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Amplitude envelope synchronization in coupled chaotic oscillators
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A peculiar type of synchronization has been found when two Van der Pol-Duffing oscillators, evolving in
different chaotic attractors, are coupled. As the coupling increases, the frequencies of the two oscillators remain
different, while a synchronized modulation of the amplitudes of a signal of each system develops, and a null
Lyapunov exponent of the uncoupled systems becomes negative and gradually larger in absolute value. This
phenomenon is characterized by an appropriate correlation function between the returns of the signals, and
interpreted in terms of the mutual excitation of new frequencies in the oscillators power spectra. This form of
synchronization also occurs in other systems, but it shows up mixed with or screened by other forms of
synchronization, as illustrated in this paper by means of the examples of the dynamic behavior observed for
three other different models of chaotic oscillators.
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[. INTRODUCTION and PS have been observed combined. The development of
AES starts at very small coupling strengths; moreover, it is
The dynamics of two coupled, chaotic oscillators is ansignaled by a null Lyapunov exponent of the uncoupled sys-
issue of great interest in science and engineering where orléms becoming negative, as it occurs with PS. Because of
often deals with two or more nonlinear units.g., lasers, this, besides its interest as a special form of synchronization,
electric circuits, and neuropghat are mutually coupled. the development of AES, combined with PS, appears as a
Likewise, it is interesting for application to the understand-900d candidate to explain certain disagreements between the
ing of cooperative behaviors of networks of chaotic systemscoupling strengths at which the Lyapunov exponent becomes
Fundamental results are the reports on two mutually couplefull and at which the onset of PS occurs; which can be found
chaotic oscillators given by Fujisaka and Yamdd3 on in the literature(see[5,12] and references thergin
identical synchronizatiorflS) of identical systems, and by ~ This paper is then arranged as follows. In Sec. II, the
Rosenblum, Pikovsky, and Kurtfig] on phase synchroniza- Phenomenology of amplitude envelope synchronization is
tion (PS of nonidentical systems. PS and IS have also beeRresented, in Sec. lll the dynamic mechanism that causes
studied in unidirectionally coupled chaotic systei@gl], and  AES is discussed, in Sec. IV the manifestation of AES com-
PS has been studied in periodically driven chaotic systemBined with PS is demonstrated, and finally, Sec. V is devoted
[5]. PS has been an object of great attention in the last yeartQ discussion and summary.
in particular, regarding its application to the synchronization
of biological rhythms(see, for example, Ref§6,7] and ref- Il. AMPLITUDE ENVELOPE SYNCHRONIZATION

erences therejnIn most cases this form of synchronization o -
means the locking of the frequencies of some oscillating The system studied is a set of two diffusively coupled Van

variables of the coupled oscillators while the signal ampli-dér Pol-Duffing oscillators, labeled 1 and 2, whose equa-

tudes remain uncorrelated. tions of motion, written in dimensionless form, g&j
The present paper reports on a numerical study of the )
dynamics of two different diffusively coupled Van der Pol— X10= — 10(Xxi2— 0.35; Y12,

Duffing oscillators[8]. This is interesting because this sys-

tem exhibits a form of synchronization in which, as the cou- . P

pling strength increases, a new frequency is forced into the Y12=X127 Y127 Z12F E(yz,l_ Y1,2),

spectrum of the two oscillators, which is responsible for long

time variations in the amplitude envelopes of the time evo- )

lutions of the system variables. These long term amplitude 23 = B1 Y12

variations are correlated because the peaks corresponding to

the new frequencies occur at the same value, and developith 8; and 3, representing parameters of the system and
simultaneously in the two oscillators with the coupling @ measure of the coupling strength. To study the synchroni-
strength. This synchronization behavior will be called ampli-zation of the two coupled chaotic oscillators as a function of
tude envelope synchronizatioAES). The Van der Pol- &, the parameter values have been fixe@Bin-610 andg,
Duffing oscillators studied here happen to be special in the=650, which fore =0 correspond to two oscillators evolv-
sense that AES is the only synchronization behavior that isng in different chaotic attractors such that their dynamics is
observed. In other systems, such as the Rossler mi@flel a coherent rotation around a unique centes]. Moreover,
AES has been found so weak that it is screened by PS; whiléhe structural stability of the results obtained has been suc-
there are systems such as the circuit of Chua and co-workeressfully tested by additional studies performed By
[10], and the Proto-Lorenz systefl], in which both AES =600 andB,= 620, and for3; =600 andB,= 680.
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Previous reports on the dynamic behavior of two Rossler 25.5
models mutually{2] and unidirectionally couplef4] and a
Rossler model periodically driveft], reveal the develop- 25.0—
ment of PS as the intensity of the coupling increases. In these
investigations, PS is characterized by means of an average & 24.5
frequency for each chaotic oscillator that can be defined as
Q4 ,=2m/(T(s19), (T(s12)) being the average value of the 2401 ]
return times for a given signal of the systemmigy(t) [i.e., the

