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Interaction of a discrete breather with a lattice junction
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We study the scattering of a moving discrete breather~DB! on a junction in a Fermi-Pasta-Ulam chain
consisting of two segments with different masses of the particles. We consider four distinct cases:~i! a
light-heavy~abrupt! junction in which the DB impinges on the junction from the segment with lighter mass,~ii !
a heavy-light junction,~iii ! an up mass ramp in which the mass in the heavier segment increases continuously
as one moves away from the junction point, and~iv! a down mass ramp. Depending on the mass difference and
DB characteristics~frequency and velocity!, the DB can either reflect from, or transmit through, or get trapped
at the junction or on the ramp. For the heavy-light junction, the DB can even split at the junction into a
reflected and a transmitted DB. The latter is found to subsequently split into two or more DBs. For the down
mass ramp the DB gets accelerated in several stages, with accompanying radiation~phonons!. These results are
rationalized by calculating the Peierls-Nabarro barrier for the various cases. We also point out implications of
our results in realistic situations such as electron-phonon coupled chains.

DOI: 10.1103/PhysRevE.66.036617 PACS number~s!: 63.20.Pw, 63.20.Ry, 87.10.1e, 66.90.1r
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I. INTRODUCTION

Static discrete breathers~DBs! are time-periodic, persis
tent, intrinsic localizedexact modes in nonlinear lattices
Rigorous proofs of their existence have been obtained
systematic studies of their properties were carried out us
various~approximate! complementary approaches, see, e
Refs. @1,2# for an overview. In contrast, as first noticed
numerical investigations and then justified theoretica
moving DBs exist asapproximatesolutions in nonlinear lat-
tices, both Hamiltonian and non-Hamiltonian~with dissipa-
tion and periodic forcing!. These solutions are known to b
rather stable~i.e., long lived! and have been an object o
constant investigation during the last decade, see Ref.@3# for
a nonexhaustive list.

Different physical systems in which there are realizatio
of ~moving! DBs include conjugated polymers@4,5#, charge-
density-wave materials~e.g., metal-halogen electronic chain
@6#!, Josephson ladders@7#, coupled electron-vibron lattice
systems@8#, and spin chains@9#. Sputtering on crystal sur
faces and damage tracks in certain mica minerals have
been attributed to moving breathers@10#. Moreover, the DBs
were found to play a non-negligible role in heat conduct
processes in thermal nonlinear lattices@11#. Experimentally,
breathers have been probed by ultrafast resonance Rama@6#
and inelastic neutron scattering@12# among other techniques

In a recent series of papers@13#, the problem of the inter-
action of a moving DB with an impurity was addressed in t
case of a lattice with nonlinear on-site potential and h
monic first-neighbor coupling. As it was shown, this intera
tion can lead to reflection, transmission or trapping of the
at the impurity, depending on the initial velocity, amplitud
and phase of the DB, as well as on the strength and sp
extent of the impurity.

Our objective here is to investigate the scattering of a
at a junction in a~nonlinear! Fermi-Pasta-Ulam~FPU! chain
consisting of two segments that are ‘‘slightly different’’–i.e
1063-651X/2002/66~3!/036617~13!/$20.00 66 0366
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for instance, with different interaction parameters or w
different masses of the particles in the two segments.
reason for choosing the FPU chain is simple. It has hist
cally provided a testbed for exploring different nonline
phenomena in discrete systems. In addition, it is one of
simplest nonlinear~polynomial! potentials amenable to som
analytical calculations.

Our preliminary numerical simulations indicate that the
two types of problems are qualitatively similar. Therefo
here we will concentrate exclusively on the second type
configuration, the one with slightly different masses on t
two sides of the chain. A physical realization of this config
ration could be in low-dimensional electronic materials w
different electron-phonon coupling or two segments with d
ferent isotopes~e.g., carbon isotopes in conjugated polyme
@4,5# and platinum isotopes in metal-halogen chains@6#!,
Josephson-junction arrays@7# with dissimilar interaction
strengths, optical fibers with two different refractive indic
@14#, etc. We note that the scattering of Toda solitons a
mass interface was studied previously@15#. To the best of our
knowledge, the scattering of a DB at such an interface
not yet been investigated.

The paper is organized as follows. In Sec. II we pres
the details of the FPU model in a homogeneous chain,
estimate of the Peierls-Nabarro barrier for moving DBs, a
finally, some details on the numerical initialization of a mo
ing DB. Section III contains results for both light-heavy an
heavy-light mass junctions, where we elaborate on the refl
tion and transmission~and eventually on the splitting! of the
DB. Interaction of the DB with both the up mass ramp a
the down mass ramp is discussed in Sec. IV, where we
plore DB reflection~with eventual trapping! and acceleration
~with eventual splitting!. In Sec. V we summarize our mai
findings and enumerate some of the open questions. De
of the Peierls-Nabarro barrier calculation, using a new p
turbative technique, for the various homogeneous and in
mogeneous cases are relegated to the Appendix.
©2002 The American Physical Society17-1
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II. THE MODEL

A. The FPU model

The FPU model represents a one-dimensional chain
particles with no on-site potential~i.e., an acoustic chain!,
with the Hamiltonian

H5(
n

Fmẋn
2

2
1

a

2
~xn112xn2a!21

b

4
~xn112xn2a!4G ,

~1!

wherea andb denote, respectively, the strengths of the l
ear and nonlinear nearest-neighbor interactions;a represents
the lattice constant~i.e., the equilibrium distancea5xn

eq

2xn21
eq between neighboring sites!, andm is the mass of the

particles. For simplicity, all these quantities~and those we
will introduce later! are expressed indimensionless units.
The corresponding equation of motion for a generic part
is:

mẍn5a ~xn111xn2122xn!1b @~xn2xn212a!3

2~xn112xn2a!3#. ~2!

