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Adsorption kinetics in the presence of external fields
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In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that
take into account the effect of externally applied fields~as an electric field, or a shear rate! on the adsorption.
The excluded volume interactions related to the finite size of the adsorbing particles are modified by the
external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the
kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones,
adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed,
but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range
of the parameters.@S1063-651X~99!01904-2#

PACS number~s!: 82.70.Dd, 68.45.Da
a

tio
o
io

d
h
rm
r
e
he
s
ith

in
r
io
n
o

vi
pl
e
n

av

a
e
pe

in
ev

in-
that
ntial
ua-

l
the
tric
In a
f
an
ue
g

area
due
er
r
a-
lied

ot

al
can
ore
ll
m.
nit

nal
ual
s,

id
ed
en,
a

ight

ive
d

I. INTRODUCTION

The irreversible adsorption of colloidal particles on
solid surface is a complex process that depends both on
teractions between the particles and on their actual mo
through the solvent. From the different mechanisms that c
trol the adsorption process, the excluded volume interact
related to the finite size of the particles@1# has attracted
much attention. To this end, models have been introduce
which a detailed description of the actual adsorption mec
nisms is disregarded, and the dynamics is described in te
of sequential kinetic models, according to which colloids a
accepted or rejected at the surface on the basis of geom
rules. Although they constitute oversimplified models of t
actual adsorption process, excluded volume effects are es
tial in the adsorption of colloids, and in fact agreement w
experimental results is obtain for some quantities@2,3#. From
the theoretical point of view, these models are interest
since analytic solutions can be found, and perturbative p
cedures are easily set up to deal with more general situat
@4#. The standard model used to describe the adsorptio
Brownian particles has been the random sequential ads
tion model ~RSA! @5#, while the ballistic model~BM! has
been proposed to describe adsorption controlled by gra
@6#. However, so far they have been compared with sim
situations in which adsorption takes place in a quiesc
fluid, in the absence of external forces, namely, diffusio
and gravity-controlled adsorption. Recent experiments h
been performed on the adsorption both of protein kinetic@7#
and bacteria@8# structures when the solvent is subject to
shear flow, and there exist situations of practical inter
where external fields are applied on the adsorbing sus
sion, as in capillary electrophoresis@9,10#, in which the ad-
sorption of polarizable colloids on the walls of a capillary
the presence of electric fields is studied. In these cases,
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without taking into account that the applied fields may
duce the desorption of adsorbed particles, it is not clear
the geometric rules that characterize the standard seque
kinetic models can be applied to these new physical sit
tions.

Although in fact the applied fields will modify the globa
transport of the particles from the bulk to the surface,
effect of more general transport conditions on the geome
exclusion effects has not been addressed systematically.
previous paper@11#, we have introduced a kinetic class o
adsorption models that take into account the effect of
external field on the adsorption of colloidal suspensions. D
to the external field, the particles do not arrive followin
trajectories perpendicular to the surface. As a result, the
excluded by the preadsorbed colloids is asymmetric, and
to this effect we grouped this new family of models und
the name ofshadow models. Our main purpose in this pape
is to study in detail such models, focusing on the modific
tions on the dynamical processes induced by the app
fields, and their effect on the kinetics of theshadow models.

We will focus on the~111!-dimensional version of dif-
ferent kinetic adsorption models in which particles do n
arrive perpendicularly to the substrate@11#. Although it is a
simplification, it will be possible to obtain exact theoretic
expressions, and the insight gained by such an analysis
be used in the development of perturbative theories for m
general cases@4#. In fact, most of the mechanisms we wi
discuss will be present for any dimensionality of the syste

Due to the presence of the external field, disks of u
diameter arrive at the line forming an anglea with the nor-
mal to the wall, as shown in Fig. 1~a!. This anglea will be
the only free parameter of the model. If a constant exter
field Fe parallel to the surface is applied besides the us
gravitational forceFg , and neglecting hydrodynamic effect
then a is related to the physical parameters by tana
5Fe /Fg . An equivalent relation is satisfied if the host flu
is subject to a plug flow. If instead, a Couette flow is appli
in the absence of diffusion, then more care should be tak
because in this case the incoming particle will describe
parabola. Nonetheless, a relationship with the case of stra

r-
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4286 PRE 59I. PAGONABARRAGA, J. BAFALUY, AND J. M. RUBÍ
trajectories can be found if one takes into account that th
is a minimum distance at which an incoming particle follo
ing a parabola can land in the nearby of a preadsorbed d
Finally, if adsorption takes place in a quiescent fluid, in t
presence of a gravity field, on a substrate that is inclined
an angleg with respect to the horizontal, then, one has o
viously a5g. The three different physical situations are d
scribed by a single parametera, which gives an idea of the
distance from the corresponding classical kinetic models

Although the existence of an external field acting para
to the substrate or the shearing of the solvent correspon
different physical situations, and the detailed transp
mechanisms will differ, from the point of view of the volum
excluded by preadsorbed particles in both cases additi
fractions of the substrate at one side of the preadsorbed
ticles become blocked for adsorption, and due to this as
metry, it is not possible to reduce these situations to
standard RSA or BM by rescaling of the lengths of the p
ticles. We will separately analyze both the case where
coming particles are not allowed to roll over preadsorb
ones, corresponding to RSA type rules, and the one wh
rolling is permitted, which is then equivalent to BM. In th
next section we will study the generalized RSA model, co
sidering both the behavior of global properties and the lo
distribution of particles, while in the third section we wi
focus on the ballistic model, where new adsorption proces
take place. Already for this model an exact solution does
always exist. We present a self-consistent theory and c
pare with simulation results. Finally, in the conclusions
present our main results.

II. INCLINED RANDOM SEQUENTIAL
ADSORPTION MODEL

We will first concentrate on the model where adsorpt
kinetics proceeds according to RSA rules. In the stand
RSA model, one usually starts with an empty line, and po
tions for the centers of the disks are chosen uniformly
random along the substrate. The particle sticks irreversibl
the chosen position if nooverlap exists with a preadsorbe
disk, whereoverlapmeans that the distance from the cen
of the incoming particle to any of the preadsorbed one
smaller than the diameter of the disks; otherwise the t
position is rejected and a new position is chosen uniformly
random along the line. The process is repeated until no m

FIG. 1. ~a! Trajectory of an incoming particle of diameter uni
forming an anglea with the normal to the adsorbing line, in th
presence of two preadsorbed disks, 1 and 2, at a distancel. The
dotted line identifies the trajectory for which the incoming partic
is tangent to the adsorbed one, and it is adsorbed at the minim
distance between the centers of 11s. ~b! New gaps appearing
when an incoming particle lands at distancel 8 from the preadsorbed
disk at right.
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particles can be placed on the substrate; this final stat
referred to as thejamming.

We now consider that disks of unit diameter arrive at t
substrate at ratek per unit length along trajectories that form
an anglea with the normal to the wall, as shown in Fig. 1
For simplicity, the rate will be takenk51 in the rest of the
paper. Due to the inclination of the arrival trajectories, a n
minimum distance between disks on the surface,s, appears.
As can be seen in Fig. 1, an incoming particle will no
overlap a preadsorbed one if its trajectory ends on the s
strate to the right of the preadsorbed particle at a center
center distance smaller than 11s. As can be deduced from
the geometry of Fig. 1,s is related to the angle of inclination
of the trajectory through 11s51/cosa. This additional ex-
cluded distance can be looked as ashadowcast by the pread-
sorbed particle.

