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Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is
the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we
conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-
blue–glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally,
dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the
atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the
mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of
the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary
condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative
differences in solution behavior; structures either attract or repel one another depending on the boundary
condition imposed. We suggest that measurement of the form of the boundary condition is possible via
observation of oxygen penetration, and improved product yields may be obtained via proper control of bound-
ary conditions in an engineering setting. We also investigate the dependence on parameters such as the
Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques
described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of
validity, as good agreement is obtained with the simulations.
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I. INTRODUCTION

Hydrodynamic instabilities arising from chemical reac-
tions �1–4� can have a fundamental impact on the overall
reaction rates of many processes �5� and are compelling ex-
amples of self-organized pattern formation. A deep under-
standing of the role of pattern formation could benefit a wide
range of industrial applications, and may lead to optimal
methods of production and control. Yet in general, we do not
yet have a complete picture of the pattern forming process
and can say much less about nonlinear evolution of the pat-
tern and its potential impact on aggregate reaction rates.

In contrast, nonhydrodynamic pattern formation in chemi-
cal and biological systems has been studied in great theoret-
ical detail in recent decades. The most well known are the
Belousov-Zhabotinsky class of reactions, possessing targets
and scroll waves, and autocatalytic systems exhibiting Tur-
ing patterns �see �6�, and references therein�. On the other
hand, the well-known Rayleigh-Taylor and Rayleigh-Bérnard
problems, and many variants thereof, have also been well
documented and theoretically explored �e.g., �7,8��, as well
as general hydrodynamic instabilities too numerous to men-
tion �9�. As many chemical engineering processes involve
reactions in fluids and products with a variety of physical
properties it would appear that detailed theoretical studies of
hydrodynamic instabilities caused by reactions are long over-
due.

Biologically induced hydrodynamical instabilities �10,11�,
however, have been studied in theoretical detail �10,12–24�.
In these systems, the swimming behavior of single-celled
micro-organisms, in response to light, chemical gradients, or
viscous and external torques �such as gravity�, leads to ag-
gregations of typically relatively dense cells from which an
instability can result. In such biological systems the “energy”
of the instability is provided by the swimming behavior of
the individual cells, whereas energy typically is provided at
the boundaries in classical convection problems �7�.

Recently, interest in mechanisms that induce hydrody-
namic patterns in chemical solutions, particularly at inter-
faces �2–4,15–19�, has increased. Theoretical modeling and
linear and weakly nonlinear stability analyzes �20,21� have
been reported but a mechanistic understanding of full non-
linear behavior is lacking. In this paper, we explore compre-
hensive two-dimensional nonlinear simulations. Due to the
complex nature of general chemical-hydrodynamic systems,
we choose to study an underlying chemical system that is
experimentally and theoretically simple; we investigate the
well-known methylene-blue–glucose system, also called the
“blue-bottle experiment” �22�. The complete chemistry of
this system is actually fairly complex, but studies have
shown it to be amenable to significant simplification �4�.

The main aim of this study is to directly compare two-
dimensional numerical solutions of a recent model of the
methylene-blue–glucose system with experimental observa-
tions of chemoconvection patterns and previous analyses. To
achieve this aim it is necessary to explore the sensitivity of
the system to the form of one crucial boundary condition,
how oxygen enters the system; the upper boundary condition
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presented analytical issues in previous analyzes and it affects
the solution behavior qualitatively. Furthermore, we shall ex-
plore parameter space and the aspect ratio of the container
concentrating on temporal and spatial scales.

In the next section we describe preliminaries of the
methylene-blue–glucose system and summarize experimen-
tal and theoretical results from previous work on pattern for-
mation in this system. In Sec. III we describe the simplified
spatial model, and in Sec. IV the numerical scheme. In Sec.
V we present the results. We discuss comparisons with ex-
periments, and linear and weakly nonlinear theories in Sec.
VI and go on to calculate the impact of pattern formation on
aggregate rates of reaction. Finally, we present conclusions
in Sec. VII.

II. THE METHYLENE-BLUE–GLUCOSE SYSTEM

When a mixture of glucose �GL�, sodium hydroxide
�NaOH�, methylene-blue and water is shaken with oxygen
�O2� and poured into a Petri dish that is open to the atmo-
sphere a set of chemical reactions ensues �17,23� ultimately
producing gluconic acid �GLA�. The essential reactions can
be represented robustly �4� by

2MBH + O2 → 2MB+ + 2OH−, �1�

GL + MB+ + OH− → MBH + GLA, �2�

where MBH and MB+ are the colorless �reduced� and the
blue �oxidized� forms of methylene-blue, respectively. The
rate of oxidation, k1, in Eq. �1� is much greater than the rate
of reduction, kobs, in Eq. �2� �measured by Pons et al. �4��.
Thus in the presence of oxygen the mixture turns blue as
MBH is quickly oxidized throughout the fluid �k1�kobs�.
However, once in the container and at rest, the mixture
slowly returns to the colorless form as oxygen is used up,
except at the upper open boundary where there is a supply of
oxygen. Here, both reactions �1� and �2� proceed unheeded
and the reactants diffuse, generating a positive vertical gra-
dient in GLA concentration. Pons et al. �4� established that
this product forms a solution that is 0.044 g /cm3 M more
dense than an equimolar solution of glucose. Therefore, a
gravitationally unstable layer is formed at the upper surface
that can lead to an overturning instability. Tens of minutes
after the solution is poured into the Petri dish, a pattern of
blue sinking fluid in a colorless background typically
emerges and evolves over the course of many hours �see
examples of these patterns in Fig. 1, as viewed from above�.
Pons et al. �4� presented conclusive evidence for the nature
of the instability mechanism, supported by two simple ex-
periments. In the first, they found that similar patterns can be
produced in a container with an oxygen permeable lid �Fig.
1�c��, implying that surface tension effects are not necessary
to produce the instability. In the second, a small hole was
made in the lid of an oxygen impermeable container result-
ing in a thin, blue, descending plume of oxygen rich fluid,
indicating that density variations are sufficient to drive the
instability. They went on to observe the qualitative depen-
dence of the instability on pH �affecting reaction rates�, glu-
cose, catalyst concentration, fluid depth, and temperature.