In terms of the elongationsun5xn2xn
eq , it becomes

mün5a ~un111un2122un! 1 b @~un2un21!3

2~un112un!3#, ~3!

or, by introducing therelative elongations of neighboring
sites

tn5~xn2xn
eq!2~xn212xn21

eq !5xn2xn212a, ~4!

mẗn5a ~tn111tn2122tn!1b ~tn11
3 1tn21

3 22tn
3!.

~5!

As it was shown~see, for example Refs.@1,2# for an over-
view, and references therein, and Ref.@16#!, the FPU lattice
admits DB-like solutions~stationary, localized, time-periodi
modes! with periodsTDB that are smaller than the minimum
period of the phonon spectrum, i.e.,

TDB,p Am/a. ~6!

Also, as shown, for example, in Refs.@17,18#, the most lo-
calized of these modes are anodd-typemode with an ‘‘ap-
proximate’’ pattern of the amplitudes of the elongationsun of
the form Aodd( . . . ,0,21/2,1,21/2,0, . . . ) and aneven-type
mode @19# Aeven( . . . ,0,21,1,0, . . . ). Note that the terms
‘‘odd’’ and ‘‘even’’ do not refer to the symmetry of the am
plitude patterns. Odd indicates simply the fact that there
an odd~i.e., single! site of maximum amplitude, while eve
refers to the fact that there are two sites of even~absolute!
amplitudes. We keep this terminology~although it is some-
what ambiguous! since it is traditionally used in the litera
ture, see, e.g., Refs.@17,18#. The amplitudesA are deter-
mined by the interaction constantsa andb and by the DB’s
frequencyvDB52p/TDB . For given interaction constants
theA’s decrease with increasingTDB . On the contrary, keep
03661
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ing TDB fixed and decreasing the interaction constants g
erally leads to an increase in the amplitudesA. By approxi-
mate above we mean that~as seen in Ref.@18#! these patterns
are exact only for a pure even-order anharmonic lattice in
limit of increasing order of anharmonicity. Nevertheles
only minor corrections are needed in order to make th
patterns ‘‘more precise’’ solutions of the FPU lattice, the
symmetry being preserved. Mainly, these corrections refe
the fact that the DB can extend over more than three,
two sites, respectively, for odd and even modes. Although
theory, a DB has an infinite extension@with an exponential
decay of the amplitude of the relative elongation as o
moves far away from the center~maximum amplitude sites!
of the DB#, in practice, however, one can restrict the analy
to five, and four sites, respectively, for the two types
modes of the DB mentioned above.

To evaluate the relative elongations for the two config
rations, and their corresponding energies, we introduce
simple perturbative technique that uses the ratio between
square of the maximum phonon frequency and the squar
the DB frequency as the perturbation parameter:

«5
4a

m vDB
2

, ~7!

combined with a rotating wave approximation~RWA! ~see,
e.g., Refs.@1,2# and references therein!. The results of our
calculations, presented below and, in more detail, in the A
pendix, can be compared with the numerical results
Green’s function method~that is also based on RWA!. For
example, for the even-symmetry mode, our calculations@up
to O(«2)] agree generally up to an error of no more than 4
with the results of Ref.@20# obtained with Green’s function
method. The error in evaluating the configurations~as com-
pared with the results of theexactnumerical method of the
analytical continuation from the anticontinuous limit@21#! is
essentially connected with the limitations of RWA, and the
fore becomes progressively smaller for ‘‘heavier’’ DBs, i.e
DBs that are progressively further away~in frequency! from
the phonon band limit.

The primary ingredients of the analytic method are t
ansatz concerning the temporal evolution of particles’ el
gations:

un~ t !5Ajn cos~vDBt ! ~8!

~where A and jn are the amplitude and the shap
function, respectively!, together with the RWA that entails
neglecting higher-frequency harmonics@i.e., cos3(vDBt)
'(3/4)cos(vDBt)]. Including these elements in Eq.~3!, one
obtains an infinite set of nonlinear coupled equations for
shape function:

mvDB
2 jn5a~2jn2jn112jn21!

1
3

4
bA2@~jn2jn11!31~jn2jn21!3#. ~9!

Or, in terms of therelative elongations:
7-2
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tn~ t !5Azn cos~vDBt !, zn5jn2jn21 , ~10!

mvDB
2 zn5a~2zn2zn112zn21!

1
3

4
bA2~2zn

32zn11
3 2zn21

3 !. ~11!

Next, we consider the following expansion of the sha
function in terms of the small parameter«, see Eq.~7!:

jn5jn
(0)1«jn

(1)1«2jn
(2)1••• ~12!

and then proceed through the usual steps of a perturba
calculation. For details of these calculations, refer to the A
pendix.

The Peierls-Nabarro barrier for the homogeneous FPU chain

As illustrated in Fig. 1~upper panel! on an actual ex-
ample, the DB translates from one lattice site to another
continuously deforming its shape, alternately, between
odd-type of configuration and an even-type one. Theref
in a discrete lattice there is an energy cost associated
moving a nonlinear localized mode by a lattice constan
this represents the so-called Peierls-Nabarro barrier~PNB!,
see Ref.@22#. It can be estimated by calculating the ener
difference between even- and odd-type configurations.
results presented in the Appendix allow us to evaluate
PNB in a homogeneous chain~i.e., all particles with samea,
b, andm):

DEPN
h 5Eodd

h 2Eeven
h

5mvDB
2 S a

b D @0.008 36«2120.007 65

20.018 27«1O~«2!#, ~13!

where the superscripth refers to the homogeneous case.
expected, it is a very small energy barrier~as compared with
the one typically found in some optical chains, i.e., cha
with on-site nonlinear potential, see Ref.@22#!; for example,
for a very heavy DB,DEPN

h /Eodd
h ;2.1% only! This explains

the well-known fact that it is rather easy to create mob
DBs in an FPU chain, and also why in the first-order a
proximation in Ref.@23# this barrier was found to be zero. I
Fig. 2 we represent the dependence of the barrier on var
parameters:~i! DB’s periodTDB ~as expected, also see belo
the discussion on the generation of moving DBs, the PNB
larger for higher-frequency DBs; in the first order of th
perturbative expansion, PNB varies as 1/TDB