times elapsed between successive maxima, gft) |, or in 23'2 ' I ' I ' I '
other equivalent forms appropriate to characterize the evolu- ' — T )]
tion of the phasep of the rotation around the center of the 12 —
attractor by means of the conditidd=(d¢/dt) [5]. PS is - .
seen as the fulfilling of the conditionQ,—nQ,=0, with m 0.0 v

andn integers, when the coupling reaches a certain critical
value. Moreover, PS is signaled in the Lyapunov spectrum by
a null exponent becoming negative, corresponding to the sta-
bility of the locking of these frequencies.

Two coupled Van der Pol-Duffing oscillators behave in a
quite different way as illustrated in Fig. 1. The increase in
leaves almost unaltered the values of the frequeri¢ias
1(a)] that undergo changes of about 2% while its difference
stays roughly between 0.6 and 0.7. The Lyapunov spectrum,
whose four largest exponents are shown in F{g),lis of the
type (+,+,0,0~,—) for e=0, and becomes of the type
(+,+,0,—,—,—) apparently in the same way as in the PS
described in previous studid®,4—6. However, a closer
look at the inset suggests that the fourth Lyapunov exponent,
which is one of two null exponents of the uncoupled sys-
tems, is negative, although very small in absolute value for
any e=0. So in this case we do not have the PS, described FIG. 1. Dynamic behavior of two coupled Van der Pol-Duffing
by the conditionAQ=|Q,—Q;|=0 and observed in Refs. oscillators as the coupling strength increades.Frequencieq);
[2,4,5,7, nor a resonance witin and n small integers as (thick line) and (, (thin line) and their difference AQ)
those reported in Ref5] with m,n<2 and in Ref[6] where ~ =[Q2—Q4], displayed in the inseth) the four largest Lyapunov
m,n<5; however, the Lyapunov spectrum suggests the de@xponents(the inset displays a detail of the third and fourth
velopment of some type of locking between the two systema.Y2PunoV exponents for small values &f; and (c) plots of the
which develops froms=0. Spearman correlation coefficients , (thick line), r, , (thin line),

andr (dotted ling. The inset shows the dependencesofor the

To characterize this Synchrolnlzatlor), the dynamics of th"?‘nutually false nearest neighbor parameter computed from a sample
two coupled Van der Pol-Duffing oscillators has been anapt sjze N=20000, obtained after running the system for 30 000

lyzed in appropriate Poincasections. From time evolutions  time steps to avoid transitories. All quantities plotted are dimension-
of z, /(t), large enough to have a reliable description of thejess.

dynamics, the times of occurrence of relative maximja

and 79), and the values of the corresponding maxizid

and z{), are recorded for i=12,...N; and ] 2004+ 49y 4 204100 0

=1,2,... N,. The results are two discrete functiofg( ) g1t 2 t 2z L

and Z,(7), with values defined at=7{") and r=17Y). For ' (D — 7Dy
the coupled Van der Pol-Duffing oscillators studied here, a

correlation betweerZ,(7) and Z,(7) develops ase in-

creases, which has been called here AES. This is a form ofith i given by the conditionr;(i)<7,(k)<r(i+1) and
synchronization between the maxima achievedzffy) and ke Ay, with

Z,(t), but not between the times of occurrence of these

maxima nor between the signals themselves. AES can be )

measured by means of correlation coefficients andr , Az1={jli=1,2,... N, and "{M<sP< T(lNl)}.
properly defined to take into account tha{(7) and Z,(7)

are given at different times, and that the two signals we look

for correlations to have different shapes. Givg(7) and  Then, the correlation oZ,(7) to Z,(7) is quantified by the
Z,(7), the surrogate oZ,(7) relative toZ,(7) is defined as Spearman rank-order correlation coefficidi#] between
the ordered set of points S;(k) andZ,(k) and is given by
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ot and {8 being the ranks o8{ andz{" in the corre- NGl e e e
sponding sets of values defined I8{’ and z{ with j o e | =012
e A,,, ando; and{, their average values. The correlation o T T
coefficientr, ,, can be defined in the same way, and will 30 [© A ., 5% o o, |
provide the same information &g ;. Nk : » 'Y I 3NN
These correlation coefficients are displayed in Fifg) 1 SR VIV % % % 620,743
together with the Spearman rank-order correlation coefficient lglb—— L L b L
. : 0 9 18 27 36 45
r for z;(t) and z,(t), which does not require the use of
surrogate data. This last correlation shows thgt) and t

