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Amplitude envelope synchronization in coupled chaotic oscillators
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A peculiar type of synchronization has been found when two Van der Pol–Duffing oscillators, evolving in
different chaotic attractors, are coupled. As the coupling increases, the frequencies of the two oscillators remain
different, while a synchronized modulation of the amplitudes of a signal of each system develops, and a null
Lyapunov exponent of the uncoupled systems becomes negative and gradually larger in absolute value. This
phenomenon is characterized by an appropriate correlation function between the returns of the signals, and
interpreted in terms of the mutual excitation of new frequencies in the oscillators power spectra. This form of
synchronization also occurs in other systems, but it shows up mixed with or screened by other forms of
synchronization, as illustrated in this paper by means of the examples of the dynamic behavior observed for
three other different models of chaotic oscillators.
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I. INTRODUCTION

The dynamics of two coupled, chaotic oscillators is
issue of great interest in science and engineering where
often deals with two or more nonlinear units~e.g., lasers,
electric circuits, and neurons! that are mutually coupled
Likewise, it is interesting for application to the understan
ing of cooperative behaviors of networks of chaotic syste
Fundamental results are the reports on two mutually coup
chaotic oscillators given by Fujisaka and Yamada@1# on
identical synchronization~IS! of identical systems, and b
Rosenblum, Pikovsky, and Kurths@2# on phase synchroniza
tion ~PS! of nonidentical systems. PS and IS have also b
studied in unidirectionally coupled chaotic systems@3,4#, and
PS has been studied in periodically driven chaotic syste
@5#. PS has been an object of great attention in the last ye
in particular, regarding its application to the synchronizat
of biological rhythms~see, for example, Refs.@6,7# and ref-
erences therein!. In most cases this form of synchronizatio
means the locking of the frequencies of some oscillat
variables of the coupled oscillators while the signal amp
tudes remain uncorrelated.

The present paper reports on a numerical study of
dynamics of two different diffusively coupled Van der Po
Duffing oscillators@8#. This is interesting because this sy
tem exhibits a form of synchronization in which, as the co
pling strength increases, a new frequency is forced into
spectrum of the two oscillators, which is responsible for lo
time variations in the amplitude envelopes of the time e
lutions of the system variables. These long term amplitu
variations are correlated because the peaks correspondi
the new frequencies occur at the same value, and dev
simultaneously in the two oscillators with the couplin
strength. This synchronization behavior will be called amp
tude envelope synchronization~AES!. The Van der Pol–
Duffing oscillators studied here happen to be special in
sense that AES is the only synchronization behavior tha
observed. In other systems, such as the Rossler mode@9#,
AES has been found so weak that it is screened by PS; w
there are systems such as the circuit of Chua and co-wor
@10#, and the Proto-Lorenz system@11#, in which both AES
1063-651X/2002/65~3!/036232~10!/$20.00 65 0362
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and PS have been observed combined. The developme
AES starts at very small coupling strengths; moreover, i
signaled by a null Lyapunov exponent of the uncoupled s
tems becoming negative, as it occurs with PS. Becaus
this, besides its interest as a special form of synchronizat
the development of AES, combined with PS, appears a
good candidate to explain certain disagreements between
coupling strengths at which the Lyapunov exponent becom
null and at which the onset of PS occurs; which can be fou
in the literature~see@5,12# and references therein!.

This paper is then arranged as follows. In Sec. II, t
phenomenology of amplitude envelope synchronization
presented, in Sec. III the dynamic mechanism that cau
AES is discussed, in Sec. IV the manifestation of AES co
bined with PS is demonstrated, and finally, Sec. V is devo
to discussion and summary.

II. AMPLITUDE ENVELOPE SYNCHRONIZATION

The system studied is a set of two diffusively coupled V
der Pol–Duffing oscillators, labeled 1 and 2, whose eq
tions of motion, written in dimensionless form, are@8#