The first comprehensive quantitative analysis of the pat-
tern growth and wavelength was described in Pons et al. �15�
subject to a variety of experimental conditions. In particular,
they explored pattern length and time scales due to variations
in viscosity, pH, and fluid depth. After the unstable vertical
density profile evolves to such an extent that the initial in-
stability arises and a pattern is formed, the dominant wave-
number is seen to increase quickly. This rapid growth in

(a)

(b)

(c)

FIG. 1. Experiments indicating a range of patterns, as seen from
above. See �4,15� for more information and other examples. The
first two patterns are in Petri dishes which are open at the upper
surface �the images are 13.5 cm wide� and the third is in a com-
pletely filled container �of diameter 5.1 cm� with an oxygen perme-
able lid.
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dominant wavenumber is later retarded: the dominant wave-
number either is maintained, slowly decreases, or oscillates
�with a fairly well-defined period� for long times, suggesting
a regular sequence of mode interactions.

Bees et al. �20� developed a reaction-advection-diffusion
system to model the pattern formation mechanism. Linear
stability analysis was conducted from a horizontally homo-
geneous, no-flow, steady-state concentration profile with a
fixed oxygen concentration upper boundary condition �here-
after referred to as FCBC�, using independently measured
parameter values �4�. They found that the critical wavenum-
ber is zero due to symmetries of the governing equations
�21�. �The critical wavenumber is associated with the small-
est Rayleigh number, Rc, on the neutral linear stability curve.
For Rayleigh numbers just greater than Rc, a band of un-
stable modes exist with small wavenumber.� Nevertheless,
the fastest growing linear mode for a Rayleigh number above
Rc has a finite wavenumber; this wavenumber and its growth
rate have been favorably compared with experimental results
�15,20�.

However, simple linear stability analysis based on steady
profiles was not able to explain much beyond simple at-
tributes of the initial pattern. For instance, it could not ex-
plain the onset time at which the pattern emerges or elucidate
the initial quick increase of the dominant wavenumber after
the instability arises. Moreover, it is clear from experiments
that a no-flow, steady-state concentration profile is generally
far from attained before pattern onset. Bees et al. �20� intro-
duced a pseudo-steady state approximation to address these
aspects. As the vertical chemical concentration profiles as-
ymptote to the steady state, linear stability analyzes were
conducted about slowly evolving concentration profiles.
Even though the instability may be on the verge of being
induced �with vanishingly small growth rates�, the vertical
profile will continue to evolve and become more unstable.
This neutral curve can be considered to be a slow function of
time and to move through a line of constant Rayleigh num-
ber �given by the physical properties of the reactive fluid�,
presenting a wider band of unstable modes with an increas-
ing value of the most unstable wavenumber as the density
profile steepens. The validity of the pseudo-steady state lin-
ear stability analysis is of course restricted by several con-
straints to a small range of parameters in the model. How-
ever, results appear to compare remarkably well with
experiments, both qualitatively and quantitatively, outwith
their expected range of validity �20�.

In Pons et al. �21�, a weakly nonlinear extension of the
model was presented for a fixed oxygen flux upper boundary
condition �hereafter referred to as FFBC� to establish the
behavior of the system beyond the initial instability. The lin-
ear analysis closely follows that for the FCBC, and the re-
sulting nonlinear amplitude equation is analogous to that for
convection with insulating walls. Weakly nonlinear analysis
indicates that dominant wavenumbers should decrease in the
long term, thus presenting a trend opposite that seen for
pseudo-steady linear stability analysis with a FCBC. How-
ever, such analysis suffers from similar problems as the
steady linear analysis as steady state profiles are never at-
tained before the instability occurs. In Pons et al. �21� it was
suggested that a combination of pseudo-steady linear stabil-

ity analysis and weakly nonlinear analysis from a steady
state could reproduce much of the early behavior observed in
experiments. As well as comparing our numerical solutions
with experimental observations in later sections, we shall
also discuss the range of validity of the above theoretical
descriptions in an attempt to reconcile these seemingly dif-
ferent views.

III. MODEL EQUATIONS

Throughout this work, we shall consider two-dimensional
solutions, such that solutions do not depend on y and the
fluid velocity u= �u ,0 ,w�. We shall begin with the nondi-
mensionalized model as presented in Bees et al. �20� which
consists of the following set of governing equations:

�tA = − � · �Au − �A � A� + B , �3�

�tB = − � · �Bu − �B� + ���1 − B� − B , �4�

�t� = − � · ��u − � � �� − ���1 − B� , �5�

Sc
−1��tu + u · �u� = − �P − RAk + �2u , �6�

� · u = 0, �7�

where k is a unit vector pointing upwards. A, B, and �
denote the nondimensional concentrations of gluconic acid,
oxidized �blue� form of methylene-blue, and oxygen, respec-
tively. �A and � are diffusivity ratios and � and � are reaction
ratios. R and Sc represent the hydrodynamical nondimen-
sional parameters and correspond to the Rayleigh and
Schmidt numbers, respectively. Length has been nondimen-

sionalized with H̄=�D /kobs, where D is the diffusivity of
MBH and MB+, and time with td=kobs

−1 �recall that kobs rep-
resents the rate of the slow reaction�. The chemical Rayleigh

number is defined as R=g��W0H̄3 /	dD, where W0 is the
total �oxidized plus reduced� concentration of methylene-
blue, g is the acceleration due to gravity, 	d is the dynamic
viscosity, and �� is the molar excess solution density of
GLA, with respect to GL �4,20�. Typical values of these
quantities are noted in Table I.

The first three equations represent the reaction, advection,
and diffusion of the three main chemicals: GLA, MB+ �MBH
can be determined from the initial homogeneous concentra-
tion of methylene-blue minus MB+�, and O2. The fourth
equation is the Navier-Stokes equation with a negative buoy-
ancy term due to GLA �Boussinesq approximation�. And the
fifth equation is the incompressibility condition.

We shall impose no-slip and no-flux boundary conditions
at x=0,L:

i · �Au − �A � A� = i · �Bu − �B� = i · ��u − � � �� = 0,

and u = �u,v,w� = 0 at x = 0,L . �8�

For a typical numerical experiment with no-slip at the lower
boundary and stress-free at the upper boundary we impose,
respectively,
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�u,w� = �0,0�, and w =
�u

�z
= 0. �9�

Vertical no-flux boundary conditions are applied for A and B
at the upper and lower surfaces such that

k · �Au − �A � A� = k · �Bu − �B� = 0 at z = 0,d ,

�10�

and at the lower boundary only for oxygen flux,

k · ��u − � � �� = 0 at z = 0. �11�

In Bees et al. �20� the concentration of oxygen at the
upper surface was fixed to a value of 1 �nondimensional
units; FCBC�. But, in Pons et al. �21� a fixed oxygen flux
upper boundary condition �FFBC� was investigated. Both
boundary conditions are, at best, approximations of natural
oxygen transport at the surface. The FCBC imposes a large
flux if oxygen poor fluid is advected close to the surface,
whereas a FFBC would clearly be inappropriate in the ab-
sence of an oxygen sink �also �17�, presents evidence that the
oxygen flux depends on the stirring rate of the system�.