Z,(t) can be considered only as very weakly correlated sig-
nals. The behavior of,; andr, , is quite different: it dis-
plays an increasing correlation betwegp(7) and Z,(7)
with coefficientsr, ;~r; ;>0.2 for ¢>0.32, andr,~r;,
=1 for £=0.8. The main features of the dependence f Besides PS, there is another form of synchronization be-
andr, ;on & are in correspondence with the dynamic event§,yeen nonidentical systems named generalized synchroniza-
displayed by the Lyapunov spectrum. The qualitative behavio, (Gg) [15]. This has been mainly studied in the context of
ior of r; andr, ; appears to be mainly the result of & com- gjrectionally coupled chaotic systems; i.e., when a drive sys-

petition between\, whose increase in absolute value rein-em acts on a response system. GS is defined as the existence
forces the stab|I_|ty .of the sy_nchronlzanon, and the positiveys 4 synchronization condition of the typa(t)=&[rp(1)],
exponents that indicate a high degree of chaos and then g, 41 .1 representing a functional relation that determines
X ; : | , hee phase space trajectory of the respongg) from the
correlation when there is an increase f| combined with 8 aiectory of the driverp(t). When the transition to GS oc-
decrease of the positive exponents. To be more specmp, th&irs the maximum conditional Lyapunov exponent changes
following features are stressed. Fo=0.15, the system is i gign from positive to negative. Because AES experiences
hyperchaotic, having two decreasing positive Lyapunov exjis major growth after a positive exponent has become nega-
ponents, whilex, shows very small increase in absolute tive, one might ask if AES is a special form of GS that
value (—0.02<A4<0), so they show no noticeable correla- oeeyrs in mutually coupled chaotic oscillators, verifying the
tion. For 0.15<¢=<0.22, the fo_u_rth exponent starts to be no- conditionr(t) = [ r,(t)], with ¢[ - ] representing an invert-
ticeable, but one of the positive exponenis) stops de- iple relation, and; t) the trajectories of the systems that
creasing, and the correlation is still unnoticeable. For 0.2 mutually coupléd. However, just a zero crossing of one
<&#=0.36); and\, decrease, with\, changing sign and nsitive Lyapunov exponent is not enough to assess that
leaving the system chaotic, whili,| increases notoriously; there is GS; for example, such an event in the Lyapunov
then, it is in this region where the correlation is greatly €N-spectra has been reported in REf6] as a signal for a tran-
hanced. For 0.38£<0.50, \; increases(i.e., the system sjtion from PS to lag synchronizatiga form of synchronism
becomes more c_haollcwh_lle N4l stead_|ly decre_ases, and that may develop on phase synchronized systémed).
lation is obtained for 0.50£=<0.80, whenh, decreases t0 petween two three-dimensional systems mutually coupled
zero whileh 4 is almost stationary. with just one positive exponefiL2]. Therefore, to study the
The nature of the above correlation in the peak-to-pealpossibility of GS, a standard test has been done by comput-
dynamics between the two coupled Van der Pol—Duffing 0Sing the mutually false nearest neighbor paramgté&i as a
cillators can be visualized by looking directly to plots of fynction ofe. Given the vectors of phase space variables of

lzl_,z(r) at different values o¢ as illustrated in Fig. 2._There the two oscillatorsy 1 #(t) =[X1 {ti), Y1 A1), 21 At)] with
it is seen how the two functions follow a synchronized os-k=12 . . N, this parameter is computed by means of

cillation of the same frequency which is disrupted by bursts
that momentarily destroy the synchronization. This correla- N (D) 12
tion, that does not exist far=0, results almost unnoticeable ﬂ:i Ira(t) = rati I [raltio =ra(t)l
at £=0.12, and well developed at=0.74. For the system N GZL [ra(t) = ra(t)] [ra(te) —ra(t)]
variablesz, (t), this means a synchronized modulation of

their amplitudes, but because there is no locking betviegn where t(kl‘z) is the time label of the nearest neighbor of
and Q, the amplitudes themselves are not correlated and 5(t), and|-| the Cartesian distance. If there is GSis a
z4(t) andz,(t) evolve almost independently from each other.number close to 1; if not, it is a large number whose magni-
This is why the name AES was given. tude is comparable to the product of the size of the attractors