ẋ1,252100~x1,2
3 20.35x1,22y1,2!,

ẏ1,25x1,22y1,22z1,21
«

2
~y2,12y1,2!,

ż1,25b1,2y1,2,

with b1 andb2 representing parameters of the system an«
a measure of the coupling strength. To study the synchr
zation of the two coupled chaotic oscillators as a function
«, the parameter values have been fixed inb15610 andb2
5650, which for«50 correspond to two oscillators evolv
ing in different chaotic attractors such that their dynamics
a coherent rotation around a unique center@13#. Moreover,
the structural stability of the results obtained has been s
cessfully tested by additional studies performed forb1
5600 andb25620, and forb15600 andb25680.
©2002 The American Physical Society32-1
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Previous reports on the dynamic behavior of two Ross
models mutually@2# and unidirectionally coupled@4# and a
Rossler model periodically driven@5#, reveal the develop-
ment of PS as the intensity of the coupling increases. In th
investigations, PS is characterized by means of an ave
frequency for each chaotic oscillator that can be defined
V1,252p/^T(s1,2)&, ^T(s1,2)& being the average value of th
return times for a given signal of the systems,s1,2(t) @i.e., the
times elapsed between successive maxima ofs1,2(t)#, or in
other equivalent forms appropriate to characterize the ev
tion of the phasef of the rotation around the center of th
attractor by means of the conditionV5^df/dt& @5#. PS is
seen as the fulfilling of the conditionmV22nV150, with m
and n integers, when the coupling reaches a certain crit
value. Moreover, PS is signaled in the Lyapunov spectrum
a null exponent becoming negative, corresponding to the
bility of the locking of these frequencies.

Two coupled Van der Pol–Duffing oscillators behave in
quite different way as illustrated in Fig. 1. The increase in«
leaves almost unaltered the values of the frequencies@Fig.
1~a!# that undergo changes of about 2% while its differen
stays roughly between 0.6 and 0.7. The Lyapunov spectr
whose four largest exponents are shown in Fig. 1~b!, is of the
type (1,1,0,0,2,2) for «50, and becomes of the typ
(1,1,0,2,2,2) apparently in the same way as in the P
described in previous studies@2,4–6#. However, a closer
look at the inset suggests that the fourth Lyapunov expon
which is one of two null exponents of the uncoupled s
tems, is negative, although very small in absolute value
any «*0. So in this case we do not have the PS, descri
by the conditionDV5uV22V1u50 and observed in Refs
@2,4,5,7#, nor a resonance withm and n small integers as
those reported in Ref.@5# with m,n<2 and in Ref.@6# where
m,n<5; however, the Lyapunov spectrum suggests the
velopment of some type of locking between the two syste
which develops from«*0.

To characterize this synchronization, the dynamics of
two coupled Van der Pol–Duffing oscillators has been a
lyzed in appropriate Poincare´ sections. From time evolution
of z1,2(t), large enough to have a reliable description of t
dynamics, the times of occurrence of relative maximat1

( i )

and t2
( j ) , and the values of the corresponding maximaZ1

( i )

and Z2
( j ) , are recorded for i 51,2, . . . ,N1 and j

51,2, . . . ,N2. The results are two discrete functionsZ1(t)
and Z2(t), with values defined att5t1

( i ) and t5t2
( j ) . For

the coupled Van der Pol–Duffing oscillators studied here
correlation betweenZ1(t) and Z2(t) develops as« in-
creases, which has been called here AES. This is a form
synchronization between the maxima achieved byz1(t) and
z2(t), but not between the times of occurrence of the
maxima nor between the signals themselves. AES can
measured by means of correlation coefficientsr 2,1 and r 1,2
properly defined to take into account thatZ1(t) and Z2(t)
are given at different times, and that the two signals we lo
for correlations to have different shapes. GivenZ1(t) and
Z2(t), the surrogate ofZ1(t) relative toZ2(t) is defined as
the ordered set of points
03623
r

se
ge
s

u-

l
y
a-

e
,

t,
-
r
d

e-
s,

e
-

e

a

of

e
be

k

S1
(k)5

Z1
( i )~t1

( i 11)2t2
(k)!1Z1

( i 11)~t2
(k)2t1

( i )!

~t1
( i 11)2t1

( i )!
,

with i given by the conditiont1( i )<t2(k),t1( i 11) and
kPA2,1 with

A2,15$ j u j 51,2, . . . ,N2 and t1
(1)<t2

( j ),t1
(N1)

%.

Then, the correlation ofZ2(t) to Z1(t) is quantified by the
Spearman rank-order correlation coefficient@14# between
S1(k) andZ2(k) and is given by

FIG. 1. Dynamic behavior of two coupled Van der Pol–Duffin
oscillators as the coupling strength increases.~a! FrequenciesV1

~thick line! and V2 ~thin line! and their difference DV
5uV22V1u, displayed in the inset;~b! the four largest Lyapunov
exponents~the inset displays a detail of the third and four
Lyapunov exponents for small values of«); and ~c! plots of the
Spearman correlation coefficientsr 2,1 ~thick line!, r 1,2 ~thin line!,
and r ~dotted line!. The inset shows the dependence of« for the
mutually false nearest neighbor parameter computed from a sa
of size N520 000, obtained after running the system for 30 0
time steps to avoid transitories. All quantities plotted are dimensi
less.
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r 2,15

(
kPA2,1

~s1
(k)2s̄1!~z2

(k)2 z̄2!

