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In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that
take into account the effect of externally applied fields an electric field, or a shear rat: the adsorption.
The excluded volume interactions related to the finite size of the adsorbing particles are modified by the
external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the
kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones,
adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed,
but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range
of the parameter§S1063-651X99)01904-2

PACS numbds): 82.70.Dd, 68.45.Da

[. INTRODUCTION without taking into account that the applied fields may in-
duce the desorption of adsorbed patrticles, it is not clear that
The irreversible adsorption of colloidal particles on athe geometric rules that characterize the standard sequential
solid surface is a complex process that depends both on ifkinetic models can be applied to these new physical situa-
teractions between the particles and on their actual motiotions.
through the solvent. From the different mechanisms that con- Although in fact the applied fields will modify the global
trol the adsorption process, the excluded volume interactionansport of the particles from the bulk to the surface, the
related to the finite size of the particl¢s] has attracted effect of more general transport conditions on the geometric
much attention. To this end, models have been introduced iexclusion effects has not been addressed systematically. In a
which a detailed description of the actual adsorption mechaprevious papefll], we have introduced a kinetic class of
nisms is disregarded, and the dynamics is described in ternegisorption models that take into account the effect of an
of sequential kinetic models, according to which colloids areexternal field on the adsorption of colloidal suspensions. Due
accepted or rejected at the surface on the basis of geomettie the external field, the particles do not arrive following
rules. Although they constitute oversimplified models of thetrajectories perpendicular to the surface. As a result, the area
actual adsorption process, excluded volume effects are essegxcluded by the preadsorbed colloids is asymmetric, and due
tial in the adsorption of colloids, and in fact agreement withto this effect we grouped this new family of models under
experimental results is obtain for some quantifgs]. From the name oShadow modelOur main purpose in this paper
the theoretical point of view, these models are interestings to study in detail such models, focusing on the modifica-
since analytic solutions can be found, and perturbative protions on the dynamical processes induced by the applied
cedures are easily set up to deal with more general situatiorields, and their effect on the kinetics of tahadow models
[4]. The standard model used to describe the adsorption of We will focus on the(1+1)-dimensional version of dif-
Brownian particles has been the random sequential adsorferent kinetic adsorption models in which particles do not
tion model (RSA) [5], while the ballistic modelBM) has arrive perpendicularly to the substrdtel]. Although it is a
been proposed to describe adsorption controlled by gravitgimplification, it will be possible to obtain exact theoretical
[6]. However, so far they have been compared with simpleexpressions, and the insight gained by such an analysis can
situations in which adsorption takes place in a quiescenbe used in the development of perturbative theories for more
fluid, in the absence of external forces, namely, diffusion-general casep4]. In fact, most of the mechanisms we will
and gravity-controlled adsorption. Recent experiments havdiscuss will be present for any dimensionality of the system.
been performed on the adsorption both of protein kinétic Due to the presence of the external field, disks of unit
and bacterid 8] structures when the solvent is subject to adiameter arrive at the line forming an angtewith the nor-
shear flow, and there exist situations of practical interestal to the wall, as shown in Fig.(d). This anglea will be
where external fields are applied on the adsorbing suspetthe only free parameter of the model. If a constant external
sion, as in capillary electrophoregi®,10], in which the ad- field F, parallel to the surface is applied besides the usual
sorption of polarizable colloids on the walls of a capillary in gravitational forceF, and neglecting hydrodynamic effects,
the presence of electric fields is studied. In these cases, evéliten o is related to the physical parameters by dan
=F¢/F4. An equivalent relation is satisfied if the host fluid
is subject to a plug flow. If instead, a Couette flow is applied
*Present address: Department of Physics and Astronomy, Univein the absence of diffusion, then more care should be taken,
sity of Edinburgh, JCMB King’s Buildings, Mayfield Road because in this case the incoming particle will describe a
EH93JZ, U.K. parabola. Nonetheless, a relationship with the case of straight
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particles can be placed on the substrate; this final state is
referred to as theamming

We now consider that disks of unit diameter arrive at the

wa substrate at ratk per unit length along trajectories that form

@ —O an anglea with the normal to the wall, as shown in Fig. 1.
For simplicity, the rate will be takek=1 in the rest of the
paper. Due to the inclination of the arrival trajectories, a new
minimum distance between disks on the surfaceappears.
As can be seen in Fig. 1, an incoming particle will now
overlap a preadsorbed one if its trajectory ends on the sub-
strate to the right of the preadsorbed particle at a center-to-

@) b

FIG. 1. (a) Trajectory of an incoming particle of diameter unity
forming an anglex with the normal to the adsorbing line, in the
presence of two preadsorbed disks, 1 and 2, at a distaritiee

dotted line identifies the trajectory for which the incoming particle .
is tangent to the adsorbed one, and it is adsorbed at the minimufpENter distance smaller thant1r. As can be deduced from

distance between the centers of &. (b) New gaps appearing (€ geometry of Fig. 14 is related to the angle of inclination

when an incoming particle lands at distamtdrom the preadsorbed  Of the trajectory through % o= 1/cosa. This additional ex-
disk at right. cluded distance can be looked asteadowcast by the pread-

sorbed patrticle.

trajectories can be found if one takes into account that there The kinetic rules are the same as in standard RSA, after
is @ minimum distance at which an incoming particle follow- appropriately modifying the overlap mechanism. Now, a trial
ing a parabo|a can land in the nearby of a preadsorbed disk)_OSitiOﬂ is accepted if the distance to the center of the nearest
Finally, if adsorption takes place in a quiescent fluid, in thePreadsorbed disk on its right-hand side is larger than unity,
presence of a gravity field, on a substrate that is inclined a&nd the distance to the nearest pre-adsorbed particle on its
an angley with respect to the horizontal, then, one has ob-left-hand side is larger thantlo. It is worth noting that this
viously o= y. The three different physical situations are de-description of the model in terms of two excluded lengths is
scribed by a single parametat which gives an idea of the equivalent to a restructuring model in which incoming par-
distance from the corresponding classical kinetic models. ticles of length one, upon arrival at the surface, deform a
Although the existence of an external field acting parallellength o towards the right. This asymmetry in the deforma-
to the substrate or the shearing of the solvent correspond #Pn makes these new models different from the
different physical situations, and the detailed transporfestructuring-particle RSA proposed recently to describe the
mechanisms will differ, from the point of view of the volume adsorption of certain proteins that undergo structural changes
excluded by preadsorbed particles in both cases addition®nce on the substrafd2]. Also, a recent model for the ad-
fractions of the substrate at one side of the preadsorbed pagorption of “hot” particles takes into account the motion of
ticles become blocked for adsorption, and due to this asymparticles after being adsorbgti3]. However, the rules differ
metry, it is not possible to reduce these situations to thdrom the ones we consider here.
standard RSA or BM by rescaling of the lengths of the par- For the +1-dimensional model it is possible to obtain an
ticles. We will separately analyze both the case where inanalytic expression for the evolution of the one-gap density
coming particles are not allowed to roll over preadsorbedunction, G(l,t), i.e., the probability density of having gaps
ones, corresponding to RSA type rules, and the one wheref lengthl at timet. This is due to theshielding property
rolling is permitted, which is then equivalent to BM. In the according to which the evolution of one gap is independent
next section we will study the generalized RSA model, con-Of the others, since the particle separating two gaps prevents
sidering both the behavior of global properties and the locafiny interaction between them. This property is lost at higher
distribution of particles, while in the third section we will dimensions. We will follow the method introduced to study
focus on the ballistic model, where new adsorption processe8M [6], according to which the evolution equations for the
take place. Already for this model an exact solution does noProbability densities can be written once the gap creation and
always exist. We present a self-consistent theory and Conciestruction mechanisms have been identified. Therefore, we