FIG. 2. Time evolution of the returng,;(7) (filled circles and
Z,(7) (open circlegat increasing values af. All quantities plotted
are dimensionless.
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10 FIG. 3. Power spectral densi-

AL A A ties forz,(t) (thick line) andzy(t)
10" —® &=0.12 (thin line) at several values of the

P(w)

10°F — coupling strength, displayed in
10° different regions ofw: in the first
M column there are shown all rel-

10~ ] evant frequencies, in the second
10 RERETRERE FRET SR the region around the main
maxima, and in the third the very
small frequencies. All quantities
plotted are dimensionless.
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divided by the product of the distances between nearesbw). Moreover, the most relevant features of the power
neighbors in the time series, x(ty). Because this is a statis- spectra are summarized in Fig. 4. The power spectra of the
tical test of local neighborliness between two time series, it isincoupled oscillatordFigs. 3a)—3(c)] have well-defined

still valid for the case of mutual coupling. The results for ~ main frequencies a{™ and o™ and secondary sharp
displayed in the inset of Fig.(@) show that although being a peaks at their harmonicse™ and 208 . The effect of
decreasing function of, it stays always several orders of mild coupling[Figs. 3d) and 3e) and 4a)] in each system is
magnitude far from 1, and never more than one order ofo enhance the movements with frequencies corresponding to
magnitude from the product of the sizes of the attractors

divided by the product of the distances between nearest 0.78
neighbors; therefore, GS has to be discarded. In fact, these
results are consistent with those for the Spearman rank-order

correlation coefficient betweem,(t) and z,(t), shown in s 072

Fig. 1(c), which, despite having a mild increase wih in- g

dicate practically no correlation between the time evolutions @8
0.66

of these signals. The proper interpretation of the behavior of
the Lyapunov spectrum here is that the fourth Lyapunov ex-

io 23.5

ponent is the one measuring AES. The decrdasel zero 0.60 , | 0, 04 08 ]
crossings of the positive exponents in this case just reveals a 107 - : | : | : |
destruction of chaos as a result of the variatiore pfvhich E () 0oR&
being a parameter of the six-dimensional system may change o 000° °O|:||:|D
the chaoticity of its dynamics, as other parameters do. ~0F 88983 “‘nﬂ

3 o DDDDDD

E o oo m)

I1l. DYNAMIC MECHANISM FOR AES 10°F EEMMAGQS
O
AES can be understood by means of the analysis of the ?300000000

one-sided power spectral densjti4] of z; t), 10'60 : 0'2 : 0'.4 : 0'6 os

o 2
Pl,z(w)=2‘ f Zlvz(t)elwtdt
0 FIG. 4. Main features of the power spectrazft) (squarep

and z,(t) (circles as functions of the coupling strengtfa) The
which has been computed and analyzed at 41 values of frequencies of the first peaks(®) together with Aw™ = wiM

between 0 and 0.8. Some of the resultsfar(w) are dis-  — 4, (triangles, with (") the frequencies of the main peaks
played in Fig. 3 for values oé corresponding to: no syn- displayed in the inset, andb) the height of the first peaks
chronization at all(first row), very mild synchronization P, ((®), as well as its geometric mean;, (triangles. All quan-
(second row, and well-developed synchronizatiofthird tities plotted are dimensionless.
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the main frequencies of the other system, that is, when the 10* e
coupling is switched on, the maxima occurringa#") and , | @
o™ create new secondary peaksgt= 09" for subsystem 107~ | N
1 andwj={™ for subsystem 2. Moreover, the harmonics ok ' _

of the series to whichv; and w; belong are also excited; |
then, beingo{™>w{™ , it happens that a new frequency |

' 5 107 G 0285 |
appears ab{¥'< oM — 0™ =A™ for subsystem TFig. g 4 /\,\,_‘_,,V NaY Q=27.0_|
3(f)]. As the coupling continues to increase, this frequency 1014 Nt Q=25.5
induces a new peak in subsystemu) = w{?). For further 106 "y 0240 ]
increase of the couplinfFigs. 3g)—3(i) and 4b)] this new Q:j:g
common frequency that becomes the fundamental frequency 10° Q=195 ]
of each spectrum, is enhanced in the two systems, this being vl il il
the cause for the development of AES. The behavior of the 10* e
geometric mean of the heights of the first peaks s (b
=P () P,(»?), deserves to be noted: this quantity is 107~ 7]
a combined measure of how developed are the peaks that 0 |

