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We study the scattering of a moving discrete breafl¥8) on a junction in a Fermi-Pasta-Ulam chain
consisting of two segments with different masses of the particles. We consider four distinct (€ases:
light-heavy(abrup} junction in which the DB impinges on the junction from the segment with lighter nfi@ss,

a heavy-light junction(iii) an up mass ramp in which the mass in the heavier segment increases continuously
as one moves away from the junction point, &wj a down mass ramp. Depending on the mass difference and
DB characteristic$frequency and velocily the DB can either reflect from, or transmit through, or get trapped

at the junction or on the ramp. For the heavy-light junction, the DB can even split at the junction into a
reflected and a transmitted DB. The latter is found to subsequently split into two or more DBs. For the down
mass ramp the DB gets accelerated in several stages, with accompanying rddfadioons. These results are
rationalized by calculating the Peierls-Nabarro barrier for the various cases. We also point out implications of
our results in realistic situations such as electron-phonon coupled chains.
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[. INTRODUCTION for instance, with different interaction parameters or with
different masses of the particles in the two segments. The
Static discrete breathe(®Bs) are time-periodic, persis- reason for choosing the FPU chain is simple. It has histori-
tent, intrinsic localizedexact modes in nonlinear lattices. cally provided a testbed for exploring different nonlinear
Rigorous proofs of their existence have been obtained angdhenomena in discrete systems. In addition, it is one of the
systematic studies of their properties were carried out usingimplest nonlineafpolynomia) potentials amenable to some
various (approximat¢ complementary approaches, see, e.g.analytical calculations.
Refs.[1,2] for an overview. In contrast, as first noticed in  Our preliminary numerical simulations indicate that these
numerical investigations and then justified theoretically,two types of problems are qualitatively similar. Therefore,
moving DBs exist agpproximatesolutions in nonlinear lat- here we will concentrate exclusively on the second type of
tices, both Hamiltonian and non-Hamiltoniéwith dissipa- configuration, the one with slightly different masses on the
tion and periodic forcing These solutions are known to be two sides of the chain. A physical realization of this configu-
rather stable(i.e., long lived and have been an object of ration could be in low-dimensional electronic materials with
constant investigation during the last decade, see[BEfor  different electron-phonon coupling or two segments with dif-
a nonexhaustive list. ferent isotopesge.g., carbon isotopes in conjugated polymers
Different physical systems in which there are realizationd4,5] and platinum isotopes in metal-halogen chaj6$),
of (moving) DBs include conjugated polymef4,5|, charge- Josephson-junction arrayis’] with dissimilar interaction
density-wave materiale.g., metal-halogen electronic chains strengths, optical fibers with two different refractive indices
[6]), Josephson laddefg], coupled electron-vibron lattice [14], etc. We note that the scattering of Toda solitons at a
systemd 8], and spin chain$9]. Sputtering on crystal sur- mass interface was studied previousl$]. To the best of our
faces and damage tracks in certain mica minerals have aldmowledge, the scattering of a DB at such an interface has
been attributed to moving breath¢d]. Moreover, the DBs not yet been investigated.
were found to play a non-negligible role in heat conduction The paper is organized as follows. In Sec. Il we present
processes in thermal nonlinear lattigdd]. Experimentally, the details of the FPU model in a homogeneous chain, an
breathers have been probed by ultrafast resonance R&han estimate of the Peierls-Nabarro barrier for moving DBs, and
and inelastic neutron scatterifg2] among other techniques. finally, some details on the numerical initialization of a mov-
In a recent series of papdrk3], the problem of the inter- ing DB. Section Il contains results for both light-heavy and
action of a moving DB with an impurity was addressed in theheavy-light mass junctions, where we elaborate on the reflec-
case of a lattice with nonlinear on-site potential and hartion and transmissiofand eventually on the splittingf the
monic first-neighbor coupling. As it was shown, this interac-DB. Interaction of the DB with both the up mass ramp and
tion can lead to reflection, transmission or trapping of the DBthe down mass ramp is discussed in Sec. IV, where we ex-
at the impurity, depending on the initial velocity, amplitude plore DB reflection(with eventual trappingand acceleration
and phase of the DB, as well as on the strength and spati@lith eventual splitting In Sec. V we summarize our main
extent of the impurity. findings and enumerate some of the open questions. Details
Our objective here is to investigate the scattering of a DBof the Peierls-Nabarro barrier calculation, using a new per-
at a junction in a@nonlineaj Fermi-Pasta-UlaniFPU) chain  turbative technique, for the various homogeneous and inho-
consisting of two segments that are “slightly different”—i.e., mogeneous cases are relegated to the Appendix.
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Il. THE MODEL ing Tpg fixed and decreasing the interaction constants gen-
erally leads to an increase in the amplitudesBy approxi-
mate above we mean th@s seen in Ref18]) these patterns
The FPU model represents a one-dimensional chain odre exact only for a pure even-order anharmonic lattice in the
particles with no on-site potentidl.e., an acoustic chain  |imit of increasing order of anharmonicity. Nevertheless,

A. The FPU model

with the Hamiltonian only minor corrections are needed in order to make these
: patterns “more precise” solutions of the FPU lattice, their

H— 2 mxﬁ N a —x—a)?+l —x—a) symmetry being preserved. Mainly, these corrections refer to

& 2 2(X“+1 %n 4()(n+1 Xn—a) the fact that the DB can extend over more than three, and

(1)  two sites, respectively, for odd and even modes. Although, in
theory, a DB has an infinite extensigpwith an exponential
wherea and B denote, respectively, the strengths of the lin-decay of the amplitude of the relative elongation as one
ear and nonlinear nearest-neighbor interactiangpresents moves far away from the centémaximum amplitude sites
the lattice constanti.e., the equilibrium distance=x3%  of the DB], in practice, however, one can restrict the analysis
—x;9, between neighboring sitesandm is the mass of the to five, and four sites, respectively, for the two types of
particles. For simplicity, all these quantitiéand those we modes of the DB mentioned above.