pare with simulation results. Finally, in the conclusions weWill first determine the different ways in which a gap of a
present our main results. given lengthl can be created and destroyed, and at which

rate.

Let us consider a gap of lengthAny incoming particle
should be at a minimum separatien at the right of the
particle which delimits the gap at its left-hand side. Then, if

We will first concentrate on the model where adsorptionl <1+ o, any incoming disk in this gap will overlap at least
kinetics proceeds according to RSA rules. In the standarwvith one of the disks that delimit it, and will therefore be
RSA model, one usually starts with an empty line, and positejected. This implies that gaps of length smaller than 1
tions for the centers of the disks are chosen uniformly att- o cannot be destroyed by adsorption of an incoming par-
random along the substrate. The patrticle sticks irreversibly dicle. Since initial positions are chosen uniformly along the
the chosen position if noverlap exists with a preadsorbed substrate, a gap of length-1+ o will be destroyed at a rate
disk, whereoverlapmeans that the distance from the centerproportional tol — o — 1, which is the length of the available
of the incoming particle to any of the preadsorbed ones ipart of the gap where the center of an incoming particle can
smaller than the diameter of the disks; otherwise the triakrrive without overlapping with any of the disks that delimit
position is rejected and a new position is chosen uniformly ait. When a gap of length is destroyed, two new gaps are
random along the line. The process is repeated until no morereated, one of length to the right of the incoming particle,

II. INCLINED RANDOM SEQUENTIAL
ADSORPTION MODEL
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which can have any value smaller thano— 1, and another To solve Eqs(2.1)—(2.4) we try the same “ansatz” for
one of lengtH — 1" —1 at its left, which can have a minimum the gap density already proposed when solving the RSA
value of o and a maximum of — 1, as can be seen in Fig. model[6],

1(b). Note that the new gaps may be either larger or smaller

than 1+ o. Accordingly, the appropriate evolution equations
for the one-gap densitg(l,t) read

Gy(l,t)=t2e 7o~ DtE(t), (2.6)

where the factort? has been introduced for convenience.

aG(I,1) o Substituting this ansatz in E¢R.1) gives an ordinary differ-

——t-o-nedy+ [ e var

+f G ,ndl’, I=1+e  (2.1)
I+o+1

aG(I’t)=Jlm G(I’,t)dl’+fw

at +1 l+o+1

G('",t)dl’,

oslsco+1; (2.2

ential equation foF(t) that can be solved imposing the ini-
tial condition F(0)=1 consistent with an initially empty
substrate, yielding

t]—e U tl_ef(1+zr)u
F(t)=exp[—f du—f —dU]
o U 0 u
e 2

e E1O- B[+ o)t] 2.7

T (1to)t?

whereE,(t) is the exponential-integral functidri4]. Once

G(I"',vdl", I=<o. (2.3 G4(I,t) has been determined, Eq®.2) and (2.3 become
differential equations fo6,(1,t) andG5(1,t), which can be

. . , expressed as quadratures,
The destruction term in Eq2.1) takes into account that

gaps withl >1+ o are destroyed at a rate proportional to the
number of such gaps and to the length on which an incoming
disk can adsorld,— o— 1. On the other hand, gaps of length
| may be created from gaps of lendthat a rate proportional
to the number of gaps of length, taking into account that if
the new gap is created on the left-hand side of the incoming
particle, the length of the initial gap should be at lehst
+1, while if it is created on the right-hand side of the in-
coming disk, the minimum necessary lengthliso+1. |t is worth noting thatG,(I,t) can be written in terms of
However, when a particle arrives at the substrate, it must b%3(| t), through the relation
at a minimum distance from its left neighbor, and therefore n
gaps smaller thar will only be created on the right-hand
side of incoming disks. For this the reason, E?). contains (2.10
only the term corresponding to the creation of gaps to the ) i ) )
right of the new particles. For arbitraryl, the functl_on(_33(l ,t) gives the density o_f gaps
Equations(2.1)—(2.3) constitute a set of integrodifferen- Of length | created until timet on the right-hand side of
tial equations that completely determir@(l,t), once the ncoming disks, whileG,(1,t) gives the total density of gaps
appropriate initial conditions are prescribed. To avoid confu0f lengthl, irrespective of the side on which they have been
sion in the notation, we will write dowiG,(I,t) when we Created. Therefore, EQ.10 shows that the number of gaps
refer to the expression of the gap density for1l of length|>o¢ created to the left of incoming particles is
+0,Gy(l,t) for o<I<1+o, and G4(I,t) for I<o. As e_qual to the number of gaps of lendth o created to the
usual, we will consider that initially the line is empty, which M9t _
implies G(1,0)=0. Since the total length of the substrate is Eduations(2.6), (2.8, and (2.9 completely define the

constant, the gap density must satisfy the normalization ~ ©N€-9ap number density at any time. At infinite time, when
the jamming state is reached and no more disks can be ad-

sorbed on the substrate, the gap density is given by

aG(l,1) _ J’W
|

at +o+1l

G2(|,t)=f;TF(T)e_lT{1+eUT}dT, (2.8

t
G3(I,t)=f F(r)e '"dr. (2.9
0

Gy(l,t)=G3(l,t) + G3(l —o,t).

f (I+1)G(I,t)dI=1. (2.9

0 Gi()=0, I=1+0; (2.1)
The kinetics of the model is completely described in G, (N=G3(h+G5(I—-0), 1+o=l=0; (212

terms of the one-gap distribution function. For example, us-

ing the fact that the adsorption rate is proportional to the e 27 (o gt

available fraction of surfacej(t), the adsorption rate can be Ga(l)= o f dtTe*El(t)*El[(l*‘”‘], I<o.

