.e.
βαN ({norms1, . . . , normsn}) = Voting({norms1, . . . , normsn})). Votes come
from individual assistants' decisions that depend on current road density val-
ues (i.e. αNi (envp, agp, goals, norms) = αNi (envpdensity, norms)).

αN (envp, agp, goals, norms) =
= βαN (α

N
1 (knowp1, goals, norms), . . . , α

N
n (knowpn, goals, norms))

(24)
Regarding the other organisational components' related functions �i.e. par-

tial adaptations (αSSi , αPi , α
G
i), agreement processes (βαSS , βαP , βαG) and

adaptation functions (αSS , αP , αG)� their domain/range and de�nitions are
analogous to equations 22-24. They use the knowledge derived from exchanged
summaries and the organisational goals to compute the corresponding updated

15

organisational component �notice though, that the domain of goal related
functions is simpler, since it does not consider any other organisational com-
ponents.

Frequency and costs

The process of organisational adaptation (αO) involves some associated costs
�in time and/or resources� that should be considered when de�ning the adap-
tation frequency. That is to say, the resulting frequency should keep the adap-
tation costs below the bene�ts it generates. In particular, as equation 25 shows,
the organisational adaptation cost (cαO) comprises an information retrieval
cost (cinfoO), a computation cost (ccompO), an adoption cost (cadoptO) and a
transition cost (ctransO).

cαO = cinfoO + ccompO + cadoptO + ctransO (25)

The former, the information retrieval cost (cinfoO), is related to the cost of
collecting the information required by the adaptation function. For example,
collecting AgP may require some time and resources to exchange messages
between assistants and participant agents. The second cost, the computation
cost (ccompO), re�ects the time and resources required to compute the adapta-
tion function. That is to say, the time required to compute all αNi in parallel
plus the cost of achieving an agreement (βαN) at meta-level. The third cost,
the adoption cost (cadoptO), is related to the cost of transforming the previous
organisation into the adapted one. As an illustration, when a norm is updated,
messages must be sent to inform agents and they may need time to alter their
activity in order to comply with the new norm. The last cost, the transition
cost (ctransO), is the time and resources required for system's stabilisation. In
this manner, the new organisation can be evaluated without interference from
the previous one, since the e�ects of previous norms may persist longer in the
environment than their actual activation period.

Furthermore, as the organisational adaptation function (αO) is de�ned
by the adaptation functions of all its components (see de�nition 2), its costs
depend on a combination (f) of the costs of each adaptation function. For
example, as shown in equation 26, the information retrieval cost derives from
the costs of collecting information to perform: the social structure adapta-
tion (cinfoSS), the adaptation of social conventions (cinfoSC) and the goal
adaptation (cinfoG). Notice that in equation 26 there is not an addition but
a function of those costs since there may be retrieved information that is
useful to adapt more than one component. Thus, the cost of retrieving such
shared information may be present in di�erent component associated costs
(e.g. cinfoSS , cinfoSC , cinfoG), but only needs to be added once to �nal cost
(e.g. cinfoO).

cinfoO = f(cinfoSS , cinfoSC , cinfoG) (26)

16

What is more, the adaptation frequency (freq) of each of these organi-
sational components can be chosen depending on its associated costs �and
bene�ts. For instance, as equation 27 shows, the cost of retrieving information
in order to perform the social structure adaptation (cinfoSS) is the sum of the
cost of collecting information every time (x) the SocStr is adapted. In this
equation, the number of added terms (#αSS) is the total number of performed
SocStr adaptations, which depends on the frequency7 of adapting the social
structure (freqαSS) and the system's execution time (t). Thus, the higher the
frequency, the higher the number of performed adaptations and the higher its
associated cost.

cinfoSS =
∑#αSS

x=1 cinfoSSx , #αSS = freqαSS · t (27)

Although organisational components may adapt at di�erent frequencies, it
is important to ensure that goals are adapted with the lowest frequency (see eq.
28). In this way, the rest of the adaptation functions may have enough time to
update their corresponding organisational components to current goals before
they change. Moreover, in this manner the period between goal adaptations
may be long enough to allow the consequences of other component adaptations
to emerge. Thus, the other adaptation functions may have its feedback.

freqαG < freqαSS ∧ freqαG < freqαSC (28)

Finally, it is worth mentioning that every cost in a single adaptation step
can be computed as the sum of the costs endured by all assistants. For instance,
the information retrieval cost associated with SocStr in adaptation step x can
be expressed as the sum of the costs of collecting the information for each
assistant i (i.e. cinfoSSx,i):

cinfoSSx =
∑n
i=1cinfoSSx,i (29)

Again, we can use the tra�c scenario to illustrate previous concepts. Re-
garding information retrieval costs (cinfoO), there is a cost associated to ob-
servable properties, since assistants require compiling information from radar
traps (used to detect vehicle speeds, i.e. AgP) and automatic tra�c counters
(used to estimate road densities, i.e. EnvP). There is also a cost of performing
the computations (ccompO) of the adaptation functions mentioned in section
2.4.1 and achieving agreement betwen the assistants (e.g. the voting scheme
cited in Decision making). Moreover, upon organisational component updates,
domain-level agents need to be informed, and this implies an an adoption cost
(cadoptO). For example, when speed limit is updated, all electronic tra�c signs
must be updatedÊaccordingly. Furthermore, when this new speed limit is al-
ready communicated, there is a time cost (ctransO) to allow vehicles to adapt
their speeds, since they cannot change their speed abruptly. Finally, the tra�c

7 Notice that for the sake of simplicity, we express adaptation frequencies as �xed time
intervals. However, they can be dynamic depending on system status.

17

scenario also requires goals to be updated at a lower frequency. Thus, for in-
stance, the frequency of the norm adaptation function is lower than that of the
goals (i.e. (freqαN < freqαG). This allows assistants to monitor tra�c �ow
and collisions to measure goal ful�lment after updating the speed limit. Af-
terwards, it will only be possible to compare current performance results with
previous ones if both have been computed by considering the same reference
goals.

3 2-LAMA in a P2P scenario

Our case study is a Peer-to-Peer sharing network (P2P), where a set of com-
puters connected to the Internet (peers) share some data. We have chosen to
apply our model in this scenario because it is a highly dynamic environment
due to the nature of Internet communications. We regard the net of actually
contacted peers8 as an instance of its organisational social structure, which is
dynamically updated. Finally, this scenario allows the addition of norms to
regulate communications. Overall, it allows us to apply our organisational and
adaptive approach.

Performance in this scenario is evaluated in terms of time and network
consumptions during the sharing process. Thus, we can de�ne system's goals
as the minimisation of such measures so that the faster the data is obtained
and the less network is consumed, the better for the users. Notice, though,
that there is a trade-o� between time and network usage. Therefore, although
a peer can potentially contact any other peer to get the data as fast as possible,
it usually contacts just a subset in order to consume less of the network.

Real P2P networks are highly complex, so we try to reduce complexity
by assuming certain simpli�cations about the protocol and the underlying
network. The rest of this section provides the details of the actual scenario
and our 2-LAMA approach applied to it.

3.1 Architecture in P2P

As previously mentioned, we model the set of computers of the P2P scenario
as a MAS. Speci�cally, we apply our generic 2-LAMA architecture to this
scenario. Thus, the resulting system has a domain-level to perform the sharing
activity, and meta-level to adapt its organisation. The next (sub)subsections
detail both components and the interface between them for a given 2LAMA
speci�cation (2lamaP2P) based on our model (2LAMA):

2lamaP2P ∈ 2LAMA
2lamaP2P = (ml, dl)

(30)

8 In the P2P scenario, the net of actually contacted peers is called overlay network since
it is a net over the underlaying physical network, i.e. the Internet.

18

ML

DL Norms
DL

N
o
rm

s D
L'

A1 A2 A3

P5 P6

P7 P8

P1 P2

P3 P4

P9 P10

P11 P12

cluster1 cluster2 cluster3

E
n
v
P
,

A
g
P

→

co
n
ta
ct
s

←

Norms
ML

E
n
v
P
,

A
g
P

→

co
n
ta
ct
s

←E
n
v
P
,

A
g
P

→

co
n
ta
ct
s

←

Fig. 5 2-LAMA in the P2P scenario (P1 . . . P12 ∈ agdl, A1 . . . A3 ∈ agml).

3.1.1 Domain-level

We model the P2P scenario as a MAS where computers sharing data are
participant agents within the domain-level (agDL). They play a single role
rolDL = {peer} within an organisation (orgDL) �see Figure 5. We assume
that the organisational goals (goals) is that all agents obtain the data con-
suming the minimal time and network. Thus, given some time cost (ct) and
network cost (cn) metrics, we can de�ne a global goal function that minimises
a weighted combination of them: goals = min(wt · ct+wn · cn), where (wt,wn)
are the corresponding weights that represent the relative importance of each
measure.

As peers usually contact a subset of neighbours, we regard these contacts
as the net of relationships between agents. These relationships, which are an
instance of their social structure speci�cation (socstrDL), are updated by the
meta-level taking into account the system's status. Regarding social conven-
tions, peers use the sharing protocol (protDL) speci�ed below in section 3.2
and two norms normDL = {normBWDL, normFriendsDL}.

Both norms are prohibitions that can be expressed as:

� normBWDL =�a peer cannot use more than maxBW percentage of its nomi-
nal bandwidth 9 to share data�.

� normFriendsDL =�a peer cannot simultaneously send the data to more
than maxFriends peers�.

The former (normBWDL) prevents peers from making massive use of their
bandwidth to send/receive data to/from all other peers. The latter (normFriendsDL)
limits the number of peers to whom a peer can simultaneously send the data.

3.1.2 Interface between levels

In 2-LAMA, the meta-level relates to the domain-level by accessing the observ-
able properties of its agents/environment (AgPS/EnvPS), and its organisa-
tion (OrgDL) �see equation 6. As we de�ned in equations 7-11, the observable

9 The bandwidth is the capacity to transfer data over user's network connection. It is
expressed as the number of data units that can traverse a communication channel in a time
unit. The less is used by the peer, the more is left for other purposes.

19

properties are compounds of information that are local to clusters. In the P2P
scenario, as expressed in equation 31, the properties about the environment
in a cluster (EnvPC) represent network bandwidths (NetBWC) and latencies
between di�erent peers (NetLatC).

EnvPC = NetBWC ×NetLatC (31)

The network bandwidths (NetBWC) are information about the network
connection of each peer (NetBW) �see equation 32, where m denotes the
number of peers in a given cluster. This information includes its nominal band-
width (NomBW) �i.e. its maximum available� and upload e�ective bandwidth
(EffUpBW) and download e�ective bandwidth (EffDnBW) �i.e. its cur-
rent actual bandwidth consumption. For the sake of simpli�cation, we assume
that the nominal upload and download bandwidths are symmetrical, so that
a single value describes both of them. In contrast, we consider two di�erent
e�ective bandwidth values, since the e�ective usage may in fact be di�erent
even though the nominal bandwidth is symmetrical.