4 ), ~ii ! a, and
~iii ! b. At the first order in the perturbative expansion, t
PNB does not depend ona, but only on 1/b, i.e., it de-
creases with increasing nonlinearity. This feature can be
ily understood if one views the role of the nonlinearity
reducing particles’ excursions around equilibrium, and the
fore, reducing the difference between the odd- and even-
configurations, i.e., the PNB.~iv! Finally, onm ~note that, in
the first order of the perturbative expansion, the PNB va
asm2).
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B. DB generation and initialization

For simulation purposes, the static DBs were genera
numerically in the homogeneous FPU chain using the
tremely fast algebraic method recently introduced by Tsiro
@24#. As shown in Ref.@24#, this method, although approxi
mate, is generally more accurate than the RWA and ag
with the exact results of the anticontinuous limit meth
~which requires much longer computational times, see R
@21#! typically to 1% or even better.

In order to move these breathers, we used a simple
proximation of the systematic pinning mode excitati

FIG. 1. Temporal evolution of a DB’s configuration in thre
different simulations. Upper panel: homogeneous chain. Mid
panel: light-heavy junction,mB51.002; transmission of the DB.
Lower panel: light-heavy junction,mB51.04; reflection of the DB.
Notice the alternation between odd- and even-type configurati
TDB52.1. Recall that in these figures, as well as in all the sub
quent ones, the quantities plotted are dimensionless.
7-3
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method of Chenet al. @25#. Namely, we ‘‘kick’’ initially the
DB by assigning to the points of the lattice initial relativ
velocities that are a fractionl ~the ‘‘kicking coefficient’’! of
the gradient ofutnu, i.e.,

ṫn~ t50!5l ~ utn11u2utn21u!/2. ~14!

Note that this method is not so different from the ‘‘mo
empirical’’ methods used in Ref.@18# to obtain moving DBs.
We notice that, when starting to move, the DB first los
through phonon radiation in the lattice, a large part of
kinetic energy we assigned to it when kicking. The rest of
received energy is used to overcome the Peierls-Nabarro
rier, and, as already mentioned, the DB moves from o
lattice site to another by a continuous alternation betw
odd- and even- type configurations.

This alternation between the two types of configuratio
for a moving DB can be noticed when inspecting the tem
ral evolution of the potential~or kinetic! energy of the DB.
Indeed, the envelope of the temporal oscillations of DB
potential ~kinetic! energy presents a series of periodica
alternating relative maxima and minima, indicating the alt
nation between these configurations. The period between
such successive maxima~or minima! gives a rough estimate
of the time needed by the DB to move from one site
another. But no more than a ‘‘rough estimate,’’ because~i!
the real time a DB takes for this movement does not be
commensurability relation withTDB , ~ii ! the structure of the
envelope is more complex, due to the presence of other ‘‘s
ondary’’ frequencies of the DB@see Ref.@1#, and the discus-
sion in Sec. V#, and~iii ! there are some ‘‘imperfections’’ in
this periodic behavior of the envelope, that are connecte
the existence of a rather irregular time dependence of
relative phases of two neighboring sites~already mentioned
in Ref. @18#!. Probably, this is ultimately related to the no
exact character of a moving DB as a solution of the Ham
tonian lattice. Note also that a moving DB constantly los
energy while moving through the lattice, although at a ve
small ‘‘dissipation rate.’’ For example, as also shown in R
@26#, for a DB moving in a uniform lattice, this energy de
crease, if fitted to an exponential, corresponds to a decay

FIG. 2. Variation of the Peierls-Nabarro barrier as a function
breather time periodTDB , FPU chain parametersa, b, and mass
m. ~a! a51, b51, m51. ~b! TDB51.2, b51, m51. ~c! a51,
TDB51.2, m51. ~d! a51, b51, TDB51.2.
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on the order of;1026/unit time. This rate is higher for the
faster DBs. Also, as explained in detail by the same auth
the analysis of the temporal behavior~and, in particular, of
the extremal points! of the kinetic and potential energy a
lows one to evaluate the translational energy of a mov
DB, which was found to be at most 1% of the total energy
the DB. Not surprisingly, this value is of the same order
magnitude as the Peierls-Nabarro barrier.

Returning to the kicking method for moving a DB, w
make several other remarks. First that, as previously not
~see, e.g., Ref.@27#!, the ‘‘light’’ DBs ~i.e., those that are
relatively not too far in frequency above the phonon ba
limit ! are definitely easier to move than the ‘‘heavy’’ DB
~which are, by comparison, much more localized and the
fore much more sensitive to the discreteness of the latti!.
In terms of the initial kick, this means that the minimu
value of the kicking coefficientl for which one gets an
essentially regular motion of the DB@28# is larger for
‘‘heavier’’ DBs. Also, one notices that, in general, the velo
ity of the moving DB obtained through this kicking metho
seems first to increase with increasingl, and after that it
reaches a certain ‘‘saturation value,’’ i.e., it does no long
increase withl, but keeps a constant value. This leads to
rather narrow window of the possible values of the DB
velocities, which is somewhere around a tenth of t
phonons’ velocity~for example, fora5b51, a lattice con-
stanta510, and for a DB of periodTDB52.1, the values of
the velocities belong to a window of'@0.35,1.25#; note that
the sound velocity corresponds to 10 in the dimensionl
units!. In the simulations we used a chain with the first a
last point held fixed~i.e., fixed boundary conditions; thi
should not raise conceptual problems, as such points co
spond tom→`). Also, we tried to avoid the interferenc
between the observed phenomena and the phonons tha
flect on these fixed edges—and for this purpose we gene
used sufficiently long chains~so that the reflected phonon
do not come back to the interesting central regions during
observation period! @29#.