expressed as a quadrature, aJo (2.13

o

de
¢>(t)Ea=j1+0(|—1—0)G1(|,t)dl. (2.9

which shows that only the gaps witk<1+ o, which cannot
be destroyed, survive at jamming. As happens in the RSA
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model,G*(1) diverges logarithmically wheh—0", as can 0.8 |
be seen rewriting Eq2.13 as
0.7 /! 4
e ! 2E4(t) /
o) - - 00 72’}/ . 1
Ga(h) 2(1+0) Crsall) +2€ fo r © 0.6 |- oL 1
X (eF1(0~Eal(1+ot] _ 1)dtJ' (2.19 05 . .
6 0.4 N g
whereGgg(l) is the gap density corresponding to standard '
RSA[5]. To lowest order irl one has now 0.3 L exact -
" \
—2y _ asymptotic W
o 1\ — _ _ 02 F \ T
G5 =15 ~In(h—y \
\
11 0.1 [~ wu
0 t 0.0 | | 1 | | | | |

0 10 20 30 40 50 60 70 80 90
dt; +0O(l), o

wa E1(1+o)D—E1() _ 1
J

1 t
21 FIG. 2. The maximum coverage of the line as a function of the
(2.19 incident angle expressed in degrees. The dashed lines correspond to
Hwe expansion for small values af up to the third order, and to the

displaying the same logarithmic divergence as in standarasymptoﬂc expansion aroung-90° (see text

RSA [15], although its amplitude is modulated by a factor
1/2(1+ o) with respect to the RSA value. Note that even in
the limit c— 0 this amplitude is half the RSA value due to . Orsa . . a?

the fact that gaps of length smaller thancan only be cre- 6" = Orga— — 0t (30rsame )

ated at the right of an incoming disk, instead of being created

at both sides. On the other hand, the func®f(1) exhibits w72y o 4

a similar logarithmic divergence fdr=o*, as can be seen ~(brsa—3€ ) +0(a%)

from Eq.(2.10. This means that, unlike standard RSA, two

logarithmic divergences appear @(1) related to the fact =0.747598-0.373 799 +0.201 540-*+ 0.003 01 b°
that now there are two minimum distances at which disks +0(o%) (2.18
can approach. Moreover, the additivity property E2.10 ' ’
ensures that the divergences associated with the two mini-

mum distances 0 and exhibit the same divergent behavior, o . :
where 6z, is the jamming coverage for standard RSA, and

the divergence appearing bt ot will being larger by the h ol val ical luati fth
finite amountG3 (o) than the one at=0". In the limit o the numerical values are numerical evaluations of the exact
expression to give an idea of the magnitude of the correc-

—0 both peaks coalesce into a single one, which then be,[i ns in the expansion. In Eia. 2 on N that this expan-
comes the one obtained in standard RSA. ons € expansion. g. 2 one can see thal nis expa

Once we know the one-gap density function, using Eq.si'on up to third order in powers af agrees reasonablyowell
(2.5), we can express the adsorption rate as with the exact results up to angles_of the orc_ier of_40 .

We can also analyze the behavior of the jamming cover-
age when the adsorbing particles follow trajectories almost
E=F(t), (2.19 parallel to the substrate. In this case, one should take into
account that the integral in ER.17 has a logarithmic sin-

where we have made use of E8.6). This expression allows 9ularity in the limito—cc, and a simple power expansion of
us to identify the functiorr(t), introduced so far as a way to the mteg_rand cannot be hp((—:-jrfor:m?g.blnzteacli, a dm_atch|dng
find the gap density, with the available line fraction, as hap_asymptouc expansion method should be developed, in order
pens in standard RSA. Equatid®.16 enables one also to to capture the different behavior of the integrand for small
express the coverage as a function of time as a quadratur@r,]d large valges of timgl6]. One obtains that the jamming
from which, in particular, the jamming coverage can be cal-COVErage vanishes as

culated, giving[11]

1
- ~E(1+ o))+ Ey(t) “(o)=e" N
1+o t2 e st 6" (o)=e 1+o 1+o (1+0.)2

(2.17) (2.19

0* (o)

e_z'}’Joce_ZEl(t) yln(1+ o) o)

0

If o<1, we may expand the second factor in the integral in
powers ofo, leading to where the coefficienb is
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1e~ E1(® ] —e E1) core potential of range & ¢/2. The equilibrium result is the
w_efyf dt—e”f fdt same function of the coverage than for simple hard rods, but
0 ! multiplying the coverage by a factor (1o/2). One then

obtains

] 7E1(t) 1 -7
+e*27f © dt—e*VJ a 1- S e B
1 t? ot t o2

1+o+—
T

2

0
>+ 063, (2.29

e =1-(2 0
—0.725533. (2.20 bed 0)=1—(2+0) O+

Again, in Fig. 2, it is shown that the asymptotic prediction which shows that the available line function in the inclined
works well for angles close to 90°. Although it is not pos- RSA model deviates from the equilibrium one already in the
sible to express the integral of E.16 as a combination of second power ir9, while in standard RSA differences ap-
known functions, it is of great help when trying to under- pear in the third power of). This is due to the asymmetry
stand the filling kinetics. For example, we can analyze bottintroduced in the kinetics by the inclined direction of arrival.
the short time and the asymptotic behavioéf). For short  In standard RSA, the configurations generated by two par-
times the integral can be developed in powers of time, ticles are equivalent to the equilibrium ones, in the sense that
one cannot discern which of the two particles has been ad-
sorbed first. In inclined RSA, however, not all the configu-
rations with two adsorbed particles have the same probability
(2.2  thanin equilibrium: if the separation between them is smaller
. o ] thano, then the particle at the right must have arrived before
showing that, initially,6 evolves as a power law, and differ- than the particle at the left, and this configuration has a prob-
ences with respect to standard RSA appear in the secongility that is one-half of the equilibrium value. This asym-
power of time, because one should wait at least to the depgnetry in the kinetics has no analogy in equilibrium, and the

sition of the second particle on the line to detect the effectgehavior of the system deviates from equilibrium already at
of the new restrictions on the deposition of particles. Forsecond order irp.