. 10
correspond taw{? and 0, so that its dependence an 3
should be in accordance with that of thg; andr,,, and &0t acos 1
with the Lyapunov spectrum described above. The compari- “ A=0.05
son of Figs. Ic) and 4b) illustrates that this is indeed the 10 A=0.005 |
case. 0 A=0.0005

The development of new frequencies in the dynamics of o b b b b 1w
the oscillators is the key to understand AES. The dynamic 00 100200 300 400 500 600
mechanism for the appearance of new frequencies that ap- ®
plies here has been studied recently by Pikovsksl. [5]. . .
Basically, it happens that if an external periodic forcing, with  FIG- 5. Effect of a single5 peak of frequency) and amplitude
a frequency() acts on a chaotic system, it results in a modi-* forced on the dynamics of the Van der Pol-Duffing oscillatar.
fication of its dynamics whose primary manifestation is the\cion of & for small amplitude £=0.01). The frequencieindi-
growth of new discrete components in the power spectra a%ated n the f|gur)etake values1=19.5210. .. 28,5, and the
frequencies that includ®. This mechanism is illustrated in respective functionsP(w) have been rescaled by factors

. R . : . 10781072, ... ,10, for the clarity of the figure. The spectrum for
Fig. 5 for a Van der Pol-Duffing oscillator driven by a peri-

! . i the free oscillator appears as a thick lifle). Effect of A, for fixed
odic force of amplitudeA and frequency) as follows: frequency =21.0) with the plots rescaled by factors

10, ... ,10 for the amplitudesA=0.005 . . .,0.5 indicated in the

x=—100x3—0.35—Y), figure.
y:x—y—z+A sin(Qt), tors, with the sharper peaks of each spectra playing the role
of & peaks applied to the other system. However, in this case
z=610y. we have several peaks that are not peri@dtinctions, and

there is feedback, so we are faced with a more complex
For A fixed at a small value, and several values(®f scenario.
given around the dominant spectral peak, Fi@) Shows as The dynamic behavior presented here for a Van der Pol—
a first effect of the forcing the appearance of a new peak auffing oscillator, with a parameter mismatch of about 6%
Q. Moreover, the system being highly coherent with a domi-appears very different than that reported in Rjed] for
nant frequencyw™), it happens that now the distance be- Rossler oscillators, under a parameter mismatch of 3%, de-

tween consecutive peaks happens tgbe- )| so that a  SpPite the two systems having a proper rotation structure.

new series of harmonics develop that has its first peak ddowever, the two behaviors are not so different when studied

|Q— w™)|. This is the dynamic mechanism behind AES. Onin Fourier space as demonstrated in Fig. 6 where the process
the other hand, results for fix€d andA changing over four Of phase synchronization is shown for precisely the same

orders of magnitude are displayed in Figbl For very mild ~ case studied in Ref2], i.e.,

interaction the spectra is practically unchanged. A mild inter-

action results in the scenario that has been described in Fig. X127~ ®1Y12~ 212 C(X2 17 X1 2),
5(a). The dynamic mechanisms for PS are observed after )

further increases in the interaction. For a moderate intensity Y12=w1 X1 ,+0.15/ 5,

of the coupling, there is an increase in the number of har-

monics that are noticeable, the main peak widens and the '21‘220.2+ Z1 A X1 ,— 10),

background noise nean=0 increases. For still stronger
coupling, () becomes the dominant spectral peak. Thesevith w;,=1+0.015 andC the coupling strength. In Fig. 6
mechanisms have to work for two coupled chaotic oscillathere appears numerical results fw) and the Lyapunov
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TP L B T B BRI each other. Therefore, the Fourier space observation of the
S At (a) _| R .

107 [~ 2,=-0.00003 dynamics of the two types of oscillators reveals the same
3 107+ p - underlying mechanism operating in different forms because
& 107 of the different properties of each system. In particular, the

107} fact that chaos is destroyed faster in the coupled Van der

e e Pol—Duffing oscillators than that in the coupled Rossler sys-

0 kigggggi ! ! by _| tems is essential for the manifestation of AES in the firs_,t
sl case, and for its screening in the second. The fast destruction
§ 10,3 of chaos in the coupled Van der Pol-Duffing oscillattas

10}4 £=0.8 there are no positive Lyapunov expongnsswhat

105 prevented the development of R&8nd possibly, for even

10° stronger coupling, lag synchronizatjoim this case.