III. INTERACTION OF A DB WITH A JUNCTION

We now address the main problem in this paper. Cons
the junction between two semi-infinite FPU chains~let us
call them ‘‘A’’ and ‘‘ B, ’’ respectively, with the corresponding
subscripts for their characteristic parameters!. We fix the pa-
rameters of theA chainaA , bA , andmA . For theB chain,
we will fix the interaction parameters identical to those of t
A chain,

aB5aA , bB5bA , ~15!

and vary the mass of the particles,mB . Note that in all the
numerical simulations we setaA5bA51, as well as
mA5 1.

A DB is generated in theA part of the chain and is sent t
the junction with theB part. Depending on the differenc
between the masses of the particles in the two parts of
chain, the DB exhibits different behaviors at the junction.

f
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A. The Peierls-Nabarro barrier at the junction

In order to understand and predict the behavior of a m
ing DB at such a junction, the first step is to study the cha
in the Peierls-Nabarro barrier at the junction. Namely, to
termine what would be the equivalent of the odd- and ev
type configurations at the junction, and what would be
corresponding difference in the configurational energy. N
that in the case of an inhomogeneous chain the PNB is
fined as the difference between theglobal maximum and the
global minimum of the configurational energy. We consid
the case whend5(mB2mA)/mA is a small quantity, that we
use as a perturbation parameter for evaluating the chang
the odd and even configurations at the junction. Thus,
consider a ‘‘double’’ perturbation expansion of particles’ e
velope function:

jn5~jn,0
(0)1«Ajn,0

(1)1«A
2jn,0

(2)1••• !1d ~jn,1
(0)1«Ajn,1

(1)1«A
2jn,1

(2)

1••• !1d2 ~jn,2
(0)1«Ajn,2

(1)1«A
2jn,2

(2)1••• !1•••, ~16!

where«A is evaluated with respect to the parameters of thA
chain, i.e.,

«A5
4aA

mA vDB
2

. ~17!

Corresponding to the different configurations it has to exh
in order to traverse the junction, the DB encounters th
new energy barriers~refer to the Appendix for more details!.
These are, in the order of their appearance as the DB m
through the junction:

DEPN
j (I )5DEPN

h(A)1mAvDB
2 S aA

bA
D

3@d~0.137 93«A
2120.015 7310.005 26«A!

1d2~0.499 33«A
2110.216 5720.693 46«A!#.

~18!

Here DEPN
h(A) denotes the Peierls-Nabarro barrier in the h

mogeneousA chain, andj refers to the junction. This energ
barrier corresponds to the difference between the energ
the odd-type configuration I in the Appendix—for which th
site of maximum elongation is the last site in the partA of
the chain—and the energy of the even-type configuration
the homogeneousA chain.

DEPN
j (II )5DEPN

h(A)1mAvDB
2 S aA

bA
D

3@d~0.641 13«A
2120.148 9720.005 26«A!

1d2~0.750 93«A
2110.216 5720.688 20«A!#.

~19!

This energy barrier corresponds to the difference between
energy of the odd-type configuration III in the Appendix—
for which the site of maximum elongation is now the fir
03661
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site in the partB of the chain—and the energy of the eve
type configuration in the homogeneousA chain!. The last PN
barrier is associated with the difference between the ene
of the odd-type configuration in the homogeneousB chain
and the even-type configuration in the homogeneousA chain:

DEPN
j (III )5DEPN

h(A)1mAvDB
2 S aA

bA
D

3@d~0.779 06«A
2120.164 70!

1d2~0.389 53«A
21!#. ~20!

Note that for a heavy-light junction, i.e., ford,0, these
barriers are smaller than the PN barrier in the homogene
A part of the chain and therefore a DB that moves smoot
in region A will have no ‘‘energetic difficulties’’ to enter
regionB. On the contrary, for a light-heavy junction, i.e., fo
d.0, these barriers are larger than the PNB in partA of the
chain and one sees that, at the dominant orders in«A andd,
they increase in succession. Therefore, there appears the
sibility that a DB that arrives at such a junction cannot ov
come either the first, or the second, or the third barrier. T
presence of these barriers is confirmed by numerical sim
tions ~through fine tuning ofmB).

B. The light-heavy junction

We first present the generic results of our simulations
this case.

~a! A DB can continue its movement into regionB. Its
frequency is not~detectably! modified. The DB keeps on
losing energy in regionA, as well as in regionB, but at a
smaller rate in regionB, see Fig. 3. This might be connecte
to the fact that~given that it keeps essentially the same fr
quency! the DB is further away from the phonon band lim
in regionB than in regionA. Also, its velocity in regionB is
smaller than in regionA. This is related to the fact that a pa
of the ‘‘extra’’ energy that in regionA corresponded to its
movement as a whole~with a velocity vA) is now used for
the new, higher mean configurational energy, and also
overcome the correspondingly higher Peierls-Nabarro bar
in region B. Therefore, the extra kinetic energy, and corr
spondingly the velocityvB in region B are smaller than in
regionA.

FIG. 3. Energy of the DB for the three cases in Fig. 1.
7-5
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~b! The DB can reflect at the junction and return to t
regionA. Its frequency and energy~see Fig. 3! are not sen-
sitively modified by this reflection, and neither its veloci
~that only changes sign!.

These observations can be explained qualitatively on
basis of the results presented above for the PNB that a
~that keeps a constant periodTDB) has to overcome in orde
to continue its movement in regionB. The main conclusion
is that for a DB arriving at the junction, there exists a critic
value of the massmB5mcrit

j above which the DB canno
penetrate in regionB and is reflected to regionA. This criti-
cal value depends on the frequency of the DB, namel
increases with decreasingTDB ~i.e., it is larger for heavier
DBs!. However, it also depends on the velocity the DB has
regionA: it increases with increasingvA ~i.e., a more rapid
breather needs a larger massmcrit

j to be reflected than a
slower DB of the same frequency!. This can be readily un-
derstood: a more rapid DB in regionA has more ‘‘extra’’
energy ~above the Peierls-Nabarro barrierDEPN

h(A)) than a
slower one. Therefore, it may use this energy to overco
the Peierls-Nabarro barrier at the junction and to penetrat
region B, while a slower DB cannot overcome the junctio
barrier.