large values oft, the jamming coverage is asymptotically
approached in the form

t3

ag
1+ —)t2+(5+50+§az)—+0(t4),

ot)=t— > 6

IIl. INCLINED BALLISTIC DEPOSITION MODEL
-t

1 e
t

(1+o)t

0,,— 0(t)=

n O( e__t) 2.22 We will now consider a second kinetic adsorption model
3/’ ' which evolves according to BM ruld$]. Since BM is in-
tended to describe the adsorption of heavy colloids in the
which exhibits a power-law decay to the leading order. Thigpresence of gravity fieldg6], this model can describe the
reflects the fact that the size of the available areas for incomadsorption in such a system when an additional force parallel
ing particles approach zero asymptotically in the neighborto the surface, as for example an electric one, acts on the
hood of the jamming limit. This behavior is related to the suspended particles. We will analyze in detail the new ad-
logarithmic divergence of the gap density, and contains theorption mechanisms induced by the presence of this new
same prefactor 1/(X o) with respect to the RSA case. field. In order to describe them properly, we will first focus
As a final point regarding global quantities, it is possibleon the possible trajectories after one or a couple of particles
to calculate perturbatively the available line fraction as ahave been adsorbed.
function of the coverage, which is of interest since it is more As in RSA the adsorption is still sequential, but when an
directly related to the properties of the filling procg4s].  incoming disk touches a preadsorbed one it is not rejected.
One gets Rather, it rolls over the latter trying to reach the substrate.
Only if it gets trapped in the space between two adsorbed
particles, being unable to reach the line, it is rejected. Since
the trajectories are inclined with respect to the substrate, an
incoming disk rolling over a preadsorbed one will move to
At zero coverage this quantity is equal to 1 since initially theits left-hand side if its initial trajectory ends to the left of the
line is empty, and any incoming particle is adsorbed. Thecenter of the preadsorbed particle, and it will roll to the right
second term simply shows that one adsorbed disk excludestherwise. Both kinds of trajectories can be delimited by a
an area equal to twice its diameter plus the additional excluseparation linel’, starting at the center of the preadsorbed
sion lengtho. The next term takes into account that the totalparticle and with the same inclination as the trajectories of
length excluded by two adsorbed disks becomes more conmhe incoming disks. Note that in standard BM half of the
plex since their exclusion regions can overlap. In fact, theancoming particles that overlap an adsorbed disk will try to
available fraction of the line up to orded” can be con- reach the substrate on its right-hand side and half on its left-
structed by looking at the different ways in whioldisks can  hand side. Now, due to the inclination of the separation line,
overlap[18,4]. Widom [17] showed that the function for  a fraction 1/(2+ o) of the incoming particles that overlap a
RSA and equilibrium coincide up to the second orde®in  preadsorbed disk will roll towards its left-hand side, while a
We can also compare E(R.23 with the available line frac- fraction (1+ o)/(2+ o) will roll towards its right.
tion for an equilibrium system of hard particles. Since in our If the center of the incoming disk is on the right-hand side
model one particle excludes a length-2, we choose a of I' when touching disk 1, it will roll towards the right-hand
system of particles of length 1 but interacting with a hard-side of that particle, until its trajectory becomes tangent to

2

?+0(93). (2.23

0_2

1+o+ —

d(0)=1—(2+0)0+ >
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at that line[Figs. 4c) and 4d)].

- Separation from disk 1 will not happen if the incident
™ .\F : particle touches particle 2 before arriving at the separation
~. lineI"’. As shown in Figs. &) and 4d) this happens if the

g point of contact with the second particle is higher than the
' separation point, that is, if1— (I + 1)%2>sina. This gives
the condition G<I<2 cosx—1, that can be fulfilled only for
a<60° (0<1). Otherwise, the new particle will leave con-
tact with particle 1 and follow a straight trajectory along the
line I'’ before touching disk 2. We describe separately both
possibilities:

(@) 1>2 cosa—1. The incoming particle leaves disk 1 be-
fore touching disk 2, then it follows the linE’ and it will
touch particle 2 ifl<1+ . After this contact, the particle
will roll over disk 2 to the left if the linel’’ is to the left of
1 l+o lineI',, that is, ifl > o [see Fig. 4a)]. Otherwise, it will roll
to the right of disk 2 arriving to the gap situated at the right
of the initial gap[Fig. 4(b)]; in this case, successive rolling

FIG. 3. Different possibilities of rolling for a disk arriving at the . . - . . .
line in the presence of a preadsorbed particle. Particles with initiaP,Ver several particles at the right of disk 2 is possible. This

trajectory at the left of lind” roll to the left, whereas those with situation occurs when the inequalities 2 eesl<I<o are

initial trajectory between the linek andT’ roll to the right. satisfied, and this can happen i@F45° only. .
(b) 0<1<2 cosa—1. The incoming particle touches disk

2 before reaching the linE’, then its motion depends on the
relative location of the point of contact with respect to the
separation line of particle 4, [see Figs. &) and 4d)]. If

the point of simultaneous contact with both disks is at the left
of I';, then the particle will remain trapped at that point. This

the adsorbed disk. At that point, it will continue its motion
towards the substrate along a line parallel to its initial trajec
tory, which will be denoted™’ (see Fig. 3 If no overlap is

detected with a second disk, the new particle will be irrevers

ibly adsorbed to the right of the fixed particle leaving an A ) .
interval of lengtha between them. This mechanism is new ha_ppgns, as can be seen |n_F|gc),4|f the height of that
point is smaller than cas, that is, ifl >2 sina—1. Nonlocal

respect to standard BM, in which a particle rolling over a li he right of cle 2 will if th :
preadsorbed one cannot separate from it until it reaches t@''"9 t0 the right of particle 2 will appear It the opposite

line. inequality is true, and this is possible far>30° only [see
Now, we will consider that a second disk is present on thd19: Ad)).

line, at the right of disk 1, separated from it by a gap of !N Fig- 5 we show a summary of the different rolling
length | [see Fig. 4a)]. If | is larger than % o, then the mechanisms for a disk rolling to the right of the leftmost

trajectory of the incoming disk will follow the lin€'’, being preadsorbed p.article'delimiting agap of Iengﬁccording to
adsorbed at a distancetlr to the right of disk 1 without the previous discussion. From this figure, we can define two
touching disk 2(region I, Fig. 5. If the gap lengthl is characteristic gap lengths for each value of the angle:
smaller, then the incoming particle will touch disk 2 before
reaching the surface. However, it can either leave disk 1
along the separation liné’ before touching disk 2, as shown
in Figs. 4a) and 4b), or it can overlap disk 2 before arriving

1, a<60°

()= o a=60°

c)

FIG. 4. Different possibilities of rolling for a
disk arriving at the line in the presence of two
pre-adsorbed particleda) and (b), 1>2 cosa
—1. A disk with initial trajectory betweeh'; and
I’ will roll to the left and to the right of the
@ second disk, respectively, after having left the
contact with disk 1(c) and(d), | <2 cosa—1. A
disk with initial trajectory betweed’; and I',
will be rejected or roll to the right of the second
disk, respectively.
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jamming, which will be reached in a finite timg(«), i.e.,
o(t,a)=t for t<t;(«). Therefore, nonlocal adsorption
deeply modifies the adsorption kinetics for large incident
angles.