In this paper, we shall explore more general boundary
conditions at the upper surface than considered elsewhere
�20,21�. We use mixed boundary conditions


c� + 
 f
��

�z
= 1 at z = d , �12�

where the constants 
c and 
 f are chosen such that we can
obtain fixed concentration �
 f =0�, fixed flux �
c=0�, or
mixed type boundary conditions at the upper surface. For a
FFBC, we choose 
 f such that the concentration of nondi-
mensional oxygen, �, is equal to 1 at the surface before the
onset of instability. We may rewrite condition �12� in the
form of a naïve model of flux across a thin mixing layer,
such that

��

�z
= ��sat − ��/�, at z = d , �13�

where �sat=1 /
c is the oxygen saturation concentration and
�=
 f /
c is the thickness of a thin absorption zone �nondi-
mensional units�.

IV. NUMERICAL TECHNIQUES

Here we describe the numerical scheme to simulate solu-
tions of the full nonlinear model, the standard independently
measured parameter values used in the simulations, and
methods to calculate statistics and Fourier spectra from the
numerical results.

A. Numerical methods

We solve the evolution equations using a time-splitting
method with an improved boundary condition for the pres-
sure as described in �24�. The time integration scheme is
second order accurate and is based on a modified Adams-
Bashforth formula �24�; we treat the linear diffusion terms
implicitly and the nonlinear terms explicitly. For the spatial
discretization we use a Chebyshev collocation pseudospec-
tral method �25�. The advantage of using spectral methods
for the spatial discretization is the high accuracy that can be
achieved if the solution is sufficiently smooth; this leads to
very small numerical diffusion that precludes the propaga-
tion of errors during the time evolution. A similar code has
been used successfully for the simulation of binary fluid con-
vection in large aspect ratio containers �26� showing excel-
lent agreement with experiments. In all cases the time step
and the number of collocation points used was adjusted until
the solutions converged. Typically, we used 480 collocation
points in the x direction and 48 collocation points in the z

TABLE I. Description of dimensional quantities, values, and units.

Name Description Value Units

D diffusivity of MBH & MB+ 4�10−6 cm2 /s

DA diffusivity of GLA 6.7�10−6 cm2 /s

D� diffusivity of oxygen 2.11�10−5 cm2 /s

� fluid density �water; 25 °C� 0.9970 g /cm3

�GL solution density / M GL 1.065�0.009 g / �cm3 M�
�GLA solution density / M GLA 1.108�0.009 g / �cm3 M�
�� excess sol. density / M GLA �replacing M GL�

=�GLA−�GL

0.044�0.018 g / �cm3 M�

	d dynamic viscosity �water� 10−2 g /cm s


 kinematic viscosity 10−2 cm2 /s

g acceleration due to gravity 103 cm /s2

k1 fast reaction rate 2000 �M s�−1

kobs slow reaction rate 0.0042 s−1

W0 initial MBH+MB+ 4.6�10−5 M

�0 typical O2 surface conc. 2.6�10−4 M

H̄ sublayer depth=�D /kobs 0.031 cm
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direction �except where indicated otherwise�, with a time
step of 10−3td.

B. Parameter values

The standard nondimensional parameter values are chosen
to represent a perceived normal experimental setup, and are
tabulated in Table II. For fixed-flux boundary conditions we
choose the value of the flux such that the concentration of
oxygen is equal to 1 at the surface before the onset of insta-
bility, in order to make direct comparisons with the fixed
concentration boundary condition. This leads to a boundary
concentration coefficient 
c of zero and a boundary flux co-
efficient 
 f of 5.48, giving a flux of 0.182. We later explore
the impact of varying 
c and 
 f, before focusing upon the
mixed condition values 
c=1 and 
 f =3.

In all cases, we employ the same initial conditions at t
=0: A=0, B=1, �=1, �u�=0; initially, the medium is quies-
cent, homogeneous, and blue, and it is saturated with oxy-
gen.

C. Statistics and Fourier transforms

Taking into account the large quantity of data produced by
each numerical experiment we define several global quanti-
ties which can help to simply describe the solution behavior.
In particular, we make statistics of the concentration distri-
bution of each compound and of the modulus of velocity, in
the vertical and horizontal directions and for the whole sys-
tem. These will be defined for the oxygen concentration be-
low and it is clear how the definition is extended to other
variables.

The oxygen average for the whole system is defined as

��� =

	
0

d 	
0

L

��x,z,t�dx dz

	
0

d 	
0

L

dx dz

, �14�

computed using Clenshaw-Curtis weights. The vertical and
horizontal averages, �·�z and �·�x, are calculated, similarly,
restricting the integrals to the vertical and the horizontal di-
rections. �These averages are distributed in space in the hori-
zontal and vertical directions, respectively.�

Also, we define the oxygen variance statistic, Var���, as

Var���2 =

	
0

d 	
0

L

���x,z,t� − ����2dx dz

	
0

d 	
0

L

dx dz

�15�

which is numerically computed in a similar manner to ���
above. Var��� gives a quantitative measure of the spatial
inhomogeneity of the field. Similarly, we can define the ver-
tical and horizontal analogs, Varz��� and Varx���.

�B�z is what one typically observes in experiments, i.e.,
the depth-averaged pattern of methylene-blue from above.
Therefore we study the evolution of the dominant wavenum-
ber by Fourier transforming �B�z: for each time step interpo-
late �B�z�x� at equispaced values in x, apply the Hann win-
dowing function and employ the one-dimensional FFT
algorithm �e.g., see �11��. The dominant wavenumber kmax is
defined as that associated with the largest value in the power
spectrum.