We present two sets of pictures of the cases when a g
DB ~a! moves in a homogeneous chain,~b! passes through a
light-heavy junction, and~c! is reflected at the light-heav
junction. Figure 1 shows the temporal evolution of the co
figurations of the DB in these three situations, while Fig
shows the movement of DB’s center along the chain, a
also the temporal evolution of the elongations of vario
particles affected by the DB.

C. The heavy-light junction

As already mentioned above, given that the PNB
creases at a junction withmB,mA , one can naively predic
that the DB will always penetrate and continue to move
regionB without any hindrance. Numerical simulations sho
that this is indeed the case—at least as long as the differ
betweenmB andmA is ‘‘sufficiently small.’’ For example, in
the particular case ofmB50.99~recall that in simulations we
took mA51) we studied the dependence of the characte
tics of the ‘‘transmitted’’ DB on those of the ‘‘incident’’ one
First of all, one notices that the transmitted breather ta
some time to ‘‘adjust’’ to the new environment~and
‘‘heavier’’ DBs take a longer time to adjust than th
‘‘lighter’’ ones!. During this period, the DB loses energy an
adjusts its final energy to the smaller mass of regionB.

The transmitted DB~within estimated errors! has the
same period as the incident one~i.e., the adjustment is suc
that it preserves DB’s frequency!. After this transient period
the DB reaches a constant ‘‘asymptotic’’ velocity. In gener
there is no simple relationship between this asymptotic
locity vB and the characteristics of the incident DB, name
its initial velocity ~in regionA) vA and its periodTDB .

However, there is a tendency towards ‘‘uniform’’ veloc
ties after transmission through the junction for a given D
Namely, for a DB with periodTDB and different velocities in
regionA, vA , the effect of entering regionB is to reduce the
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dispersion of these velocities, i.e., the dispersion of
asymptotic velocitiesvB is smaller@30#. This observation is
illustrated in Fig. 5 for a given DB~with TDB52.1) and for
three representative initial velocitiesvA ~chosen, respec
tively, as the lower and upper limits of the velocities th
could be obtained through the ‘‘kicking’’ method describe
above in Sec. II B, and one value in between these limits!.

It was relatively more difficult to investigate the depe
dence of the asymptotic velocityvB on DB’s periodTDB ,
simply because it is rather difficult with the kicking metho
to obtain the same velocity for DBs of different frequencie
However, we managed to obtain four DBs of periods vary
between 2.2 and 2.5~with a step 0.1) and almost~within
4%) the same initial velocity. The simulations show n
simple monotonic dependence ofvB on TDB .

FIG. 4. Propagation, transmission, and reflection of the DB
the three situations in Fig. 1. The associated motion of particle
the region of the DB is also shown.TDB52.1.
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INTERACTION OF A DISCRETE BREATHER WITH A . . . PHYSICAL REVIEW E66, 036617 ~2002!
Next, we focus on the most important part of this sect
~that will clarify the meaning of sufficiently small differenc
betweenmB andmA). Specifically, how does the behavior o
a given DB depend on the value ofmB? To analyze this, we
ran systematic simulations for a given DB~we chose one
with TDB52.1 and an initial velocityvA50.928, that corre-
sponds to a kicking coefficientl50.7), and for various val-
ues ofmB . The behavior of the DB at the junction is rath
complex, and can be described essentially as follows:
DB, entering the region of lower mass, has extra ene
During an ‘‘adjusting period’’~that might take from about ten
to a hundred DB periods!, this extra energy is redistribute
between:~i! the kinetic energy of DB’s translation as a who
~the DB is accelerated upon entering regionB); ~ii ! pertur-
bations~which we address later! in the A and also in theB
part of the chain; and~iii ! a slight decrease of transmitte
DB’s period~i.e., increase of its configurational energy!. The
redistribution of energy between these elements is a deli
process, and it depends on the mass difference betwee
gionsA andB. When the mass difference is small, say, le
than (mA2mB)/mA50.4, the predominant phenomena a
~i! and ~ii !—the perturbations being small-amplitude one
i.e., phonons that move rapidly far away from the junctio
in both parts,A andB.

When the mass difference is even larger, we find tha
part A there are not simply phonons that appear, but are-
flectedDB: the initial DB, arriving at the junction, is spli
into a reflected DB and a transmitted one. Moreover,
transmitted DB is usually~nonlinearly! unstable and subse
quently splits into two~or sometimes more! other DBs. See
Fig. 6 for a realization of these phenomena: the trajectory
the initial DB, the reflected one, the transmitted DB and
subsequent splitting into two other DBs. Figure 7 shows
energy variation associated with these phenomena. We
that the total energies of the resulting DBs never sum up
the initial energy due to the phonon losses in the chain
accompany all these processes. To our knowledge, such
splitting has not been noticed before. If we continue to
creasemB , the reflected DB~that is initially very weak en-

FIG. 5. A heavy-light (mB50.99) junction. The upper pane
depicts three trajectories@labeled ~a!, ~b!, and ~c!# of the DB
(TDB52.1) at an early stage, i.e., before the DB reaches the ju
tion, for various initial velocitiesvA . The lower panel represent
the same trajectories@~a!,~b!, and ~c!# in the asymptotic regime in
region B, showing that the DB acquires approximately the sa
asymptotic velocityvB .
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ergetically as compared to the transmitted one! becomes pro-
gressively more energetic, while the transmitted DB becom
progressively weaker and finally dissappears in regionB
leaving only rapidly moving phonons in its wake. The e
product is the ‘‘strong’’~i.e., large-amplitude! reflected DB
in regionA.