10" From the above results it follows that, because different
3 10° nonlinear systems, even being coherent, have different spec-
& 0 tral structures(as well as other propertigsand because

10 changes in the parameters of different systems may have

10° different effects on the resulting attractors, the particular dy-

¥ namic behaviors to be observed in systems of two coupled

10_2 nonlinear oscillators may have some diversity. This will be
2 103 illustrated further in the following section by means of the
Rl study of two different systems showing all PS and AES in

10: v . different degrees.

1000 0.6 12 1.8 2.4

o IV. AES AND PS COMBINED

A system for which AES has been observed combined
Qith PS is the circuit of Chua and co-workefs0]. The
equations modeling the system of coupled oscillators, written
in dimensionless form, are

FIG. 6. Fourier space study of the phase synchronization of twi
coupled Rossler systems witw;=0.985 (thin line) and w-,
=1.015(thick line) for increasing coupling strengtke) C=0.010,

(b) C=0.020,(c) C=0.026, andd) C=0.030. The corresponding
numerical results obtained for the thigdull) and fourth Lyapunov
exponents have been included in this figure. )-(112: al,z[)’l,z— F(lez)],
exponents computed here for the transition to PS, that occurs
at C~0.028, as shown in Fig. 3 of Rd2]. In this case, the
chaotic spectral densities present two main differences with
the Van der Pol-Duffing oscillator: for one side the structure
of harmonics is stronger here, with secondary peaks of al-
most the same height as the main peak of each series; more-
over, the background noise between peaks is also more struc-
tured. However, for mild couplin§Figs. §a) and &b)] one  where F(x; ) =aj X; 2+ by A|Xg o+ 1| —[X; ,—1|). For the
observes essentially the same type of structures as in Figs.r@imerical study presented here the parameter values used
and Fa): excitation of new peaks around the dominant peakdave been a,=8.65, B,=14.29, a;=0.28, and b;=

of the spectra and its harmonics as well as in the neighbor=0.210 for circuit 1, andx,=8.10, 8,=14.87,a,=0.32,

hood of w=0. Together with the observation of a fourth andb,=—0.295 for circuit 2. These parameters correspond
Lyapunov exponent which, although very small in absoluteto particular circuits studied experimentally[ib0] and[17],
value, is the first negative exponent of the spectrum andespectively; except fow, ,, which has been changed to
these are the signals of AES. In this case, these are hardhave two disjoint chaotic attractors where the main motion
noticeable because there are two positive Lyapunov expdor each oscillator is a rotation around a single center, instead
nents[2] (we are here in the same scenario described abovef a double scroll. The variables (t) have also been used

for two coupled Van der Pol-Duffing oscillators when as observables in this case and only the attractors for which
<0.22). The development of PS, &sincreasegFigs. Gb) 7, /(t) is mostly negative have been considered.

and Gc)] occurs by a combination of the broadening of the  The results forQ); (&) and for the Lyapunov spectrum
peaks with the increase in the number of induced peaksy;(e), displayed in Figs. (& and {b), show that two differ-
which results in the shift of the main peak of each spectrument regimes develop successively as the coupling strength
(and its harmonigsto match the corresponding peak of the increases, before chaos is destroyed. For very weak coupling
other[Fig. 6(d)]. This scenario bears great resemblance withstrength (6<e=<0.190) we have Regime | in which the
that shown in Fig. &) for driving intensities moderate and phase frequencie$),, remain close to those of the un-
up, this being the main difference that in this case there is @aoupled circuitup to 2% while the fourth Lyapunov expo-
feedback between the two systems, which lets them lock taent, which was null at =0, becomes negative and in-

) €
Y1,2= X107 Y12 Z ot 5 (Y21=Y1,2),

21 = = B1 Y12,
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FIG. 7. Dynamic behavior of two coupled Chua circuits as dis-
played by(a) the phase frequencie€d; (thick line) and Q, (thin
line), (b) the four largest Lyapunov exponents, afw the Spear-
man correlation coefficients between the envelapgs(thick line)
and between the signaits(thin line). All quantities plotted are di-
mensionless.

FIG. 8. Power spectral densities for two weakly coupled Chua
circuits within Regime Il. The thick line is for subsystem 1 and the
thin line for subsystem 2. The insets show in more detail the re-
gions of frequencies around those of the motion of the phase. The
first plot, for the uncoupled systems, is given for reference. All
guantities plotted are dimensionless.