NetBWC = {NetBW1 . . . NetBWm}
NetBW = NomBW × EffUpBW × EffDnBW (32)

Besides, the network latencies(NetLatC) contain information about the
round-trip time required by a unit of data to be transmitted between each
pair of peer network connections �see Equation 33.

NetLatC = {NetLat1,1 . . . NetLat1,m, NetLat2,1 . . . NetLatm,m} (33)

On the other hand, the information about agent observable properties
(AgPS , see equation 9) in the P2P scenario is related to datum possession
and agent's activity. It is a compound of agent observable properties in each
cluster (AgPC , see equation 8). In fact, this information at cluster level consists
of the observable properties for each agent (AgP , see equation 7). Speci�cally,
the information about each agent includes information about which pieces of
data it has (Piec). It also includes information about which action (Act) it
is performing on each piece, such as serving, receiving or no action. Equation
34 contains these de�nitions � note that in our current P2P implementation,
there is only possession/activity information about a single piece.

AgP = Piec×Act (34)

Each assistant obtains described environmental and agent information at
cluster level (EnvPC , AgPC) by: collecting it from peers or accessing net-
work inside information. In current implementation we use both, so assistants
query peers and also obtain this information by themselves by observing the
properties of the agents and the environment properties.

In addition, assistants exchange summaries (SumP) about these observ-
able properties in order to build their knowledge (KnowP). Both types of
information are detailed in section 4.1.

20

Phase Level Protocol Messages

Initial Int join<hasDatum>
Social structure Int get_lat<peers>, lat<peer><measure>, contact<peers>

DL lat_req, lat_rpl, bit�eld<hasDatum>
Data sharing DL request, data, cancel, have, choke, unchoke

Int completed, has_datum<peer>
ML all_completed, completed_peer<peer>

Norms ML norm_bw<value>, norm_friends<value>, summary<sump>
Int norm_updated<norm_id><new_de�nition>

Table 1 Protocol messages grouped into subsequent phases.

3.1.3 Meta-level

In the P2P scenario, the meta-level has a single role rolML = {assistant}.
Each agent in agML assists a disjoint subset of peers (clusteri ⊂ agDL). It does
so by collecting information about them and adapting their local organisation
using its partial adaptation functions (speci�cally αSSi and αNi , see sections
4.2, 4.3). Its decisions are based on local information about its associated
cluster aggregated to remote information about other clusters �see section
4.1. This information about other clusters comes from other assistants in the
meta-level. More speci�c details about organisational adaptation in P2P are
shown in section 4.

Besides, we assume that assistants are located at Internet Service Providers
(ISP) and thus their communications are fast. Moreover, the cluster of peers
of a given assistant is the set of peers connected to the same ISP. Hence, those
cluster peers have lower latency communications with each other and with
their assistant. As regards the meta-level norm (normML), we consider one
that limits the number of peers (in the cluster) an assistant can inform about a
new peer (in another cluster) having the data. Thus, when an assistant receives
the information that one peer in another cluster has completed, the number of
peers it can decide to inform is limited. Therefore, the norm is a prohibition
that can be expressed as:

� normHasML =�Upon reception of a completed peer (peer /∈ clusteri) mes-
sage, inform no more than maxHas peers ∈ clusteri �.

3.2 Protocol

Our proposed protocol is an adapted version of the widely used BitTorrent [4]
protocol. On the one hand, we assume that the information is composed of
a single piece of data. In BitTorrent, the information is divided into several
pieces of data, each one shared independently among peers. On the other hand,
we have extended the protocol to include message between levels, belonging
to the interface between them, as well as messages between ML agents. Table
1 presents the messages that are exchanged during protocol phases.

21

Initial phase

Initially, new peers join a cluster by contacting the assistant in charge of
it (join <hasDatum>). In this message, they inform the assistant whether they
have the datum (<hasDatum> = 1) or not (<hasDatum> = 0). In the current version,
peers entering the system contact the closest assistant (the one they have
a smallest latency with). Analogously, in other domains agents can use this
locality criterion to choose their assistant.

It is worth to mention that in the original BitTorrent protocol, peers ini-
tially contact to a directory service (so called Tracker). In particular, they join
this directory and obtain the references to other participants from it �i.e.
agents use this service to be involved in their organisation. Accordingly, in our
general model, such a service is formaly provided by the Organisational Layer.
Then, the Assistance Layer can access the list of organisation's participants
and update their net of relationships by interacting with the Organisational
Layer. However, for the sake of simplicity, in our implementation's protocol,
we let peers directly provide joining information to assistants and we let these
assistants directly update peers' relationships by informing peers about other
participants �see next phases. Notice that, although DL is inspired in a pure
P2P organisation (i.e. BitTorrent), 2-LAMA applied to current scenario is no
longer following such an organisation.

Social structure phase

Afterwards, in order to compute the net of relationships, assistants need in-
formation about latencies between peers in their cluster. Hence, they start
requesting peers to measure their latency with all other peers in their cluster
(get_lat <peers>). After receiving that message peers measure their latencies
with other peers in their cluster (lat_req, lat_rpl), and report them to the as-
sistant (lat <peer> <measure>). Assistants use this information to compute a net
of relationships among peers in their clusters (see section 4.2), and tell each
peer which other peers it has to contact (contact <peers>). The actual social
structure �i.e. the net of relationships that ful�l social structure speci�cation�
de�nes which other peers each peer can contact in order to obtain the data.
After receiving their contacts peers perform a handshake, introducing them-
selves to each one of their contacts (bitfield <hasDatum>), specifying whether
they have the datum (<hasDatum> = 1) or not (<hasDatum> = 0).

Data sharing phase

Then, peers not having the datum start a sharing phase requesting the data
from their contacts who do have it (request). Notice that peers can only serve
a maximum number of peers (de�ned by the maxFriends value). Hence, upon
a request peers having the datum start sending the datum (data) if they are
serving fewer peers than number allowed. Otherwise, if a peer is serving the
maximum number of allowed peers, it replies that it can not serve the datum

22

InternetInternet

. . .Peer
1

Peer
1 Peer

i
Peer

i Peer
j

Peer
j Peer

n
Peer

n. . .

ISP
1

ISP
1 ISP

m
ISP

m. . .
individual

aggregated

Fig. 6 Network abstraction. Each cylinder represents a communication link. The Internet
is abstracted as a single exchange point.

and will ignore any further messages (choke). However, as soon as one of the
current data transmissions ends, the peer informs waiting peers to let them
know that its status has changed (unchoke). Thus, peers still lacking the datum
can request it again. Peers lacking the datum are allowed to obtain data from
two sources simultaneously for a short period of time. This is done in order to
compare their e�ective bandwidth, and to choose the faster source and discard
the other one (cancel).

As soon as one peer has the datum, it informs its handshake peers (have)
so they can request the datum if they still lack it. Furthermore, upon data
reception, a peer also informs its assistant (completed), which shares this in-
formation with other assistants (completed_peer <peer>). Thus, other assistants
can inform some (maxHas) peers in their cluster about the new data source
(has_datum <peer>)10. An assistant also informs other assistants when all peers
in its cluster are completed (all_completed), preventing further unnecessary
communications.

Norms phase

During system execution each assistant perceives local information about sys-
tem status (envpCi , agp

C
i) and shares some of this information with other

assistants (sumpi, summary <sump>). They use this information to compute new
desired norm values (see section 4.3). Speci�cally, an assistant can propose to
update the value of normFriendsDL (norm_friends <value>) and normBWDL

(norm_bw <value>). Then, when a new value is �nally agreed among assistants,
each assistant informs the peers in its cluster (norm_updated <norm_id> <new_definition>).

3.3 Network abstraction

We consider the network as the environment in which the sharing process takes
place. Notice that the network topology and its saturation in�uences the com-
munication time of messages between agents. In our network model we have

10 Notice that has_datum message has more semantics than contact one since has_datum

implies that the referred peer has the datum. Hence, has_datum receiver can start sending
a request to the new source without exchanging bitfield messages to obtain other's da-
tum possession. This saves the time and network resources consumed by the corresponding
bitfield messages.

23

individual and shared channels, which we describe next. Notice that they can
be regarded as individual and shared resources, which is a common situation
in many MAS scenarios. First, we are interested in having a di�erent commu-
nication capacity for each peer. Therefore, we de�ne a single communication
link between each peer and its Internet Service Provider (ISP) �see individual
links in Figure 6. We also want to model simultaneous network usage by dif-
ferent peers, and so we de�ne an aggregate link11 between each group of peers
(those connected to the same ISP) and the Internet. Finally, we abstract the
Internet as a single exchange point among ISPs.

For each link, we de�ne one channel per direction �upload/download. Each
channel has its own communication capacity, which is determined by its band-
width�for simplicity, we assume both directions have equal bandwidth. There-
fore, the usage of a link in one direction does not a�ect the other. We de�ne
this bandwidth as the number of data units that can traverse the channel in
a time unit.

4 Organisational adaptation in the P2P scenario

While in the previous section, we applied 2-LAMA to the P2P scenario, in
the present one we focus on how to apply the organisational adaption process
described in section 2.4 to this scenario. In particular, we focus on the adapta-
tion of norms and the actual relationships among agents (the instantiation of
the social structure speci�cation). In other words, in this paper we formalise
a general framework to adapt all organisational components and provide a
detailed description about two of them as a proof of concept. Even more, in
despite of the potential richness of these two adaptations, the scope of this
paper is to present some straightforward versions that illustrate our general
model's basic concepts. However, in order to show that the general model is
able to deal with di�erent implementations of these functions, we present two
alternatives to perform the norm adaptation. One alternative is based on an
heuristic coded by system designer whereas the other one uses learning to
provide the adaptation mechanism. Speci�cally, we use Case-Based Reasoning
(CBR) as learning technique. It is worth mentioning that we focus on norm
adaptation since they are relevant in scenarios without a direct mapping be-
tween goals and tasks (e.g. current P2P sharing network scenario). In such
scenarios, it is no possible to decompose a goal task into sub-tasks and assign
them to agents. Hence, norms can be used to in�uence agent's behaviour as
an alternative to task assignation.

11 We call it aggregated link since it transmits all messages from individual links in the
same group.

24

4.1 Information required

As detailed in the general model, assistants take their demissions based on
local information of their cluster and remote information received from other
assistants �see 2.4.2. On the one hand, each assistant perceives local infor-
mation (envpCi , agp

C
i) directly from its cluster through the interface �see

previous section 3.1.2. On the other hand, each assistant receives remote in-
formation from other meta-level agents. This remote information (SumP) is
generated by other assistants by applying the summary function, and has to
include the relevant information to compute the adaptation functions. In the
P2P scenario, it includes information about completed peers which is used by
the social structure adaptation function and about peers bandwidths relevant
for the norm adaptation function.