i So far, we have not specified what happens to those par-
ticles that arrive exactly along the separating liieof a
preadsorbed disk. In standard BM this situation is irrelevant
since only a fraction of zero measure of the incoming disks
will follow these trajectories. Now the situation is different,
because a finite fraction of the particles overlapping a disk
will roll to its right trying to reach the lind"’. Once a par-
ticle has followed this path and it has been adsorbed forming
a gap of lengtho, the separation line of that particl€,,,
coincides with the linel” of the first particle. Any new
particle rolling to the right over the first particle, and arriving
at the linel"’, will follow the same path and will arrive along
that separating line. As we have seen, this is possible only if
' the gap between the first particlels o, is larger than
2cosa—1; i.e., for a>45°. Since an attractive interaction
a between the disks and the substrate will always exist, which
makes it possible for the particles to be irreversibly adsorbed
at the positions at which they arrive, we assume that such
particles arriving along the separating line will roll to the

FIG. 5. Different rolling mechanisms, according to the previous
figure, for a particle arriving along a direction forming an angle
with the normal, rolling to the right of disk 1 in the presence of a . . . . o
second disk on the line. The centers of disks 1 and 2 are separaté%ft' Th(zrefore, these pa.mCIeS will t:,e rejectedsit-1 (45
by a distance 1. In region | there is no contact with disk 2, in <a<_60) and adsorb_ed io>1 (a>§0 )- . .
region Il the particle touches disk 2 and rolls to its left, and in It IS pOSS|bI(_a_to f'nd _an analy_tlc expressmn fpr certain
region Ill the particle rolls to the right of disk 2, introducing non- PhYysical guantities in this one-dimensional version of the
local effects. The dashed life-2 cosa—1 separates situations in Pallistic model, using the same technique as in standard BM
which separation from disk 1 occurs before contact with disk 2[6]. However, the method makes use of the shielding prop-
(region over that lingfrom those with successive rolling over both €rty of the kinetic one-dimensional models, and as we have
particles. The dotted area corresponds to situations where the iliscussed, this feature is absent due to the nonlocal adsorp-
coming patrticle is rejected. Length is measured in diameter unitsfion mechanism forr>30°. Therefore, an exact analytic ex-

and a is expressed in degrees. pression can be obtained only f@x30°. Fora>30° we will
introduce a self-consistent description of the nonlocal
0 a<30° mechanism that gives reasonably good results as we will see

i . . by comparison with computer simulations. We will present
l(a@)=9 2sina—1,  30°<ae<45°, (3.1 in Sec. lll Athe theoretical predictions, and we will compare
o, a=45°, them in Sec. lll B with simulation results.

We have shown that for arrival angles>30°, an incom- A. Theoretical analysis
ing disk the initial trajectory of which overlaps a gap of Let us consider again the gap dens@®(l,t). Due to

length |.<.|2(a) will roll over the_rightmost.part.icle of the e rolling mechanisr6], it contains now singular contribu-
gap arnving at the ne).(t 9ap. This mechamsm'ls not presenty s The evolution equations will couple the regular and
n vertlcql BM and it implies that t.he'ad'sorptlon rafte at asingular components of the gap density. We introduce the
given point may depend on the d|str|b_ut|on_ of _partlcles atdecomposition ofG(l,t) into singular and regular parts as
arbitrary distance at its left. The adsorption kinetics becomenflg] '

nonlocal in the sense that the final position of a particle o

the line is not restricted to a position belonging to the initial G(1,t)=g(l,t) +go(t) 5(1) +g,(t) 8(1 — o)
gap in which the center of the incoming disk has been cho-
sen. This means that trehielding property{1] that allows +9,-1(H) 61 —o+1), (3.2

one to solve many one-dimensional adsorption problems is
not satisfied ifa>30°. In this regime there exists amerac-  where g(l,t) refers to the regular contribution to the gap
tion between gaps, and only far<30° it will be possible to  density, andgg(t), g,(t), and g,_1(t) to the fraction of
obtain an analytic solution to this model. gaps of lengths Og, and o—1, respectively, and where the
Note that adsorption of new particles is possible only onlatter appears for>60° only. Note that the singular contri-
gaps of lengtH=1,(«), and therefore those particles arriv- butions are related to the gap lengths through the rolling
ing at gaps of length,(a)=<I<I,(«) are rejected. For val- mechanisms.
ues of the anglex=60°, one had,=I, and the rejection We can now proceed to find the evolution equation for the
mechanism is suppressed: all the incoming particles will begap densities. This can be done by looking at how gaps of
able to reach the line while available intervals are preseniengthl are destroyed and created from larger gaps, using the
This implies that the coverage will increase linearly until results of the preceding paragraphs. As a new ingredient with
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respect to the analysis of the standard models, we introduce=a0, since in this case nonlocal adsorption is not possible. In
quantityA(t), which will account for the number of particles this region the calculations of the next subsection will pro-
per unit time arriving to an interval from its left neighbor due vide an exact solution for the kinetics of the model.

to nonlocal adsorption. This mechanism introduces an “in- The new singular adsorption mechanism &r 60°, rep-
teraction” between the gaps, which otherwise would evolveresented byg,_;, induces a qualitatively different kinetics.
independently. We assume tha(t) is the same for all the Therefore, we will analyze separately the behavior of the
gaps, independently of their neighborhood. This means thahclined BM model for small and big angles.

we include the interaction between gaps in an effective or

mean field way, and makes our analysis only approximate. A 1. @<60°

similar idea in the context of RSA with diffusion in a pre-

cursor layer is considered in R¢23], where the approach sity, we use the fact that direct adsorption without contact

turni Ou]f to b.e exact. il be d ined i with adsorbed particles gives the same contributions that for
T e uncuon__A(t) will be determined from a sel- 0 inclined RSA model, considered in E¢8.1)—(2.3). Fol-
cor)s,]stent conc_imon obtained from the balance .Of part'(.:le%wing the usual procedufé], we introduce the contribution
arriving to the line. From the total number of particles arriv- ¢, rolling on preadsorbed particles. According to the dif-

ing at the surface, a fractios will be adsorbed, while a oot rolling mechanisms described in the preceding subsec-
fractionR=1— ¢ will be rejected. As we have seen, adsorp—tion, one finally arrives at the set of equations

tion is only possible on gaps of lengt1(«); particles

can arrive to one of such gaps through straight incident tra—ag (I,t)

jectories, at a total raté+1, or after rolling from the left =—[I+1+A)]g:(I, ) +[1+ o+ A(1)]
neighboring gap, at a rat®(t). Therefore, the rate at which

In order to derive the evolution equation for the gap den-

particles arrive at each of these gaps$-sl+ A(t), and the %
mean adsorption rate on the line is Xgi(I+1+o,t)+g,(1+11)+ ledl/gl(I’;t)
¢(t)=flld|[|+1+A(t)]G(|,t). (3.3 +J dlrgy(I 1), 1=1: 3.7
I+1+0
On the other side, rejection of particles happens only in gaps aa,(1.0)
of length |,<I<1, where particles arrive at rate+1 9201,0) _ . 14 . +
+A(t). The corresponding mean rejection rate is ot [1+o+AM]gi(I+1+ 00+, (1+10
Y +fwdl’ |’t+f°° di’gy(I',t
R(t) le di[l+1+A(t)]G(,1). (3.9 - g1(1",1) e g.(1",1),
Note that these integrals include the singular contributions to o<I<1l: (3.8

G(l,t), and the minus sign in the integration limits indicate

that the lower limit must be included in the integration inter- 9g3(1,1)
val, and the upper limit must be excluded. In particular, for
a>60° one has,=1,=0, andR(t)=0.