creases steadily in absolute value for practically any value °§ity of z; At). The development of new peaks at frequencies
e>0. The system stays chaotic having at least one positivgyoyndew (%)~ 0.01 (while the main peak frequencies govern-
Lyapunov exponent. For weak coupling (0.58=<0.303) ing the dynamics of the phase are closewt%)wS.O) has
Regime Il develops with a fast drift d2,, which changes its O?een observed. This is shown in Fig. 8 that illustrates the

value by more than 10% leading to a regular phenomenon ombined development of AES and PS in Regime Il as the
phase synchronization at a frequen€y,=0,~3.02. A

faster increase df\,| is observed in Regime I, the system

being chaotic with one positive Lyapunov exponent. Nearly 10°F  £=0315 @)

after PS has been reached all exponents become nonpositive | |

at £=0.308, being two of them null; i.e., the resulting non- Esi 104

chaotic motion is quasiperiodic. 10 N
It is to be noted that the indication, given by <0 in 10° |

Regime |, of the development of some locking between the e AR : I —_— e

two systems before the onset of PS. The results of the calcu- 10" ¢=0.350 (b) 7
lation of the Spearman rank-order correlation coefficient
r,i(e), displayed in Fig. ), show how this correlation
develops within Regime | reaching its maximum values
arounde~0.18. The correlation decays at the beginning of
Regime I, to experience a new enhancement when the cou-
pling strength increases from~0.22, when AES and PS
develop combined. The correlation coefficient between the
signals themselves(z), is small until PS is reached; then, it FiG. 9. Power spectra of two coupled Chua circuits at values of
increases notoriously indicating an important degree of corthe coupling strength where the motion is not chaoti: quasi-
relation between the two systems. periodic motion andb) periodic motion. The thick line is for sub-

The behavior described above has also been analyzed #ystem 1 and the thin line for subsystem 2. All quantities plotted
terms of the evolution of the one-sided power spectral denare dimensionless.
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FIG. 10. Dynamic behavior of two coupled Proto-Lorenz sys- b L b b
tems as displayed bfg) the phase frequencigd; (thick line) and 0 10 20 30 40 50

Q, (thin line), (b) the four largest Lyapunov exponents, duofithe
Spearman correlation coefficients between the envelopgeghick

line) and between the signalgthin line). All quantities plotted are
dimensionless. FIG. 11. Power spectra of two coupled Proto-Lorenz systems for

(@) e=0 and(b) e=2.4. The thick line is for subsystem 1 and the
thin line for subsystem 2. Samples of time evolution, at the same
enhancement of the new peakseg? that give rise to AES, coupling strength, of the signals) z,(t) and(d) z,(t). All quanti-
while the structure of the spectra aroun” rearrange to ties plotted are dimensionless.
display the same pattern, giving rise to PS. The correspond-
ing plot for Regime | is not displayed because it is not quali-appropriate coverings, described in Refl], one can con-
tatively distinct from that in Fig. 3 for the Van der Pol- struct symmetricn-looped attractors from it, the 2-looped
Duffing oscillator. After Regime 1l, chaos has been attractor being the well known Lorenz modé&B]. The equa-
suppressed, but the new peaks associated to AES combin&dns of motion for two coupled Proto-Lorenz systems stud-
with the main peaks that dominate PS do persist giving aed here are
synchronized quasiperiodic motion as illustrated in Figy.9

Further increase in was found to make the systems periodic X127 = 11Xy 5+ (10— 9)y1 2+ 9Ny o+ Y1 275 5,

(around £~0.326) as the peaks ab{”)=w{” vanish [a _

sample of the corresponding spectra appear in Rig)]9 Y1,2= = (10=Tr1 )Xy 2= 11y3 5+ (10+ 11 2)N1 5
This set of results shows that Regime | is dominated by .

AES and it is essentially the same as that described above for — (Xy ot N1,2)21,2+§(Y2,1_ Y12,

the Van der Pol-Duffing oscillator. This synchronized behav-

ior nearly fades out at the transition to Regime II. Within that

regime it turns to develop again, simultaneously with PS, so 5 :} _ §z

that the amplitude envelopes and phases of the two signals 127 3Y12" 342,

become correlated at the same time leading to a state of

enhanced synchronism. This combination of AES and PSvhere N=x?+y?. As before,¢ measures the coupling

does not persist any longer asincreases in the periodic strength. The system parametehas been given valuasg

regime. =36 andr,=60, the two uncoupled systems being chaotic
Other chaotic oscillators for which we can observe AESand different at these parameters.