IV. INTERACTION OF A DB WITH A ‘‘MASS RAMP’’

A. The Peierls-Nabarro barrier for a ‘‘ramp’’

Consider that in regionB the mass of the particles varie
slightly, linearly, as one moves away from the junction poi
i.e., the mass of thekth particle inB part is

mB~k!5mA~11kD!, ~21!

whereD.0 corresponds to an up mass ramp, whileD,0 to
a down mass ramp, and for analytic calculation purposes

c-

e

FIG. 6. A heavy-light (mB50.50) junction. An initial DB
(TDB52.1) splits into a reflected and a transmitted DB. Later o
the transmitted DB further splits into two other DBs~the circles on
the figure indicate the regions of the splittings!. Note that when the
mass difference is even larger, the transmitted DB~that has progres-
sively less energy! might split into three or even four smaller DBs
DecreasingmB further leads practically to the disappearance of
transmitted DB, and to a substantial phonon creation.

FIG. 7. The energy associated with the phenomena describe
Fig. 6. The dashed-dotted lines on the figure delimit the interval
the occurrence of the splitting phenomena, when there is no
separation between the resulting DBs, i.e., no clear separatio
their energies.
7-7
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IOANA BENA, AVADH SAXENA, AND J. M. SANCHO PHYSICAL REVIEW E 66, 036617 ~2002!
consider thatuDu!1. A double analytical expansion in«A
and D allows us to estimate the shape function for t
equivalents of the odd- and even-type configurations,
therefore, to estimate the Peierls-Nabarro barrier the
must overcome in order to move up to sitek in regionB. The
barrier ~with details given in the Appendix! is found to be

DEPN
r ~k!5Eodd

r ~k!2Eeven
h(A)

5DEPN
h(A)1mAvDB

2 S aA

bA
D $D@~0.779 06k

10.779 06! «A
212~0.164 70k10.164 70!#

1D2@~0.389 53k210.779 06k12.562 07! «A
21

10.916 0523.258 52«A#%, ~22!

where the superscriptr refers to the ramp.

B. The ‘‘up ramp’’

This corresponds to the caseD.0. The main result is tha
a DB that enters theB part of the chain is finally reflected~at
some point within theB chain! and returns to partA. Note
that:

~a! The point where the DB is reflected, i.e., the critic
mass on the rampmcrit

r depends on the ‘‘slope’’D of the
ramp and is generally different from the valuemcrit

j that
corresponds to the case of an abrupt junction, see Sec. I
This can be seen by equating the~critical values of the! most
energetic odd-type configurations inB chain in the case of an
abrupt junction and of a ramp, and finding the relations
betweenmcrit

j andmcrit
r . In the particular case shown in Fig

8~a!, we note that the critical mass decreases with decrea
slope of the ramp and that it is smaller than the value for
junction case.

~b! For a given ramp, the critical mass increases w
increasing initial velocity of a given DB~with a fixed fre-
quency!, see Fig. 8~b!. Sometimes the DB can get trapped,
seen in the inset of this figure. Note, however, that if o
changes slightly DB’s initial position in regionA ~without
changing its initial velocity!, then the DB is no longer
trapped, but reflected, see the inset. Thus, trapping seem
be a rather delicate phenomenon, that depends on ‘‘h
~i.e., with what precise configuration and relative phase
ference between sites! the DB arrives at the trapping site.

~c! For a given ramp, the critical mass seems to incre
with a decrease in DB’s period~i.e., it is larger for ‘‘heavier’’
DBs for the same initial velocity!, see Fig. 8~c!. Note that in
all these cases there is a typical temporal evolution of
energy of the DB. Before entering regionB, one recognizes
the usual small energy loss in a uniform FPU chain; then
the ramp part there is a somewhat smaller energy loss~pre-
sumably the DB is a little bit further away from the phono
band! that becomes progressively smaller when the DB
decelerated on the ramp. At a certain moment, the DB st
to ‘‘descend’’ the ramp, to increase its velocity, and its e
ergy loss increases progressively, again up to the usual
in the homogeneous chain. When the DB ‘‘ascends’’
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ramp, its configurational energy averaged over a period~and
the corresponding Peierls-Nabarro barrier! increase at the ex
pense of its translational energy. Therefore, at a certain
ment, the DB does no longer have sufficient ‘‘extra energ

FIG. 8. The behavior of a DB on an up ramp depending on~a!
the slope of the ramp (TDB52.1) and~b! its initial velocity vA .
Note that the DB can also get trapped on the ramp; but, as show
the inset, a slight perturbation—for example, a slight modificat
of the initial conditions—can lead to the disappearance of trapp
(D5231025, TDB5 2.1). ~c! The behavior of a DB as a function
of the periodTDB of the DB. ~Note the limited possibilities to
obtain DBs of various periods with rigorously the same initial v
locity vA .)
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INTERACTION OF A DISCRETE BREATHER WITH A . . . PHYSICAL REVIEW E66, 036617 ~2002!
to overcome the barrier and it is reflected~and sometimes it
may get trapped!. Rolling down the hill, it recuperates it
translational energy and when it gets out from regionB and
reenters regionA it has almost the same velocity as its initi
one in regionA. The transmission and reflection are ‘‘almo
elastic,’’ in fact the DB loses a little bit less energy than
loses normally during its movement in a uniform chain.

C. The ‘‘down ramp’’

Consider now that in the regionB the mass of the par
ticles decreases from one particle to another with the sm
quantitymA D,0. An illustration of DB’s typical behavior is
given in Fig. 9. As the DB enters the ramp it accelerates w
a concomitant narrowing of its shape and the emission
some radiation~phonons!. This is clearly seen as a change
slope~left panel!. At later times we observe another chan
in slope signifying further acceleration of the DB with si
nificant radiation and emission of smaller breathers~right
panel!. One can also observe other secondary, small-en
DBs that may form at later stages. Nonetheless, these
nomena are highly complex and beyond our current leve
understanding.