will introduce latej are expressed imlimensionless units To evaluate the relative elongations for the two configu-
The corresponding equation of motion for a generic particleations, and their corresponding energies, we introduced a
is: simple perturbative technique that uses the ratio between the
) square of the maximum phonon frequency and the square of
MX, = (Xpy1 1+ Xn—1— 2Xp) + B[ (X —Xp_1—a)° the DB frequency as the perturbation parameter:
_(Xn+1_xn_a)3]- (2) Ao
. . &= : (7)
In terms of the elongations,=x,—x:9, it becomes modg
Mu,=a (Upsq+Up_1—2U,) + BL(Up—Uy_1)° combined with a rotating wave approximati0RWA) (see,
3 e.g., Refs[1,2] and references therginThe results of our
~(Un+1=Un)"], 3 calculations, presented below and, in more detail, in the Ap-

pendix, can be compared with the numerical results of
Green’s function methodthat is also based on RWAFor
example, for the even-symmetry mode, our calculatiams
= (X=X = (Xp_1— x4 ) =X,—X,_1—a, (4 1O O(&?)] agree generally up to an error of no more than 4%
with the results of Ref[20] obtained with Green'’s function
method. The error in evaluating the configuratidas com-
(5) pared with the results of thexactnumerical method of the
analytical continuation from the anticontinuous liftl]) is
As it was shown(see, for example Ref$1,2] for an over-  essentially connected with the limitations of RWA, and there-
view, and references therein, and Réf6]), the FPU lattice fore becomes progressively smaller for “heavier” DBs, i.e.,
admits DB-like solutiongstationary, localized, time-periodic DBs that are progressively further awéy frequency from
modes with periodsTpg that are smaller than the minimum the phonon band limit.

or, by introducing therelative elongations of neighboring
sites

T 3 3 3
M7, =a (Tt Tho1—27) + B (T Tho1—27)).

period of the phonon spectrum, i.e., The primary ingredients of the analytic method are the
ansatz concerning the temporal evolution of particles’ elon-
Tpg<7 ym/a. (6)  gations:
Also, as shown, for example, in Refd7,18, the most lo- un(t)=A&, cog wpgt) (8)

calized of these modes are add-typemode with an “ap-

proximate” pattern of the amplitudes of the elongationf (where A and &, are the amplitude and the shape
the form Aggq(...,0-1/2,1-1/2,0...) and aneven-type function, respectively together with the RWA that entails
mode [19] Agen(...,0-1,1,0...). Note that the terms neglecting higher-frequency harmonids.e., coS(wpgt)
“odd” and “even” do not refer to the symmetry of the am- ~(3/4)cosfpgt)]. Including these elements in E¢(B), one
plitude patterns Odd indicates simply the fact that there is obtains an infinite set of nonlinear coupled equations for the
an odd(i.e., single site of maximum amplitude, while even shape function:

refers to the fact that there are two sites of eyabsoluté

amplitudes. We keep this terminolog@glthough it is some- mw%s§n= a(2&—Ens1—En1)

what ambiguoussince it is traditionally used in the litera-
ture, see, e.g., Ref$17,18. The amplitudesA are deter-
mined by the interaction constarisand 8 and by the DB’s
frequencywpg=27/Tpg. For given interaction constants,
the A’s decrease with increasifighg . On the contrary, keep- Or, in terms of therelative elongations:

3
AR (60— )+ (60— 00 (9)
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Next, we consider the following expansion of the shape CE
function in terms of the small parameter see Eq(7): 08p
-12
gn: fgo)+8§|(,11)+82§|(,]2)+ - (12) -1.6-

and then proceed through the usual steps of a perturbative
calculation. For details of these calculations, refer to the Ap-
pendix.

The Peierls-Nabarro barrier for the homogeneous FPU chain 0.8

As illustrated in Fig. 1(upper panelon an actual ex-
ample, the DB translates from one lattice site to another by
continuously deforming its shape, alternately, between an
odd-type of configuration and an even-type one. Therefore,

relative elongation
=3

©
S
T T

in a discrete lattice there is an energy cost associated with OB | 1=3Ty,

moving a nonlinear localized mode by a lattice constant— a2b =T

this represents the so-called Peierls-Nabarro bafR&iB), a6k . . o]
see Ref[22]. It can be estimated by calculating the energy 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
difference between even- and odd-type configurations. The region A site number region B

results presented in the Appendix allow us to evaluate the
PNB in a homogeneous chaiie., all particles with same,
B, andm): 2T

e
o

h h h
AEpN=Egqa— E

even

I
FY

relative elongation
=)

_. 2 (@ 1 I k
=Mwjg B [0.00836c ~—0.007 65 04 )
B )
~ \
~0.01827+0(£2)], (13) | |
-1.2 4 .
where the superscript refers to the homogeneous case. As -16] ! | L ! L i
expected, it is a very small energy barrias compared with 1495@5::; 1498 1499 1500 1501 1502 ;58?3113‘504
the one typically found in some optical chains, i.e., chains
with on-site nonlinear potential, see RE22)); for example, FIG. 1. Temporal evolution of a DB’s configuration in three
p p

for a very heavy DBA EgN/Egddwz_l% only! This explains different simulations. Upper panel: homogeneous chain. Middle
the well-known fact that it is rather easy to create mobilepanel: light-heavy junctionmg=1.002; transmission of the DB.
DBs in an FPU chain, and also why in the first-order ap_Lower panel: light-heavy junctionng=1.04; reflection of the DB.
proximation in Ref[23] this barrier was found to be zero. In Notice the alternation _between pdd- and even-typ_e configurations.
Fig. 2 we represent the dependence of the barrier on variouse=2-1. Recall that in these figures, as well as in all the subse-
parametersti) DB's periodT s (as expected, also see below quent ones, the quantities plotted are dimensionless.