Equation 35 de�nes the summary information (SumP) in the P2P scenario.
Each summary is computed by assistants from its cluster environment and
agent properties �see equations 36 and 37. Regarding the bandwidths, a sum-
mary contains information about the serving (SrvBW), receiving (RcvBW)
and e�ective receiving (RcvEffBW) bandwidths within a cluster. The �rst
one (SrvBW) corresponds to the sum of nominal bandwidths of peers that are
serving data �see equation 38, where (i, j) ∈ S stands for peer j-th of cluster
i-th.. The second one (RcvBW) is the sum of nominal bandwidths of peers
that are receiving data �see equation 39, while the third one (RcvEffBW)
is similar to the previous one but adding the e�ective bandwidth instead �
see equation 40. Notice that the e�ective bandwidth (RcvEffBW) may be
smaller than the nominal one (RcvBW) when only a few data are served or if
there is network saturation that delays message transport. Moreover, a sum-
mary also contains the amount of waiting (Wait) and complete (Compl) peers
�see equations 41 and 42 respectively. Notice that the waiting peers compo-
nent corresponds to the number of peers that do not have the datum and are
neither receiving it. Finally, a summary also contains the sum of all nomi-
nal bandwidths (AllBW) and the number of peers within a cluster (NPeers)
�see equations 43 and 44 respectively.

SumP = SrvBW×RcvBW×RcvEffBW×Wait×Compl×AllBW×NPeers
(35)

σ(envpCi , agp
C
i) = sumpi (36)

sumpi = (srvbwi, rcvbwi, rcveffbwi, waiti, compli, allbwi, npeersi) (37)

srvbwi =
∑
i,j∈S (nombwi,j) , S = {(i, j) |acti,j = serving} (38)

rcvbwi =
∑
i,j∈R (nombwi,j) , R = {(i, j) |acti,j = receiving} (39)

rcveffbwi =
∑
i,j∈R (effbwi,j) , R = {(i, j) |acti,j = receiving} (40)

waiti = |{pi,j ∈ peersi | pieci,j = ∅, acti,j = ∅}| (41)

compli = {pj ∈ peersi | pieci,j 6= ∅} (42)

25

allbwi =
∑mi
j=1 (nombwi,j) (43)

npeersi = mi (44)

On the other hand, the information used in partial adaptation functions,
is an aggregation of local and remote information. In our general model,
this is called knowledge information. Speci�cally, it includes local information
(envpCi , agp

C
i) plus a weighted addition of summary information. This sum-

mary information includes all received remote information ({sumpj | j = 1..n∧
j 6= i}) and the summary of local information (sumpi = σ(envpCi , agp

C
i)). In

particular, knowledge information (KnowP) has envpC , agpC and one com-
ponent related to each summary component as shown in equation 45 �notice
that we have added a k pre�x to previous summary components to denote
knowledge. Each of these summary-related components is the sum of a local
summary component plus remote ones using di�erent weights. For instance,
the knowledge serving bandwidth of a given assistant (ksrvbwi) is the local
serving bandwidth (srvbwi) multiplied by a local weight (wL) plus the sum
of every remote serving bandwidth ({srvbwj | j 6= i}) multiplied by remote
weights (wR,j) as de�ned in equation 46. The sum of all these weights is one,
so the result has the same range as the original components. Moreover, we
assume local information more relevant than remote one �see equation 47.
Thus local information may be more relevant. For example, if local weight has
its maximum value (wL = 1), then each assistant takes into account only its
cluster status. In contrast, if this weight is the minimum (∀jwR,j = wL), then
each assistant gives the same importance to local information as to the remote
information �this is the case in current tests. The mid-point is an imbalance
importance among local and remote information that leads an assistant to
take its decisions giving more importance to its local cluster, but taking into
account the rest of the system. Furthermore, the aggregation function (λ, equa-
tions 20 and 48) consists in computing local summary and performing weighted
additions of summary components to obtain the knowledge components �see
equation 49.

KnowP =
〈
EnvPC , AgPC ,KsrvBW,KrcvBW,KrcvEffBW,

Kwait,Kcompl,Kallbw,Knpeers〉 (45)

ksrvbwi = wL · srvbwi +
∑n
j=1 {wR,j · srvbwj | j 6= i} (46)((

wL +
∑n
j=1 {wR,j | j 6= i}

)
= 1
)
∧ (@wR,j |wR,j > wL) (47)

λ(envpCi , agp
C
i , {sumpj | j = 1..n ∧ j 6= i}) = knowpi (48)

knowpi =
〈
envpCi , agp

C
i , ksrvbwi, krcvbwi, krcveffbwi,

kwaiti, kcompli, kallbwi, knpeersi〉
(49)

In our general model, this knowledge information is available to all par-
tial adaptation functions (see section 2.4.2). However, as we mentioned above,
these functions may use only part of it. In particular, the current partial social

26

Fig. 7 Social structure adaptation examples. Left-hand graphs show arc latencies (envpC)
and datum possession (agpC). Right-hand graphs represent the resulting relationships
among peers (RelDL) that assistants compute. Latency values are just illustrative.

structure adaptation function (αSSi) just uses information about local laten-
cies (lati ∈ envpCi) and about datum possession (pieci ∈ agpCi and kcompli).
On the other hand, current partial norm adaptation function (αNi) uses in-
formation on bandwidth (ksrvbwi, krcvbwi, krcveffbwi, kallbwi) and waiting
peers (kwaiti, knpeersi).

4.2 Social structure adaptation

The social structure adaptation function (αSS , equation 13) is performed by
each assistant applying the corresponding partial adaptation function (αSSi ,
see section 2.4.2). In fact, in this paper we adapt the actual net of relationships
that ful�ls the social structure speci�cation, instead of the speci�cation itself.
Accordingly, each assistant is in charge of updating the net of relationships
of its cluster. Speci�cally, an assistant can request any peer in its cluster to
contact other peers in the same cluster or in another one. However, an assistant
cannot provide contacts to peers in other clusters. It can only provide complete
information (compli ∈ sumpi) to other assistants, who may send contacts to
their own peers. The resulting domain-level's net of relationships, is the union
of all intra-cluster and inter-cluster relationships �i.e. the agreement function
(βSS) is the union of partial relationships adaptation (αSSi) results.

In current implementation, assistants apply thei adaptation function dur-
ing the protocol's social structure phase (see section 3.2) and every time a
peer is completed. In both cases, they take into account knowledge information
about communication latencies (NetLatC) and which peers have the datum
(Piec and Kcompl). This way, the net of relationships is created and updated
depending on system's evolution.

First, during the protocol's social structure phase, an assistant faces the
two di�erent situations depicted in Figure 7:

� Fig. 7a) some peers within the cluster have the datum: the assistant com-
putes the shortest paths �using Dijkstra's algorithm [19] over arc latencies�
from each peer having the datum to the rest of peers in the cluster. Then, it

27

re-organises its cluster by telling each peer to contact with its predecessor
in its shortest path to a data source �see contact message in section 3.2.

� Fig. 7b) no peer has the datum: the assistant organises its cluster to be
prepared for data entering through any peer. Accordingly, it assumes that
any peer can become a data source and computes all possible shortest
paths �using Dijkstra's algorithm too. Next, it provides each peer with
its predecessors in all its corresponding shortest paths. This way, all peers
are in contact with their neighbours which could rapidly provide the datum
when entering through any node in the cluster.

Later on, every time a remote peer is completed, the partial adaptation
function is invoked again. Speci�cally, when an assistant receives a complete_peer

message, its complete information (kcompli) is updated. In such a case, the
partial function (αSSi) determines a new net of relationships in which some
local peers can contact the remote one. Then, the assistant sends has_datum
messages to those peers to request that they contact it. Accordingly, the num-
ber of selected peers depends on norm normHasML �notice that it limits the
amount of these messages, see section 3.1.3.

4.3 Norm adaptation

In our general model, we detailed how the norm adaptation function (αN ,
equation 24) is distributed between meta-level agents. Each assistant takes a
decision using its partial adaptation function (αNi , equation 22), and the actual
norm update is determined by an agreement function (βαN , equation 23) �see
section 2.4.2. In our P2P scenario, we propose two alternatives for computing
the partial norm adaptation functions (αNi): one coded by the system designer
(heuristic approach) and another one learnt by the system itself (machine
learning approach). And we propose an agreement function (βαN) based on a
voting approach.

Information required

The underlying rationale of the current adaptation functions is to align the
amount of served data with the amount of received data. Thus, the information
required consists of measures about peers serving the datum (KsrvBW), peers
that lack it (KrcvBW, KrcvEffBW,Kwait) and all peers (kallbwi, knpeersi)
�the last ones are only used by the learning approach in order to normalise the
other metrics. In addition to this information included in knowledge (KnowP),
both adaptation approaches use information derived from this knowledge and
NormDL. This additional information is the expected receiving bandwidth (RcvExpBW),
that re-scales receiving nominal bandwidth (RcvBW) according to current
bandwidth limit (maxBW) as expressed in equation 50. This new information
re�ects that actual receiving bandwidth may be lower when there is a band-
width limit applied to serving peers �since less data is being injected towards
receiving peers.

28

rcvexpbwi = rcvbwi ·
maxBW

100
(50)

Adaptation approaches

While the heuristic approach always uses the same coded algorithm to adapt
norms �see section 4.3.1�, in the learning approach the algorithm evolves as it
learns �see section 4.3.2. More speci�cally, the latter is based on Case-Based
Reasoning (CBR), and so it uses a base of previous cases to decide on new
ones.

On the other hand, as the current agreement function (βαN) follows a
voting scheme, both approaches provide a result in the form of one vote about
each norm. That is, one vote on the normFriendsDL update (vFR) and another
one on the normBWDL modi�cation (vBW):

� vFR = {DECR, SAME, INCR, BLANK}: this indicates how to update maxFriends.
It can be done by increasing one unit (INCR), decreasing one unit (DECR),
keeping the same value (SAME) or avoiding in�uencing it (BLNK, i.e. a blank
ballot-paper).

� vBW = {DECR, SAME, MAX}: this de�nes how to adapt maxBW. It can be done
by setting it to 100% (MAX), keeping the same value (SAME) or dividing it
by two (DECR).

In brief, as both approaches take the same information and provide the same
sort of result, it is easy to compare them in our simulator �see section 5.1.

Agreement

After each assistant computes its desired update for norm parameters all of
them have to agree on their actual modi�cation. As we said, we currently use a
voting approach as the agreement function (βαN , see equation 24). In particu-
lar, we have a distributed implementation that replicates certain computations.
First, each assistant sends its votes (vFR, vBW) to the rest of assistants �see
norm_bw and norm_friends messages. Then, when it receives the votes of all
the others, it computes the most frequent vote for each parameter (discarding
blank ballot-papers). Afterwards, it applies the resulting solution to current
norms � if there is a tie, parameters are not modi�ed. Finally, if norms are
acually updated, then each assistant sends them to its peers by means of the
norm_updated message.