The kinetic rules are the same as in standard RSA, a
appropriately modifying the overlap mechanism. Now, a tr
position is accepted if the distance to the center of the nea
preadsorbed disk on its right-hand side is larger than un
and the distance to the nearest pre-adsorbed particle o
left-hand side is larger than 11s. It is worth noting that this
description of the model in terms of two excluded lengths
equivalent to a restructuring model in which incoming pa
ticles of length one, upon arrival at the surface, deform
lengths towards the right. This asymmetry in the deform
tion makes these new models different from t
restructuring-particle RSA proposed recently to describe
adsorption of certain proteins that undergo structural chan
once on the substrate@12#. Also, a recent model for the ad
sorption of ‘‘hot’’ particles takes into account the motion
particles after being adsorbed@13#. However, the rules differ
from the ones we consider here.

For the 111-dimensional model it is possible to obtain a
analytic expression for the evolution of the one-gap den
function,G( l ,t), i.e., the probability density of having gap
of length l at time t. This is due to theshielding property,
according to which the evolution of one gap is independ
of the others, since the particle separating two gaps prev
any interaction between them. This property is lost at hig
dimensions. We will follow the method introduced to stud
BM @6#, according to which the evolution equations for th
probability densities can be written once the gap creation
destruction mechanisms have been identified. Therefore
will first determine the different ways in which a gap of
given lengthl can be created and destroyed, and at wh
rate.

Let us consider a gap of lengthl. Any incoming particle
should be at a minimum separations at the right of the
particle which delimits the gap at its left-hand side. Then
l ,11s, any incoming disk in this gap will overlap at lea
with one of the disks that delimit it, and will therefore b
rejected. This implies that gaps of length smaller than
1s cannot be destroyed by adsorption of an incoming p
ticle. Since initial positions are chosen uniformly along t
substrate, a gap of lengthl .11s will be destroyed at a rate
proportional tol 2s21, which is the length of the availabl
part of the gap where the center of an incoming particle
arrive without overlapping with any of the disks that delim
it. When a gap of lengthl is destroyed, two new gaps ar
created, one of lengthl 8 to the right of the incoming particle

m
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which can have any value smaller thanl 2s21, and another
one of lengthl 2 l 821 at its left, which can have a minimum
value of s and a maximum ofl 21, as can be seen in Fig
1~b!. Note that the new gaps may be either larger or sma
than 11s. Accordingly, the appropriate evolution equatio
for the one-gap densityG( l ,t) read

]G~ l ,t !

]t
52~ l 2s21!G~ l ,t !1E

l 11

`

G~ l 8,t !dl8

1E
l 1s11

`

G~ l 8,t !dl8, l>11s; ~2.1!

]G~ l ,t !

]t
5E

l 11

`

G~ l 8,t !dl81E
l 1s11

`

G~ l 8,t !dl8,

s< l<s11; ~2.2!

]G~ l ,t !

]t
5E

l 1s11

`

G~ l 8,t !dl8, l<s. ~2.3!

The destruction term in Eq.~2.1! takes into account tha
gaps withl .11s are destroyed at a rate proportional to t
number of such gaps and to the length on which an incom
disk can adsorb,l 2s21. On the other hand, gaps of leng
l may be created from gaps of lengthl 8 at a rate proportiona
to the number of gaps of lengthl 8, taking into account that if
the new gap is created on the left-hand side of the incom
particle, the length of the initial gap should be at leasl
11, while if it is created on the right-hand side of the i
coming disk, the minimum necessary length isl 1s11.
However, when a particle arrives at the substrate, it mus
at a minimum distances from its left neighbor, and therefor
gaps smaller thans will only be created on the right-han
side of incoming disks. For this the reason, Eq.~3! contains
only the term corresponding to the creation of gaps to
right of the new particles.

Equations~2.1!–~2.3! constitute a set of integrodifferen
tial equations that completely determineG( l ,t), once the
appropriate initial conditions are prescribed. To avoid con
sion in the notation, we will write downG1( l ,t) when we
refer to the expression of the gap density forl>1
1s,G2( l ,t) for s< l<11s, and G3( l ,t) for l<s. As
usual, we will consider that initially the line is empty, whic
implies G( l ,0)50. Since the total length of the substrate
constant, the gap density must satisfy the normalization

E
0

`

~ l 11!G~ l ,t !dl51. ~2.4!

The kinetics of the model is completely described
terms of the one-gap distribution function. For example,
ing the fact that the adsorption rate is proportional to
available fraction of surface,f(t), the adsorption rate can b
expressed as a quadrature,

f~ t ![
du

dt
5E

11s

`

~ l 212s!G1~ l ,t !dl. ~2.5!
r

g

g

e

e

-

-
e

To solve Eqs.~2.1!–~2.4! we try the same ‘‘ansatz’’ for
the gap density already proposed when solving the R
model @6#,

G1~ l ,t !5t2e2~ l 2s21!tF~ t !, ~2.6!

where the factort2 has been introduced for convenienc
Substituting this ansatz in Eq.~2.1! gives an ordinary differ-
ential equation forF(t) that can be solved imposing the in
tial condition F(0)51 consistent with an initially empty
substrate, yielding

F~ t !5expH 2E
0

t12e2u

u
du2E

0

t12e2~11s!u

u
duJ

5
e22g

~11s!t2
e2E1~ t !2E1[ ~11s!t] , ~2.7!

whereE1(t) is the exponential-integral function@14#. Once
G1( l ,t) has been determined, Eqs.~2.2! and ~2.3! become
differential equations forG2( l ,t) andG3( l ,t), which can be
expressed as quadratures,

G2~ l ,t !5E
0

t

tF~t!e2 l t$11est%dt, ~2.8!

G3~ l ,t !5E
0

t

tF~t!e2 l tdt. ~2.9!

It is worth noting thatG2( l ,t) can be written in terms of
G3( l ,t), through the relation

G2~ l ,t !5G3~ l ,t !1G3~ l 2s,t !. ~2.10!

For arbitraryl, the functionG3( l ,t) gives the density of gaps
of length l created until timet on the right-hand side o
incoming disks, whileG2( l ,t) gives the total density of gap
of length l, irrespective of the side on which they have be
created. Therefore, Eq.~2.10! shows that the number of gap
of length l .s created to the left of incoming particles
equal to the number of gaps of lengthl 2s created to the
right.

Equations~2.6!, ~2.8!, and ~2.9! completely define the
one-gap number density at any time. At infinite time, wh
the jamming state is reached and no more disks can be
sorbed on the substrate, the gap density is given by

G1
`~ l !50, l>11s; ~2.11!

G2
`~ l !5G3

`~ l !1G3
`~ l 2s!, 11s> l>s; ~2.12!

G3
`~ l !5

e22g

11sE0

`

dt
e2 l t

t
e2E1~ t !2E1[ ~11s!t] , l<s.

~2.13!

which shows that only the gaps withl ,11s, which cannot
be destroyed, survive at jamming. As happens in the R
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model,G`( l ) diverges logarithmically whenl→01, as can
be seen rewriting Eq.~2.13! as

G3
`~ l !5

1

2~11s!H GRSA
` ~ l !12e22gE

0

`e2 l t

t
e22E1~ t !