V. CONCLUSIONS AND PERSPECTIVES

We have systematically explored the transport proper
of a discrete breather in a nonlinear chain comprising t
segments with differing mass, specifically in an FPU cha
We considered abrupt junctions~light-heavy and heavy-light!
as well as~up and down! mass ramps. We studied the tra
ping, reflection, transmission, and splitting of the DB as
function of junction type, mass difference, breather f
quency, and velocity. The DB splitting, trapping and refle
tion may take place either at the junction or at a particu
particle within the ramp. We also estimated the Peie
Nabarro barrier for the different cases to understand the
transport across a junction or within a ramp. However,
approach for calculating the PNB is based on the fundam
tal assumption that the period~frequency! of the DB does not
change ‘‘significantly’’ during its movement, which has i

FIG. 9. Acceleration of a DB on a down ramp. Siten50 cor-
responds to the last site in the regionA before the ramp. The slop
of the ramp isD50.0018. On they axis we approached the sites b
9.9 lattice constants (a510 units! in order to increase the resolu
tion.
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limitations, as shown by the simulations and indicated ab
in various cases. Therefore, we can rely on this method o
at a qualitative level.

In the present paper we exclusively focused on two s
ments with slightly different masses. It would be interesti
to explore a junction~or ramp! between two segments wit
the same mass but with differing strength of either the h
monic a or anharmonicb interaction parameter of the FPU
chain. This is under investigation and our preliminary resu
do not demonstrate a qualitatively different picture compa
to the mass case. In addition, if we consider anA-B-A mass
sandwich structure, then there is a distinct possibility that
breather will get trapped inside theB segment. By a suitable
choice of the mass profile one may envision a ‘‘breath
lens.’’ This is currently being explored and preliminary r
sults agree with these conjectures. We believe that our res
arenot specific to theFPU chain. Other nonlinear potentials
should lead to generically similar results. Many open qu
tions remain, e.g., better estimates for site-to-site trave
time of a DB, influence of the ‘‘secondary’’ frequencies
the DB on its behavior~for example, on the envelope o
temporal oscillations of energy!, a better understanding o
the ~nonlinear! instability that leads to DB splitting
~reflected/transmitted, and afterward to the secondary s
ting of the transmitted DB!, and consequently, to the com
plex behavior on a down ramp, etc. An experimental reali
tion of our findings in low-dimensional electron-phono
coupled materials, e.g., conjugated polymers@4,5# and metal-
halogen chains@6#, using differentisotopeswould be quite
instructive in unraveling the interesting transport propert
of breathers with potential applications.
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APPENDIX: PNB FOR VARIOUS CONFIGURATIONS

In this appendix we present the relevant details of estim
ing the Peierls-Nabarro barrier for the different cases d
cussed in the text.

1. The homogeneous chain

a. The odd-type mode

It is characterized byjn5j2n[(21)unuhn (hn , the re-
duced shape function, being positive for alln), together with
the conditionz05h051 ~that gives the normalization of th
shape function!. The equations for the reduced shape fun
tion read, respectively:
7-9
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L«5
22«~11h1!

~11h1!3
for n50,

hn5
«

4
~2hn1hn111hn21!1

L«

4
@~hn1hn11!3

1~hn1hn21!3# for n>1. ~A1!

Here

L5
3bAodd

2

4a
. ~A2!

Note the singular behavior in«21 of the square of the am
plitudeAodd

2 ~e.g., this means that the ‘‘heavier’’ the DB, th
larger its amplitude!. Using the series expansions in« for
jn , Eq. ~12!, and those for the reduced shape function in E
~A1!, and ordering the corresponding powers of«, one can
show that the serieshn

( j ) ~for a fixed j, i.e., for a fixed order
in the perturbative expansion in«) rapidly converges to zero
with increasingn; more rapidly for the case of smallj s than
for larger ones@31#. Finally, one is led to the following ex
pressions for particles’ shape function:

j051,

j15j21

5~21!@0.523 0510.151 11«10.085 49«21O~«3!#,

j25j2250.023 0510.156 91«10.126 43«21O~«3!,

j35j235~21!@0.005 80«10.042 39«21O~«3!#,

jn5O~1026!, unu>4, ~A3!

together with the dependence of the amplitudeAodd on DB’s
frequency, massm of the particles~through«), a, andb:

L5
3bAodd

2

4a

50.566 09«2120.599 6010.023 65«1O~«2!. ~A4!

All these lead finally to the following expression for th
configurational energy of the odd-parity mode:

Eodd
h 5mvDB

2 S a

b D @0.389 53«2120.164 70

20.123 86«1O~«2!#. ~A5!

b. The even-type mode

It is characterized by the presence of two ‘‘main peak
j052j151, and also by a staggered shape:jn52j2n11
5(21)unuhn , with the reduced positive shape functionhn .
In this case, the equations for the reduced shape func
read, respectively
03661
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L«5
42«~31h1!

81~11h1!3
for n50,1,

hn5
«

4
~2hn1hn111hn21!1

L«

4
@~hn1hn11!3

1~hn1hn21!3# for n>2. ~A6!

Here

L5
3bAeven

2

4a
. ~A7!

Finally, one is led to the following expressions for particle
shape function:

j052j151,

j252j2150.165 7910.317 67«10.138 06«21O~«3!,

j352j22

5~21!@0.000 4810.044 38«10.107 66«21O~«3!#,

j452j2350.000 12«10.011 15«21O~«3!,

jn5O~1026!, n>5, n<24, ~A8!

and the equation for the amplitude

L5
3bAeven

2

4a
5 0.417 35«2120.386 70

10.020 77«1O~«2!. ~A9!

The corresponding configurational energy

Eeven
h 5mvDB

2 S a

b D @0.381 17«2120.157 05

20.105 59«1O~«2!#. ~A10!

Note that Eeven
h ,Eodd

h , i.e., as already noticed@18#, the
even-type mode is more stable than the odd-type one.