Norm adoption

Regarding norm adoption, once a peer receives new norms, it tries to ful�l
them because peers do not violate norms in current implementation. Thus,
when a peer receives a normBWDL with a maxBW smaller than the one it
is using, it decreases its sending ratio to ful�l this norm. Besides, when it
receives a normFriendsDL, it also tries to ful�l it. This means that if a peer

29

Algorithm 1 Heuristic approach of partial norm adaptation function (αNi).
00 def adapt(srvBW, rcvBW, rcvEffBW, waiting, maxFR, maxBW):

01

02 τ = 0.1 ; ε = 0.2

03 rcvExpBW = rcvBW * (maxBW / 100)

04

05 // Adapt maxFriends --------

06 case (srvBW < (1-τ)*rcvBW) : vFR = DECR

07

08 case (srvBW > (1+τ)*rcvBW
09 && waiting > ε): vFR = INCR

10

11 case (srvBW > (1+τ)*rcvBW
12 && waiting < ε): vFR = BLNK

13

14

15 other /*srvBW ≈ rcvBW */ : vFR = SAME

16

17

18 if(rcvEffBW <(1-τ)*rcvExpBW) : vFR = DECR

19

20 // Adapt maxBW ------------

21 case (vFR==DECR ∧ maxFR==1 : vBW= DECR

22 case (vFR==INCR ∧ maxBW<100): vBW= MAX

23 other : vBW= SAME

24

25 return [vFR, vBW]

is serving fewer peers than maxFriends, it will send unchoke messages to those
peers it had choked previously. In contrast, if it was serving to more friends
than maxFriends, it will cancel some of those data transmissions and send a
choke message. Nevertheless, in our current implementation, a peer does not
need to cancel a data transmission if it has already sent more than 75% of the
datum. This behaviour avoids cancelling data transmissions that will �nish
really soon. Moreover, as applying norm changes still has an associated cost �
see section 2.4.2�, the norm adaptation process is performed at an empirically
tested time interval (adaptinterv) speci�ed in section 5.

4.3.1 Heuristic approach

In our heuristic approach, assistants use the process schematised in Algorithm
1 to implement their partial norm adaptation function (αNi). This algorithm
receives the knowledge information (knowpi) plus current norms (normDL)
expressed by their parameter values. Notice that we use the following notation
in algorithm: srvBW = ksrvbwi, rcvBW = krcvbwi, rcveffbw = krcveffbwi,
waiting = kwaiti, rcvExpBW = rcvexpbwi, maxFR = maxFriends and maxBW =
maxBW. In line 2, some constants are initialised to be used as thresholds in
comparisons. Afterwards, the expected receiving bandwidth is computed from
the nominal one re-scaled by current bandwidth limit (line 3).

30

The main decision regarding the choice of a normFriendsDL is related to
comparing the available bandwidth used to serve (srvBW) with the available
bandwidth used to receive (rcvBW). If there is a lack of serving bandwidth (line
6), the suggestion is to decrease the number of friends. This way, server peers
will be simultaneously serving data to fewer peers, and these transmissions will
�nish sooner. Afterwards, once these other peers have the datum, there will be
more data sources in the system and it will take less time to �nish the datum
distribution. On the other hand, if there is an excess of serving bandwidth and
there are still peers waiting for data (lines 8-9), then the assistant can increase
the number of friends in order to serve more peers. There is another situation
in which there is also an excess of serving bandwidth but there are no peers
waiting for data (lines 11-12). This does not necessarily mean all peers have
the datum, but at least the ones lacking it are receiving it from some source.
In this case, the assistant uses a blank-ballot paper to let other assistants push
for their own interests12.

Finally, if none of the previous cases holds, it means that the serving band-
width is similar to the receiving one (line 15) then, the vote is for keeping the
same norm. This is because if there is no excess of serving bandwidth, the
assistant prefers to vote for the same norm instead of just leaving the decision
to the rest of the assistants.

In spite of above cases, if there is network saturation in the intermedi-
ate channels, it is always better to decrease the number of friends. This will
reduce the number of data transmissions. Hence, it will cut back network traf-
�c and hopefully network saturation. In order to estimate whether there is
network saturation, the assistant checks whether the e�ective receiving band-
width (rcvEffBW) is smaller than the expected one (rcvExpBW). If so this
suggests that data packets are delayed by the intermediate network because it
is saturated. Consequently, as a solution to saturation, the assistant votes for
decreasing maxFriends (line 18).

As for the normBWDL, it is only decreased if it is not possible to reduce the
network usage further by decreasing the number of friends �since maxFriends is
already 1. In such a case, the assistant votes for dividing maxBW by 2 (line 21).
This way, server peers will use less bandwidth, which can help to diminish the
network saturation. In contrast, if the bandwidth was previously limited but
there is no network saturation �since the assistant chose to increase maxFriends�
, then the bandwidth limit can be reset to 100% (line 22). For the remaining
cases, maxBW keeps its value (line 23).

4.3.2 Learning approach

In our learning approach, assistants use a Case-Based Reasoning methodology
(CBR) to implement their partial norm adaptation function (αNi). CBR is

12 Notice, though, that the weighting method applied to measures may bring an assistant
to this case when no peers in its cluster are waiting for data, but there are still waiting
peers in other clusters. In such a case, if there is enough serving bandwidth, it is better to
let other assistants choose by themselves the norm parameter values.

31

inspired by human reasoning and memory organization. A person uses the
lessons learned in similar situations to understand or solve new ones. CBR [41]
is de�ned as the process of solving new problems by retrieving the most similar
past problems from an existing knowledge-base and adapting them to �t the
new situations. In CBR, problems are referred as cases (i.e. a case contains
the problem description and its solution) and the previous experienced cases
are stored in the case base. This CBR methodology requires the speci�cation
of a case description and the speci�cation of certain processes used in its main
cycle (e.g. how to compute the similarity between two cases).

Case description

A problem and its solution description make up a case that can be stored in the
CBR's case base for subsequent usage, as a previous case. A problem (Prob)
is described by a set attributes (Attribs) derived from knowledge information
(KnowP). In our scenario, we use discrete attributes to describe a problem
�we make their values discrete by taking a reference magnitude speci�ed in
each case. The discrete attributes are the following:

� servingCapacity = {VERY_LOW, LOW, GOOD, HIGH, VERY_HIGH}: this indicates
whether there is enough serving capacity to serve all receiving peers. It is
extracted from comparing the bandwidth of all serving peers (ksrvbw) with
the bandwidth of all receiving peers (krcvbw). The reference magnitude of
this attribute is the sum of the bandwidth of all individual channels in the
system (kallBW).

� netSaturation = {VERY_LOW, LOW, GOOD, HIGH, VERY_HIGH}: this estimates
the network saturation by comparing the actual receiving bandwidth of re-
ceiving peers (krcveffbw) and their expected bandwidth (krcvexpbw). A
krcveffbw smaller than krcvexpbw, when ksrvbw is equal or greater than
krcvbw, may indicate that data packets are delayed because the network is
saturated. This attribute's reference magnitude is also kallBW .

� waiting = {NONE, FEW, A_LOT}: this re�ects the amount of peers waiting
for data. lThis attribute's reference magnitude is the total number of peers
(knpeers).

� maxShareRatio = {ONE, FEW, A_LOT}: this indicates sources' maximum ra-
tio to spread the datum. The higher it is, the more peers are receiving data
at a lower bandwidth. It is the current maxFriends normalised with knpeers
as reference magnitude.

� bandwidthUsage = {LOW, HIGH, MAX}: this indicates the bandwidth used by
peers in their communications. It is the current maxBW normalised with 100
as reference magnitude (MAX = 100% means that a peer can use its full
individual bandwidth).

In order to describe the solution of a given problem, we use two additional dis-
crete attributes. They are two votes, one per each norm (vFR, vBW) as explained
in section 4.3.

32

Algorithm 2 Retrieve phase of learning approach.
01 def retrieve(newCase, caseBase):

02 retrCases = {} ; bestS = 0

03 foreach prevCase in caseBase:

04 s = Θ(prevCase.prb, newCase.prb)

05 if (s > MIN_SIM):

06 case (s > bestS):

07 retrCases = { prevCase }

08 bestS = s

09 case (s ≈ bestS):

10 retrCases=retrCases∪{prevCase}
11 if (retrCases is empty):

12 expertCase = Expert.solve(newCase)

13 retrCases = { expertCase }

14 return retrCases

CBR Cycle

The classical CBR [1] cycle has four main phases: retrieve, reuse, revise and
retain. Initially, once a new problem is encountered, the �rst phase retrieves
one (or several) similar cases from the case base. Then, the second phase
reuses the retrieved cases to provide a solution to the new problem. Next, the
third phase revises the results of applying this new solution. Finally, the fourth
phase retains the new problem if it is representative enough. In addition, in our
scenario, the mapping between the system's states �i.e. problems�, norms �i.e.
solutions� and outcomes is highly complex. Unlike classical CBR approaches,
our implementation starts with an empty case base and queries an expert when
no similar previous case are found. Currently, we use the heuristic approach
described above to emulate this expert and to feed the system with cases.

The �rst phase (retrieve) fetches the most similar cases (retrCases) from
the case base (caseBase) as illustrated in Algorithm 2. It starts with an empty
list of cases and a minimum reference similarity (bestS) �see line 2. Then, it
traverses the case base �line 3� computing the similarity (Θ, see below) of the
description of the problem in each previous case (prevCase.prb) with the new
problem (newCase.prb) �line 4. If this similarity is greater than a minimum
trusted similarity (MIN_SIM) the case is a candidate for retrieval �line 5. In
particular, if this similarity is greater than any previous one �line 6� then the
previous case is the one to be retrieved �line 7. Alternatively, if the similarity
is equal to previous greatest one �line 9� then current previous case is recorded
with the rest of similar ones �line 10. Finally, if no previous case has the
minimum trusted similarity to consider it as representative enough to adapt
its solution to the new problem �line 11�, the algorithm queries an expert
�line 12� to solve this unknown problem. Finally, in both cases the cases are
returned �line 14.

On the other hand, the case similarity function (Θ) among two problems
(px, py ∈ Prob) consists in computing the attribute similarity function (θi)

33

among corresponding values of the same attribute (apxi , a
py
i ∈ Attribi) to ag-

gregate them in a weighted manner �see Equation 51.

Θ : Prob× Prob→ [0..1]
θi : Attribi ×Attribi → [0..1]
Θ(px, py) =

∑
i∈Attribs

(
wΘi · θi(a

px
i , a

py
i)
)

|
∑
wΘi = 1

(51)

In order to compute this attribute similarity function (θi), we de�ne a label
distance function (∆i) that provides a numeric distance among two discrete
labels as shown in Equation 52. In fact, we regard discrete labels as an ordered
set of equidistant values �see Equation 54.

∆i : Attribi ×Attribi → [0..∆MAX
i] (52)

Then, we de�ne θi as an inverse mapping from labels's distance [0..∆MAX
i]

to the [0..1] interval as shown in equation 53.

θi : Attribi ×Attribi → [0..1]

θi(a
px
i , a

py
i) = 1− ∆i(a

px
i ,a

py
i)

∆MAXi

(53)

In sum, in both similarity functions (Θ, θi), 0 means no coincidence at all
and 1 means that the items are equal �see the example in Equation 54.

apxwaiting a
py
waiting ∆waiting θwaiting

NONE NONE 0 1.0
NONE FEW 1 0.5
NONE A_LOT 2 0.0
. . .