V. RESULTS

A. Solutions for the standard parameter values
with a fixed flux boundary condition

We begin by presenting snapshots, Figs. 2�a�–2�c�, of the
three concentration fields with the fluid velocity superim-
posed for a typical simulation output with the standard pa-
rameter values and FFBC �i.e., 
c=0 and 
 f =5.48�. This
boundary condition allows for analytical results that can be
compared directly with the simulations. We also present plots
of Varx�A� and Varx�B� in Fig. 2�d� to illustrate the form of
the inhomogeneous part of the vertical concentration fields.
In the very early stages, these can be favorably compared
with plots of the perturbation fields from weakly nonlinear
analysis �see Fig. 5 in �21��. The long time profiles of
Varx�A� and Varx�B� are also presented to illustrate that
variations in B are towards the bottom of the fluid layer
whereas variations in A extend to upper layers before de-
creasing close to the free surface. In Fig. 3, graphs are pre-
sented for the evolution in time of the average concentrations
of gluconic acid �A�, methylene-blue �B�, oxygen ���, and
modulus of velocity ��v��, where the inset of each graph de-
picts the initial stages of the evolution. Furthermore, we plot
vertically averaged quantities �A�z, �B�z, ���z, and ��v��z in
Fig. 4.

TABLE II. Nondimensional parameters, their definitions, and
the standard parameter values to 3 s.f.

Name Description Expression Value

d scaled fluid depth
H

H̄
24.0

� reaction ratio
2k1�0

kobs

385

� reaction ratio
k1W0

kobs

34.1

� diffusion ratio
D�

D
5.28

�A diffusion ratio
DA

D
1.68

R Rayleigh number g��W0H̄
3

	D
1.73

Sc Schmidt number



D
2630

L width of region 240
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Initially the mixture is homogeneous and so methylene-
blue is oxidized at the same rate throughout the layer of
fluid. However, for the FFBC by definition there is a given
influx of oxygen at the upper surface from the atmosphere,
leading to a thick oxygen depleted layer at the bottom. Hence
methylene-blue is preferentially and rapidly oxidized at the
upper surface and slowly reduced generating the dense prod-
uct gluconic acid A. At a time of approximately 18 units
�18 td=18 /0.0042�240 s
71�4 min� the evolving bal-
ance of accumulation and diffusion of A at the upper surface
leads to an overturning instability. Advection ensues and
highly inhomogeneous oxygen concentrations are generated,
as can be observed by a sharp increase in Var��� �inset Fig.
3�. However, this oxygen distribution relaxes to a generally
thin subsurface layer of oxygen that is mostly stable to ad-
vective effects but with a thin plume of entrainment in re-
gions of downwelling fluid �see vertically averaged quanti-
ties in Fig. 4�. The behavior of the oxidized methylene-blue
B mostly follows that of oxygen, except that it is continually
advected downwards from the subsurface layer, interacting
with the lower boundary and generating the striking blue
dots and rolls that can be observed in experiments for long

times. Initially, B forms a thick band �thicker than oxygen� at
the upper surface. After the overturning instability arises,
thick plumes of B descend to the lower boundary, mixing the
fluid and being advected back upwards, almost resulting in a
homogeneous distribution of B. Excess B is quickly estab-
lished once more at the upper surface and advected down-
wards to create a new array of blue plumes. There are clear
oscillations in this behavior before more stable arrays of
plumes are established. Figure 4 demonstrates this early os-
cillation in the amplitude of the pattern.

The difference between the distribution of B and oxygen
is due to the relatively slow reaction rate of the reduction
process. It is the inhomogeneity of the gluconic acid distri-
bution, however, which drives advection; it can be observed
in Fig. 2 how vertical gradients in A quickly arise and lead to
thin plumes transporting excess A at the surface to broad
accumulations at the bottom.

After transients have diminished, Fig. 3 appears to present
an inherently stable picture of the spatially averaged quanti-
ties. Long term behavior of the averaged quantities indicates
that steady states are approached for �B�, and that �A� in-
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FIG. 2. �Color online� Five snapshots around the initial instability of simulations, for the standard parameter values with a fixed flux
oxygen boundary condition at the upper surface �FFBC�. Fluid velocity is superimposed upon each of the plots �if max�u��10−3�, which are
arranged in groupings of �a� A− �A�, �b� B, and �c� �. Snapshots are provided at times of 17, 18, 19, 20, and 21 nondimensional units from
bottom to top. The maximum modulus of velocity is indicated on the right. Recall that there are 103 numerical time steps between each
recorded integer time td �
4 min�. �d� Plots of Varx�A� and Varx�B� �including data at time 1000 units� illustrating variations from a
horizontally homogeneous solution �can be compared with perturbation solutions in linear and weakly nonlinear analyses�.
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creases linearly with time. In fact, we can average Eq. �3�
obtaining

�t�A� = �B� , �16�

and Eqs. �4� and �5� to obtain

�t�B� = ����1 − B�� − �B� , �17�

and

�t��� = ��/d���z��0��x − ����1 − B�� , �18�

where �·�x means horizontal average.
Equation �16� provides the rate of growth of �A� if �B� is

known. Then, considering a steady state in the averages �B�
and ��� gives

�1 − B���� � ���1 − B�� = ��/d����z��0��x = �1/���B� .

�19�

Setting a FFBC provides a steady state value for �B� of

�B� = ���/d���z��0� = 0.452, �20�

which agrees �error generally less than 1%� with Fig. 3, and
provides a �poor� positive lower bound for

��� � �1/��
�B�

1 − �B�
= 0.0021. �21�

The fact that �B�, and so the rate of increase of �A�, numeri-
cally reaches a steady state value as directly calculated above
is quite remarkable. In fact it is the same steady state value
independent of whether convection arises or not. The evolu-
tion with time of �B� varies for small time intervals as the
assumed steady state for ��� occasionally is broken, but re-
sumes its convergent approach as steady state conditions for
��� are reattained �note that the “temporary” steady state
value of ��� is not reattained; readers should examine
closely Fig. 3�. Such shifts in ��� are due to plume interac-
tion events. Descending plumes in the initial stages of the
instability advect oxygen down to oxygen-poor �colorless-
methylene-blue� regions. This oxygen is quickly used at the
boundaries of the plumes before a balance between advection
and use of oxygen is attained in the regions surrounding the
plumes.