the discussion on the generation of moving DBs, the PNB is ) o

larger for higher-frequency DBs; in the first order of the B. DB generation and initialization

perturbative expansion, PNB varies a3 g4), (i) «, and For simulation purposes, the static DBs were generated
(iii) B. At the first order in the perturbative expansion, thenumerically in the homogeneous FPU chain using the ex-
PNB does not depend oa, but only on 15, i.e., it de- tremely fast algebraic method recently introduced by Tsironis
creases with increasing nonlinearity. This feature can be ea$24]. As shown in Ref[24], this method, although approxi-

ily understood if one views the role of the nonlinearity asmate, is generally more accurate than the RWA and agrees
reducing particles’ excursions around equilibrium, and therewith the exact results of the anticontinuous limit method
fore, reducing the difference between the odd- and even-typ@vhich requires much longer computational times, see Ref.
configurations, i.e., the PNBiv) Finally, onm (note that, in  [21]) typically to 1% or even better.

the first order of the perturbative expansion, the PNB varies In order to move these breathers, we used a simple ap-
asm?). proximation of the systematic pinning mode excitation
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on the order of~ 10 %/unit time. This rate is higher for the
faster DBs. Also, as explained in detail by the same authors,
the analysis of the temporal behavi@nd, in particular, of
the extremal poinjsof the kinetic and potential energy al-
lows one to evaluate the translational energy of a moving
DB, which was found to be at most 1% of the total energy of
the DB. Not surprisingly, this value is of the same order of

8 © 7 eof @/ magnitude as the Peierls-Nabarro barrier.
6 ok ] Returning to the kicking method for moving a DB, we
. make several other remarks. First that, as previously noticed
2 wr T (see, e.g., Ref[27]), the “light” DBs (i.e., those that are
ol P Lo relatively not too far in frequency above the phonon band

05 1 15 2 % 23 45 6 7

limit) are definitely easier to move than the “heavy” DBs
FIG. 2. Variation of the Peierls-Nabarro barrier as a function of (Which are, by comparison, much more localized and there-
breather time perio@pg, FPU chain parameters, 8, and mass fore much more sensitive to the discreteness of the lattice
m. (@ a=1, B=1, m=1. (b) Tpg=1.2, B=1, m=1. (¢) a=1, In terms of the initial kick, this means that the minimum
Tpg=1.2,m=1.(d) a=1, =1, Tpg=1.2. value of the kicking coefficienh for which one gets an
essentially regular motion of the DIB28] is larger for
method of Cheret al. [25]. Namely, we “kick” initially the ~ “heavier” DBs. Also, one notices that, in general, the veloc-
DB by assigning to the points of the lattice initial relative ity of the moving DB obtained through this kicking method
velocities that are a fraction (the “kicking coefficient”) of ~ seems first to increase with increasing and after that it
the gradient of 7|, i.e., reaches a certain “saturation value,” i.e., it does no longer
increase with\, but keeps a constant value. This leads to a
rather narrow window of the possible values of the DB’s
velocities, which is somewhere around a tenth of the

Note that this method is not so different from the “more Phonons’ velocity(for example, fora=3=1, a lattice con-
empirical” methods used in Ref18] to obtain moving DBs.  Stanta=10, and for a DB of period pg=2.1, the values of
We notice that, when starting to move, the DB first losesthe velocities belong to a window ef[0.35,1.25; note that
through phonon radiation in the lattice, a large part of thethe sound velocity corresponds to 10 in the dimensionless
kinetic energy we assigned to it when kicking. The rest of thelnits). In the simulations we used a chain with the first and
received energy is used to overcome the Peierls-Nabarro bdast point held fixed(i.e., fixed boundary conditions; this
rier, and, as already mentioned, the DB moves from on&hould not raise conceptual problems, as such points corre-
lattice site to another by a continuous alternation betweegpPond tom—c). Also, we tried to avoid the interference
odd- and even- type configurations. between the observed phenomena and the phonons that re-
This alternation between the two types of configurationdlect on these fixed edges—and for this purpose we generally
for a moving DB can be noticed when inspecting the tempoused sufficiently long chainéo that the reflected phonons
ral evolution of the potentialor kinetic) energy of the DB.  do not come back to the interesting central regions during the
Indeed, the envelope of the temporal oscillations of DB'sobservation period[29].
potential (kinetic) energy presents a series of periodically
alternating relative maxima and minima, indicating the alter-
nation between these configurations. The period between two
such successive maxintar minima gives a rough estimate  We now address the main problem in this paper. Consider
of the time needed by the DB to move from one site tothe junction between two semi-infinite FPU chaifst us
another. But no more than a “rough estimate,” beca(ige call them “A” and “ B,” respectively, with the corresponding
the real time a DB takes for this movement does not bear gubscripts for their characteristic parameevge fix the pa-
commensurability relation witiig, (i) the structure of the  rameters of theé\ chaina,, 85, andm,. For theB chain,
envelope is more complex, due to the presence of other “seave will fix the interaction parameters identical to those of the
ondary” frequencies of the DBsee Ref[1], and the discus- A chain,
sion in Sec. \l, and (iii) there are some “imperfections” in
this periodic behavior of the envelope, that are connected to
the existence of a rather irregular time dependence of the
relative phases of two neighboring sit@dready mentioned
in Ref. [18]). Probably, this is ultimately related to the non- and vary the mass of the particlesg. Note that in all the
exact character of a moving DB as a solution of the Hamil-numerical simulations we setra=pB,=1, as well as
tonian lattice. Note also that a moving DB constantly losesm,= 1.
energy while moving through the lattice, although at a very A DB is generated in thé part of the chain and is sent to
small “dissipation rate.” For example, as also shown in Ref.the junction with theB part. Depending on the difference
[26], for a DB moving in a uniform lattice, this energy de- between the masses of the particles in the two parts of the
crease, if fitted to an exponential, corresponds to a decay ratdhain, the DB exhibits different behaviors at the junction.