(54)

From the retrieved cases, the second CBR phase (reuse) employs their
solutions to build a new one for the current case as described in Algorithm 3. If
there is more than one similar case, we use a divergence function (δ) to compute
the divergence among them. Thus, the reuse phase starts by checking if the
divergence of retrieved cases is greater than a maximum trusted divergence
(MAX_DIV) �see line 2. In such a case, it considers that solutions to the previous
cases are too contradictory to provide a good single solution. Then, as no
representative previous case is found, the expert is consulted �lines 3-4. Once
there is a set of slightly divergent previous cases �notice that a single previous
case has no divergence� it adapts their solution to the current problem �line
5. This task can take into account of (i) all retrieved solutions but also (ii) the
di�erences between the retrieved problems and the current one. In the current
implementation, our adapt function uses only the former (i). In particular, it
returns a solution composed by the most frequent vFR and the most frequent
vBW. If there is a tie, the less conservative actions (i.e. DECR, INCR or DECR, MAX)
have priority over the more conservative ones (i.e. SAME, BLNK)13. These less

13 In our experiments we use a MAX_DIV smaller than two. Thus, if retrCases involve
DECR and INCR, then they will satisfy line 2 and will be replaced by a single expertCase.
Consequently, there is no possible tie among less conservative actions.

34

Algorithm 3 Reuse phase of learning approach.
01 def reuse(retrCases, newCase):

02 if (δ(retrCases) > MAX_DIV)

03 expertCase = Expert.solve(newCase)

04 retrCases = { expertCase }

05 sol = adapt(retrCases, newCase)

06 return Case(newCase.prb, sol)

conservative actions may make the system evolve in a di�erent way, so there
is less chance of there being a tie in a subsequent adaptation process.

The above-mentioned divergence function among solutions (δ) takes into
account only the attribute of the vFR solution, since in our experiments vBW was
correlated with it. Speci�cally, the divergence function that takes into account
only vFR (δ′) is the standard deviation of vFR discrete values converted into
integers as shown in Equation 55.

δ : (V FR× V BW)
∗ → [0..2]

δ′ : V FR∗ → [0..2]
χ : V FR→ [−1..1]
χ(DECR) = −1;χ(SAME) = χ(BLNK) = 0;χ(INCR) = 1
δ′(vFR1 ...vFRn) = stdev(χ(vFR1)...χ(vFRn))
δ(s1...sn) = δ′(vs1FR...v

sn
FR)

(55)

The third phase (revise) requires a way to evaluate the solution, but current
performance measure (total time) is unknown until the end of execution (the
credit assignment problem [32]). As we are working on this topic in the P2P
scenario, the current implementation does not revise the proposed solution.

It is important to remark that the notion of case-based reasoning [1]
does not only denote a particular reasoning method, irrespective of how the
cases are acquired, it also denotes a machine learning paradigm that enables
sustained learning by updating the case base after a problem has been solved.
The fourth phase of the CBR cycle is devoted to retain new experience into
the case base. When a problem is successfully solved, the experience may be
retained in order to solve similar problems in the future. When an attempt
to solve a problem fails, the reason for failure is identi�ed and remembered in
order to avoid the same mistake in the future. In short, the retention phase
consists of incorporating what is useful to store from the new problem-solving
experience into the existing case base. As in humans, experience comes from
doing or from cognition. The former refers to retain successful experience or
remember failures. The latter considers to become acquainted with an external
source.

In our case, the CBR starts with an empty case base. That is, there is no
previous experience available. For this reason, the CBR focus on learning from
an external source (i.e. in this case, the expert) that completes the experience
of the CBR �at least at �rst cycles. Similarly to humans, our experience
comes from cognition. The use of an expert is common in CBR and it is

35

particularly necessary when the case base does not contain enough experiences.
In our CBR, we estimate that it might be a lack of experience when there
is not a minimum trusted similarity or when there is a maximum trusted
divergence. Under one of these circumstances, the system uses the expert to
learn and to store his experience in the case base as a new case. The addition
of new cases into the case base increases experience of the CBR and this
experience play a fundamental role in CBR learning. Note that the case base
participates throughout the CBR cycle, and so it is vital for the system's
problem-solving e�ciency. It is clear when the CBR lacks of experience that it
is necessary to retain as much experience as possible. An open issue that will
be addressed in our future work consists of retaining experience from doing.
Retention strategies are not as simple as storing all solved problems, since
too much information may a�ect the utility [46] of a CBR system. The utility
problem occurs when the cost of maintaining and searching in a large case
base outweighs the bene�t of storing this experience.

5 Empirical evaluation

In order to empirically evaluate our general model in the P2P case study, we
have implemented a P2P adaptive OCMAS simulator [10]. It provides various
facilities for executing tests and analysing results. As it simulates both agents
and network components, it allows us to execute di�erent sharing methods
with identical initial conditions. We use it to obtain some results about alter-
native coordination models among adaptive and non-adaptive approaches. In
brief, they show that adaptive coordination models outperform non-adaptive
ones, especially the approach that uses learning to adapt norms.

5.1 Simulator

Our simulator is implemented in Repast Simphony, extending its original ca-
pabilities to deal with OCMAS and the P2P scenario. Its internal architecture
clearly isolates di�erent functionalities. It has three components: a Graphical
User Interface (GUI), an Agent Simulator and a Network Simulator.

Figure 8 depicts its Graphical User Interface (GUI) to illustrate its gen-
eral features. The Control toolbar (1) pertains to the original Repast GUI and
makes it possible, among other things, to play the simulation, pause it or exe-
cute it step by step. In the left area, the Legend panel shows information about
what each layout object represents (2), the colours of the di�erent messages
exchanged beetween agents (3), whether they are visible or not, and whether
execution will pause upon sending messages of this kind (4). All these options
can be modi�ed by users. Thus, the legend allows easy identi�cation of each
agent and message to interpret what is happening in the simulation at every
moment. The Main layout (5) shows the participants in the organisation and
the communications between them. Peers and assistants are drawn according

36

Fig. 8 P2P adaptive OCMAS simulator.

to its logical cluster topology, while messages are displayed as arrows between
them with the corresponding colour de�ned in the legend panel. There is also a
Resume layout (6) that shows how data have been distributed between di�er-
ent peers. It highlights completed peers and displays arrows connecting source
and receiver agents. These arrows are labelled with the time step at which
the datum was received. Moreover, our application can plot the evolution of
di�erent parameters through the simulation, such as norm updates (7). In
addition, the simulator generates log �les containing all the events occurring
during executions (8). Afterwards, an (o�-line) module facilitates the analysis
of these logs by extracting relevant information that can be subsequently pro-
cessed. For instance, it can compare the time spent sharing data in di�erent
con�gurations, or using di�erent sharing methods. At the end of simulation,
di�erent metrics are shown as an execution summary. These metrics are also
stored in the log �le. Thus, once a user has used the GUI to understand an
approach behaviour, he can evaluate and compare it just using logged informa-
tion. Accordingly, our simulator allows the execution of multiple simulations
with di�erent run options in batch mode, generating a log �le for each simu-
lation.

Regarding the Agent Simulator component, it provides an implementation
of our suggested conceptual MAS architecture (2-LAMA) �see the top part
of �gure 9. At domain-level, it o�ers a peer code skeleton of state-based agents
that follow a P2P protocol. The current implementation o�ers two sorts of
derived peers: one that follows our protocol and one that follows the standard
BitTorrent protocol (BT, see section 5.2.1). Thus, we can simulate both alter-
natives and empirically compare their performance. In addition, at meta-level,
the Agent Simulator component provides an assistant code skeleton where so-

37

M
L

DL

A1 A2 A3

P5 P6

P7 P8

P1 P2

P3 P4

P9 P10

P11 P12

To
po
lo
gy

r1r1 r0r0

r2r2

r3r3

a2

a3a1
p1

p3

p2

p4

p5 p7p6 p8

p9

p11

p10

p12

20
40

60
80

40409090

90
70

50
30

160 190

individual

aggregated

ISP

inet

N
et

w
or

k
Si

m
ul

at
or

Age
nt

 S
im

ul
at

or

Fig. 9 Agent Simulator component over Network Simulator component.

cial structure and norm adaptation mechanisms have to be coded. Currently,
there are three derived assistant implementations: one that only performs so-
cial structure adaptation (2L-SS, see section 4.2), another one that also per-
forms norm adaptation using the heuristic approach (2L-SS-N-Heu, see section
4.3.1), and one that uses the learning approach instead (2L-SS-N-CBR, see sec-
tion 4.3.2). This facilitates the comparison of these adaptation approaches or
even to add new ones by extending the current assistant skeleton. Next subsec-
tion 5.2 contains further implementation details of each of these approaches.

On the other hand, the Network Simulator is used by agents when send-
ing messages. It simulates a packet switching network to transport messages.
Speci�cally, when an agent wants to send a message, it injects it into its net-
work adaptor, which is a Network Simulator component �see �gure 9. Then,
this message is split into packets that travel along links and follow their path
by switching at routers depending on network topology �see section 3.3. The
destination agent is informed when each packet reaches its network adaptor.
Eventually, when all packets of a message arrive, the network adaptor also
delivers the whole message to the destination agent. Hence, agents can pay
attention to packets or just wait for entire messages. The latency of a message
from one network adaptor to another depends on its size, the number of links,
their bandwidth and the current tra�c through them. Notice that in the cur-
rent implementation, the network status changes dynamically depending on
MAS activity, but we could even introduce extra non-MAS tra�c to add more
disruption. The lower part of �gure 9 depicts the Network Simulator compo-
nent, given the network topology used in current tests. Clusters are formed
by peer connected to the same ISP. In this example, peers P1 and P2 belong
to the same cluster, which at the network level means that their correspond-
ing network terminations p1 and p2 are connected to the same ISP (r1). We
also have the agent a1, which is the assistant of these peers, connected to the
same ISP (r1) through its corresponding network termination a1. Each cluster
is connected to the others by means of links, so r1 and r2 have aggregated

38

links connected to r0, which represents the interconnection through Internet,
implementing the network abstraction explained in subsection3.3

5.2 Coordination models

The current implementation o�ers non-adaptive and adaptive coordination
models. We implemented the BitTorrent protocol (BT, see section 5.2.1) as a
non-adaptive coordination model. This protocol is widely used in P2P sharing
networks, so we use it as a baseline when evaluating our adaptive approaches.
On the other hand, we provide three di�erent adaptive coordination mod-
els. All of them include the Organisational Adaptation service de�ned in our
general model �see section 2.2.2. Speci�cally, they use an implementation of
generic 2-LAMA architecture to provide it �see section 2.3. Their di�erences
reside in which organisational components they adapt and how they do it. We
now describe speci�c details of their implementation.

5.2.1 Non-adaptive coordination model

Our protocol �see section 3.2� is based on the BitTorrent protocol [4], which is
widely used in P2P sharing networks. We regard a BitTorrent network from an
agent-centred multi-agent system (ACMAS) perspective, where peers set their
own net of relationships. We construe it as a non-adaptive coordination model,
since peers always use the same mechanisms to coordinate. In contrast, in our
approaches, meta-level is able to update domain-level organisation components
�e.g. norms. Thus, we say that our approaches have adaptive coordination
mechanisms.