=[1+0+A1)]gy(I + 1+ 0, ) +[1+2+A(D)]

The self-consistent condition ak(t) can be obtained by o
imposing that the adsorption and rejection rates must add to Xgi(l+1t)+ fl+1+ dli'gy(I',1), 0<I<o;
one, 7
(3.9

H(1)+R(t)= Jojdl[l +1+AD)]G(LH)=1. (3.5

I dgo(t)
By combining this equation with the normalization condition

Tt fmglu Ddi
Eq. (2.4), one obtains a more appealing form of the closure 1+o
relation, +L [I"+1+A(1)]g.(1",0)dl"; (3.10

fIEdI(|+1)G(|.t)=A(t)fodeG(l,t). (3.6 dg, (1) )
O : dt :[“‘”A(UJL g,(1',dl’.  (3.1D

The left member of this equation gives the total rate at which

particles arrive at intervals of lengihi<l,(«); all of these The first three equations give the evolution of the regular
particles will roll over the rightmost particle limiting the gap, contribution to the gap density, and the last two the singular
and constitute the source of the nonlocal effect. The rightomponents. We have introduced the subscripts 1, 2, and 3 to
member of Eq(3.6) gives the total rate at which the nonlocal distinguish the regular contributiog(l,t), in the three do-
effect drives particles towards gaps of lengtkl,(«), mains in which the kinetic mechanisms are different. Equa-
where they are finally adsorbéd 1>1,(«a)] or rejectedif tion (3.7) takes into account that gaps of lengthl may be

| <li(@)]. For «<30°, |,=0, which implies that alsa(t) destroyed by adsorption of a new disk arriving either di-
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rectly or after rolling over any of the limiting disks of the t Cota
gap, and that they can be created from larger gaps either to ~ 9o(t) = LTQ(T)F(T)e (T+2T1+ o+ A(7)]dr.

the left or right of the incoming disk. EquatidB.8) consid- (3.17)
ers that gaps smaller than 1 and larger tlarcannot be '
destroyed, but are created through the same mechanisms as,
the larger gaps. Finally, Eq43.9) indicates that gaps smaller . .
than o cannot be destroyed and cannot be created to the Ieﬂglcl?n:ir;e;e_%e ?hoeg;t?]s lj)lglrer;gtnrlrlizijgt;rnthanaiaNotea:gat n
of an incoming disk that adsorbs directly. The equations for. ) 9 Yo 95

the singular contributions are obtained taking into accoun{dentical’ and the sum of both gives the deita function char-
that gaps of length 0 appear by rolling to the left of the rightalCterIStIC of BM. On the other hand, the functigg disap-

particle in gaps of length>1+ o, and by adsorption of any g(a(?r; V;?ignazgf Eﬂ'g? \E\tl}:lsélgmlgn'lc'jhgrrfrfore, the behavior of
particle arriving to a gap of lengthe (1,1+ o), while inter- X P '

vals of lengtho are created by rolling of the incoming par- We can now derive an expression for the time evolution
ticle to the right of the leftmost disk of a gap of length of the coverage. Since the gap den<if, ) defined in Eq.

>1+0. In this region, ifa<30°A=0 since in this case mov- (3.2 includes all the interparticle gaps, including the singu-

1000302 et 1 he Incdent o0 15 N, g sevys o i s e Sonsy o
an exact analytic solution exists. - L -

Equations(3.7)—(3.11) can be solved following the pro- ticles[19]. Integrating it, we arrive at
cedure we have introduced in the previous section. We . .
should first solve the integrodifferential equation ép(l,t), g(t):f dIG(I,t):f Q(7)F(r)e 21+ 2+ A(7)7]dr
and then the other functions will be calculated from it by 0 0
quadratures. We always start from an empty line, and there- (3.18
fore initially the density of gaps is zero. According to this
initial condition, we introduce the ansatz which has the same form as the one obtained in standard BM

[6], with the addition of theA(7) term. The dependence on
g.(1,1) =t2Q(t)F(t)e 1+, (3.12 o is now implicit in Q(t), F(t), andA(t).

To obtainA(t), one has to solve simultaneously the self-
where F(t) is the function obtained in the inclined RSA ;:n(?[gzlrztgn(tsc.:i);f\)(il(tgc?Tnex%rre Stizd (?l?felirgnSt) ?:Lﬁ?;%%uetlir:)isth?o
model, Eq.(2.7), and the dependence inis implicit in both G(1,1). Fora<30° one has,=0, and Eq(3.6) implies that
F(1) andQ(1). Introducing this expression fg(1,t) in Eq. A(t5=0 which is consistent with the absence of nonlocal
(3.31, and imposing that initially the substrate is empty, adsorpti’on at these incident angles. For30°, A(t) must
(0)=1, we find be obtained numerically using the self-consistent condition
Eq. (3.5.

At short times, one can expand all quantities in positive
powers of time, and the first coefficients can be explicitly
obtained. One has, for exampla(t)=A t+O(t?), with
A=[1+1,(1+1,/2)]/2 if 30°<a<60°, andA;=0 if «
<30°. For the coverage one then obtains

Letting time go to infinity, a jamming state is reached in

Q(t,a)=exp[ 2—e g (1Tt

—fthA(T)[l—e_(“")T] . (313
0

0'(1'2A
27 M

3
Now, we can also determing(l,t) andgs(l,t), as well as o(t)=t— §+ t—+O(t4) (3.19
the singular contributions, as quadratures, by substituting Eq. 2 3 ' '

(3.12 in Egs.(3.8—(3.11). One arrives at

Note that the effects of the inclination, including the nonlo-
t cal rolling for o>30°, appear in the third order in time, since
gz(l,t):f Q(7)F(r)e (1+27 three particles are needed to make clear the rolling mecha-
0 nisms; the second-order term is missing because if only one
X{r+1+[7(1+o+A(7))+1]e 7}dr, particle is adsorbed on the substrate, all the incident particles
can reach the line.
(3.1 At large times, all quantities approach an asymptotic
(jamming value exponentially fast, as in standard BM. For
t example, for the coverage one has
gs(l,t):f rQ(nF(ne MU+ 2+ A(7)]7
0 e (2+At