Ta(t=0)=\ (|Tn11| = |T0_a])/2. (14)

IIl. INTERACTION OF A DB WITH A JUNCTION

8= Ba, (15

ag=&p,
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A. The Peierls-Nabarro barrier at the junction e X e e e gy e e

In order to understand and predict the behavior of a mov-
ing DB at such a junction, the first step is to study the change 5973
in the Peierls-Nabarro barrier at the junction. Namely, to de-
termine what would be the equivalent of the odd- and even-
type configurations at the junction, and what would be the ?5.972
corresponding difference in the configurational energy. Note ~ °
that in the case of an inhomogeneous chain the PNB is de-

fined as the difference between thiebal maximum and the G T ‘g‘,f‘,'sexfgyy o Fooysdini

global minimum of the configurational energy. We consider [| —— transmitted DB’s energy

the case whed=(mg—m,)/mj, is a small quantity, that we O kL L N

use as a perturbation parameter for evaluating the changes in 4 100 e  W 400 500
the odd and even configurations at the junction. Thus, we

consider a “double” perturbation expansion of particles’ en- FIG. 3. Energy of the DB for the three cases in Fig. 1.

velope function:
site in the parB of the chain—and the energy of the even-

En=(E0+ e+ eael@+ - )+ 6 (€0 +eaéll+e28  type configuration in the homogeneoghain. The last PN
2 (0) 1)L 242 barrier is associated with the difference between the energy
o)+ (Enatenadnatenénzt )T+, (18 of the odd-type configuration in the homogenedishain

, ) and the even-type configuration in the homogene&ouakain:
wheree , is evaluated with respect to the parameters of&he

chain, i.e., . an
AEKD= AEND+ el 2
da Ba
A
ep= . (17 -1_
A Ma w2 g X[8(0.77906c ,~—0.164 70

+6%(0.3895%,1)]. 20
Corresponding to the different configurations it has to exhibit ( Al 20

in order to traverse the junction, the DB encounters three Note that for a heavy-light junction, i.e., fat<0, these
new energy barriergefer to the Appendix for more detalls  parriers are smaller than the PN barrier in the homogeneous
These are, in the order of their appearance as the DB movesyart of the chain and therefore a DB that moves smoothly

through the junction: in region A will have no “energetic difficulties” to enter
regionB. On the contrary, for a light-heavy junction, i.e., for
AEK) = AERD + maw3 s ﬂ) 6>0, these barriers are larger than the PNB in peof the
Ba chain and one sees that, at the dominant ordegs, iand 5,

1 they increase in succession. Therefore, there appears the pos-
X[ (013793, "—0.01573-0.005 2G,) sibility that a DB that arrives at such a junction cannot over-
+6%0.499 33,1 +0.216 57-0.693 46 ) |. come either the first, or the second, or the third barrier. The
presence of these barriers is confirmed by numerical simula-
(18 tions (through fine tuning ofmg).

Here AER{) denotes the Peierls-Nabarro barrier in the ho-
mogeneous chain, and refers to the junction. This energy
barrier corresponds to the difference between the energy of We first present the generic results of our simulations for
the odd-type configuration | in the Appendix—for which the this case.

B. The light-heavy junction

site of maximum elongation is the last site in the parof (a) A DB can continue its movement into regidh Its
the chain—and the energy of the even-type configuration irfirequency is not(detectably modified. The DB keeps on
the homogeneouA chain. losing energy in regio, as well as in regiorB, but at a

smaller rate in regio, see Fig. 3. This might be connected
AELD = AENA) 4 . 2| A to the fact that(given that it keeps essentially the same fre-
PN T 2EPN A®DB B quency the DB is further away from the phonon band limit
in regionB than in regionA. Also, its velocity in regiorB is
X[5(0.641 13, —0.148 97-0.005 26¢ ») smaller than in regior. This is related to the fact that a part
) 1 of the “extra” energy that in regiomA corresponded to its
+6°(0.75093 4" +0.216 57-0.688 20k ) ]. movement as a wholéwvith a velocityv ) is now used for
(199 the new, higher mean configurational energy, and also to
overcome the correspondingly higher Peierls-Nabarro barrier
This energy barrier corresponds to the difference between the region B. Therefore, the extra kinetic energy, and corre-
energy of the odd-type configuration Il in the Appendix— spondingly the velocity g in region B are smaller than in
for which the site of maximum elongation is now the first regionA.

anp

036617-5



IOANA BENA, AVADH SAXENA, AND J. M. SANCHO PHYSICAL REVIEW E 66, 036617 (2002

(b) The DB can reflect at the junction and return to the
regionA. Its frequency and energigee Fig. 3 are not sen-
sitively modified by this reflection, and neither its velocity
(that only changes sign

These observations can be explained qualitatively on the
basis of the results presented above for the PNB that a DB
(that keeps a constant peridgg) has to overcome in order
to continue its movement in regidd The main conclusion
is that for a DB arriving at the junction, there exists a critical
value of the massng=m.;, above which the DB cannot
penetrate in regioB and is reflected to regioA. This criti- S 14900k
cal value depends on the frequency of the DB, namely it )
increases with decreasinpg (i.e., it is larger for heavier
DBs). However, it also depends on the velocity the DB has in

1520

1510F

I
S

1490

x(t) for various particles DB’s center position (site no.)

region A: it increases with increasing, (i.e., a more rapid glsloE S
breather needs a larger masg,;; to be reflected than a -
slower DB of the same frequencyThis can be readily un- g
derstood: a more rapid DB in regioh has more “extra” § 1490
energy (above the Peierls-Nabarro barriaEh{)) than a a .
. . a 0 50 100 150 200 250 300 350

slower one. Therefore, it may use this energy to overcome 515040 , — :
the Peierls-Nabarro barrier at the junction and to penetrate in -glmo
region B, while a slower DB cannot overcome the junction 215010 oo
barrier. § 14990

We present two sets of pictures of the cases when a given §14970
DB (a) moves in a homogeneous chafh) passes through a "‘1495%6 — 1% timg TR T —
light-heavy junction, andc) is reflected at the light-heavy
junction. Figure 1 shows the temporal evolution of the con- -
figurations of the DB in these three situations, while Fig. 4 § i I I L I I I
shows the movement of DB’s center along the chain, and E
also the temporal evolution of the elongations of various %1490 3
particles affected by the DB. g

) ) ) & 1480 1 ! , time ] 1
C. The heavy-light junction a0 50 100 150 200 250 300 350

As already mentioned above, given that the PNB de- glsooo ' : ' : : '
creases at a junction wittmg<<m,, one can naively predict 214980
that the DB will always penetrate and continue to move in §
regionB without any hindrance. Numerical simulations show 514960
that this is indeed the case—at least as long as the difference ¥ L, g tpe , |,