A (
kPA2,1

~s1
(k)2s̄1!2A (

kPA2,1

~z2
(k)2 z̄2!2

,

s1
(k) and z2

(k) being the ranks ofS1
(k) and Z2

(k) in the corre-
sponding sets of values defined byS1

( j ) and Z2
( j ) with j

PA2,1, ands̄1 and z̄2 their average values. The correlatio
coefficient r 1,2, can be defined in the same way, and w
provide the same information asr 2,1.

These correlation coefficients are displayed in Fig. 1~c!
together with the Spearman rank-order correlation coeffic
r for z1(t) and z2(t), which does not require the use o
surrogate data. This last correlation shows thatz1(t) and
z2(t) can be considered only as very weakly correlated s
nals. The behavior ofr 2,1 and r 1,2 is quite different: it dis-
plays an increasing correlation betweenZ1(t) and Z2(t)
with coefficientsr 2,1'r 1,2.0.2 for «.0.32, andr 2,1'r 1,2
&1 for «&0.8. The main features of the dependence ofr 2,1
andr 1,2 on « are in correspondence with the dynamic eve
displayed by the Lyapunov spectrum. The qualitative beh
ior of r 2,1 andr 1,2 appears to be mainly the result of a com
petition betweenl4 whose increase in absolute value re
forces the stability of the synchronization, and the posit
exponents that indicate a high degree of chaos and th
destruction of correlations. One observes an increase in
correlation when there is an increase oful4u combined with a
decrease of the positive exponents. To be more specific
following features are stressed. For«<0.15, the system is
hyperchaotic, having two decreasing positive Lyapunov
ponents, whilel4 shows very small increase in absolu
value (20.02,l4,0), so they show no noticeable correl
tion. For 0.15,«<0.22, the fourth exponent starts to be n
ticeable, but one of the positive exponents (l2) stops de-
creasing, and the correlation is still unnoticeable. For 0
,«<0.36,l1 and l2 decrease, withl2 changing sign and
leaving the system chaotic, whileul4u increases notoriously
then, it is in this region where the correlation is greatly e
hanced. For 0.36,«<0.50, l1 increases~i.e., the system
becomes more chaotic!, while ul4u steadily decreases, an
some correlation is lost. Finally, a new increase in the co
lation is obtained for 0.50,«<0.80, whenl1 decreases to
zero whilel4 is almost stationary.

The nature of the above correlation in the peak-to-p
dynamics between the two coupled Van der Pol–Duffing
cillators can be visualized by looking directly to plots
Z1,2(t) at different values of« as illustrated in Fig. 2. There
it is seen how the two functions follow a synchronized o
cillation of the same frequency which is disrupted by bur
that momentarily destroy the synchronization. This corre
tion, that does not exist for«50, results almost unnoticeabl
at «50.12, and well developed at«50.74. For the system
variablesz1,2(t), this means a synchronized modulation
their amplitudes, but because there is no locking betweenV1
and V2 the amplitudes themselves are not correlated
z1(t) andz2(t) evolve almost independently from each oth
This is why the name AES was given.
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Besides PS, there is another form of synchronization
tween nonidentical systems named generalized synchron
tion ~GS! @15#. This has been mainly studied in the context
directionally coupled chaotic systems; i.e., when a drive s
tem acts on a response system. GS is defined as the exis
of a synchronization condition of the typerR(t)5f@rD(t)#,
with f@•# representing a functional relation that determin
the phase space trajectory of the responserR(t) from the
trajectory of the driverD(t). When the transition to GS oc
curs the maximum conditional Lyapunov exponent chan
its sign from positive to negative. Because AES experien
its major growth after a positive exponent has become ne
tive, one might ask if AES is a special form of GS th
occurs in mutually coupled chaotic oscillators, verifying t
conditionr1(t)5f@r2(t)#, with f@•# representing an invert
ible relation, andr1,2(t) the trajectories of the systems th
are mutually coupled. However, just a zero crossing of o
positive Lyapunov exponent is not enough to assess
there is GS; for example, such an event in the Lyapun
spectra has been reported in Ref.@16# as a signal for a tran-
sition from PS to lag synchronization~a form of synchronism
that may develop on phase synchronized systems@16#!.
Moreover, there have been reports on the observation o
between two three-dimensional systems mutually coup
with just one positive exponent@12#. Therefore, to study the
possibility of GS, a standard test has been done by com
ing the mutually false nearest neighbor parameter@15# as a
function of «. Given the vectors of phase space variables
the two oscillators,r1,2(tk)5@x1,2(tk),y1,2(tk),z1,2(tk)# with
k51,2, . . . ,N, this parameter is computed by means of