+e 7T1+(A+o+A(7)7]}dT, (3.15 ;= 0()~K———, (3.20

t o Cor where both the amplitud& and the asymptotic value of
Go(t) = OQ(T)F(T)e {1+[2+A(7)]7—e A(t),A;, depend on the incident angte
The maximum fraction of the line covered with particles
X[1+ 1 +o+A(7))7]}dT, (3.1 can be expressed as a quadrature, extending the integration
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interval in Eq. (3.19 to infinity. For small values of the dgo(t) En
inclination angle, this quantity can be expanded as a T =f g.(1",t)dl’
power series ofr, giving tro
1+o
+f [I"+21+A(t)]g, (17, 0)dl’
) Il—eiu o
Hw(a)zf dtexp{—2t+2—2et—2f du}
0 o Uu +[1+o+A(1)]g,(1); (3.29
X(1+2t){1+[e (1+t)—1]o+[e 2(1+1)? da. (1) .
—e Y(t2+3t+3) + 2]02/2} + O(c®) qr —Lito+A] Jwgl(l’,t)dl’—gg(t) ;
—0.808 653-0.110 518 — 0.000 424 8982+ O( %), (3.2
3.2 dg, 4(t
(320 ng()Z[1+o-+A(t)]g(,(t). (3.26

where in the last equation we have given numerical expres- _ i
sions for the exact result to give an idea of the order ofl N€S€ equations can be solved following the same procedure
magnitude of the corrections introduced &y Note that for used for a<60°. Now, Eq.(3.12 is still valid for >0,
@=<30° (small o), A(t)=0, and the previous analysis is ex- Whereas for the other components we have

act. As we will show in Sec. Il B, the results obtained from
the self-consistent analysis constitute also a good approxima-

gz(|,t):jtTQ(T)F(T)e*“*Z)T{U+2+A(T)]T
tion for anglesa[30°,609. 0

+[1+7(1+o+A(7))]e 7"}dT; (3.2

2. a>60°

For a>60°, (c>1), the nonlocal mechanism becomes es-
sential. One has nol=I,=¢ and, as shown in Eq3.4), g3(|'t):J
the rejection rate vanishes. The self-consistency condition
(3.5 reduces now tap=1, showing that the kinetic law is
trivial; the only kinetic quantity to be determined is the finite
time t; at which the jamming is reached, which is humeri-
cally equal to the jamming coveragy.

The rate equations for the gap density show also slight

;TQ(T)F(T)e—<'+2+U>T{[1+a+ A(7)]7r+1}dT;
(3.289

Oo(t)= fotQ(T)F(T)e%z“’)T{eT— 1+71l+o+A(7)]

T — Y1+ o+A(w)]du .
modifications respect to those corresponding to the case x[e—e M W9dr (329
a<60°, Egs.(3.7—(3.11. First, the decompositior{3.2) .
must include now the singular contributiap,_4(t), corre- ga(t):eﬂzw)tf Q(7)F(7)
sponding to gaps of lengtti—1 that are created by particles 0
adsorbed in gaps of length Now, only intervals of length .
|=¢ can accept new particles, because particles arriving at X[1+o+A(7)]e/ A~ AWidug 7 (3.30

smaller intervals will roll over the rightmost particle, going
to the next interval. All particles arriving at intervals of
lengthl e[ 0,0+ 1] will roll over the limiting particles, be-

ing adsorbed at contact with the rightmost one. As a conse-
quence, Eq(3.7) is valid for 1 >1,= o, whereas Eqg.3.8—
(3.12) now read

go-1(t)= ftTQ(T)F(r)[lJr o+ A(r)]e @)
0

(3.30)

Introducing these expressions in E(B.6), the self-
consistent condition can be written as

x{1- e—f§[1+a+A(u)]du}d7_

aga(1,t)
ot

=[1+0+AM)]g (I +1+ 0, ) +[1+2+A(1)] =14 04 O]+ QOF e Lo

* X{1+[1+o+A(D)]t}=1.

><911(I+1,t)+f|+1+ dl’gy(1',1), (3.32

Note that the nonlocal termx(t) is necessary to satisfy this
condition. Neglecting this effect would lead to an unrealistic
kinetics. As a consequence, the approach to the jamming
limit is very different from the situation whea<60°. Now,
whent—t;, G(I,t)—0 for |=1,= ¢ and, according to Eq.

oc—1<l<o;

(3.22

&93“ !t)

ot =[1+o+A(t)]g.(l+1+0,1)

+f dl'gy(I',1), 1<o—1; (3.23
I+1+0o

(3.6), A(t) diverges. From Eq(3.32 one can obtain the
divergent behavior,
[1_ef(l+0')t_1]71

A~

(3.33

t—>tJ .
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FIG. 6. Jamming limit of the inclined BM as a function of the ~ FIG. 7. Contribution to the jamming coverage of particles that
incident anglex, expressed in degrees. The line corresponds to th&ave arrived at the surface by direct adsorptisquares and of
analytic solution, which is exact for<30° and approximate for those the last movement of which has been a roll to the fight
a>30°, and the symbols correspond to the simulation results, itngles and to the left(inverted triangles as a function of the
which all possible processes affecting the arrival of spheres at thiicident angle, expressed in degrees. The lines show the results
substrate have been taken into account. In the inset, detail of tHebtained from the self-consistent approach.
region where the discontinuity takes place.

chosen randomly on a line at height 1 over the adsorbing
This divergence reflects the fact that, at jamming, the incomline, and its inclined trajectory is generated from that point,
ing particles remain for ever rolling over the saturated sub+olling over as many disks as they are allowed before either
strate. reaching the substrate or being rejected. We start with an

In the limit @—90°, the direction of the incident particles empty line, which is sequentially filled until jamming is
is near parallel to the surface, and one l@as~. In this achieved. In Fig. 6 we show the jamming coverage as a
situation one has two disparate length scales, the radius ddinction of the angle of arrival of disks obtained after aver-
the particles and the length of their “shadowsy” corre-  aging over 18 simulations for each value of the angle. The
spondingly, there exist two time scales: the characteristisimulation results are compared with the results of the self-
time scale for arrival of a new particle per unit lendthin  consistent calculations.
non-dimensional unijs and the characteristic time of jam-  As a major feature one can see that, despite the approxi-
ming (of ordero~1). The first time scale is irrelevant in the mate character of the analytic solution f@r30°, it repro-
limit o—c0, and all the functions of time approach a scalingduces the jamming coverage quite well, except in the neigh-

form of the typef(t)~ o (ot). Therefore one has borhood of a=60° (¢=1). When increasing the incident
anglea from O, initially one observes a decrease of the jam-
A(t)~cA(ot), (3.34 ~ ming, indicating that a finite fraction of particles roll to the
right of preadsorbed spheres, creating gaps of increasing
Qt)=0(ot), (3.39 length o that cannot be covered by additional particles. For

angles greater than 30°, particles can roll over preadsorbed
spheres, increasing the probability that a gap of lenrgtl
produced. This effect is not completely taken into account by