L 1 N 2
[t T ” . 80 100 120 140 160 180 200 220
betweenmg andm, is “sufficiently small.” For example, in

the particular case afig=0.99(recall that in simulations we FIG. 4. Propagation, transmission, and reflection of the DB for
took my=1) we studied the dependence of the characteristhe three situations in Fig. 1. The associated motion of particles in
tics of the “transmitted” DB on those of the “incident” one. the region of the DB is also showfipg=2.1.
First of all, one notices that the transmitted breather takes
some time to ‘“adjust” to the new environmentand dispersion of these velocities, i.e., the dispersion of the
“heavier” DBs take a longer time to adjust than the asymptotic velocitie® g is smaller[30]. This observation is
“lighter” ones). During this period, the DB loses energy and illustrated in Fig. 5 for a given DBwith Tpg=2.1) and for
adjusts its final energy to the smaller mass of redson three representative initial velocities, (chosen, respec-
The transmitted DB(within estimated errojshas the tively, as the lower and upper limits of the velocities that
same period as the incident ofiee., the adjustment is such could be obtained through the “kicking” method described
that it preserves DB'’s frequengyAfter this transient period, above in Sec. Il B, and one value in between these limits
the DB reaches a constant “asymptotic” velocity. In general, It was relatively more difficult to investigate the depen-
there is no simple relationship between this asymptotic vedence of the asymptotic velocityg on DB'’s periodTpg,
locity vg and the characteristics of the incident DB, namelysimply because it is rather difficult with the kicking method
its initial velocity (in regionA) v, and its periodTl pg . to obtain the same velocity for DBs of different frequencies.
However, there is a tendency towards “uniform” veloci- However, we managed to obtain four DBs of periods varying
ties after transmission through the junction for a given DB.between 2.2 and 2.Bwith a step 0.1) and almogtvithin
Namely, for a DB with periodipg and different velocities in  4%) the same initial velocity. The simulations show no
regionA, v 4, the effect of entering regioB is to reduce the simple monotonic dependence wf on Tpg.

036617-6



INTERACTION OF A DISCRETE BREATHER WITHA . .. PHYSICAL REVIEW B56, 036617 (2002

1500
£ 1700

1495

1650

A Loy, g tme o, L1

0 50 100 150 200 250 300 350
L e e i

2240 (b)

1600

—_
™
o
<

1550

DBs centers’ positions (site no.)

©

Jjunction

DB’s center position (site no.)

L, g time o, ] 1450
9750 9800 9850 9900 9950 10000

il T
9650 9700

time

FIG. 5. A heavy-light (ng=0.99) junction. The upper panel ) ] ] o
depicts three trajectoriefabeled (a), (b), and (c)] of the DB FIG. 6. A heavy-light (ng=0.50) junction. An initial DB
(Tps=2.1) at an early stage, i.e., before the DB reaches the junC(TDB=2.1).spI|ts into a reﬂec.ted. and a transmitted DB. Later on,
tion, for various initial velocitiew 5. The lower panel represents the transmitted DB further splits into two other DB&e circles on
the same trajectorigga),(b), and (c)] in the asymptotic regime in the figure indicate the regions of the splittinglote that when the

region B, showing that the DB acquires approximately the samemMass difference is even larger, the transmitted(Bat has progres-
asymptotic velocity g . sively less energymight split into three or even four smaller DBs.

Decreasingng further leads practically to the disappearance of the

Next, we focus on the most important part of this sectiontransmitted DB, and to a substantial phonon creation.
(that will clarify the meaning of sufficiently small difference i _
betweermg andm,). Specifically, how does the behavior of €rgetically as compared to the transmitted )doecomes pro-
a given DB depend on the value wf;? To analyze this, we gressively more energetic, while the transmitted DB becomes
ran systematic simulations for a given Dle chose one Progressively weaker and finally dissappears in regin
with Tps=2.1 and an initial velocity ,=0.928, that corre- |€aVving only rapidly moving phonons in its wake. The end
sponds to a kicking coefficient=0.7), and for various val- Preduct is the “strong(i.e., large-amplitudereflected DB

ues ofmg . The behavior of the DB at the junction is rather [N '€gIONA.
complex, and can be described essentially as follows: the
DB, entering the region of lower mass, has extra energy. V. INTERACTION OF A DB WITH A *MASS RAMP”
During an “adjusting period’_(that might take from a_lbo_ut ten A. The Peierls-Nabarro barrier for a “ramp”
to a hundred DB periodsthis extra energy is redistributed
between{i) the kinetic energy of DB’s translation as a whole ¢ - 3 -
(the DB is accelerated upon entering regByy (i) pertur- §I|ghtly, linearly, as one moves away from the junction point,
bations(which we address latgin the A and also in thed  I-€., the mass of thkth particle inB part is

art of the chain; andiii) a slight decrease of transmitted _
IoDB’s period(i.e., increase of its configurational energyhe Me(k)=ma(1+kA), 21)
redistribution of energy between these elements is a delicate
process, and it depends on the mass difference between
gions A and B. When the mass difference is small, say, les
than (ma—mg)/my=0.4, the predominant phenomena are

Consider that in regioB the mass of the particles varies

hereA>0 corresponds to an up mass ramp, wilits 0 to
& down mass ramp, and for analytic calculation purposes we

. M . . . 6 : —- T == = = == —
(i) and (ii)—the perturbations being small-amplitude ones, P

. . . . : : | =— — total energy

i.e., phonons that move rapidly far away from the junction, sl b energy of transmitted DB
in both parts A andB. I :— energy of reflected DB

When the mass difference is even larger, we find that in
part A there are not simply phonons that appear, bug-a
flectedDB: the initial DB, arriving at the junction, is split
into a reflected DB and a transmitted one. Moreover, the
transmitted DB is usuallynonlinearly unstable and subse-
quently splits into twa(or sometimes mojpeother DBs. See
Fig. 6 for a realization of these phenomena: the trajectory of
the initial DB, the reflected one, the transmitted DB and its
subsequent splitting into two other DBs. Figure 7 shows the 0 TI0 @0 30 @0 50
energy variation associated with these phenomena. We note tme
that the total energies of the resulting DBs never sum up t0 F|G. 7. The energy associated with the phenomena described in
the initial energy due to the phonon losses in the chain thatig. 6. The dashed-dotted lines on the figure delimit the intervals of
accompany all these processes. To our knowledge, such Diie occurrence of the splitting phenomena, when there is no net
splitting has not been noticed before. If we continue to deseparation between the resulting DBs, i.e., no clear separation of
creasemg, the reflected DBthat is initially very weak en- their energies.