An implication of Eq. �20� is that the solution will not
approach a temporary mean steady state for ��� if the pa-
rameters are chosen such that ���z��0��d�, as �B� is
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FIG. 3. Spatially averaged quantities �a� �A�, �b� �B�, �c� ���, and �d� ��v�� from simulations with �1� fixed concentration, �2� fixed flux,
�3� mixed boundary condition �
c=1, 
 f =0.2�, �4� mixed boundary condition �
c=1, 
 f =3�, and �5� mixed boundary condition �
c

=1, 
 f =9�. The insets depict early variation of the Var of the fields with time. Crosses, squares, etc., distinguish the line rather than indicate
data points.
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bounded above by 1. As an aside, setting the value of the
fixed flux to three times previous values leads to a prediction
that �B�=1.35, which is clearly not possible. However, the
simulations indicate that �B� approaches the value 1 after
circulation is established. Therefore we re-examine our as-
sumptions to find that a steady state in ��� will not be
reached. Thus we find that with �z��0�=0.546,

�t��� = ��/d��z��0� −
�

�
= 0.0315, �22�

which is indeed observed in the simulations �error less than
1%�. With this high value of oxygen flux, solutions are gen-
erated with a thick band of GLA at the upper surface and
narrow band of less dense mixture at the bottom, leading to
thin ascending plumes of GLA deficient fluid �not shown�.

Let us now return to the example with �z��0�=0.182. The
apparent steady states discussed above hide the variation in
the solutions of the full system seen in simulations. In par-
ticular, one can observe a wealth of plume interactions,
which in this FFBC case result in cell annihilation events and
a final single circulation pattern occupying the whole of the
container leading to a large horizontal gradient in �GLA�.
Fig. 3 demonstrates that although �B� tends to a steady state,
and �A� increases as in Eq. �16�, ��� and ��u�� do not reach
steady states: ��� and ��u�� adopt new larger values after
each plume collision �see Fig. 4 for two-plume merging
events in the early stages of the pattern evolution�.

We can observe how the wavenumber of the dominant
mode of B, kmax, varies with time in Fig. 5�a�. In Fig. 5�c� we
also plot the power spectrum of B from which we extract the
maximum amplitude, as in Fig. 5�b�, and plot the normalized
power spectrum with time in Fig. 5�c�. From these figures,
and other simulation output, it is clear that there is a large
increase in kmax in the very early stages of the instability,
followed by a gradual decline with some oscillations. In Fig.
6 we see that plume interaction events are direct and result in
fewer plumes and thus a sudden decrease in wavenumber.
�We shall see later that this is not the case for the FCBC.� We
shall focus on two significant events at times 
130 and 710
which are just discernible in Fig. 3 �curve 2� as steps up in
��� and ��v��, and blips in �B�. These events can be matched
with behavior in Fig. 4. The first event at time 130 consists
of a merging of two large plumes to form a thick plume of
downwelling blue fluid, whereas the second event at time
710 represents the collision of the thick central plume with a
boundary. One may also observe in Fig. 4 small amplitude,
high frequency wiggles on the plumes. In movies of the
simulation results it is clear that these are not numerical ar-
tifacts but small traveling undulations which appear close to
wide plume structures.

We note here a limitation of the simplified model kinetics
that we have employed. It does not make sense to produce
more �GLA� than the original �GLU�. Essentially, the ap-
proximation assumes that �GLU� is constant when in fact it
should diminish in response to increasing �GLA�. We can
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FIG. 4. �Color online� Vertically averaged quantities �a� �A�z− �A�, �b� �B�z, �c� ���z, and �d� ��v��z for the standard parameter values with
a fixed flux oxygen boundary condition at the upper surface �FFBC�. The plots on the left are for 0–1000 nondimensional time units, and on
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estimate the time at which �GLA�= �GLU� and the model is
strictly invalid. For times approaching this time, the results
should be treated with caution. Initially, �GLU� is set to
0.054 M. Expressed in nondimensional units this is

0.054 /4.6�10−5=1174. The simulations do not pass this
value, but �A� does approach half this value over a nondi-
mensional time of 1000, corresponding to 1000 /kobs s
=66 h. However, experimental results do not exceed 5 h in
�15�, so the simulation times are well beyond what are re-
quired, although it makes sense to investigate simulation ex-
tremities. The influence of the reduction in �GLU� through-
out the course of a normal experiment or simulation may
modify the solutions quantitatively in the long term.

In what follows, we systematically explore the parameter
space around the standard parameter values, and the bound-
ary conditions. To illustrate the full range of solution behav-
ior, we concentrate on representative changes of �i� upper
oxygen boundary conditions, �ii� Rayleigh number, R, and
�iii� depth to sublayer depth ratio, d. We also briefly tabulate
dependence on other parameters such as ratios of reaction
rates and diffusivities in Table III.

B. Varying the upper oxygen boundary condition

1. Fixed concentration

First we consider the case for a FCBC, which can be
achieved by setting 
c=1 and 
 f =0. At first glance, this
would appear to be the most natural approximation to the
real boundary condition for oxygen at the surface, but im-
plies that oxygen present in the air takes no time at all to
cross the gas-fluid interface, to the specified concentration.
Moreover, it may be viewed as a much harsher restraint than
the FFBC as it states that the concentration of oxygen at the
free surface is not perturbed by advective or reactive effects,
which can lead to very high spatial oxygen gradients, per-
haps unphysically. In contrast, the FFBC, although directly
prescribing a constant supply of oxygen, allows for oxygen
concentrations to vary at the upper boundary and does not
lead to such high gradients. It is apparent, however, that there
are modeling issues with both types of boundary condition.

For FCBC it is immediately clear from the simulation
results that oxygen is not at all entrained in the plumes, de-
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FIG. 5. �Color online� Variation of the dominant wavenumbers
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parting from the behavior for the FFBC. We plot in Figs. 7�a�
and 7�b� the early and long time behavior of �A�z− �A� and
�B�z and, in Fig. 7�c�, a snapshot of A− �A� and B concentra-
tions. The behavior is clearly different to that observed for
the FFBC, with plumes tending to separate rather than
merge. Common to both mechanisms is that wavelengths
increase; for the FCBC, plumes tend to drift towards the
edge of the container and annihilate at these boundaries. The
plumes also tend to exhibit large amplitude wiggles with a
period of approximately 150–200 time units. There are also a
few large plume-translation events, such as at time 
750
which can be associated with minor blips in �B� but better by
a larger step and a blip in ��v�� in Fig. 3, respectively. Pairs of
closely sited plume-antiplume “doublets” can be seen to rap-
idly translate and appear to cross the path of other doublets
�see Figs. 7�a� and 7�b��. This is distinctly different behavior
to the merging events that occur for the FFBC, and it seems
remarkable that such a variety of behavior can be observed
for such a simple change in boundary condition. There are no
major steps in ��� in contrast to the FFBC. It is also apparent
in the snapshots of Fig. 7�c� that circulation rolls have
greater up-down symmetry than the FFBC, with blue down-
welling MB+ rich plumes of a similar width to clear up-
welling MBH rich zones. However, the solutions lack left-
right symmetry, with the asymmetry directing the drift of
meandering plume-antiplume doublets, typically outwards to
the boundaries.