3~eE1~ t !2E1[ ~11s!t]21!dtJ , ~2.14!

whereGRSA
` ( l ) is the gap density corresponding to standa

RSA @5#. To lowest order inl one has now

G3
`~ l !5

e22g

11sH 2 ln~ l !2g

1E
0

11

t
exp@2E1„~11s!t…2E1~ t !#dt

1E
1

`e2E1„~11s!t…2E1~ t !21

t
dtJ 1O~ l !,

~2.15!

displaying the same logarithmic divergence as in stand
RSA @15#, although its amplitude is modulated by a fact
1/2(11s) with respect to the RSA value. Note that even
the limit s→0 this amplitude is half the RSA value due
the fact that gaps of length smaller thans can only be cre-
ated at the right of an incoming disk, instead of being crea
at both sides. On the other hand, the functionG2

`( l ) exhibits
a similar logarithmic divergence forl 5s1, as can be seen
from Eq. ~2.10!. This means that, unlike standard RSA, tw
logarithmic divergences appear inG`( l ) related to the fact
that now there are two minimum distances at which di
can approach. Moreover, the additivity property Eq.~2.10!
ensures that the divergences associated with the two m
mum distances 0 ands exhibit the same divergent behavio
the divergence appearing atl 5s1 will being larger by the
finite amountG3

`(s) than the one atl 501. In the limit s
→0 both peaks coalesce into a single one, which then
comes the one obtained in standard RSA.

Once we know the one-gap density function, using E
~2.5!, we can express the adsorption rate as

du

dt
5F~ t !, ~2.16!

where we have made use of Eq.~2.6!. This expression allows
us to identify the functionF(t), introduced so far as a way t
find the gap density, with the available line fraction, as h
pens in standard RSA. Equation~2.16! enables one also to
express the coverage as a function of time as a quadra
from which, in particular, the jamming coverage can be c
culated, giving@11#

u`~s!5
e22g

11sE0

`e22E1~ t !

t2
e2E1„~11s!t…1E1~ t !dt.

~2.17!

If s!1, we may expand the second factor in the integra
powers ofs, leading to
d

rd

d

s

i-

e-

.

-

re,
l-

n

u`5uRSA
` 2

uRSA
`

2
s1~ 3

2 uRSA
` 2e22g!

s2

4

2~uRSA
` 2 7

3 e22g!
s3

4
1O~s4!

50.747 59820.373 799s10.201 540s210.003 011s3

1O~s4!, ~2.18!

whereuRSA
` is the jamming coverage for standard RSA, a

the numerical values are numerical evaluations of the ex
expression to give an idea of the magnitude of the corr
tions in the expansion. In Fig. 2 one can see that this exp
sion up to third order in powers ofs agrees reasonably we
with the exact results up to angles of the order of 40°.

We can also analyze the behavior of the jamming cov
age when the adsorbing particles follow trajectories alm
parallel to the substrate. In this case, one should take
account that the integral in Eq.~2.17! has a logarithmic sin-
gularity in the limits→`, and a simple power expansion o
the integrand cannot be performed. Instead, a match
asymptotic expansion method should be developed, in o
to capture the different behavior of the integrand for sm
and large values of time@16#. One obtains that the jammin
coverage vanishes as

u`~s!5e2g
ln~11s!

11s
1

v

11s
1OS 1

~11s!2D ,

~2.19!

where the coefficientv is

FIG. 2. The maximum coverage of the line as a function of
incident angle expressed in degrees. The dashed lines correspo
the expansion for small values ofs, up to the third order, and to the
asymptotic expansion arounda590° ~see text!.
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v5e2gE
0

1e2E1~ t !

t
dt2e2gE

1

`12e2E1~ t !

t
dt

1e22gE
1

`e2E1~ t !

t2
dt2e2gE

0

1dt

t F12
e2g

t
e2E1~ t !G

50.725 533. ~2.20!

Again, in Fig. 2, it is shown that the asymptotic predictio
works well for angles close to 90°. Although it is not po
sible to express the integral of Eq.~2.16! as a combination of
known functions, it is of great help when trying to unde
stand the filling kinetics. For example, we can analyze b
the short time and the asymptotic behavior ofu(t). For short
times the integral can be developed in powers of time,

u~ t !5t2S 11
s

2 D t21~515s1 3
2 s2!

t3

6
1O~ t4!,

~2.21!

showing that, initially,u evolves as a power law, and diffe
ences with respect to standard RSA appear in the sec
power of time, because one should wait at least to the de
sition of the second particle on the line to detect the effe
of the new restrictions on the deposition of particles. F
large values oft, the jamming coverage is asymptotical
approached in the form

u`2u~ t !5
e22g

~11s!tS 12
e2t

t D1OS e2t

t3 D , ~2.22!

which exhibits a power-law decay to the leading order. T
reflects the fact that the size of the available areas for inc
ing particles approach zero asymptotically in the neighb
hood of the jamming limit. This behavior is related to th
logarithmic divergence of the gap density, and contains
same prefactor 1/(11s) with respect to the RSA case.

As a final point regarding global quantities, it is possib
to calculate perturbatively the available line fraction as
function of the coverage, which is of interest since it is mo
directly related to the properties of the filling process@17#.
One gets

f~u!512~21s!u1S 11s1
s2

2 D u2

2
1O~u3!. ~2.23!

At zero coverage this quantity is equal to 1 since initially t
line is empty, and any incoming particle is adsorbed. T
second term simply shows that one adsorbed disk exclu
an area equal to twice its diameter plus the additional ex
sion lengths. The next term takes into account that the to
length excluded by two adsorbed disks becomes more c
plex since their exclusion regions can overlap. In fact,
available fraction of the line up to orderun can be con-
structed by looking at the different ways in whichn disks can
overlap@18,4#. Widom @17# showed that the functionsf for
RSA and equilibrium coincide up to the second order inu.
We can also compare Eq.~2.23! with the available line frac-
tion for an equilibrium system of hard particles. Since in o
model one particle excludes a length 21s, we choose a
system of particles of length 1 but interacting with a ha
h

nd
o-
ts
r

s
-

r-

e

a
e

e
es
-

l
-

e

r

-

core potential of range 11s/2. The equilibrium result is the
same function of the coverage than for simple hard rods,
multiplying the coverage by a factor (11s/2). One then
obtains

feq~u!512~21s!u1S 11s1
s2

4 D u2

2
1O~u3!, ~2.24!

which shows that the available line function in the inclin
RSA model deviates from the equilibrium one already in t
second power inu, while in standard RSA differences ap
pear in the third power ofu. This is due to the asymmetr
introduced in the kinetics by the inclined direction of arriva
In standard RSA, the configurations generated by two p
ticles are equivalent to the equilibrium ones, in the sense
one cannot discern which of the two particles has been
sorbed first. In inclined RSA, however, not all the config
rations with two adsorbed particles have the same probab
than in equilibrium: if the separation between them is sma
thans, then the particle at the right must have arrived befo
than the particle at the left, and this configuration has a pr
ability that is one-half of the equilibrium value. This asym
metry in the kinetics has no analogy in equilibrium, and t
behavior of the system deviates from equilibrium already
second order inu.