We have implemented a BitTorrent version (BT [11]) based on the original
protocol. The main di�erence is that in our implementation the data have
only a single piece. The rest is equivalent, so BT has a single agent (tracker)
that informs about connected peers, instead of providing further assistance like
our distributed meta-level. Following the original protocol, new peers without
data (interested) show their interest to peers having the datum (sources).
Afterwards, sources start serving only at given intervals (unchoke_interval).
In particular, at these intervals, a source peer communicates to four of its
previously interested peers (selected peers) to say that it can serve them.
Next, these peers can request the datum and all of them are served. The
selected peers are those that were interested most recently. If two of them
were interested at the same time, the one with the larger network bandwidth
(upload_bw14) is selected. In fact, if a peer's interest is older than a de�ned
interval (aging_period), its age is ignored and only its peer's upload_bw

14 In a multi-piece scenario, this measure is estimated from previous piece interchanges.
However, since in a single-piece implementation no estimation can be performed, its actual
value is taken from the network topology. In contrast, our approach is actually estimat-
ing connectivity by sending partial data messages �see section 3.2. Notice that this gives
advantage to BT as peers do not have to exchange extra data messages.

39

is compared. In addition, in two out of three unchoke_interval selection
processes, the fourth peer is randomly selected.

In our experiments, BT uses an unchoke_interval of 250 time units
(ticks). It is approximately the time required to send four data messages in
current topology �along an average peer individual link. Thus, it is the av-
erage time that a server peer can invest sending data to four selected peers
�i.e. the number of simultaneous starting servings in BT. Also, we use an
aging_period of 130 ticks to keep the ratio de�ned by the o�cial protocol.

5.2.2 Adaptive coordination model

In contrast to BitTorrent, our approaches have an adaptive coordination model,
since they include the Organisational Adaptation service proposed in our gen-
eral model �see section 2.4. In particular, we present three alternatives: one
that only performs social structure adaptation (2L-SS), another that also per-
forms norm adaptation using a heuristic approach (2L-SS-N-Heu) and one that
uses the learning approach instead (2L-SS-N-CBR). The previous sections de-
tail all these alternatives, especially section 4. Thus, this section presents just
a short description of them, stressing the value of some implementation pa-
rameters in our simulations.

First, the initial values of norm parameters (maxBW, maxFriends, maxHas) have
to be �xed. In order to make a fair comparison among BT and 2-LAMA ap-
proaches, we have used the following initial norm parameters: maxHas =∞,
maxBW = 100%, maxFriends = 3. These norms lead 2-LAMA approaches to a
similar initial behaviour than BT because: maxHas =∞ does not restrict com-
munications among clusters, maxBW = 100% does not limit peer communication
and maxFriends = 3 is equivalent to the three non-random selected peers. In our
current implementation agents always ful�l these norms15. The 2L-SS alter-
native keeps these norms during all execution and just updates social struc-
ture as described in section 4.2. In contrast, in norm adaptation approaches
(2L-SS-N-Heu, 2L-SS-N-CBR), maxBW and maxFriends are updated by assistants
at run-time at certain adaptation intervals (adaptinterv). Each assistant com-
putes their desired values for each norm taking into account the information
collected from its cluster and the information received from other assistants.
Assistants use a voting scheme as a group decision mechanism to choose the ac-
tual norm updates before notifying their peers. Currently, in order to perform
these adaptations, assistants aggregate their local and remote information by
giving them the same importance (∀iwR,i = wL, see section 4.1). With this in-
formation, 2L-SS-N-Heu approach uses the heuristic described in section 4.3.1
to change norms, whereas 2L-SS-N-CBR uses the CBR approach described
in section 4.3.2. The latter requires some extra parameters, like the weights
applied to each attribute when computing the case similarity (see equation
51): wΘsrvCap = 0.13, wΘnetSat = 0.38, wΘwaiting = 0.25, wΘshareRatio = 0.13,

15 Otherwise, we could assume there is an infrastructure mechanism at ISPs that detects
and �lters out messages that exceed the bandwidth limit (maxBW) or the simultaneous data
messages limit (maxFriends).

40

wΘbwUsg = 0.13. Also, it uses 0.8 as the minimum similarity threshold (i.e.
MIN_SIM=0.8) and 1 as the maximum divergence threshold (i.e. MAX_DIV=1) �see
algorithms 2-3. Notice that in this approach, assistants start with an empty
case base. Thus, they start calling the expert to generate an initial case. Af-
terwards, if a problem is similar to previous ones, they do not call the expert
again, but reuse their knowledge.

The protocol they use to exchange the data is a modi�cation of BT proto-
col to include our distributed assistance meta-level as explained in section 3.2.
In 2-LAMA, interested peers contact only a subset of sources, because their
assistants promote a social structure (SocStrDL) based on communication la-
tencies. Then, sources can start serving at any moment, but there is a norm
(normFriendsDL) that limits their maximum simultaneous servings. More-
over, interested peers can change their source if they �nd a faster one. In any
case, communication speed is regulated by assistants through the normBWDL.

5.3 Results

All simulations have been executed using the network topology depicted in
Figure 9. Notice that in BT alternative, a single tracker is linked to r0, whereas
in our 2-LAMA approaches there is an assistant connected to each ISP (r1..r3).
In any case, these elements (tracker/ assistants) have an in�nite bandwidth �
as if they were almost located at the ISP. We have used data messages of 5000
data units, and the rest of messages of a single data unit. Additionally, peers
exchange messages of 150 data units to estimate the communication latencies
between them �see �lat_req�/�lat_rpl� messages in section 3.2.

We have tested all the alternatives described above by varying the peer that
initially has the datum. For instance, when using the 2L-SS-N-CBR method,
there is a �rst execution (round) with the data in a single initial position. In
this �rst round, assistants ask peers to measure the communication latencies
among them. Next, they give a social structure to peers based on these latencies
and on who has the datum �see section 4.2. Afterwards, they adapt the
norms every adaptinterv ticks �see section 4.3. Once all peers have the datum,
another round is performed with the data in another initial position. Notice
that this example is based on 2L-SS-N-CBR, which uses learning. Hence, in
subsequent rounds, assistants already know some previous cases since the case
base is kept when sharing more data among the same agent community. This
process is repeated until the data have been initially in all peers (multiple-
round).

Due to the random nature of the BT �some served peers are selected
haphazardly�, the results show the average of executing a multiple-round 50
times (i.e. 12 × 50 = 600 rounds, where the 12 corresponds to all possible
initial data positions in a round, and the 50 corresponds to repeat the unique
multiple-round). In contrast, a multiple-round does not need to be repeated
when using 2-LAMA approach, because they do not present random issues.
Hence, 2L-SS and 2L-SS-N-Heu have only been executed on a single multiple-

41

Table 2 Results for BitTorrent (BT) and 2-LAMA approaches (2L-SS : social structure
adaptation only, 2L-SS-N-Heu: adds norm heuristic adaptation, 2L-SS-N-CBR: uses norm
learning adaptation instead).

time cNet h data cML

BT 941.23 205,344.1 3.4 11.0 -
2L-SS 849.71 345,060.2 3.2 40.1 3749.9
2L-SS-N-Heu 834.91 293,526.7 2.9 34.9 5133.3
2L-SS-N-CBR 741.53 292,357.7 3.0 32.8 4694.1

round (i.e. 12 rounds). However, as 2L-SS-N-CBR's assistants learn at each
round, the order of initial data positions in�uences the 2L-SS-N-CBR alter-
native. Thus, 2-LAMA-SS-N-CBR results show the average of executing 50
random multiple-rounds (i.e. 12× 50 = 600 rounds, where the 50 corresponds
to di�erent multiple-rounds with distinct order of 12 initial data positions).

Table 2 shows the average per round of the following metrics: time as the
total time required to spread the datum among all peers; cNet which is the
network cost consumed by all messages (each message cost is computed as
its length times the number of links it traverses); h as the average number of
links traversed by each message (hops); data as the total number of sent data
messages; and cML that is the cost of all messages related with the meta-level
�i.e. all messages sent to or by assistants. Notice that the data metric refers
to all data messages that have been sent. Nevertheless, some of them may not
be totally transmitted if: (i) a destination peer sends a cancel message to its
source peer because it has found a better source or (ii) a source peer stops
sending data to ful�l an updated normFriendsDL.

If we compare the performance of both the BT and 2-LAMA alternatives,
we see that our proposals require less time to share the datum. This means that
the time invested in communicating with our suggested meta-level is less than
the time bene�t of having this additional level. In contrast, the network cost
(cNet) is larger in 2-LAMA. This means that, in our approaches the network
is intensively used along the whole execution without achieving saturation �
otherwise, the time would increase. Our proposal requires more communication
because: (i) it has extra communications due to the meta-level, (ii) it sends
more data messages, and (iii) it initially measures latencies to adapt SocStrDL.
Having a meta-level implies that coordination messages are exchanged among
peers and assistants and also between assistants. However, the derived network
overload (cML) is small since these control messages are very small compared
with data messages. In contrast, having more data messages (data) consumes a
signi�cant amount of network resources. These extra data messages are created
because 2-LAMA peers compare data sources by retrieving some data from
them �they replace their current data source whenever they �nd a faster one.
Thus, we expect to minimise this network consumption when dealing with
more than one piece of data, since peers could compare sources depending on
the pieces previously retrieved. Besides, latency measurements represent up to
a 20% of the network cost increment. Notice, though, that these measures are
used to improve system-wide data-paths �by providing certain neighbours

42

 1

 2

 3

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

m
a

x
F

ri
e

n
d

s

time

2L-SS-N-Heu

 1

 2

 3

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

m
a

x
F

ri
e

n
d

s

time

2L-SS-N-CBR

Fig. 10 Evolution of NormFriends's parameter maxFriends using the heuristic
(2L-SS-N-Heu) or CBR (2L-SS-N-CBR) alternative when data was initially in P11.

to each peer. Regarding the number of links traversed by messages (h), our
2-LAMA approaches have more local communications �i.e. intra-clusters� than
BT. This is convenient because local messages have lower latencies and costs,
since they are usually performed within the same cluster.

Finally, the results show that norm adaptation approaches (2L-SS-N-Heu,
2L-SS-N-CBR) performs better than the approach that just adapts the so-
cial structure (2L-SS), since they require less time. In fact, in our tests, no
single combination of norm parameters applied during a whole execution out-
performs an execution that starts by using the same parameter combination
but adapts it later on. Thus, our P2P scenario has a su�ciently dynamic en-
vironment that justi�es organisational adaptation. Furthermore, our learning
approach (2L-SS-N-CBR) achieves better results than our heuristic approach
(2L-SS-N-Heu). This means that our heuristic performs a good estimation
of the mapping between system status, norms and outcomes, but it can be
enhanced. In fact, our current CBR implementation is already improving this
estimation. As an illustration, Figure 10 shows the adaptation of NormFriends

in a single execution (when data was initially in P11) using both approaches16.
Speci�cally, �gure shows how the CBR approach (2L-SS-N-CBR) adapts maxFriends
in a di�erent manner than the heuristic one (2L-SS-N-Heu) and obtains a
shorter sharing time (669 ticks when using CBR versus 833 ticks when using
the Heuristic).