IS
T

w
T

: { energy of the ’split’ DB
! -]

energies

1_
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consider thaiA|<1. A double analytical expansion igy, < 1100 T T . T .
and A allows us to estimate the shape function for the 3 T
equivalents of the odd- and even-type configurations, and & 1050 @ 3

therefore, to estimate the Peierls-Nabarro barrier the DB

must overcome in order to move up to dite regionB. The J'““C‘i"“/
barrier (with details given in the Appendjxs found to be \

AEL(K)=E! (k) —ENA) g —
PN odd even £ o00l- (@ A=5x10"; m_ =1.0030
a g || ® A=10"; m ] =1.0026
=AEE,(@)+mAw2DB(A){A[(O.??QO(R 5 ssol| © A=5x10%;m =100225
B X @ A=2x10"; m", = 100167
+0.77906 £ '~ (0.164 7&+0.164 70] A 800} Ty T T )
+A?[(0.3895%%+0.779 06+ 2.5620F £, * @
+0.916 05-3.258 52,7}, (22) 3 1200
2 -

where the superscriptrefers to the ramp. 1150

1100
B. The “up ramp”

This corresponds to the cade>0. The main result is that 1050

a DB that enters thB part of the chain is finally reflecte(@t junction I

some point within theB chain and returns to par@. Note £ ol
that: g 90rgr
(a) The point where the DB is reflected, i.e., the critical 3 [ 2t 1 |
r “ ) g 900-@ [ Y |
mass on the ramm,,;; depends on the “slopeA of the 8 000 time ] |
ramp and is generally different from the value.,;, that Egn 80F o 7 1 spo0 1, 4
0 1000 2000 3000 4000 5000

corresponds to the case of an abrupt junction, see Sec. Il B.
This can be seen by equating tfegitical values of themost (b)
energetic odd-type configurationsBchain in the case of an
abrupt junction and of a ramp, and finding the relationship
betweerm.;, andm(,;, . In the particular case shown in Fig.
8(a), we note that the critical mass decreases with decreasing
slope of the ramp and that it is smaller than the value for the
junction case.

(b) For a given ramp, the critical mass increases with
increasing initial velocity of a given DBwith a fixed fre-
quency, see Fig. &). Sometimes the DB can get trapped, as
seen in the inset of this figure. Note, however, that if one
changes slightly DB'’s initial position in regioA (without
changing its initial velocity, then the DB is no longer L
trapped, but reflected, see the inset. Thus, trapping seems tcA gggo P

; P ” 0 1000 2000
be a rather delicate phenomenon, that depends on “how fime
(i.e., with what precise configuration and relative phase dif- ()
ference between sitethe DB arrives at the trapping site.

(c) For a given ramp, the critical mass seems to increase F!G. 8. The behavior of a DB on an up ramp dependinga@n
with a decrease in DB’s periddle., it is larger for “heavier”  the slope of the rampTpg=2.1) and(b) its initial velocity va.
DBs for the same initial velocily see Fig. &). Note that in Nott_e that the I_DB can also get trapped on the ramp; but, as _s_hovyn in
all these cases there is a typical temporal evolution of thdhe inset, a sllght_ perturbatlon—for example, a slight modlﬂcatl_on
energy of the DB. Before entering regi@ one recognizes of t_he |n|t|alscond|t|_ons—can lead to the_dlsappearance of trapplng
the usual small energy loss in a uniform FPU chain; then iff4=2%10 2, Tpg= 2.1). (c) The behavior of a DB as a function
the ramp part there is a somewhat smaller energy (s of the perlodTDB_of the I_DB. (Npte _the limited p035|b|I|_t|(_e§ to

- . . obtain DBs of various periods with rigorously the same initial ve-
sumably the DB is a little bit further away from the phonon locity v.)
bangd that becomes progressively smaller when the DB is
decelerated on the ramp. At a certain moment, the DB startsamp, its configurational energy averaged over a peiand
to “descend” the ramp, to increase its velocity, and its en-the corresponding Peierls-Nabarro bajriacrease at the ex-
ergy loss increases progressively, again up to the usual loggnse of its translational energy. Therefore, at a certain mo-
in the homogeneous chain. When the DB “ascends” thement, the DB does no longer have sufficient “extra energy”

1120

(site no.)

1080

E
g
E

)
_3

920

B’s center position

| A .
3000 4000 5000
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% T 1 ] =0T 1 limitations, as shown by the simulations and indicated above
g“lm =300 I}' in various cases. Therefore, we can rely on this method only
5 n=t0 =280 l:l at a qualitative level. _
£ 6 1 In the'pres'ent paper we exclusively focused on two seg-
5 n=60 l{‘ ments with slightly different masses. It would be interesting
;,Z =0 n=240 1 to explore a junctior{or ramp between two segments with
v =220 ¥ the same mass but with differing strength of either the har-
§=n=20 1=200 ‘#Y mor_liCa or gnharmo_niqB ir_lterr_;\ction paramete_r qf the FPU
g PP \ 4 chain. This is under investigation and our preliminary results
5 ﬁY do not demonstrate a qualitatively different picture compared
g n=160 1% to the mass case. In addition, if we consider/aB-A mass

o o =M 3100 R0 sandwich structure, then there is a distinct possibility that the

time time breather will get trapped inside tlsegment. By a suitable

FIG. 9. Acceleration of a DB on a down ramp. Site-0 cor- choice of the mass profile one may envision a “breather
responds to the last site in the regidrbefore the ramp. The slope 1€ns.” This is currently being explored and preliminary re-
of the ramp isA =0.0018. On they axis we approached the sites by Sults agree with these conjectures. We believe that our results
9.9 lattice constantsa=10 unitg in order to increase the resolu- arenot specific to thé=PU chain Other nonlinear potentials
tion. should lead to generically similar results. Many open ques-