m5
1

N (
k51

N ur2~ tk!2r2~ tk
(1)!u

ur1~ tk!2r1~ tk
(1)!u

ur1~ tk!2r1~ tk
(2)!u

ur2~ tk!2r2~ tk
(2)!u

,

where tk
(1,2) is the time label of the nearest neighbor

r1,2(tk), andu•u the Cartesian distance. If there is GS,m is a
number close to 1; if not, it is a large number whose mag
tude is comparable to the product of the size of the attrac

FIG. 2. Time evolution of the returnsZ1(t) ~filled circles! and
Z2(t) ~open circles! at increasing values of«. All quantities plotted
are dimensionless.
2-3
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FIG. 3. Power spectral densi
ties forz1(t) ~thick line! andz2(t)
~thin line! at several values of the
coupling strength, displayed in
different regions ofv: in the first
column there are shown all rel
evant frequencies, in the secon
the region around the main
maxima, and in the third the very
small frequencies. All quantities
plotted are dimensionless.
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divided by the product of the distances between nea
neighbors in the time series,r1,2(tk). Because this is a statis
tical test of local neighborliness between two time series,
still valid for the case of mutual coupling. The results form,
displayed in the inset of Fig. 1~c! show that although being
decreasing function of«, it stays always several orders o
magnitude far from 1, and never more than one order
magnitude from the product of the sizes of the attract
divided by the product of the distances between nea
neighbors; therefore, GS has to be discarded. In fact, th
results are consistent with those for the Spearman rank-o
correlation coefficient betweenz1(t) and z2(t), shown in
Fig. 1~c!, which, despite having a mild increase with«, in-
dicate practically no correlation between the time evolutio
of these signals. The proper interpretation of the behavio
the Lyapunov spectrum here is that the fourth Lyapunov
ponent is the one measuring AES. The decrease~and zero
crossings! of the positive exponents in this case just revea
destruction of chaos as a result of the variation of«, which
being a parameter of the six-dimensional system may cha
the chaoticity of its dynamics, as other parameters do.

III. DYNAMIC MECHANISM FOR AES

AES can be understood by means of the analysis of
one-sided power spectral density@14# of z1,2(t),

P1,2~v!52U E
0

`

z1,2~ t !eivtdtU2

,

which has been computed and analyzed at 41 values o«,
between 0 and 0.8. Some of the results forP1,2(v) are dis-
played in Fig. 3 for values of« corresponding to: no syn
chronization at all~first row!, very mild synchronization
~second row!, and well-developed synchronization~third
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row!. Moreover, the most relevant features of the pow
spectra are summarized in Fig. 4. The power spectra of
uncoupled oscillators@Figs. 3~a!–3~c!# have well-defined
main frequencies atv1

(M ) and v2
(M ) and secondary shar

peaks at their harmonics 2v1
(M ) and 2v2

(M ) . The effect of
mild coupling@Figs. 3~d! and 3~e! and 4~a!# in each system is
to enhance the movements with frequencies correspondin

FIG. 4. Main features of the power spectra ofz1(t) ~squares!
and z2(t) ~circles! as functions of the coupling strength.~a! The
frequencies of the first peaksv1,2

(0) together with Dv (M )5v2
(M )

2v1
(M ) ~triangles!, with v1,2

(M ) the frequencies of the main peak
displayed in the inset, and~b! the height of the first peaks
P1,2(v

(0)), as well as its geometric meanmP ~triangles!. All quan-
tities plotted are dimensionless.
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the main frequencies of the other system; that is, when
coupling is switched on, the maxima occurring atv1

(M ) and
v2

(M ) create new secondary peaks atv185v2
(M ) for subsystem

1 andv285v1
(M ) for subsystem 2. Moreover, the harmoni

of the series to whichv18 and v28 belong are also excited
then, beingv2

(M ).v1
(M ) , it happens that a new frequenc

appears atv1
(0)&v2

(M )2v1
(M )5Dv (M ) for subsystem 1@Fig.