16 Before executing the CBR approach with the data initially in P11, the system was
trained by sharing the data ten times (i.e. 10 rounds). In particular, the data was initially
placed in each peer with a lower identi�er (i.e. P1 . . . P10 in ascendent order).

43

6 Related work

In the literature, there exist several formalisations to model an organisa-
tion in Organisation Centred Multi-Agent Systems (OCMAS [22]). The brief
ones simply de�ne the social structure of participant agents, i.e. the relations
among agents playing certain roles (e.g. [15]). Whereas the extended ones also
de�ne social conventions and organisational goals. For instance, EI's organi-
sational model [21] de�nes the activities agents can engage on as a network
of interaction emphprotocols, called Scenes. Similarly, Moise's organisational
model [28] describes protocols �so called Contextual Speci�cation� but also
system tasks �so called Functional plan� that are related to organisational
goals. Accordingly, these tasks are decomposed into sub-tasks and assigned
to participants. Thus, we refer to these organisational models as task-oriented
models17. Even more, social conventions' speci�cation usually includes the
de�nition of norms (e.g. EI and Moise extensions [23,5], or THOMAS [2]).
Thus, our organisational model aims to be an overview of existing ones, hav-
ing all mentioned components �i.e. a social structure (roles and relations), a
social conventions (protocols and norms) and some goals. Moreover, in order
to deal with scenarios that lack of an explicit relation among goals and tasks
(i.e. non-task-oriented), we use a de�nition of goals that is not based on task
descriptions but on desired system outcomes.

In addition to propose some organisational models, several OCMAS ap-
proaches �like the previously cited� provide an infrastructure to enable the
execution of a speci�ed organisation. In our Coordination Support model, we
refer to this enabling infrastructure as the Organisational Layer. As an illus-
tration, it is worth to mention Moise's extension ORA4MAS [30], in which the
organisation is explicitly accessible by participants through some environmen-
tal objects (so called Artifacts). For instance, if an agent a gives the power
to agent b to join a group that performs activity c, the former (a) transfers a
key-artifact to the latter (b). Such a key-artifact let the latter (b) open a door-
artifact that leads the agent enter a virtual space �so called Workspace� where
activity c is performed. These artifacts are provided and controlled by MAS
infrastructure. Thus, participant's activity depend on the interaction among
agents and between agents and artifacts. In other words, an organisational
speci�cation is translated into run-time artifacts that enact the corresponding
organisation in a Computational Environment [37]. Furthermore, some ap-
proaches also provide some assistance services, that we see as embryonic im-
plementations of the Assistance Layer. For example, the Information Services
in THOMAS provide information about all the organisational components to
internal agents. Further, Moise's OrgManager informs participant agents about
acquired obligations, such a new task to be performed. Moreover, in EI, Scene
Managers inform participants about entering/leaving agents and Governors
informs them when an action has been �ltered out because it violated some

17 In task-oriented models, participant agents must accept the assignment of goals and try
to achieve them. Thus, organising such systems mainly consists in assigning roles and tasks
to participants depending on their capabilities (e.g. [18]).

44

protocol. Thus, we regard these features as an illustration of the Information
service of the Assistance Layer. Even more, EI's information about �ltered
actions can be regarded as an example of our suggested Justi�cation service.

Furthermore, several OCMAS approaches also de�ne how to perform the
adaptation of their organisational models. Such an adaptation can be seen
as the Adaptation service of our Coordination Support model. On the one
hand, the task-oriented models usually derive new tasks to ful�l original goals
when there are environmental/population changes. Also, they may replicate
agents and/or update their social structure to improve systems' performance.
For instance, in Moise there is a special role (Reorg) that has assigned the
task of re-organising participant agents. Thus, it decomposes this task and
assigns sub-tasks to other agents (ReorgExperts) in charge of analysing which
changes are required. In particular, in [28], these agents use reinforcement
learning to perform such a task. However, di�erent techniques can be applied
to these task-oriented models, such as diagnosis [26], generalised partial global
planning [35] or a knowledge base of organisational structures [44].

On the other hand, there are also some works about organisational adap-
tation in non-task-oriented OCMAS. For example, in AEI [6], the norms of an
electronic institution are adapted when certain system-wide measures di�er
from the expected ones �i.e. the goals. Although this approach uses CBR [1]
to reason about the adaptation process, it follows a centralised scheme instead
of our distributed approach. Thus, it does not deal neither with local infor-
mation nor with an agreement process. In contrast, our approach goes a step
further since we aim to have a distributed processing (multiple agents) and
a distributed knowledge (multiple case bases) �see distributed-CBR taxon-
omy [39]. Above all, AEI was a basis for our proposal, and their exploration
about open MAS issues inspires part of our future work �e.g. we use social
power (see [16]) to spread norms, whereas this work uses a sanction mechanism
that let it deal with norm violator agents. In fact, in SAEI [12] we formalised
the adaptation scheme in an EI �i.e. the AEI's adaptation process� and sug-
gested a mechanism to attach such feature to an existing MAS �so called
SEI� which is the precedent of adding an assistance layer on top of MAS'
domain activity. Moreover, our current work is an evolution of these previous
approaches, but dealing with organisations in general �instead of just EI� and
suggesting a two-layer distributed adaptation architecture.

Regarding OCMAS adaptation distributed architectures, the most of task-
oriented cited approaches [28,26,35] distribute the adaptation task among a set
or specialised agents. To the best of our knowledge, the task-oriented proposals
closer to our two-level approach are MASPA [50] and Adaptive-MAS [25]. The
former has a distributed mechanism composed by supervisor agents that have a
partial view of the whole system. As our meta-level, its Multi-level Supervision
Organisation has agents in charge of adapting the organisation of clusters of
Workers �which is equivalent to our OrgDL. These agents provide Rules and
Suggestions to agents in their previous layer �Suggestions are optional local
conventions whereas Rules are mandatory. Both of them specify a condition
and some actions. In this way, when the condition is satis�ed, agents perform

45

the speci�ed actions. Thus, it assumes agents are implemented to check such
conditions and perform its corresponding actions. This way, their Supervi-
sion agents integrate global information into the Multi-Agent Reinforcement
Learning (MARL) algorithm executed by its workers. In other words, MASPA
aims to create adaptive MAS developing all its components, whereas our mid-
term purpose is to deal with open MAS �where agents are developed by
third parties, so there is no control over their development and corresponding
behaviour. Similarly, the latter �the Adaptive-MAS [25]� di�ers from our ap-
proach since it assumes that the adaptation mechanism has also control over
domain agents. Despite this relevant di�erence, our two-level architecture is
similar to its proposal. In particular, it has an Organisation-level �i.e. a meta-
level� set of Monitor agents that observe and control the Micro-level's agents
�i.e. AgDL. Each Monitor agent is in charge of a single domain-level agent
and sends its information to a Host Monitor agent. Next, these Host Monitors
act as a hub of information by building a global view of the system combining
the information received from other Host Monitors �notice that our assistants
are related to both monitor roles. Overall, cited distributed adaptation mech-
anisms use a hierarchical social structure to achieve an agreement about �nal
adaptations. This agreement scheme can also be handled in 2-LAMA �instead
of current voting scheme� by specifying a hierarchical SocStrML. Even more,
there exist more sophisticated agreement techniques that could be used by
meta-level, like the Argumentation protocols [3].

As we mentioned, since we also want to deal with non-task-oriented sce-
narios �where it is not possible to delegate sub-tasks� our approach use norms
to in�uence agent behaviour. Thus, norms are an indirect tool to vary sys-
tem's organisation while preserving agent's autonomy. However, the mapping
between norms and system outcomes may be more complex than the mapping
between tasks and goals in a task-oriented scenario. Due to this complexity,
our assistants use learning in one of the norm adaptation alternatives. In fact,
the cooperative MAS learning taxonomy in [38] highlights the complexity of
such a task since agent interactions may bring unexpected joint behaviour
�i.e. it claims that organisation/outcomes mapping is complex. On the one
hand, this categorisation de�nes as team learning a centralised approach to
discover a set of behaviours for a set of agents. On the other hand, it classi-
�es as concurrent learning those approaches where there are multiple learners.
They require that the search space can be split in disjoint parts that require
disjoint actions �i.e. to decompose the problem and the solution. However,
our case joins both domains, because we look for a distributed learning about
an organisational level �instead of a local one.

In addition to previous organisation-centred approaches, there are several
works [42,40,17,34] that focus on the emergence and/or adaptation of norms
from an agent-centred perspective (ACMAS). However, these approaches use
methods that depend on participants' implementation or that assume coop-
eration among agents or that are driven by individual goals that may not be
aligned with the social welfare.

46

Finally, regarding our P2P case study, some research work follow a MAS
paradigm whereas others consider a network management approach. As for
MAS, the work in [24] focuses on adaptation of two types of norms: rules
(global and mandatory) and conventions (local and optional). Rules are en-
forced by restricting interaction, thanks to a reputation service o�ered by
a meta-level. This meta-level also o�ers information about local convention
violations, which favours the emergence of groups of agents using similar con-
ventions. In their approach, agents can adapt their conventions but not the
rules, social structure is derived from norm violations, and meta-level 's agents
are just individual supervisors. On the contrary, our assistants can adapt both
social structure and norms taking into account information about more than
one peer. On the other hand, from a network management perspective, there
are several works that enhance P2P systems based on a locality criteria �
based on di�erent network measures such as latencies. Some of them try to
achieve it without ISPs involvement (e.g. Ono [14]) and others involve ISPs
(e.g. P4P [48]). However, they usually adapt the social structure and cannot
directly vary network consumption to balance net capacity and tra�c.

7 Conclusions

MultiAgent systems are composed by autonomous entities that interact in
order to achieve their common and/or individual goals. The achievement of
such goals normally requires the coordination of participants activities. Fur-
thermore, since these systems are situated in dynamic environments, coordi-
nation must be adaptive in order to continue being e�ective under unexpected
(unplanned at design time) conditions. Organisations have proven to be an
e�ective mechanism to establish a coordination model to regulate participants
behaviours. However, the adaptation of the organisation in order to continue
being e�ective under varying conditions remains an open issue.

In this paper, we have focussed on how to endow an organisation with
adaptation capabilities, and on providing means to empirically evaluate adap-
tation mechanisms. We regard organisational adaptation as one of a new set of
services, called assistance services, which we suggest, should be incorporated
in organisational frameworks [7]. The aim of these services is to assist coordi-
nation both at agent and organisational level in MAS organisations. We have
proposed an abstract architecture (2-LAMA) where a distributed meta-level
is in charge of providing assistance services to the domain level. Hence, we
refer to the meta-level as assistance layer. Speci�cally, each meta-level agent
(assistant) receives partial information about the system status and uses it
to provide assistance to the domain level. The assistance layer may have pro-
active capabilities taking the initiative and acting intelligently, which is the
case in the organisational adaptation service. We have presented a formalisa-
tion of the organisational adaptation service in the proposed architecture, and
how it is distributed between assistant agents. Our 2-LAMA approach can be

47

applied to highly dynamic domains that can be designed using an organisa-
tional approach.