III. INCLINED BALLISTIC DEPOSITION MODEL

We will now consider a second kinetic adsorption mod
which evolves according to BM rules@6#. Since BM is in-
tended to describe the adsorption of heavy colloids in
presence of gravity fields@6#, this model can describe th
adsorption in such a system when an additional force para
to the surface, as for example an electric one, acts on
suspended particles. We will analyze in detail the new
sorption mechanisms induced by the presence of this
field. In order to describe them properly, we will first focu
on the possible trajectories after one or a couple of partic
have been adsorbed.

As in RSA the adsorption is still sequential, but when
incoming disk touches a preadsorbed one it is not rejec
Rather, it rolls over the latter trying to reach the substra
Only if it gets trapped in the space between two adsor
particles, being unable to reach the line, it is rejected. Si
the trajectories are inclined with respect to the substrate
incoming disk rolling over a preadsorbed one will move
its left-hand side if its initial trajectory ends to the left of th
center of the preadsorbed particle, and it will roll to the rig
otherwise. Both kinds of trajectories can be delimited by
separation lineG, starting at the center of the preadsorb
particle and with the same inclination as the trajectories
the incoming disks. Note that in standard BM half of th
incoming particles that overlap an adsorbed disk will try
reach the substrate on its right-hand side and half on its
hand side. Now, due to the inclination of the separation li
a fraction 1/(21s) of the incoming particles that overlap
preadsorbed disk will roll towards its left-hand side, while
fraction (11s)/(21s) will roll towards its right.

If the center of the incoming disk is on the right-hand si
of G when touching disk 1, it will roll towards the right-han
side of that particle, until its trajectory becomes tangent
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the adsorbed disk. At that point, it will continue its motio
towards the substrate along a line parallel to its initial traj
tory, which will be denotedG8 ~see Fig. 3!. If no overlap is
detected with a second disk, the new particle will be irreve
ibly adsorbed to the right of the fixed particle leaving
interval of lengths between them. This mechanism is ne
respect to standard BM, in which a particle rolling over
preadsorbed one cannot separate from it until it reaches
line.

Now, we will consider that a second disk is present on
line, at the right of disk 1, separated from it by a gap
length l @see Fig. 4~a!#. If l is larger than 11s, then the
trajectory of the incoming disk will follow the lineG8, being
adsorbed at a distance 11s to the right of disk 1 without
touching disk 2~region I, Fig. 5!. If the gap lengthl is
smaller, then the incoming particle will touch disk 2 befo
reaching the surface. However, it can either leave dis
along the separation lineG8 before touching disk 2, as show
in Figs. 4~a! and 4~b!, or it can overlap disk 2 before arrivin

FIG. 3. Different possibilities of rolling for a disk arriving at th
line in the presence of a preadsorbed particle. Particles with in
trajectory at the left of lineG roll to the left, whereas those with
initial trajectory between the linesG andG8 roll to the right.
-

-

he

e
f

1

at that line@Figs. 4~c! and 4~d!#.
Separation from disk 1 will not happen if the incide

particle touches particle 2 before arriving at the separa
line G8. As shown in Figs. 4~c! and 4~d! this happens if the
point of contact with the second particle is higher than
separation point, that is, ifA12( l 11)2/2.sina. This gives
the condition 0, l ,2 cosa21, that can be fulfilled only for
a,60° (s,1). Otherwise, the new particle will leave con
tact with particle 1 and follow a straight trajectory along t
line G8 before touching disk 2. We describe separately b
possibilities:

~a! l .2 cosa21. The incoming particle leaves disk 1 be
fore touching disk 2, then it follows the lineG8 and it will
touch particle 2 ifl ,11s. After this contact, the particle
will roll over disk 2 to the left if the lineG8 is to the left of
line G2 , that is, if l .s @see Fig. 4~a!#. Otherwise, it will roll
to the right of disk 2 arriving to the gap situated at the rig
of the initial gap@Fig. 4~b!#; in this case, successive rollin
over several particles at the right of disk 2 is possible. T
situation occurs when the inequalities 2 cosa21,l,s are
satisfied, and this can happen fora.45° only.

~b! 0, l ,2 cosa21. The incoming particle touches dis
2 before reaching the lineG8, then its motion depends on th
relative location of the point of contact with respect to t
separation line of particle 2,G2 @see Figs. 4~c! and 4~d!#. If
the point of simultaneous contact with both disks is at the
of G2 then the particle will remain trapped at that point. Th
happens, as can be seen in Fig. 4~c!, if the height of that
point is smaller than cosa, that is, if l .2 sina21. Nonlocal
rolling to the right of particle 2 will appear if the opposit
inequality is true, and this is possible fora.30° only @see
Fig. 4~d!#.

In Fig. 5 we show a summary of the different rollin
mechanisms for a disk rolling to the right of the leftmo
preadsorbed particle delimiting a gap of lengthl according to
the previous discussion. From this figure, we can define
characteristic gap lengths for each value of the angle:

l 1~a!5H 1, a<60°

s, a>60°

al
o

e

d

FIG. 4. Different possibilities of rolling for a
disk arriving at the line in the presence of tw
pre-adsorbed particles.~a! and ~b!, l .2 cosa
21. A disk with initial trajectory betweenG1 and
G8 will roll to the left and to the right of the
second disk, respectively, after having left th
contact with disk 1.~c! and~d!, l ,2 cosa21. A
disk with initial trajectory betweenG1 and G2

will be rejected or roll to the right of the secon
disk, respectively.
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l 2~a!5H 0, a<30°,

2 sina21, 30°<a<45°,

s, a>45°,

~3.1!

We have shown that for arrival anglesa.30°, an incom-
ing disk the initial trajectory of which overlaps a gap
length l , l 2(a) will roll over the rightmost particle of the
gap arriving at the next gap. This mechanism is not pres
in vertical BM and it implies that the adsorption rate at
given point may depend on the distribution of particles
arbitrary distance at its left. The adsorption kinetics becom
nonlocal in the sense that the final position of a particle
the line is not restricted to a position belonging to the init
gap in which the center of the incoming disk has been c
sen. This means that theshielding property@1# that allows
one to solve many one-dimensional adsorption problem
not satisfied ifa.30°. In this regime there exists aninterac-
tion between gaps, and only fora,30° it will be possible to
obtain an analytic solution to this model.

Note that adsorption of new particles is possible only
gaps of lengthl> l 1(a), and therefore those particles arri
ing at gaps of lengthl 2(a)< l , l 1(a) are rejected. For val-
ues of the anglea>60°, one hasl 15 l 2 and the rejection
mechanism is suppressed: all the incoming particles will
able to reach the line while available intervals are pres
This implies that the coverage will increase linearly un

FIG. 5. Different rolling mechanisms, according to the previo
figure, for a particle arriving along a direction forming an anglea
with the normal, rolling to the right of disk 1 in the presence o
second disk on the line. The centers of disks 1 and 2 are sepa
by a distance 11 l . In region I there is no contact with disk 2, i
region II the particle touches disk 2 and rolls to its left, and
region III the particle rolls to the right of disk 2, introducing non
local effects. The dashed linel 52 cosa21 separates situations i
which separation from disk 1 occurs before contact with disk
~region over that line! from those with successive rolling over bo
particles. The dotted area corresponds to situations where th
coming particle is rejected. Length is measured in diameter u
anda is expressed in degrees.
nt

t
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n
l
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n
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l

jamming, which will be reached in a finite timetJ(a), i.e.,
u(t,a)5t for t<tJ(a). Therefore, nonlocal adsorptio
deeply modifies the adsorption kinetics for large incide
angles.