2. Mixed boundary condition

This difference in behavior between FFBC and FCBC,
with the physical problems associated with each, begs the
question as to whether an intermediate scenario may shed
some light. Thus we consider a mixed boundary condition.
Typically, solutions are obtained with elements of both fixed
flux and concentration. By setting 
c=1 and 
 f =3 a regime
similar to the case of FFBC is obtained, with thick down-
welling MB+ rich plumes that merge, except that the plumes
merge faster and almost simultaneously, and the high-
frequency wiggles previously seen on the plumes have
greater amplitude and larger period �roughly 12 time units�.
Furthermore, observation of the simulation results reveals
interesting plume development and structure as can be ob-
served in Fig. 8, and a treadmill of smaller undulations that
get translated and enveloped by larger plumes before they
have a chance to develop separate circulation cells. Oxygen
is entrained in the plume structures. A state is quickly ob-

tained in which the large central plume migrates to a bound-
ary leaving a central upwelling region with downwelling at
the boundaries.

Increasing 
 f to 9 provides further new behavior. This
region of parameter space prescribes a constant total contri-
bution of oxygen concentration and a small flux. Alterna-
tively, it may be viewed as physically modeling a broad ab-
sorption zone ��=
 f /
c=9 nondimensional units�. In the
early stages, well-formed, thin downwelling plumes merge.
At later stages and for long times two rather unstable-looking
plumes gobble up smaller plumes in a state of nervous coex-
istence, drifting around in their allowed space but never de-
siring to get sufficiently close to merge. This leads to a large
horizontal gradient in GLA, with higher concentrations in the
well-mixed central zone housing the coexisting plumes. Of
note is that oxygen is only very weakly entrained in the
plumes and that large �but not all� plumes repel one another,
closer in behavior to the case of FCBC.

Reducing 
 f to 1 or 0.2 provides at first a regular array of
plumes that quickly translate to the right or left so that they
preferentially fill one half of the horizontal domain, eventu-
ally merging and translating to the boundary to form one
large circulation roll, generating fairly constant spatial gradi-
ents in �·�z quantities. The behavior in these mixed boundary
condition cases is generally significantly different to the
FCBC described above, and suggests that the FFBC better
reflects the behavior of more complicated boundary condi-
tions. In the absence of reliable measurements on realistic
values of 
c and 
 f, we assume a mixed boundary condition
with 
c=1 and 
 f =3 in what follows.

C. Varying the Rayleigh number

Here, we describe the influence of the Rayleigh number
on the evolution of the system. This parameter is important
in the linear stability analysis of the system. Consider a re-
duction of the Rayleigh number from the standard parameter
values. In general we find that the magnitude of any circula-
tion that may arise decreases with R. Setting R=10−1 we find
that an instability still occurs with a similar wavenumber to
the standard parameter values. However, it can be seen in
Fig. 9 that the plumes translate much less rapidly and merge
at times much later than for the standard parameter values.
Furthermore, the plume merging events are less smooth: the
plumes gradually drift towards each other followed by a very
rapid coalescence once they are within a certain minimum
distance. The solutions head towards the final solution for the

TABLE III. Summary of general solution dependence on reaction and diffusion parameters for standard
parameter values with mixed boundary conditions �
c=1, 
 f =3�.

Parameter Description Effect of increasing

� ratio of reaction rates deeper penetration of oxygen; onset time increases

� ratio of reaction rates less penetration of oxygen; onset time decreases

� ratio of diffusivities deeper penetration of oxygen;
onset time increases very slightly

�A ratio of diffusivities system is relatively insensitive;
pattern amplitude decreases transiently
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standard parameter values, with the wavenumber decreasing
monotonically. Oxygen is still entrained, but less so than for
the standard parameter values. Of particular note is that there
appears to be only a narrow range of allowable plume sepa-
ration distances, perhaps associated with the smaller range of
growing modes from linear theory.

Further reducing R to 10−2, we find very smooth curves
for the �·�z quantities as a function of time, with very few of
the oscillations, steps, or blips as seen before. All quantities

converge rapidly to steady states, consistent with the obser-
vation that no plume merging or translation events occur. In
fact the long time behavior of the solution is a stable, sinu-
soidal array of plumes with a wavenumber commensurate
with that of the initial instability. This leads to the suggestion
that the results display behavior very similar to that predicted
by linear theory, and that this value of the Rayleigh number
should be close to the neutral stability curve �see Sec. VI A
for a comparison with predictions from linear theory�. A
wavenumber of 5 in an x region of 240 gives k=0.021 �2 s.f.�
per unit, or k=0.13 per 2�, consistent with the linear theory
prediction �20,21� of approximately k=0.1 for R=2Rc
�which gives the scaled Rayleigh number r= �R−Rc� /Rc=1�,
both for fixed concentration �Rc=5.2�10−4� or fixed flux
boundary conditions �Rc=4.8�10−4�, rather than the mixed
boundary conditions, albeit for slightly different parameters.

Finally, setting R�5�10−4 does not lead to instability,
consistent with linear theory �20,21�. Furthermore, the simu-
lations indicate that the amplitude of nonlinear solutions de-
cays with proximity of R to Rc in a fashion consistent with a
supercritical bifurcation.

D. Dependence on depth

The stability of plumes in deep and narrow chambers is of
great interest, but beyond the scope of this paper �see discus-
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FIG. 7. �Color online� Results for standard parameter values
with a fixed oxygen concentration upper boundary condition
�FCBC�. �a� and �b� are the vertically averaged quantities �A�z
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sion�. On the other hand, if d�L, then we find that increas-
ing L has minimal effect, so we consider varying depth d
with L fixed.

Decreasing depth from the standard parameter values by
setting d=12 �24 collocation points in the z direction� leads
to results that exhibit a monotonic decrease in k. The initial
instability generates circulation cells with small wavelengths
comparable with the depth d, that transport �, MB+, and
GLA very rapidly throughout the fluid. Thus the initial wave-
number is larger for this shallow system, but is reduced very
quickly. The circulation cells merge rapidly with their neigh-
bors. At the end of the simulation time of 1000, the system
ends up with a single centrally located plume that locally
transports fluid upwards, with downwelling currents at the
edges.