3~f!#. As the coupling continues to increase, this frequen
induces a new peak in subsystem 2,v2

(0)5v1
(0). For further

increase of the coupling@Figs. 3~g!–3~i! and 4~b!# this new
common frequency that becomes the fundamental freque
of each spectrum, is enhanced in the two systems, this b
the cause for the development of AES. The behavior of
geometric mean of the heights of the first peaksmP

5AP1(v (0))P2(v (0)), deserves to be noted: this quantity
a combined measure of how developed are the peaks
correspond tov1

(0) and v2
(0) , so that its dependence on«

should be in accordance with that of ther 2,1 and r 1,2, and
with the Lyapunov spectrum described above. The comp
son of Figs. 1~c! and 4~b! illustrates that this is indeed th
case.

The development of new frequencies in the dynamics
the oscillators is the key to understand AES. The dyna
mechanism for the appearance of new frequencies that
plies here has been studied recently by Pikovskyet al. @5#.
Basically, it happens that if an external periodic forcing, w
a frequencyV acts on a chaotic system, it results in a mo
fication of its dynamics whose primary manifestation is t
growth of new discrete components in the power spectr
frequencies that includeV. This mechanism is illustrated in
Fig. 5 for a Van der Pol–Duffing oscillator driven by a pe
odic force of amplitudeA and frequencyV as follows:

ẋ52100~x320.35x2y!,

ẏ5x2y2z1A sin~Vt !,

ż5610y.

For A fixed at a small value, and several values ofV
given around the dominant spectral peak, Fig. 5~a! shows as
a first effect of the forcing the appearance of a new pea
V. Moreover, the system being highly coherent with a dom
nant frequencyv (M ), it happens that now the distance b
tween consecutive peaks happens to beuV2v (M )u so that a
new series of harmonics develop that has its first pea
uV2v (M )u. This is the dynamic mechanism behind AES. O
the other hand, results for fixedV andA changing over four
orders of magnitude are displayed in Fig. 5~b!. For very mild
interaction the spectra is practically unchanged. A mild int
action results in the scenario that has been described in
5~a!. The dynamic mechanisms for PS are observed a
further increases in the interaction. For a moderate inten
of the coupling, there is an increase in the number of h
monics that are noticeable, the main peak widens and
background noise nearv50 increases. For still stronge
coupling, V becomes the dominant spectral peak. Th
mechanisms have to work for two coupled chaotic osci
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tors, with the sharper peaks of each spectra playing the
of d peaks applied to the other system. However, in this c
we have several peaks that are not perfectd functions, and
there is feedback, so we are faced with a more comp
scenario.

The dynamic behavior presented here for a Van der P
Duffing oscillator, with a parameter mismatch of about 6
appears very different than that reported in Ref.@2# for
Rossler oscillators, under a parameter mismatch of 3%,
spite the two systems having a proper rotation structu
However, the two behaviors are not so different when stud
in Fourier space as demonstrated in Fig. 6 where the pro
of phase synchronization is shown for precisely the sa
case studied in Ref.@2#, i.e.,

ẋ1,252v1,2y1,22z1,21C~x2,12x1,2!,

ẏ1,25v1,2x1,210.15y1,2,

ż1,250.21z1,2~x1,2210!,

with v1,25160.015 andC the coupling strength. In Fig. 6
there appears numerical results forP(v) and the Lyapunov

FIG. 5. Effect of a singled peak of frequencyV and amplitude
A forced on the dynamics of the Van der Pol–Duffing oscillator.~a!
Action of V for small amplitude (A50.01). The frequencies~indi-
cated in the figure! take valuesV519.5,21.0, . . . ,28.5, and the
respective functions P(v) have been rescaled by facto
1023,1022, . . . ,103, for the clarity of the figure. The spectrum fo
the free oscillator appears as a thick line.~b! Effect of A, for fixed
frequency (V521.0) with the plots rescaled by factor
100, . . . ,103 for the amplitudesA50.005, . . . ,0.5 indicated in the
figure.
2-5
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exponents computed here for the transition to PS, that oc
at C'0.028, as shown in Fig. 3 of Ref.@2#. In this case, the
chaotic spectral densities present two main differences w
the Van der Pol–Duffing oscillator: for one side the structu
of harmonics is stronger here, with secondary peaks of
most the same height as the main peak of each series; m
over, the background noise between peaks is also more s
tured. However, for mild coupling@Figs. 6~a! and 6~b!# one
observes essentially the same type of structures as in Fi
and 5~a!: excitation of new peaks around the dominant pe
of the spectra and its harmonics as well as in the neigh
hood of v50. Together with the observation of a four
Lyapunov exponent which, although very small in absol
value, is the first negative exponent of the spectrum
these are the signals of AES. In this case, these are ha
noticeable because there are two positive Lyapunov ex
nents@2# ~we are here in the same scenario described ab
for two coupled Van der Pol–Duffing oscillators when«
,0.22). The development of PS, asC increases@Figs. 6~b!
and 6~c!# occurs by a combination of the broadening of t
peaks with the increase in the number of induced pea
which results in the shift of the main peak of each spectr
~and its harmonics! to match the corresponding peak of th
other@Fig. 6~d!#. This scenario bears great resemblance w
that shown in Fig. 5~b! for driving intensities moderate an
up, this being the main difference that in this case there
feedback between the two systems, which lets them loc