So far, we have not specified what happens to those
ticles that arrive exactly along the separating lineG of a
preadsorbed disk. In standard BM this situation is irrelev
since only a fraction of zero measure of the incoming dis
will follow these trajectories. Now the situation is differen
because a finite fraction of the particles overlapping a d
will roll to its right trying to reach the lineG8. Once a par-
ticle has followed this path and it has been adsorbed form
a gap of lengths, the separation line of that particle,G2 ,
coincides with the lineG8 of the first particle. Any new
particle rolling to the right over the first particle, and arrivin
at the lineG8, will follow the same path and will arrive along
that separating line. As we have seen, this is possible on
the gap between the first particles,l 5s, is larger than
2 cosa21; i.e., for a.45°. Since an attractive interactio
between the disks and the substrate will always exist, wh
makes it possible for the particles to be irreversibly adsor
at the positions at which they arrive, we assume that s
particles arriving along the separating line will roll to th
left. Therefore, these particles will be rejected ifs,1 ~45°
,a,60°! and adsorbed ifs.1 ~a.60°!.

It is possible to find an analytic expression for certa
physical quantities in this one-dimensional version of t
ballistic model, using the same technique as in standard
@6#. However, the method makes use of the shielding pr
erty of the kinetic one-dimensional models, and as we h
discussed, this feature is absent due to the nonlocal ads
tion mechanism fora.30°. Therefore, an exact analytic ex
pression can be obtained only fora,30°. Fora.30° we will
introduce a self-consistent description of the nonlo
mechanism that gives reasonably good results as we will
by comparison with computer simulations. We will prese
in Sec. III A the theoretical predictions, and we will compa
them in Sec. III B with simulation results.

A. Theoretical analysis

Let us consider again the gap densityG( l ,t). Due to
the rolling mechanism@6#, it contains now singular contribu
tions. The evolution equations will couple the regular a
singular components of the gap density. We introduce
decomposition ofG( l ,t) into singular and regular parts a
@19#

G~ l ,t !5g~ l ,t !1g0~ t !d~ l !1gs~ t !d~ l 2s!

1gs21~ t !d~ l 2s11!, ~3.2!

where g( l ,t) refers to the regular contribution to the ga
density, andg0(t), gs(t), and gs21(t) to the fraction of
gaps of lengths 0,s, ands21, respectively, and where th
latter appears fora.60° only. Note that the singular contri
butions are related to the gap lengths through the roll
mechanisms.

We can now proceed to find the evolution equation for
gap densities. This can be done by looking at how gaps
lengthl are destroyed and created from larger gaps, using
results of the preceding paragraphs. As a new ingredient w

ted
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respect to the analysis of the standard models, we introdu
quantityD(t), which will account for the number of particle
per unit time arriving to an interval from its left neighbor du
to nonlocal adsorption. This mechanism introduces an ‘
teraction’’ between the gaps, which otherwise would evo
independently. We assume thatD(t) is the same for all the
gaps, independently of their neighborhood. This means
we include the interaction between gaps in an effective
mean field way, and makes our analysis only approximate
similar idea in the context of RSA with diffusion in a pre
cursor layer is considered in Ref.@23#, where the approach
turns out to be exact.

The function D(t) will be determined from a self-
consistent condition obtained from the balance of partic
arriving to the line. From the total number of particles arr
ing at the surface, a fractionf will be adsorbed, while a
fractionR512f will be rejected. As we have seen, adsor
tion is only possible on gaps of lengthl> l 1(a); particles
can arrive to one of such gaps through straight incident
jectories, at a total ratel 11, or after rolling from the left
neighboring gap, at a rateD(t). Therefore, the rate at whic
particles arrive at each of these gaps isl 111D(t), and the
mean adsorption rate on the line is

f~ t !5E
l 1
2

`

dl@ l 111D~ t !#G~ l ,t !. ~3.3!

On the other side, rejection of particles happens only in g
of length l 2< l ,1, where particles arrive at ratel 11
1D(t). The corresponding mean rejection rate is

R~ t !5E
l 2
2

l 1
2

dl@ l 111D~ t !#G~ l ,t !. ~3.4!

Note that these integrals include the singular contribution
G( l ,t), and the minus sign in the integration limits indica
that the lower limit must be included in the integration inte
val, and the upper limit must be excluded. In particular,
a.60° one hasl 25 l 15s, andR(t)50.

The self-consistent condition onD(t) can be obtained by
imposing that the adsorption and rejection rates must ad
one,

f~ t !1R~ t !5E
l 2
2

`

dl@ l 111D~ t !#G~ l ,t !51. ~3.5!

By combining this equation with the normalization conditio
Eq. ~2.4!, one obtains a more appealing form of the closu
relation,

E
0

l 2
2

dl~ l 11!G~ l ,t !5D~ t !E
l 2
2

`

dlG~ l ,t !. ~3.6!

The left member of this equation gives the total rate at wh
particles arrive at intervals of lengthl , l 2(a); all of these
particles will roll over the rightmost particle limiting the gap
and constitute the source of the nonlocal effect. The ri
member of Eq.~3.6! gives the total rate at which the nonloc
effect drives particles towards gaps of lengthl . l 2(a),
where they are finally adsorbed@if l . l 1(a)# or rejected@if
l , l 1(a)#. For a,30°, l 2[0, which implies that alsoD(t)
a
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50, since in this case nonlocal adsorption is not possible
this region the calculations of the next subsection will p
vide an exact solution for the kinetics of the model.

The new singular adsorption mechanism fora.60°, rep-
resented bygs21 , induces a qualitatively different kinetics
Therefore, we will analyze separately the behavior of
inclined BM model for small and big angles.

1. a<60°

In order to derive the evolution equation for the gap de
sity, we use the fact that direct adsorption without cont
with adsorbed particles gives the same contributions that
the inclined RSA model, considered in Eqs.~2.1!–~2.3!. Fol-
lowing the usual procedure@6#, we introduce the contribution
from rolling on preadsorbed particles. According to the d
ferent rolling mechanisms described in the preceding sub
tion, one finally arrives at the set of equations

]g1~ l ,t !

]t
52@ l 111D~ t !#g1~ l ,t !1@11s1D~ t !#

3g1~ l 111s,t !1g1~ l 11,t !1E
l 11

`

dl8g1~ l 8,t !

1E
l 111s

`

dl8g1~ l 8,t !, l>1; ~3.7!

]g2~ l ,t !

]t
5@11s1D~ t !#g1~ l 111s,t !1g1~ l 11,t !

1E
l 11

`

dl8g1~ l 8,t !1E
l 111s

`

dl8g1~ l 8,t !,

s, l ,1; ~3.8!

]g3~ l ,t !

]t
5@11s1D~ t !#g1~ l 111s,t !1@ l 121D~ t !#

3g1~ l 11,t !1E
l 111s

`

dl8g1~ l 8,t !, 0, l ,s;

~3.9!

dg0~ t !

dt
5E

11s

`

g1~ l 8,t !dl8

1E
1

11s

@ l 8111D~ t !#g1~ l 8,t !dl8; ~3.10!

dgs~ t !

dt
5@11s1D~ t !#E

11s

`

g1~ l 8,t !dl8. ~3.11!