9o(H) =0 g (o). (3.36
According to these scalings, the coverage scalas ds By the _seIf—c_onS|stent equation, which slightly undereftlmates
the jamming coverage, specially for angles near 60°. Close

numeric integration one can obtain the asymptotic approxi ) ; X
9 ymp bp to o=1", the jamming has decreased 15% with respect to

mation for the jamming coverage standard BM. Aic=1", a jump in the jamming is observed,
6°(0)~2.1238 1+ 0(a2). (3.377  Wwhich is well reproduced by the analytic model, meaning

that the increase is basically due to the possibility of the

adsorption of incoming particles on gaps of lengthin fact,

the magnitude of the jump approximately equals the number

We have performed numerical simulations of the sequenef such intervals at jamming far=1",g,(«).

tial adsorption of disks of diameter one on a line of length  For angles larger than 60° a rapid decrease of the cover-

L=10? using the rules of the inclined BM described at theage is observed, which is well reproduced by the self-

beginning of this section: the initial position of each disk is consistent solution. In this region rolling to the right of an

B. Simulation results
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(a) 0 scaled time

0.25 T FIG. 9. Scaling plot of the different contributionsyépy
(squarey oy (triangles, ando 6, (inverted trianglesas function
of the scaling timest= ot for «=85° (hollow symbol$ and «
=89° (filled symbolg. The lines show the scaling curves obtained

0.20 F I from the self-consistent approach.

For a=0° the system is symmetric ang| = 0 ; for «
0.15 - g <30°,6, increases slightly due to the fact that, although roll-
ing to the right is more probable than rolling to the left,
< particles rolling to the right have a larger probability of being
0.10 L & rejected because they need a larger length to be adsorbed.
At a=30° the nonlocal mechanism starts to appear, fa-
voring rolling to the right, and according to the simulation
results, one recovers the equalfiy~ . Since more par-
0.05 | 7 ticles are now able to reach the line after rolling, the fraction
which do it through direct adsorption decreases. Despite roll-
ing to the right is now favored, the fraction of disks that
0.00 | | | ! adsorb after rolling to the left increases with the angle for the
0.0 0.1 0.2 0.3 0.4 0.5 same reason as before. The self-consistent solution correctly
(b) p reflects this tendency, but does not reproduce accurately the
value of the partial contributiong, and 6.
FIG. 8. Evolution of the different contributions to the coverage, At «=60°, particles arriving to gaps of lengih are ac-
0p (squarel 6y (triangles, and 4, (inverted trianglesas a func-  cepted, producing a large increaseéin. This discontinuity
tion of the total coverage fdia) «=45° and(b) «=75°. The lines s directly related to the number of gaps of lengttpresent
show the self-consistent results. on the substrate fose=60°", which could not be filled for
a<60°. Now, the destruction of these gaps gives raise to
adsorbed disk is the most favorable event, enhancing theew gaps of lengtlr—1 and 0. These lasts in turn induce
formation of larger gaps. Far— 90°, the coverage vanishes the rolling to the right of subsequent adsorbing particles,
in the way predicted by the asymptotic limit of the self- increasing alsodg. This also implies that the number of
consistent theory, Eq3.37). particles which adsorb directly decreases. For these angles,
In order to gain more insight on the importance of thethe self-consistent solution seems to be near exact.
different mechanisms, we have also observed the average The self-consistent solution reproduces well also the time
last movement of the incoming disks. In Fig. 7 we show theevolution of the different components of the coverage, as
contribution to the jamming coverage due to particles thashown in Fig. 8. At short times, direct adsorption is always
have arrived to the line directlyy , those that have arrived dominant, as expected, and rolling to the right is more prob-
after having rolled the last time to the rightlg, and those able than rolling to the left. However, at longer times, rolling
whose last movement has been to roll to the left of a preadbecomes dominant, and rolling to the left becomes more im-
sorbed particlef_ . They are related to the singular compo- portant than rolling to the right.
nents of the gap distribution functiod, =g,, and 6x=g, Finally, in Fig. 9 we show how the simulation results for
+095-1- the different contributions to the coverage approach the scal-

partial coverage
P
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ing functions obtained from the self-consistent solutionscoverage are sensitive to the external field. In particular, the
(3.29—(3.31). Note that in this limit, the contributiong, = jamming decreases considerably when increasingWe

and g seem to be near equal at jamming, as predicts thbave also seen that the nonequilibrium effects characteristic
self-consistent solution. of these irreversible models start at lower coverage with re-
spect to standard RSA due to the asymmetry induced by the
external field.

) . o ) We have also considered a kinetic model that evolves
In this paper we have studied the kinetic properties of thehccording to BM rules, which is adequate in the case of a

shadow modelswhich describe the adsorption of particles strong field. In this case, the external field induces new pro-
when an additional field favors the motion of the adsorbingcesses. In particular, adsorption may become nonlocal, in the
known that diffusion20], the effect of hydrodynamic inter- preadsorbed particles before either being adsorbed or re-
actions[21] or coadsorptiorj22] may become relevant, We jected. This process induces an effective interaction between
have focused on the modifications that such a field introyaps, and therefore an exact analytic solution is restricted to
duces on the excluded volume interactions between the a&cident anglesa<30°. For higher angles, we have intro-

sorbing and preadsorbed particles, and have therefore ngyced a self-consistent model that accounts partially for the
glected a detailed description of the transport process fromyon|ocal mechanisms. We have compared the results pre-
the bulk liquid. From this point of view, the external field gjcted by this model with the results obtained from numeri-

allel to the substrate or the adsorption process in presence Rfrge. The self-consistent approach introduces only quantita-

gravity on an inclined substrate. In all cases, adsorbing pakjye corrections forx<60°, but it is essential to describe the
ticles arrive at the surface along trajectories that form amyyalitative changes in the kinetics far>60°.

anglea with the normal to the substrate. We have shown the
excluded volume interactions are sensitive to the applied
field, and we have analyzed their implications on the adsorp-
tion kinetics.

We have first focused on a model that evolves according |.P. acknowledges the FOM for financial support, and the
to rules analogous to those of the RSA model, which is conFOM Institute for its hospitality. J.B. and J.M.R. have been
sidered to represent the kinetics for diffusing colloidal par-supported by the DGICYT of the Spanish Government under
ticles. We have seen that both the kinetics and the jamminérant Nos. PB94-0718 and PB95-0881, respectively.

IV. CONCLUSION
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