FIG. 6. Fourier space study of the phase synchronization of
coupled Rossler systems withv150.985 ~thin line! and v2

51.015~thick line! for increasing coupling strength:~a! C50.010,
~b! C50.020,~c! C50.026, and~d! C50.030. The corresponding
numerical results obtained for the third~null! and fourth Lyapunov
exponents have been included in this figure.
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each other. Therefore, the Fourier space observation of
dynamics of the two types of oscillators reveals the sa
underlying mechanism operating in different forms beca
of the different properties of each system. In particular,
fact that chaos is destroyed faster in the coupled Van
Pol–Duffing oscillators than that in the coupled Rossler s
tems is essential for the manifestation of AES in the fi
case, and for its screening in the second. The fast destruc
of chaos in the coupled Van der Pol–Duffing oscillators~at
«50.8 there are no positive Lyapunov exponents! is what
prevented the development of PS~and possibly, for even
stronger coupling, lag synchronization! in this case.

From the above results it follows that, because differ
nonlinear systems, even being coherent, have different s
tral structures~as well as other properties!, and because
changes in the parameters of different systems may h
different effects on the resulting attractors, the particular
namic behaviors to be observed in systems of two coup
nonlinear oscillators may have some diversity. This will
illustrated further in the following section by means of th
study of two different systems showing all PS and AES
different degrees.

IV. AES AND PS COMBINED

A system for which AES has been observed combin
with PS is the circuit of Chua and co-workers@10#. The
equations modeling the system of coupled oscillators, writ
in dimensionless form, are

ẋ1,25a1,2@y1,22F~x1,2!#,

ẏ1,25x1,22y1,21z1,21
«

2
~y2,12y1,2!,

ż1,252b1,2y1,2,

where F(x1,2)5a1,2x1,21b1,2(ux1,211u2ux1,221u). For the
numerical study presented here the parameter values
have been a158.65, b1514.29, a150.28, and b15
20.210 for circuit 1, anda258.10, b2514.87, a250.32,
andb2520.295 for circuit 2. These parameters correspo
to particular circuits studied experimentally in@10# and@17#,
respectively; except fora1,2, which has been changed t
have two disjoint chaotic attractors where the main mot
for each oscillator is a rotation around a single center, inst
of a double scroll. The variablesz1,2(t) have also been use
as observables in this case and only the attractors for w
z1,2(t) is mostly negative have been considered.

The results forV1,2(«) and for the Lyapunov spectrum
l i(«), displayed in Figs. 7~a! and 7~b!, show that two differ-
ent regimes develop successively as the coupling stre
increases, before chaos is destroyed. For very weak coup
strength (0,«&0.190) we have Regime I in which th
phase frequenciesV1,2 remain close to those of the un
coupled circuits~up to 2%! while the fourth Lyapunov expo-
nent, which was null at«50, becomes negative and in

o
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creases steadily in absolute value for practically any valu
«.0. The system stays chaotic having at least one pos
Lyapunov exponent. For weak coupling (0.190&«&0.303)
Regime II develops with a fast drift ofV1, which changes its
value by more than 10% leading to a regular phenomeno
phase synchronization at a frequencyV15V2'3.02. A
faster increase oful4u is observed in Regime II, the syste
being chaotic with one positive Lyapunov exponent. Nea
after PS has been reached all exponents become nonpo
at «*0.308, being two of them null; i.e., the resulting no
chaotic motion is quasiperiodic.

It is to be noted that the indication, given byl4,0 in
Regime I, of the development of some locking between
two systems before the onset of PS. The results of the ca
lation of the Spearman rank-order correlation coeffici
r 2,1(«), displayed in Fig. 7~c!, show how this correlation
develops within Regime I reaching its maximum valu
around«'0.18. The correlation decays at the beginning
Regime II, to experience a new enhancement when the
pling strength increases from«'0.22, when AES and PS
develop combined. The correlation coefficient between
signals themselves,r («), is small until PS is reached; then,
increases notoriously indicating an important degree of c
relation between the two systems.