2. The junction

We refer to Fig. 10 to follow the different configuration
of the DB moving from left to right through the junction. A
indicated in the text, Eq.~16!, we used a double perturbatio
expansion of the envelope function—in both«A ~evaluated
with respect to the parameters of theA chain, see the text!
andd to compute the different configurations. Note that t
convergence ind is not as good as that for«A ; namely,d
should be 102 times less than «A in order to get the same
degree of correction for the same order of expansion ind as
in «A . However, the details of the calculations are lengt
and, because they present no conceptual difficulty, not gi
here. Instead, we give the expressions for the configuratio
7-10
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INTERACTION OF A DISCRETE BREATHER WITH A . . . PHYSICAL REVIEW E66, 036617 ~2002!
energies of the DB in its successive appearances—as t
allow us to compute the various Peierls-Nabarro barrier
encounters.

a. Configuration I

It is of the odd type—it corresponds to the first panel
Fig. 10, the site of maximum elongation is in partA of the
chain. Its energy is found to be

Eodd
j (I )5Eodd

h(A)1mAvDB
2 S aA

bA
D

3@d~0.137 93«A
2120.015 7310.005 26«A!

1d2~0.499 33«A
2110.216 5720.693 46«A!#.

~A11!

Correspondingly, the first barrier that the DB has to ov
come is the one between an even-type configuration in
homogeneousA chain and this configuration, namely:

Eodd
j (I )2Eeven

h(A) 5DEPN
h(A)1mAvDB

2 S aA

bA
D

3@d~0.137 93«A
2120.015 7310.005 26«A!

1d2~0.499 33«A
2110.216 5720.693 46«A!#.

~A12!

b. Configuration II

It is of an even type and corresponds to the second p
of Fig. 10: there are two sites with large elongations, one
them in partA of the chain, the other one in partB of the
chain. The corresponding energy, up toO(«A

2 ,d2), is given
by

Eeven
j (II ) 5Eeven

h(A) 1mAvDB
2 S aA

bA
D @d~0.381 17«A

2120.078 52!

1d2~20.834 44«A
2120.325 0711.116 72«A!#.

~A13!

FIG. 10. Schematic representation of the succession of the
and even-type of configurations for a DB traversing a junction fr
left to right. The white and black circles correspond, respectively
particles in theA andB parts of the chain.
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Therefore, the energy difference between configuration
and I is

Eeven
j (II ) 2Eodd

j (I )52DEPN
h(A)1mAvDB

2 S aA

bA
D

3@d~10.243 24«A
2120.062 7920.005 26«A!

1d2~21.333 78«A
2120.541 6411.810 18«A!#.

~A14!

c. Configuration III

Again of the odd type, it corresponds to the third panel
Fig. 10, the site of maximum elongation is now in regionB
of the chain. Its energy is given by

Eodd
j (III )5Eodd

h(A)1mAvDB
2 S aA

bA
D

3@d~0.641 13«A
2120.148 9720.005 26«A!

1d2~0.750 93«A
2110.216 5720.688 20«A!#.

~A15!

Therefore, the energy barrier between configuration II a
configuration III is

Eodd
j (III )2Eeven

j (II ) 5DEPN
h(A)1mAvDB

2 S aA

bA
D

3@d~0.259 96«A
2120.070 4520.005 26«A!

1d2~1.585 37«A
2110.541 6421.804 92«A!#.

~A16!

After this, the DB is essentially in the homogeneousB part
@of massmB5mA(11d)]; the energies of the even- and od
type configurations inB are

Eeven
h(B) 5Eeven

h(A) 1mAvDB
2 S aA

bA
D

3@d~0.762 34«A
2120.157 05!1d2~0.381 17«A

21!#,

~A17!

Eodd
h(B)5Eodd

h(A)1mAvDB
2 S aA

bA
D

3@d~0.779 06«A
2120.164 70!1d2~0.389 53«A

21!#.

~A18!

Therefore, on the one hand, the energy difference betw
the even configuration of chainB and the configuration III is

d-

o
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Eeven
h(B) 2Eodd

j (III )52DEPN
h(A)1mAvDB

2 S aA

bA
D

3@d~0.121 21«A
2120.008 0810.005 26«A!

1d2~20.369 76«A
2120.216 57

10.688 20«A!#, ~A19!

and, on the other hand, the PNB in the homogeneousB part
is given by

Eodd
h(B)2Eeven

h(B) 5DEPN
h(A)1mAvDB

2 S aA

bA
D

3@d~0.016 72«A
2120.007 65!

1d2~0.008 36«A
21!#. ~A20!

3. The ramp

Consider that the ramp has a ‘‘slope’’D, i.e., the mass of
the kth site in the ramp is

mB~k!5mA~11kD!. ~A21!

Note thatD.0 corresponds to an up ramp, whileD,0 to a
down ramp. Consider first a configuration of the even ty
where the two sites with maximum elongation arek21 and
k. The corresponding configurational energy is found to b

Eeven
r ~k!5Eeven

h(A) 1mAvDB
2 S aA

bA
D

3$D@~0.762 34k20.381 17! «A
21

1~20.157 05k10.078 52!#
J.

s.
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,
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1D2@~0.381 17k220.381 17k21.359 92!

3«A
2120.854 5213.287 32«A#%. ~A22!

Consider then the next configurational step in the displa
ment of the DB from left to right on the ramp, i.e., an od
parity type of configuration that is centered on thekth site,
i.e., thekth site is the one that has the maximum elongati
The energy of this configuration is:

Eodd
r ~k!5Eodd

h(A)1mAvDB
2 S aA

bA
D3$D@~0.779 06k

10.779 06! «A
212~0.164 70k10.164 70!#

1D2@~0.389 53k210.779 06k12.562 07! «A
21

10.916 0523.258 52«A#%. ~A23!

Correspondingly, the energy barrier to overcome wh
moving from sitek21 to sitek is:

Eodd
r ~k!2Eeven

r ~k!

5DEPN
h(A)1mAvDB

2 S aA

bA
D

3$D@~0.016 72k11.160 23! «A
21

2~0.007 65k10.243 22!#

1D2@~0.008 36k211.160 23k13.921 99!«A
21

11.770 5726.545 84«A#%. ~A24!

At the dominant order in bothD and «A , one finds an in-
crease in the PNB for an up mass ramp (D.0), and a de-
crease in the barrier for a down mass ramp (D,0).
-

Y.

n-

-
,
A

g,

ys.
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