and PS combined is the Proto-Lorenz system. This is a math- A study similar to those shown above, including the cal-

ematical model introduced by Miranda and Stddé]. Its  culation of Q; (€) andr,i(e) from z; /(t), as well as the

chaotic attractor has the structure of a single loop and byyapunov spectrum;(e), is displayed in Fig. 10. The varia-
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tion of (1, , shows a neat phenomenon of PS(asand (), puzzles, and therefore a relevant element needed for a thor-
tend to a common value 61, ,~12.5. This transition occurs ough understanding of the synchronization phenomena.
at e~2.1. However, the Lyapunov spectrum displays a The Van der Pol-Duffing oscillator and the Rossler sys-
fourth exponent becoming negative well before PS istem studied here and in Rd®2], respectively, appear as two
reached. This is understood if one looks at the behavior oéxtreme cases in which only one of the two forms of syn-
r,1, which shows a development of AES, which fer  chronization is easily noticeable. When observed in Fourier
=<1.5 is mild but increases very fast fei= 1.5. At the same space, the dynamic mechanism for AES happens to be the
time the frequency differenc€,—Q,; gradually tends to mutual excitation of new frequencidwith its harmonicy
zero giving rise to PS. The main differences with the circuitwhile the mechanism for PS is the rearrangement of the
of Chua is that in this case, only Regime Il is observablepower spectra structures around the dominant frequencies.
chaos is not destroyed shortly after PS has been reached, aAd these mechanisms are simple and appear quite general,
the synchronization states with PS and AES combined arene has to expect a certain degree of variety on the dynamics
persistent well above the transition to PS. Moreover, the corto be obtained from two coupled chaotic oscillators. In par-
relation between the two signals, becomes important for ticular, both AES and PS may appear combined in many
£=2.2. All this indicates an important degree of correlationsystems as shown here by means of the example of two
between the two time series(t) andz,(t), once the two coupled Chua circuits, and of two coupled Proto-Lorenz sys-
forms of synchronization have been developed. tems. Even in this case the phenomenology observed has
An example of the highly correlated states resulting fromfound to bear some diversity, including the early develop-
AES and PS combined is shown in Fig. 11 by means of thenent of AES without PS, the development of PS and AES
plot of Py {w) and z; t) at e=2.4, which is above the simultaneously, as well as differences in the persistence of
onset of PS. The power specfiféigs. 11a) and 11b)] show the combined highly synchronized state achieved in this last
how new broad peaks have appeared at very small frequegase.
cies of 0{%)~1.5, while the dominant peaks have become In summary, the dynamics of two different Van der Pol-
broader and are locked af')~12.5. The plots for the evo- Duffing oscillators mutually coupled shows that, as a result
lution of the system variableg, A1), given in Figs. 1tc)  ©f the coupling, a new common frequency that is located
and 11d) show the synchronization of the phase combined/ell below the frequencies of the phase rotations around the
with the synchronization of the envelopes of the amplitudeC€Nters of the attractors is induced in the two coupled oscil-

for two signals that otherwise are different and chaotic. lators. The increase of the coupling results in a feedback
process between the two systems that develops and enhances

this new common frequency, giving rise to the form of syn-
chronization named AES in this paper to emphasize that it
The manifestation of AES is somehow subtle; therefore, ittoncerns to the envelope of the amplitude of the main oscil-
might pass unnoticed unless attention is paid to thdation rather than to its frequency. Because this phenomenol-
Lyapunov exponents, and to the peak-to-peak dynapii@gs ogy is so neatly displayed by the Van der Pol-Duffing oscil-
of the systems. Moreover, as it develops steadily from lator, the study presented in Secs. Il and Ill happens to be a
=0, it might be extremely weak in the particular parameterparadigmatic example of a synchronization behavior that, be-
region studied. Furthermore, it happens that the developmeggause of its own nature should be present in other systems,
of AES is compatible with PS in the sense that once the newvalthough possibly mixed with or hidden by other forms of
frequencie&u(loz) have developed, the dominant frequenciessynchronization. This has been shown indeed to be the case
in the power épectra of each system may rearrange so thBY means of the study of the model of Rossler, the circuit of
0, andQ, move to the get locked in a way similar to that Chua, and the Proto-Lorenz system. At a speculative level,
described above for two mutually coupled Rossler oscillator&ne might think that AES may be useful in scientific and
(and by Parlitzet al. [4] for a driven Rossler systemThis  technical applications, and anyway, it is an effect to be con-
shows that, if the focus is on PS, and AES is disregarded, igidered when chaotic oscillators are coupled to each other.
some cases one may be faced with a puzzle in which a
Lyapyr_mv exponent becpmes r_1egative before PS occurs. In ACKNOWLEDGMENT
fact, it is possible to find in the literature on PS statements of
concern about the applicability of the Lyapunov exponents to  This research has been supported by DGI through Project
study P95,12]. AES may be the piece needed to solve theséNo. BFM2000-0606.
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