The behavior described above has also been analyze
terms of the evolution of the one-sided power spectral d

FIG. 7. Dynamic behavior of two coupled Chua circuits as d
played by~a! the phase frequenciesV1 ~thick line! and V2 ~thin
line!, ~b! the four largest Lyapunov exponents, and~c! the Spear-
man correlation coefficients between the envelopesr 2,1 ~thick line!
and between the signalsr ~thin line!. All quantities plotted are di-
mensionless.
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sity of z1,2(t). The development of new peaks at frequenc
aroundv1,2

(0)'0.01~while the main peak frequencies gover
ing the dynamics of the phase are close tov1,2

(M )'3.0) has
been observed. This is shown in Fig. 8 that illustrates
combined development of AES and PS in Regime II as

-
FIG. 8. Power spectral densities for two weakly coupled Ch

circuits within Regime II. The thick line is for subsystem 1 and t
thin line for subsystem 2. The insets show in more detail the
gions of frequencies around those of the motion of the phase.
first plot, for the uncoupled systems, is given for reference.
quantities plotted are dimensionless.

FIG. 9. Power spectra of two coupled Chua circuits at values
the coupling strength where the motion is not chaotic:~a! quasi-
periodic motion and~b! periodic motion. The thick line is for sub
system 1 and the thin line for subsystem 2. All quantities plot
are dimensionless.
2-7
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enhancement of the new peaks atv (0) that give rise to AES,
while the structure of the spectra aroundv (M ) rearrange to
display the same pattern, giving rise to PS. The correspo
ing plot for Regime I is not displayed because it is not qua
tatively distinct from that in Fig. 3 for the Van der Pol
Duffing oscillator. After Regime II, chaos has bee
suppressed, but the new peaks associated to AES comb
with the main peaks that dominate PS do persist givin
synchronized quasiperiodic motion as illustrated in Fig. 9~a!.
Further increase in« was found to make the systems period
~around «'0.326) as the peaks atv1

(0)5v2
(0) vanish @a

sample of the corresponding spectra appear in Fig. 9~b!#.
This set of results shows that Regime I is dominated

AES and it is essentially the same as that described abov
the Van der Pol–Duffing oscillator. This synchronized beh
ior nearly fades out at the transition to Regime II. Within th
regime it turns to develop again, simultaneously with PS,
that the amplitude envelopes and phases of the two sig
become correlated at the same time leading to a stat
enhanced synchronism. This combination of AES and
does not persist any longer as« increases in the periodi
regime.

Other chaotic oscillators for which we can observe A
and PS combined is the Proto-Lorenz system. This is a m
ematical model introduced by Miranda and Stone@11#. Its
chaotic attractor has the structure of a single loop and

FIG. 10. Dynamic behavior of two coupled Proto-Lorenz sy
tems as displayed by~a! the phase frequenciesV1 ~thick line! and
V2 ~thin line!, ~b! the four largest Lyapunov exponents, and~c! the
Spearman correlation coefficients between the envelopesr 2,1 ~thick
line! and between the signalsr ~thin line!. All quantities plotted are
dimensionless.
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appropriate coverings, described in Ref.@11#, one can con-
struct symmetricn-looped attractors from it, the 2-loope
attractor being the well known Lorenz model@18#. The equa-
tions of motion for two coupled Proto-Lorenz systems stu
ied here are

ẋ1,25211x1,21~102r 1,2!y1,219N1,21y1,2z1,2,

ẏ1,252~102r 1,2!x1,2211y1,21~101r 1,2!N1,2

2~x1,21N1,2!z1,21
«

2
~y2,12y1,2!,

ż1,25
1

2
y1,22

8

3
z1,2,

where N5Ax21y2. As before, « measures the coupling
strength. The system parameterr has been given valuesr 1
536 andr 2560, the two uncoupled systems being chao
and different at these parameters.