If we increase depth from the standard parameter values
by setting d=35 we find, as one might expect by analogy
with the analytical prediction in Eq. �20� for the fixed flux
boundary condition, that the system approaches a lower
value for �B� �0.3 vs 0.4 for d=24 and 0.7 for d=12�, and
correspondingly smaller value of d�A� /dt. Also, �B� arrives
in the neighborhood of this value much quicker than for
shallower systems, but appears noisy and never asymptotes
to a steady state. The deeper layer is also associated with
larger, rapidly varying velocities, exhibiting a competition of
unstable modes with new plumes appearing between already
established plumes throughout the simulation. However, the
plumes, both new and old, rapidly merge or migrate to the
boundaries. In the latter stages of the simulation a large hori-
zontal gradient in MB+ emerges �in this simulation, mostly
blue on the right and clear on the left�, generating a single
strong circulation cell which continuously shears several
emerging plumes to such an extent that they are translated to
the right and mixed by stretching and folding �see Fig. 10�.

The initial dominant wavenumber is larger for shallow
systems than in deeper ones, but in both cases the system
ends up with one or two cells after the sequence of merging
events.

VI. DISCUSSION

A. Comparisons with experimental results,
and linear and weakly nonlinear theory

Qualitatively, the results from simulations fit extremely
well with experimental measurements of pattern initiation

and wavenumber evolution �15�. Common to both is an ini-
tial rapid increase of pattern wavenumber �usually a dou-
bling� after the instability arises, coupled with initial thinning
of the width of the blue downwelling plumes. Beyond this
very early stage is a cascade of plume merging events which
reduces the wavenumber and broadens the plumes. Overall,
simulations and experiments reveal plume aggregation pro-
cesses, which either draw the pattern to the center of the Petri
dish and can lead to a localized pattern packet with slightly
larger wavenumber, or lead to accumulations of plumes close
to, or at, the boundaries. Furthermore, in deeper chambers
large scale circulation is observed in simulations that shear
the plumes. Such plume shearing is evident in many experi-
ments, and can be observed quite clearly in Fig. 1�b� as short
radial line patterns when seen from above.

The simulations predict that for the standard parameter
values and for a range of boundary conditions, the initial
instability arises around 15–18 nondimensional units �see in-
set of Fig. 3�d� for ��v���. This corresponds to a dimensional
time of 3571–4286 s, which is in good agreement with the
reference case experiment reported in �15� of 3100 s for pat-
tern onset. Moreover, one can estimate the theoretical onset
time from pseudo-steady state linear analysis in �20� as the
time at which the characteristic growth rate approaches the
natural time scale of the system, kobs. For the reference case
in �15� this provides a pattern onset time of 3500 s.

Linear theory using the pseudo-steady state approxima-
tion �20� indicates that the dominant initial wavenumber
should rapidly increase in the first moments after pattern on-
set. Simply put, this is due to an evolving neutral stability
curve that possesses a zero most unstable mode �with zero
growth rate at k=0�. For a fixed value of the Rayleigh num-
ber, one may view the increasingly unstable GLA profile as
inducing a neutral stability curve that everywhere drops and
allows for a wider band of unstable modes with ever greater
linear growth rates. This is observed both in experiments
�15�, where approximate doubling of dominant wavenumbers
is common �although the three-dimensional experiments al-
low for more complicated increases�, and in the two-
dimensional simulations, where wavenumber doubling is
typically observed on a very fast time scale. Finally, we refer
to the amplitude equation derived in �21� for a FFBC from a
steady state, which took the form

Ft = �R − Rc

Rc
�k1Fxx + k2Fxxxx + k3�FxFxx�x + k4�Fx

3�x,

�23�

where k1=−1.7, k2=−94, k3=2.7, k4=0.29, Rc=4.9�10−4 �2
s.f.�. Direct simulations of this equation �21� indicate that
grain-coarsening �modes are unstable relative to modes of
smaller wavenumber� is predominant after the onset of the
instability, via a series of plume merging events, which take
on a very similar appearance to the full simulation results for
FFBC presented herein. As the amplitude equation has been
derived from a steady state, which is generally far from be-
ing obtained in experiments or simulations, the initial in-
crease in wavenumber is not observed. Neither is the hori-
zontal interaction of plumes with the boundaries as the
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FIG. 10. �Color online� Plumes developing in a strong shear
flow arising in a deep layer of fluid, d=35 �70 collocation points in
the z direction�, for the standard parameter values with mixed
boundary conditions �
c=1, 
 f =3�. The snapshot of �B�z is pre-
sented at a nondimensional time of 1000.
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amplitude description is derived for containers of infinite
horizontal extent.

The initial numerically predicted wavenumber is around
knum=0.02 nondimensional units, which equates to a physical

wavenumber of 2�knum=0.13, or a wavelength of H̄ /knum
=1.7 cm. This agrees with the experimentally observed ini-
tial wavelength of �12.4 cm /9.5=�1.3 cm �15�. In consider-
ing this good agreement it also must be remembered that we
are using independently measured parameter values with no
fitting. The subsequent increase in wavenumber in simulation
and experiment gives wavelengths of �0.031 cm /0.03
=�1.03 cm and �12.4 cm /13.5=�0.91 cm, respectively. The
long term simulation results reported in this paper are also
consistent with the experimental measurements in �15�.

Experiments indicate that oscillations are dominant in the
long term in deeper containers �15�. This is also our experi-
ence in the simulations. However, containers with aspect ra-
tios such that d
L or greater are beyond the scope of the
current paper.

B. Minimization of “energy?”

It is tempting to make a rough “kinetic” and “potential
energy” argument in line with the methods of �27� for a
numerical study of bioconvection. Even though such descrip-
tions are not rigorous they suggest a process of minimization
based upon simulation measurements. Consider the defini-
tion of total “kinetic energy,” Ke, defined as half of the sum
of local density times the square of velocity, such that

Ke =
1

2�
i=0

Nx

�
j=0

Nz wi
x

2

wj
z

2
����W0A + �GL��u�ij

2 � , �24�

where wn
m represent Clenshaw-Curtis weights, and Pe �“po-

tential energy”� due to vertical gradients in GLA, or the “first
moment” in the vertical direction of the deviation of gluconic
acid with respect to its average, such that

Pe = �
i=0

Nx

�
j=0

Nz wi
x

2

wj
z

2
�Aij − �A��z . �25�

We measure the deviation of gluconic acid relative to its
average �A�, as the continuous growth of �A� hides the true
useful potential energy, which is distributed inhomoge-
neously in space.