The first three equations give the evolution of the regu
contribution to the gap density, and the last two the singu
components. We have introduced the subscripts 1, 2, and
distinguish the regular contribution,g( l ,t), in the three do-
mains in which the kinetic mechanisms are different. Eq
tion ~3.7! takes into account that gaps of lengthl .1 may be
destroyed by adsorption of a new disk arriving either
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rectly or after rolling over any of the limiting disks of th
gap, and that they can be created from larger gaps eithe
the left or right of the incoming disk. Equation~3.8! consid-
ers that gaps smaller than 1 and larger thans cannot be
destroyed, but are created through the same mechanism
the larger gaps. Finally, Eq.~3.9! indicates that gaps smalle
thans cannot be destroyed and cannot be created to the
of an incoming disk that adsorbs directly. The equations
the singular contributions are obtained taking into acco
that gaps of length 0 appear by rolling to the left of the rig
particle in gaps of lengthl .11s, and by adsorption of any
particle arriving to a gap of lengthl P(1,11s), while inter-
vals of lengths are created by rolling of the incoming pa
ticle to the right of the leftmost disk of a gap of lengthl
.11s. In this region, ifa,30°D[0 since in this case mov
ing to a gap different from the incident one is forbidden, a
an exact analytic solution exists.

Equations~3.7!–~3.11! can be solved following the pro
cedure we have introduced in the previous section.
should first solve the integrodifferential equation forg1( l ,t),
and then the other functions will be calculated from it
quadratures. We always start from an empty line, and th
fore initially the density of gaps is zero. According to th
initial condition, we introduce the ansatz

g1~ l ,t !5t2V~ t !F~ t !e2~ l 11!t. ~3.12!

where F(t) is the function obtained in the inclined RS
model, Eq.~2.7!, and the dependence ins is implicit in both
F(t) andV(t). Introducing this expression forg1( l ,t) in Eq.
~3.31!, and imposing that initially the substrate is emp
V(0)51, we find

V~ t,s!5expH 22e2t2e2~11s!t

2E
0

t

dtD~t!@12e2~11s!t#J . ~3.13!

Now, we can also determineg2( l ,t) andg3( l ,t), as well as
the singular contributions, as quadratures, by substituting
~3.12! in Eqs.~3.8!–~3.11!. One arrives at

g2~ l ,t !5E
0

t

tV~t!F~t!e2~ l 12!t

3$t111@t„11s1D~t!…11#e2st%dt,

~3.14!

g3~ l ,t !5E
0

t

tV~t!F~t!e2~ l 12!t$@ l 121D~t!#t

1e2st@11„11s1D~t!…t#%dt, ~3.15!

g0~ t !5E
0

t

V~t!F~t!e22t$11@21D~t!#t2e2st

3@11„11s1D~t!…t#%dt, ~3.16!
to

as

eft
r
t

t

d

e

e-

,

q.

gs~ t !5E
0

t

tV~t!F~t!e2~s12!t@11s1D~t!#dt.

~3.17!

Letting time go to infinity, a jamming state is reached
which there are no gaps of length larger than 1. Note tha
the limit s→0, the singular contributionsg0 and gs are
identical, and the sum of both gives the delta function ch
acteristic of BM. On the other hand, the functiong3 disap-
pears when performing this limit. Therefore, the behavior
G( l ,t) at contact (l→0) will depend ons.

We can now derive an expression for the time evolut
of the coverage. Since the gap densityG( l ,t) defined in Eq.
~3.2! includes all the interparticle gaps, including the sing
lar contributions, its integral respect tol gives the total num-
ber density of gaps and therefore the number density of
ticles @19#. Integrating it, we arrive at

u~ t !5E
0

`

dlG~ l ,t !5E
0

t

V~t!F~t!e22t@11„21D~t!…t#dt

~3.18!

which has the same form as the one obtained in standard
@6#, with the addition of theD(t) term. The dependence o
s is now implicit in V(t), F(t), andD(t).

To obtainD(t), one has to solve simultaneously the se
consistent condition expressed by Eq.~3.5! or ~3.6! and the
integrals ~3.14!–~3.17! for the different contributions to
G( l ,t). For a,30° one hasl 250, and Eq.~3.6! implies that
D(t)50, which is consistent with the absence of nonloc
adsorption at these incident angles. Fora.30°, D(t) must
be obtained numerically using the self-consistent condit
Eq. ~3.5!.

At short times, one can expand all quantities in posit
powers of time, and the first coefficients can be explici
obtained. One has, for example,D(t)5D1t1O(t2), with
D15@11 l 2(11 l 2/2)#/2 if 30°,a,60°, andD150 if a
,30°. For the coverage one then obtains

u~ t !5t2S 5

2
1

s

2
1

s2

4
2D1D t3

3
1O~ t4!. ~3.19!

Note that the effects of the inclination, including the nonl
cal rolling for a.30°, appear in the third order in time, sinc
three particles are needed to make clear the rolling mec
nisms; the second-order term is missing because if only
particle is adsorbed on the substrate, all the incident parti
can reach the line.

At large times, all quantities approach an asympto
~jamming! value exponentially fast, as in standard BM. F
example, for the coverage one has

uJ2u~ t !'K
e2~21DJ!t

t
, ~3.20!

where both the amplitudeK and the asymptotic value o
D(t),DJ , depend on the incident anglea.

The maximum fraction of the line covered with particle
can be expressed as a quadrature, extending the integr
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interval in Eq. ~3.18! to infinity. For small values of the
inclination anglea, this quantity can be expanded as
power series ofs, giving

u`~s!5E
0

`

dt expH 22t1222e2t22E
0

t12e2u

u
duJ

3~112t !$11@e2t~11t !21#s1@e22t~11t !2

2e2t~ t213t13!12#s2/2%1O~s3!

50.808 65320.110 518s20.000 424 898s21O~s3!,

~3.21!

where in the last equation we have given numerical exp
sions for the exact result to give an idea of the order
magnitude of the corrections introduced bys. Note that for
a<30° ~small s!, D(t)50, and the previous analysis is e
act. As we will show in Sec. III B, the results obtained fro
the self-consistent analysis constitute also a good approx
tion for anglesaP@30°,60°#.

2. a>60°

For a.60°, ~s.1!, the nonlocal mechanism becomes e
sential. One has nowl 15 l 25s and, as shown in Eq.~3.4!,
the rejection rate vanishes. The self-consistency condi
~3.5! reduces now tof51, showing that the kinetic law is
trivial; the only kinetic quantity to be determined is the fini
time tJ at which the jamming is reached, which is nume
cally equal to the jamming coverageuJ .

The rate equations for the gap density show also sl
modifications respect to those corresponding to the c
a,60°, Eqs. ~3.7!–~3.11!. First, the decomposition~3.2!
must include now the singular contributiongs21(t), corre-
sponding to gaps of lengths21 that are created by particle
adsorbed in gaps of lengths. Now, only intervals of length
l>s can accept new particles, because particles arrivin
smaller intervals will roll over the rightmost particle, goin
to the next interval. All particles arriving at intervals o
length l P@s,s11# will roll over the limiting particles, be-
ing adsorbed at contact with the rightmost one. As a con
quence, Eq.~3.7! is valid for l . l 15s, whereas Eqs.~3.8!–
~3.11! now read

]g2~ l ,t !