A study similar to those shown above, including the c
culation of V1,2(«) and r 2,1(«) from z1,2(t), as well as the
Lyapunov spectruml i(«), is displayed in Fig. 10. The varia

-

FIG. 11. Power spectra of two coupled Proto-Lorenz systems
~a! «50 and~b! «52.4. The thick line is for subsystem 1 and th
thin line for subsystem 2. Samples of time evolution, at the sa
coupling strength, of the signals~c! z1(t) and~d! z2(t). All quanti-
ties plotted are dimensionless.
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tion of V1,2 shows a neat phenomenon of PS asV1 andV2
tend to a common value ofV1,2'12.5. This transition occurs
at «'2.1. However, the Lyapunov spectrum displays
fourth exponent becoming negative well before PS
reached. This is understood if one looks at the behavio
r 2,1, which shows a development of AES, which for«
&1.5 is mild but increases very fast for«*1.5. At the same
time the frequency differenceV22V1 gradually tends to
zero giving rise to PS. The main differences with the circ
of Chua is that in this case, only Regime II is observab
chaos is not destroyed shortly after PS has been reached
the synchronization states with PS and AES combined
persistent well above the transition to PS. Moreover, the c
relation between the two signals,r, becomes important fo
«*2.2. All this indicates an important degree of correlati
between the two time seriesz1(t) and z2(t), once the two
forms of synchronization have been developed.

An example of the highly correlated states resulting fro
AES and PS combined is shown in Fig. 11 by means of
plot of P1,2(v) and z1,2(t) at «52.4, which is above the
onset of PS. The power spectra@Figs. 11~a! and 11~b!# show
how new broad peaks have appeared at very small freq
cies of v1,2

(0)'1.5, while the dominant peaks have becom
broader and are locked atv1,2

(M )'12.5. The plots for the evo
lution of the system variables,z1,2(t), given in Figs. 11~c!
and 11~d! show the synchronization of the phase combin
with the synchronization of the envelopes of the amplitu
for two signals that otherwise are different and chaotic.

V. DISCUSSION AND CONCLUSIONS

The manifestation of AES is somehow subtle; therefore
might pass unnoticed unless attention is paid to
Lyapunov exponents, and to the peak-to-peak dynamics@19#
of the systems. Moreover, as it develops steadily from«
*0, it might be extremely weak in the particular parame
region studied. Furthermore, it happens that the developm
of AES is compatible with PS in the sense that once the n
frequenciesv1,2

(0) have developed, the dominant frequenc
in the power spectra of each system may rearrange so
V1 andV2 move to the get locked in a way similar to th
described above for two mutually coupled Rossler oscillat
~and by Parlitzet al. @4# for a driven Rossler system!. This
shows that, if the focus is on PS, and AES is disregarded
some cases one may be faced with a puzzle in whic
Lyapunov exponent becomes negative before PS occur
fact, it is possible to find in the literature on PS statements
concern about the applicability of the Lyapunov exponents
study PS@5,12#. AES may be the piece needed to solve the
ev

ys

03623
s
of

t
,

and
re
r-

e

n-

d
e

it
e

r
nt
w
s
at

s

in
a
In
f

o
e

puzzles, and therefore a relevant element needed for a
ough understanding of the synchronization phenomena.

The Van der Pol–Duffing oscillator and the Rossler s
tem studied here and in Ref.@2#, respectively, appear as tw
extreme cases in which only one of the two forms of sy
chronization is easily noticeable. When observed in Fou
space, the dynamic mechanism for AES happens to be
mutual excitation of new frequencies~with its harmonics!,
while the mechanism for PS is the rearrangement of
power spectra structures around the dominant frequenc
As these mechanisms are simple and appear quite gen
one has to expect a certain degree of variety on the dynam
to be obtained from two coupled chaotic oscillators. In p
ticular, both AES and PS may appear combined in ma
systems as shown here by means of the example of
coupled Chua circuits, and of two coupled Proto-Lorenz s
tems. Even in this case the phenomenology observed
found to bear some diversity, including the early develo
ment of AES without PS, the development of PS and A
simultaneously, as well as differences in the persistence
the combined highly synchronized state achieved in this
case.

In summary, the dynamics of two different Van der Po
Duffing oscillators mutually coupled shows that, as a res
of the coupling, a new common frequency that is loca
well below the frequencies of the phase rotations around
centers of the attractors is induced in the two coupled os
lators. The increase of the coupling results in a feedb
process between the two systems that develops and enha
this new common frequency, giving rise to the form of sy
chronization named AES in this paper to emphasize tha
concerns to the envelope of the amplitude of the main os
lation rather than to its frequency. Because this phenome
ogy is so neatly displayed by the Van der Pol–Duffing osc
lator, the study presented in Secs. II and III happens to b
paradigmatic example of a synchronization behavior that,
cause of its own nature should be present in other syste
although possibly mixed with or hidden by other forms
synchronization. This has been shown indeed to be the
by means of the study of the model of Rossler, the circuit
Chua, and the Proto-Lorenz system. At a speculative le
one might think that AES may be useful in scientific a
technical applications, and anyway, it is an effect to be c
sidered when chaotic oscillators are coupled to each oth
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