In Fig. 11 we plot Ke vs Pe for the standard parameter
values with a range of oxygen boundary conditions. In all
cases potential energy increases from zero to such a level
that the instability is triggered and kinetic energy rapidly
increases from zero to a high value, accompanied by a drop
in Pe. This is followed by a drop in Ke and a more gradual
increase in Pe. Oscillations in these two energies follow,
through a sequence of either circulation-circulation or
circulation-boundary interactions that appear to generate at-
tractors with smaller values of Pe and larger Ke. In general,
this culminates in a spiral-type attracting fixed point for the
final one-cell circulation pattern. This stable-focus-cascade
structure is common to all of the simulation results. It sug-
gests that given the number of circulation rolls, the system

evolves towards a state with minimal total energy, but in the
long term will evolve towards a simple reacting and convect-
ing state that minimizes Pe globally.

C. Impact on aggregate rates of reaction

It is clear that the impact on aggregate rates of reaction is
governed by �B� as it is the rate of production of �A�. In the
simulations �e.g., Fig. 3� we see that initially the concentra-
tion profiles evolve such that �B�
1, and ��� decreases
from 1 until a point is reached where there is not enough
oxygen to support �B�
1. �B� then drops resulting in lower
rates of production of �A�. The system then either approaches
a horizontally homogeneous steady state, or becomes un-
stable before a steady state can be reached and develops a
pattern. There are initial wiggles for all averaged quantities
in the simulations exhibiting patterns. The upper oxygen
boundary condition then determines how the aggregate rates
of reaction are affected.

Beyond times with transient solutions for the FFBC, no
impact of pattern generation is felt relative to the horizon-
tally homogeneous steady state. This is due to the fact that a
steady state in the average quantities �B� and ��� exists, as is
revealed in Sec. V A and is the same as for the horizontally
homogeneous steady state �i.e., �A� gets produced at the
same rate�.

In the regime before pattern onset, the FCBC case is simi-
lar to the FFBC case if the initial setup is such that the
concentration and flux are matched to exhibit the same solu-
tion in the absence of pattern. However, the steady state
analysis for averaged quantities does not follow as for FFBC
and one can see wiggles in �B� as well as wiggles in the
vertically averaged solutions in Fig. 7.

We see a drop in �B� �i.e., drop in production rate of �A��
with the mixed boundary conditions for 
c=1 and 
 f =3
compared to the FFBC case and a greater drop for 
 f =9.
There is no significant change in production rate of �B� when

 f =0.2 compared with the FFBC case. It should be noted
again that �B� is more noisy for the mixed boundary condi-
tions due to continual rebirth, shearing, and mixing of
plumes.
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FIG. 11. Ke vs Pe for FFBC, FCBC, and a mixed boundary
condition �
c=1, 
 f =3�.
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VII. CONCLUSION

In this paper we have constructed a numerical procedure
to simulate equations describing the instability mechanism
for a chemically driven hydrodynamic instability. In particu-
lar, we have investigated pattern formation in the methylene-
blue–glucose system and probed the underlying instability
mechanism, namely the formation of dense regions of the
fluid at the upper surface due to reactions generating the
relatively but slightly dense product gluconic acid. We have
considered the upper oxygen boundary condition in some
detail in order to shed light on the discrepancy between pre-
vious linear stability analyses with fixed oxygen concentra-
tion upper boundary conditions �FCBCs� and weakly nonlin-
ear analysis with fixed oxygen flux upper boundary
conditions �FFBCs�. Statistical measures constructed from
the numerical solutions were used to aid discussion of the
results, and displayed good agreement with theoretical pre-
dictions on averages from the equations, suggesting that the
numerical procedure is accurate. Furthermore, we have per-
formed a systematic numerical exploration of parameter
space, and documented the extent to which solutions vary for
realistic parameter values �noting that the reaction rates and
diffusivities have been measured previously to a high degree
of accuracy�.

We find that solutions with a FFBC are very different to
solutions with a FCBC. The former has plumes that proceed
through a cascade of plume merging events. The plumes are
typically horizontally symmetric but lack vertical symmetry,
both for the plumes and in terms of downwelling and up-
welling regions. In contrast, the latter generates plumes that
typically do not merge and are repelled by one another �with
occasional rapid crossing events of plume-antiplume dou-
blets�. These solutions also display much greater vertical
symmetry �for individual plumes� but instead are horizon-
tally asymmetric. Solutions with mixed boundary conditions
share some of the features of each of the solutions. We note
that the FFBC and mixed boundary conditions give qualita-
tive solutions more akin to those seen in experiments, al-
though it is clear that both are basic models of the real highly
complex chemicophysical boundary condition. Imposing a

FCBC appears to be a much harsher constraint, which ad-
justs flux so that oxygen depleted fluid never reaches the
surface.

We find that the numerical solutions quantitatively agree
with linear analysis �20� with a FCBC in terms of pattern
wavelength, time scales, and critical Rayleigh numbers.
Also, the predictions from a pseudo-steady linear analysis
are consistent in that the wavelength of the pattern is seen to
decrease initially for a short period of time after the instabil-
ity. Furthermore, for the FFBC, the numerical solutions agree
with weakly nonlinear analysis �21� in that for an intermedi-
ate period after the instability a grain coarsening cascade
ensues through plume merging events. This case also agrees
very well with what is observed experimentally �4,15� in
terms of time and length scales of the pattern. However, it is
clear that the linear predictions �FCBCs� and weakly nonlin-
ear predictions �FFBCs� are at odds with one another. The
answer is simply that there should be no agreement as the
solutions with different boundary conditions are qualitatively
distinct.

Of interest is that the form of the upper oxygen boundary
condition could be measured indirectly by measuring any
associated entrainment of oxygen in experiments. From the
opposite perspective, controlling the precise form of the oxy-
gen boundary condition could help to improve the yield of
products in a chemical engineering setting.

A major extension of the work will be to consider three-
dimensional pattern formation in this system so that com-
puted patterns can be compared with experiments. It is likely
that such a numerical simulation would enable a more direct
comparison with experiments and may suggest which form
of boundary condition is more appropriate. This is work in
progress. The methods in this paper should be extended to
other chemical reactions and systems to determine the class
of system for which solutions are highly boundary condition
dependent, and to establish whether or not the form of solu-
tions presented herein are generic.
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