tions remain, e.g., better estimates for site-to-site traversal
to overcome the barrier and it is reflecterhd sometimes it time of a DB, influence of the “secondary” frequencies of
may get trapped Rolling down the hill, it recuperates its the DB on its behaviofor example, on the envelope of
translational energy and when it gets out from regiband  temporal oscillations of energya better understanding of
reenters regior it has almost the same velocity as its initial the (nonlineay instability that leads to DB splitting
one in regionA. The transmission and reflection are “almost (reflected/transmitted, and afterward to the secondary split-
elastic,” in fact the DB loses a little bit less energy than it ting of the transmitted DB and consequently, to the com-
loses normally during its movement in a uniform chain. plex behavior on a down ramp, etc. An experimental realiza-
tion of our findings in low-dimensional electron-phonon
C. The “down ramp” coupled materials, e.g., conjugated polynidr8] and metal-
halogen chain$6], using differentisotopeswould be quite
instructive in unraveling the interesting transport properties
f breathers with potential applications.

Consider now that in the regioB the mass of the par-
ticles decreases from one particle to another with the sma
guantitym, A<0. An illustration of DB'’s typical behavior is
given in Fig. 9. As the DB enters the ramp it accelerates with
a concomitant narrowing of its shape and the emission of
some radiatioriphonons. This is clearly seen as a change in
slope(left pane). At later times we observe another change We are indebted to M. Ibas and G.P. Tsironis for in-
in slope signifying further acceleration of the DB with sig- sightful discussions and help with the numerics. This work
nificant radiation and emission of smaller breath@ight  has been supported by the European Union under the RTN
pane). One can also observe other secondary, small-energyroject LOCNET(Grant No. HPRN-CT-1999-001630y the
DBs that may form at later stages. Nonetheless, these pherS. Department of Energy, and by the Directi®eneral de
nomena are highly complex and beyond our current level oEnsémnza Superior e InvestigacicCientfica (Spain under
understanding. Project No. BFM2000-0624. A.S. gratefully acknowledges

financial support from IberdroléSpain.
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V. CONCLUSIONS AND PERSPECTIVES

We have systematically explored the transport properties
of a discrete breather in a nonlinear chain comprising two
segments with differing mass, specifically in an FPU chain. In this appendix we present the relevant details of estimat-
We considered abrupt junctiofigght-heavy and heavy-light ing the Peierls-Nabarro barrier for the different cases dis-
as well as(up and dowih mass ramps. We studied the trap- cussed in the text.
ping, reflection, transmission, and splitting of the DB as a
function of junction type, mass difference, breather fre-
guency, and velocity. The DB splitting, trapping and reflec- 1. The homogeneous chain
tion may take place either at the junction or at a particular
particle within the ramp. We also estimated the Peierls-
Nabarro barrier for the different cases to understand the DB It is characterized by, =¢_,=(—1)I", (7,, the re-
transport across a junction or within a ramp. However, theduced shape function, being positive for @) together with
approach for calculating the PNB is based on the fundamerthe condition{,= 7,=1 (that gives the normalization of the
tal assumption that the perigftequency of the DB does not  shape functiopn The equations for the reduced shape func-
change “significantly” during its movement, which has its tion read, respectively:

APPENDIX: PNB FOR VARIOUS CONFIGURATIONS

a. The odd-type mode
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C2-e(1t )
(1+7,)°

:_(277n+77n+1+ M- 1)+ [(Un+77n+1)

+(pat7h-1)%] for n=1. (A1)
Here
3BA% 44
= (A2)

Note the singular behavior in~! of the square of the am-
plitude A2, (e.g., this means that the “heavier” the DB, the
larger its amplitudg Using the series expansions énfor

¢n, EQ.(12), and those for the reduced shape function in Eq.

(A1), and ordering the corresponding powerssofone can
show that the series')) (for a fixedj, i.e., for a fixed order
in the perturbative expansion #) rapidly converges to zero
with increasingn; more rapidly for the case of smgk than
for larger oneg31]. Finally, one is led to the following ex-
pressions for particles’ shape function:

§o=1,
&1=6 1
=(—1)[0.52305+0.151 11 + 0.085 4%2+ O(&°)],
£,=¢_,=0.02305+0.156 91 + 0.126 432+ O(&3),

£3=¢_3=(—1)[0.00580 +0.042 3%%+ O(&%)],

£,=0(10°), |n|=4, (A3)

together with the dependence of the amplitédgy on DB's
frequency, masm of the particlesthroughe), «, and:

_ 3BAZ4q
4o

=0.566 0% 1—0.599 60+ 0.02365 +0(e?). (A4)

All these lead finally to the following expression for the
configurational energy of the odd-parity mode:

EN = meB(B)[O.38953£_1—0.16470
—0.123 86 +0(&?)]. (A5)

b. The even-type mode

It is characterized by the presence of two “main peaks,”

§0=—§ﬁ 1, and also by a staggered shagg=—¢ .1
=(—-1) n| 7, With the reduced positive shape functigp.

PHYSICAL REVIEW E 66, 036617 (2002

4—¢g(3+
:M n:O,ll
8+(1+17,)°

:_(277n+ Tn+1t - l)+ [(77n+ 77n+l)

+(ppt el for n=2. (AB)
Here
3 A2
B eUEH. (A7)
4o

Finally, one is led to the following expressions for particles’
shape function:

Eo=—&=1,

£,=—¢_,=0.165790.31767=+0.138 06c>+ O( &%),

§3=—§ -
=(—1)[0.00048+0.044 38 +0.107 66:2+ 0(83)],

£4=—&_3=0.00012:+0.011 152+ O(&?),

£,=0(10°), n=5, n<—4, (A8)
and the equation for the amplitude
3
BA e"e”— 0.4173% —0.386 70
da
+0.020 72+ 0(&?). (A9)
The corresponding configurational energy
ED en= meB( )[0.381 17¢~1-0.157 05
—0.105 5%+ O(&?)]. (A10)