]t
5@11s1D~ t !#g1~ l 111s,t !1@ l 121D~ t !#

3g1~ l 11,t !1E
l 111s

`

dl8g1~ l 8,t !,

s21, l ,s; ~3.22!

]g3~ l ,t !

]t
5@11s1D~ t !#g1~ l 111s,t !

1E
l 111s

`

dl8g1~ l 8,t !, l ,s21; ~3.23!
s-
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dg0~ t !

dt
5E

11s

`

g1~ l 8,t !dl8

1E
s

11s

@ l 8111D~ t !#g1~ l 8,t !dl8

1@11s1D~ t !#gs~ t !; ~3.24!

dgs~ t !

dt
5@11s1D~ t !#H E

11s

`

g1~ l 8,t !dl82gs~ t !J ;

~3.25!

dgs21~ t !

dt
5@11s1D~ t !#gs~ t !. ~3.26!

These equations can be solved following the same proce
used for a,60°. Now, Eq. ~3.12! is still valid for l .s,
whereas for the other components we have

g2~ l ,t !5E
0

t

tV~t!F~t!e2~ l 12!t$@ l 121D~t!#t

1@11t„11s1D~t!…#e2st%dt; ~3.27!

g3~ l ,t !5E
0

t

tV~t!F~t!e2~ l 121s!t$@11s1D~t!#t11%dt;

~3.28!

g0~ t !5E
0

t

V~t!F~t!e2~21s!t$et211t@11s1D~t!#

3@et2e2*t
t [11s1D~u!]du#%dt; ~3.29!

gs~ t !5e2~21s!tE
0

t

tV~t!F~t!

3@11s1D~t!#e*t
t [12D~u!]dudt; ~3.30!

gs21~ t !5E
0

t

tV~t!F~t!@11s1D~t!#e2~21s!t

3$12e2*t
t [11s1D~u!]du%dt. ~3.31!

Introducing these expressions in Eq.~3.6!, the self-
consistent condition can be written as

f~ t !5@11s1D~ t !#gs~ t !1V~ t !F~ t !e2~11s!t

3$11@11s1D~ t !#t%51. ~3.32!

Note that the nonlocal termD(t) is necessary to satisfy thi
condition. Neglecting this effect would lead to an unrealis
kinetics. As a consequence, the approach to the jamm
limit is very different from the situation whena,60°. Now,
when t→tJ , G( l ,t)→0 for l> l 25s and, according to Eq
~3.6!, D(t) diverges. From Eq.~3.32! one can obtain the
divergent behavior,

D~ t !'
@12e2~11s!tJ#21

tJ2t
, t→tJ . ~3.33!
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This divergence reflects the fact that, at jamming, the inco
ing particles remain for ever rolling over the saturated s
strate.

In the limit a→90°, the direction of the incident particle
is near parallel to the surface, and one hass→`. In this
situation one has two disparate length scales, the radiu
the particles and the length of their ‘‘shadows,’’s; corre-
spondingly, there exist two time scales: the characteri
time scale for arrival of a new particle per unit length~1 in
non-dimensional units!, and the characteristic time of jam
ming ~of orders21). The first time scale is irrelevant in th
limit s→`, and all the functions of time approach a scali
form of the typef (t)'saf̃ (st). Therefore one has

D~ t !'sD̃~st !, ~3.34!

V~ t !'Ṽ~st !, ~3.35!

gs~ t !'s21g̃s~st !. ~3.36!

According to these scalings, the coverage scales ass21. By
numeric integration one can obtain the asymptotic appro
mation for the jamming coverage

u`~s!'2.1238s211O~s22!. ~3.37!

B. Simulation results

We have performed numerical simulations of the sequ
tial adsorption of disks of diameter one on a line of leng
L5103, using the rules of the inclined BM described at t
beginning of this section: the initial position of each disk

FIG. 6. Jamming limit of the inclined BM as a function of th
incident anglea, expressed in degrees. The line corresponds to
analytic solution, which is exact fora,30° and approximate for
a.30°, and the symbols correspond to the simulation results
which all possible processes affecting the arrival of spheres at
substrate have been taken into account. In the inset, detail o
region where the discontinuity takes place.
-
-

of

ic

i-

-

chosen randomly on a line at height 1 over the adsorb
line, and its inclined trajectory is generated from that poi
rolling over as many disks as they are allowed before eit
reaching the substrate or being rejected. We start with
empty line, which is sequentially filled until jamming i
achieved. In Fig. 6 we show the jamming coverage a
function of the angle of arrival of disks obtained after ave
aging over 103 simulations for each value of the angle. Th
simulation results are compared with the results of the s
consistent calculations.

As a major feature one can see that, despite the appr
mate character of the analytic solution fora.30°, it repro-
duces the jamming coverage quite well, except in the nei
borhood ofa560° (s51). When increasing the inciden
anglea from 0, initially one observes a decrease of the ja
ming, indicating that a finite fraction of particles roll to th
right of preadsorbed spheres, creating gaps of increa
lengths that cannot be covered by additional particles. F
angles greater than 30°, particles can roll over preadsor
spheres, increasing the probability that a gap of lengths is
produced. This effect is not completely taken into account
the self-consistent equation, which slightly underestima
the jamming coverage, specially for angles near 60°. Cl
to s512, the jamming has decreased 15% with respec
standard BM. Ats511, a jump in the jamming is observed
which is well reproduced by the analytic model, meani
that the increase is basically due to the possibility of
adsorption of incoming particles on gaps of lengths. In fact,
the magnitude of the jump approximately equals the num
of such intervals at jamming fors512,gs(`).

For angles larger than 60° a rapid decrease of the co
age is observed, which is well reproduced by the se
consistent solution. In this region rolling to the right of a

e

in
he
he

FIG. 7. Contribution to the jamming coverage of particles th
have arrived at the surface by direct adsorption~squares!, and of
those the last movement of which has been a roll to the right~tri-
angles! and to the left~inverted triangles!, as a function of the
incident angle, expressed in degrees. The lines show the re
obtained from the self-consistent approach.
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adsorbed disk is the most favorable event, enhancing
formation of larger gaps. Fora→90°, the coverage vanishe
in the way predicted by the asymptotic limit of the se
consistent theory, Eq.~3.37!.

In order to gain more insight on the importance of t
different mechanisms, we have also observed the ave
last movement of the incoming disks. In Fig. 7 we show t
contribution to the jamming coverage due to particles t
have arrived to the line directly,uD , those that have arrived
after having rolled the last time to the right,uR , and those
whose last movement has been to roll to the left of a pre
sorbed particle,uL . They are related to the singular comp
nents of the gap distribution function,uL5g0 , anduR5gs

1gs21 .