In order to empirically evaluate our approach and adaptation mechanisms,
we have implemented a simulator in a peer-to-peer sharing network scenario. In
particular, in this paper we have presented results on social structure and norm
adaptation. With regard to the latter, we have compared a designed adaptation
algorithm (heuristic) versus the use of Case-Based Reasoning to learn how to
adapt norm values from previous experience: in other words, a comparison
between de�ning the adaptation mechanism at design time or learning it at
run time. Notice that while social adaptation is performed individually by
each assistant within its cluster, in norm adaptation assistants have to reach
an agreement on new norm values. Speci�cally, each assistant computes its new
desired norm values and later must reach an agreement on each norm value.
We believe that agreement technologies can play a key role in this process.
Hence, our simulator can be used to test di�erent approaches for reaching
agreements among autonomous agents in the context of norm adaptation.

In future work, we plan to address open MAS issues such as how the system
should react to agents joining or leaving the MAS at any point, or transgressing
its organisational restrictions. In fact, we already have preliminary results
about norm violations that show how the system re-adapts to counter violation
side e�ects.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological
variations, and system approaches. Arti�cial Intelligence Communications, 7:39�59,
1994.

2. E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, and M. Rebollo. An Abstract
Architecture for Virtual Organizations: The THOMAS project. Technical report, Grupo
de Tecnología Informática - Inteligencia Arti�cial (GTI-IA), Universidad Politécnica de
Valéncia, 2008. Technical Report.

3. A. Artikis, D. Kaponis, and J. Pitt. Multi-Agent Systems: Semantics and Dynamics
of Organisational Models, chapter Dynamic Speci�cations of Norm-Governed Systems,
pages 460�479. V. Dignum, IGI Global, 2009.

4. BitTorrentInc. BitTorrent protocol speci�cation, 2001.
http://www.bittorrent.org/beps/bep_0003.html.

5. O. Boissier and B. Gâteau. Normative multi-agent organizations: Modeling, support
and control. In Guido Boella, Leon van der Torre, and Harko Verhagen, editors, Nor-
mative Multi-agent Systems, number 07122 in Dagstuhl Seminar Proceedings, pages 1�
17. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.

6. E. Bou, M. López-Sánchez, and J. A. Rodríguez-Aguilar. Autonomic Electronic Insti-
tutions' Self-Adaptation in Heterogeneous Agent Societies, volume 5368, pages 18�35.
Springer, 2009.

7. J. Campos, M. López-Sánchez, and M. Esteva. Assistance layer, a step forward in
Multi-Agent Systems Coordination Support. In Eighth International Conference on
Autonomous Agents and Multi-agent Systems, pages 1301�1302, 2009.

8. J. Campos, M. López-Sánchez, and M. Esteva. Assistance layer in a p2p scenario. In
Engineering Societies in the Agents World X (ESAW'09). Lecture Notes in Arti�cial
Intelligence, number 5881, pages 229�232. Spinger, 2009.

48

9. J. Campos, M. López-Sánchez, and M. Esteva. Multi-Agent System adaptation in a
Peer-to-Peer scenario. In ACM SAC09 - Agreement Technologies, pages 735�739, 2009.

10. J. Campos, M. López-Sánchez, M. Esteva, and J. Morales. A simulator for a two layer
MAS adaptation in P2P networks. In WAT09 - Workshop on Agreement Technologies,
2009.

11. J. Campos, M. López-Sánchez, M. Esteva, A. Novo, and J. Morales. 2-LAMA Archi-
tecture vs. BitTorrent Protocol in a Peer-to-Peer Scenario. In Arti�cial Intelligence
Research and Development - CCIA09, number 202, pages 197�206. IOS Press, 2009.

12. J. Campos, M. López-Sánchez, J. A. Rodríguez-Aguilar, and M. Esteva. Formalising
situatedness and adaptation in electronic institutions. In Coordination, Organizations,
Institutions, and Norms in Agent Systems IV. Lecture Notes in Arti�cial Intelligence
(LNAI), number 5428, pages 126�139. Springer, 2009.

13. K. Carley. Computational and mathematical organization theory: Perspective and di-
rections. Computational & Mathematical Organization Theory, 1(1):39�56, 1995.

14. D. Cho�nes and F. Bustamante. Taming the torrent: a practical approach to reduc-
ing cross-ISP tra�c in peer-to-peer systems. SIGCOMM Comput. Commun. Rev.,
38(4):363�374, 2008.

15. A.C.R. Costa and Y. Demazeau. Toward a formal model of multi-agent systems with
dynamic organizations. In Proceedings of the International Conference on Multi-Agent
Systems, MIT Press, Kyoto, Japan, 1996.

16. B.T.R. Savarimuthu S. Crane�eld. A categorization of simulation works on norms. 2009.
17. B.T.R. Savarimuthu S. Crane�eld, M. Purvis, and M. Purvis. Role model based mech-

anism for norm emergence in arti�cial agent societies. In LNCS - Proc. of the Coor-
dination, Organizations, Institutions, and Norms in Agent Systems III, volume 4870,
pages 203�217. Springer-Verlag, 2008.

18. S. A. Deloach, W. H. Oyenan, and E. T. Matson. A capabilities-based model for adaptive
organizations. Autonomous Agents and Multi-Agent Systems, 16(1):13�56, 2008.

19. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269�271, 1959.

20. M. Esteva. Electronic Institutions: from speci�cation to development. IIIA PhD. Vol.
19, 2003.

21. M. Esteva, J. A. Rodríguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos. On the
formal speci�cations of electronic institutions. In Frank Dignum and Carles Sierra,
editors, AgentLink, volume 1991 of Lecture Notes in Computer Science, pages 126�147.
Springer, 2001.

22. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: An organizational
view of multi-agent systems. In Paolo Giorgini, Jörg P. Müller, and James Odell, editors,
Agent-Oriented Software Engineering IV, pages 214�230. Springer, 2004.

23. A. García-Camino, J.A. Rodríguez-Aguilar, C. Sierra, and W. Vasconcelos. Constraint
rule-based programming of norms for electronic institutions. Autonomous Agents and
Multi-Agent Systems, 18(1):186�217, 2009.

24. A. Grizard, L. Vercouter, T. Stratulat, and G. Muller. A peer-to-peer normative system
to achieve social order. In LNCS - Proc. of the Coordination, organizations, institutions,
and norms in agent systems II, volume 4386, page 274. Springer, 2007.

25. Z. Guessoum, M. Ziane, and N. Faci. Monitoring and organizational-level adaptation of
multi-agent systems. In AAMAS '04: Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pages 514�521, Washington,
DC, USA, 2004. IEEE Computer Society.

26. B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to adapt organizational struc-
tures. In AGENTS '01: Proceedings of the �fth international conference on Autonomous
agents, pages 529�536, New York, NY, USA, 2001. ACM.

27. B. Horling and V. Lesser. A survey of multi-agent organizational paradigms. The
Knowledge Engineering Review, 19(4):281�316, 2004.

28. J. F. Hübner, J. S. Sichman, and O. Boissier. Using the Moise+ for a cooperative
framework of mas reorganisation. In LNAI - Proc. of the 17th Brazilian Symposium on
Arti�cial Intelligence (SBIA'04), volume 3171, pages 506�515. Springer, 2004.

29. J. F. Hübner, J. S. Sichman, and O. Boissier. S-MOISE+: A middleware for developing
organised multi-agent systems. In AAMAS Workshops, volume 3913 of LNCS, pages
64�78. Springer, 2005.

49

30. J.F. Hübner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organisa-
tions with organisational artifacts and agents. Autonomous Agents and Multi-Agent
Systems, pages 1�32, 2009.

31. N. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and devel-
opment. Autonomous Agents and Multi-Agent Systems, 1(1):7�38, 1998.

32. J. Jones and A. K. Goel. Revisiting the Credit Assignment Problem. In Challenges of
Game AI: Proceedings of the AAAI, volume 4, pages 04�04, 2004.

33. J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Computer,
36(1):41�50, 2003.

34. R. Kota, N. Gibbins, and N. Jennings. Decentralised structural adaptation in agent
organisations. In AAMAS Workshop on Organised Adaptation in Multi-Agent Systems,
Estoril, Portugal, pages 54�71. Springer, 2009.

35. V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman,
R. Podorozhny, M.N. Prasad, A. Raja, et al. Evolution of the GPGP/TAEMS domain-
independent coordination framework. Autonomous Agents and Multi-Agent Systems,
9(1):87�143, 2004.

36. D. Lewis. Convention: A Philosophical Study. Harvard University Press, 1969.
37. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-agent

systems. Autonomous Agents and Multi-Agent Systems, 17(3):432�456, 2008.
38. L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art. Au-

tonomous Agents and Multi-Agent Systems, 11(3):387�434, 2005.
39. E. Plaza and L. McGinty. Distributed case-based reasoning. The Knowledge engineering

review, 20(03):261�265, 2006.
40. J.M. Pujol, J. Delgado, R. Sanguesa, and A. Flache. The role of clustering on the emer-

gence of e�cient social conventions. In IJCAI'05: Proceedings of the 19th international
joint conference on Arti�cial intelligence, pages 965�970, 2005.

41. C. K. Riesbeck and R. C. Schank. Inside Case-Based Reasoning. Lawrence Erlbaum
Associates, Hillsdale, NJ, US, 1989.

42. N. Salazar-Ramirez, J. A. Rodríguez-Aguilar, and J. L. Arcos. An infection-based mech-
anism for self-adaptation in multi-agent complex networks. In S. Brueckner, P. Robert-
son, and U. Bellur, editors, 2nd IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, SASO 2008, pages 161�170, 2008.

43. G. Di Marzo Serugendo, M. P. Gleizes, and A. Karageorgos. Self-organisation and
emergence in mas: An overview. Informatica, 30:45�54, 2006.

44. M. Sims, D. Corkill, and V. Lesser. Automated Organization Design for Multi-agent
Systems. Autonomous Agents and Multi-Agent Systems, 16(2):151�185, 2008.

45. B. C. Smith. Re�ection and semantics in a procedural language. Technical Report
MIT/LCS/TR-272, 1982.

46. B. Smyth and P. Cunningham. The utility problem analysed: A case-based reasoning
perspective. In European Workshop on Case-Based Reasoning, pages 392�399, 1996.

47. M. Wooldridgey and P. Ciancarini. Agent-oriented software engineering: The state of
the art. In Agent-Oriented Software Engineering, pages 55�82. Springer, 2001.

48. H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz. P4P: provider portal
for applications. ACM SIGCOMM Computer Communication Review, 38(4):351�362,
2008.

49. C. Zhang, S. Abdallah, and V. Lesser. MASPA: Multi-Agent Automated Supervisory
Policy Adaptation. Technical Report 03, 2008.

50. C. Zhang, S. Abdallah, and V. Lesser. Integrating Organizational Control into Multi-
Agent Learning. In Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 757�764. International Foundation for
Autonomous Agents and Multiagent Systems, 2009.