Note thatEl . <EN.4 i.e., as already noticefil8], the
even-type mode is more stable than the odd-type one

2. The junction

We refer to Fig. 10 to follow the different configurations
of the DB moving from left to right through the junction. As
indicated in the text, Eq16), we used a double perturbation
expansion of the envelope function—in bath (evaluated
with respect to the parameters of tAechain, see the text
and é to compute the different configurations. Note that the
convergence i is not as good as that fary; namely, &
should be 18 times lessthan e, in order to get the same
degree of correction for the same order of expansiof &s
in e5. However, the details of the calculations are lengthy

In this case, the equations for the reduced shape functioand, because they present no conceptual difficulty, not given
read, respectively here. Instead, we give the expressions for the configurational
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Therefore, the energy difference between configurations I
and | is

1 i) _ h(A 2 [ %A
Elfen— Ebay= —AER+ mAwDB(E

X [8(+0.243 245, 1—0.062 79-0.005 26¢,)

o
@

q p p

particles’ elongations

+6%(—1.333 78,1~ 0.541 64+ 1.810 18,)].
(A14)

particles’ site number c. Configuration Il

Again of the odd type, it corresponds to the third panel in

FIG. 10. Schematic representation of the succession of the odd-. . : N .
) ) . N ig. 10, the site of maximum elongation is now in regiBn
and even-type of configurations for a DB traversing a junction from . L
of the chain. Its energy is given by

left to right. The white and black circles correspond, respectively, to
particles in theA andB parts of the chain.

' in i ' . (i h(A 2 [ 9A
energies of the DB in its successive appearances—as these gi(lll) = ght )+mAwDB(_

allow us to compute the various Peierls-Nabarro barriers it odd Ba
encounters. X[ 5(0.641 13 51— 0.148 97 0.005 262 )
a. Configuration | +6%(0.7509% , 1+ 0.216 57-0.688 2G: ») 1.
It is of the odd type—it corresponds to the first panel in (A15)

Fig. 10, the site of maximum elongation is in p&tof the

chain. Its energy is found to be
Therefore, the energy barrier between configuration Il and

an configuration 11l is

= E + mawial 5
-1 . . a
X[ 5(0.137 93 » 1 — 0.015 73+ 0.005 26 ) B 10D _ A Ehe mAw%B( A)

even R
+52(0.499 3%, 1+ 0.216 57- 0.693 46¢ 1) |.

Ba
X . -0 .
(A1D) [6(0.259 96, ~—0.07045-0.005 26 )

-1
Correspondingly, the first barrier that the DB has to over- +8%(1.585 37, '+0.541 64-1.804 92,) .
come is the one between an even-type configuration in the (A16)
homogeneou# chain and this configuration, namely:

i) eh(a) h(A) > [aa After this, the DB is essentially in the homogene®ipart

Eodd— Eeven=AEpN’ + Mawpg B [of massmg=m,(1+ 8)]; the energies of the even- and odd-
A type configurations ifB are

X[8(0.137 93, 1—0.01573+0.005 26¢,)

+ 8%0.499 33, 140.216 57-0.693 46¢ ). an
(0.400332 Al e e | 2
(A12) A

X[6(0.762 345 ,1—0.157 05+ 6%(0.381 17, 1)1,

b. Configuration Il

It is of an even type and corresponds to the second panel (AL7)

of Fig. 10: there are two sites with large elongations, one of
them in partA of the chain, the other one in péstof the

) . 2 won h(B) _ =h(A) 2 [ %A
chain. The corresponding energy, upQgej ,d<), is given Eodd = Eodd T Mawpe E
by
N X[8(0.77906s , 1 —0.164 70+ 6%(0.3895% , 1) ].
ELID =N + mAwgB( E/:) [5(0.38117,'—0.07852 (A18)

2( _ -1_
+6°(~0.83444,7-0.32507 1.116 72:5) . Therefore, on the one hand, the energy difference between
(A13)  the even configuration of chaBand the configuration 11l is
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+A?[(0.3811k*—0.3811k—1.35992

e =~ SER0+ mawel 2
Ba Xepl—0.85452-3.28732%,]}.  (A22)

even

71_
x[5(0.12121s 57~ 0.008 08 0.005 26 ») Consider then the next configurational step in the displace-

+&(—0.369 765;1—0.216 57 ment of the DB from left to right on the ramp, i.e., an odd-
parity type of configuration that is centered on #ta site,
+0.688 2Ce,)], (A19) i.e., thekth site is the one that has the maximum elongation.

) The energy of this configuration is:
and, on the other hand, the PNB in the homogendbpart
is given b a

given by Egdd(k)zEQEj’;)erszDB(—A X [A[(0.779 O
A

B
+0.77906 51— (0.164 7&+0.164 70]

even

h(B) _ h(B h(A 2 [ %A
Eoud — Eg, ):AEP(N)+mAwDB(E>

X[8(0.016 72: , 1 —0.007 65 +A?[(0.3895%2+0.779 0&+2.5620F £, *
+62(0.008 36, 1)]. (A20) +0.916 05-3.258 525 51} (A23)
Correspondingly, the energy barrier to overcome while
3. The ramp moving from sitek—1 to sitek is:

Consider that the ramp has a “slop4”, i.e., the mass of
the kth site in the ramp is

Mp(K) =mMa(1+kA). (A21) =AENY + mpwdp

CYA)
Ba
Note thatA>0 corresponds to an up ramp, while<0 to a 1
down ramp. Consider first a configuration of the even type X {A[(0.016 7X+1.160 23 £,
where the two sites with maximum elongation &re1l and —(0.007 6%+0.243 22

k. The corresponding configurational energy is found to be:

de(k) - Ecrauen(k)

+A?[(0.008 3&>+1.160 2&+3.921 99, *

r _ =h(A) 2 [ @A
Eeven(K)=Eg/ent mA‘”DB(E) +1.770 57 6.545 845 51}. (A24)
X{A[(0.7623k—0.3811F &, * At the dominant order in bottA ands,, one finds an in-
crease in the PNB for an up mass ramyp>0), and a de-
+(—0.157 0%+ 0.078 52] crease in the barrier for a down mass ramyp<0).
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