FIG. 8. Evolution of the different contributions to the coverag
uD ~squares!, uR ~triangles!, anduL ~inverted triangles! as a func-
tion of the total coverage for~a! a545° and~b! a575°. The lines
show the self-consistent results.
he

ge
e
t

d-

For a50o the system is symmetric anduL5uR ; for a
,30°,uL increases slightly due to the fact that, although ro
ing to the right is more probable than rolling to the le
particles rolling to the right have a larger probability of bein
rejected because they need a larger length to be adsorb

At a530° the nonlocal mechanism starts to appear,
voring rolling to the right, and according to the simulatio
results, one recovers the equalityuL'uR . Since more par-
ticles are now able to reach the line after rolling, the fracti
which do it through direct adsorption decreases. Despite r
ing to the right is now favored, the fraction of disks th
adsorb after rolling to the left increases with the angle for
same reason as before. The self-consistent solution corre
reflects this tendency, but does not reproduce accurately
value of the partial contributionsuL anduR .

At a560°, particles arriving to gaps of lengths are ac-
cepted, producing a large increase inuL . This discontinuity
is directly related to the number of gaps of lengths present
on the substrate fora560°2, which could not be filled for
a,60°. Now, the destruction of these gaps gives raise
new gaps of lengths21 and 0. These lasts in turn induc
the rolling to the right of subsequent adsorbing particl
increasing alsouR . This also implies that the number o
particles which adsorb directly decreases. For these an
the self-consistent solution seems to be near exact.

The self-consistent solution reproduces well also the ti
evolution of the different components of the coverage,
shown in Fig. 8. At short times, direct adsorption is alwa
dominant, as expected, and rolling to the right is more pr
able than rolling to the left. However, at longer times, rollin
becomes dominant, and rolling to the left becomes more
portant than rolling to the right.

Finally, in Fig. 9 we show how the simulation results f
the different contributions to the coverage approach the s

,

FIG. 9. Scaling plot of the different contributions,suD

~squares!, suR ~triangles!, andsuL ~inverted triangles! as function
of the scaling timest5st for a585° ~hollow symbols! and a
589° ~filled symbols!. The lines show the scaling curves obtain
from the self-consistent approach.
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ing functions obtained from the self-consistent solutio
~3.29!–~3.31!. Note that in this limit, the contributionsuL
and uR seem to be near equal at jamming, as predicts
self-consistent solution.

IV. CONCLUSION

In this paper we have studied the kinetic properties of
shadow models, which describe the adsorption of particle
when an additional field favors the motion of the adsorb
particles in a direction parallel to the substrate. Although i
known that diffusion@20#, the effect of hydrodynamic inter
actions@21# or coadsorption@22# may become relevant, w
have focused on the modifications that such a field in
duces on the excluded volume interactions between the
sorbing and preadsorbed particles, and have therefore
glected a detailed description of the transport process f
the bulk liquid. From this point of view, the external fie
can model either a shear flow, an external electric field p
allel to the substrate or the adsorption process in presenc
gravity on an inclined substrate. In all cases, adsorbing
ticles arrive at the surface along trajectories that form
anglea with the normal to the substrate. We have shown
excluded volume interactions are sensitive to the app
field, and we have analyzed their implications on the adso
tion kinetics.

We have first focused on a model that evolves accord
to rules analogous to those of the RSA model, which is c
sidered to represent the kinetics for diffusing colloidal p
ticles. We have seen that both the kinetics and the jamm
iot
s

e

e

g
s

-
d-
e-

m

r-
of
r-
n
e
d

p-

g
-

-
g

coverage are sensitive to the external field. In particular,
jamming decreases considerably when increasinga. We
have also seen that the nonequilibrium effects character
of these irreversible models start at lower coverage with
spect to standard RSA due to the asymmetry induced by
external field.

We have also considered a kinetic model that evol
according to BM rules, which is adequate in the case o
strong field. In this case, the external field induces new p
cesses. In particular, adsorption may become nonlocal, in
sense that an adsorbing particle may roll over a numbe
preadsorbed particles before either being adsorbed or
jected. This process induces an effective interaction betw
gaps, and therefore an exact analytic solution is restricte
incident anglesa,30°. For higher angles, we have intro
duced a self-consistent model that accounts partially for
nonlocal mechanisms. We have compared the results
dicted by this model with the results obtained from nume
cal simulations, showing that the differences are not
large. The self-consistent approach introduces only quan
tive corrections fora,60°, but it is essential to describe th
qualitative changes in the kinetics fora.60°.

ACKNOWLEDGMENTS

I.P. acknowledges the FOM for financial support, and
FOM Institute for its hospitality. J.B. and J.M.R. have be
supported by the DGICYT of the Spanish Government un
Grant Nos. PB94-0718 and PB95-0881, respectively.
l

hys.

m.
@1# J. Evans, Rev. Mod. Phys.65, 1281~1993!.
@2# J. Feder and I. Giaever, J. Colloid Interface Sci.78, 144

~1980!.
@3# I. Pagonabarraga, P. Wojtaszczyk, M. Rubı´, B. Senger, P.

Schaaf, and J.-C. Voegel, J. Chem. Phys.105, 7815~1996!.
@4# G. Tarjus, P. Schaaf, and J. Talbot, J. Stat. Phys.63, 167

~1991!.
@5# E. L. Hinrichsen, J. Feder, and T. Jo”ssang, J. Stat. Phys.44,

793 ~1986!.
@6# J. Talbot and S. Ricci, Phys. Rev. Lett.68, 958 ~1992!; R.

Jullien and P. Meakin, J. Phys. A25, 1891~1992!.
@7# J. J. Ramsden, Phys. Rev. Lett.71, 295 ~1993!; J. Stat. Phys.

73, 853 ~1993!.
@8# J. M. Meinders and H. J. Busscher, Colloid Polymer Sci.272,

478 ~1994!.
@9# C. A. Monning and R. T. Kennedy, Anal. Chem.66, 280R

~1994!.
@10# R. L. St.Claire, Anal. Chem.68, 569R~1996!.
@11# I. Pagonabarraga, J. Bafaluy, and J. M. Rubı´, Phys. Rev. Lett.

75, 461 ~1995!.
@12# D. Boyer, J. Talbot, G. Tarjus, P. R. Van Tassel, and P. V
 ,

Phys. Rev. E49, 5525~1994!.
@13# D. H. Linares, R. H. Lo´pez, and V. D. Pereyra, J. Phys. A31,

1165 ~1998!.
@14# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun~Dover, New York, 1972!.
@15# Y. Pomeau, J. Phys. A13, L193 ~1980!.
@16# C. M. Bender and S. A. Orszag,Advanced Mathematica

Methods for Scientists and Engineers~McGraw-Hill, Sin-
gapore, 1978!.

@17# B. Widom, J. Chem. Phys.44, 3888~1966!.
@18# P. Schaaf and J. Talbot, Phys. Rev. Lett.62, 175 ~1989!.
@19# P. Viot, G. Tarjus, and J. Talbot, Phys. Rev. E48, 480~1994!.
@20# F. J. Bafaluy, B. Senger, J.-C. Voegel, and P. Schaaf, P

Rev. Lett.70, 623 ~1993!.
@21# I. Pagonabarraga and J. M. Rubı´, Phys. Rev. Lett.73, 114

~1994!.
@22# M. R. Oberholzer, N. J. Wagner, and A. Lenhoff, J. Che

Phys. 107, 9157 ~1997!; J. Faraudo and J. Bafaluy~unpub-
lished!.

@23# G. J. Rodgers and J. A. N. Filipe, J. Phys. A30, 3449~1997!.


