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ABSTRACT 

 

Exponentially-fitted numerical methods are appealing because L-stability is 

guaranteed when solving initial value problems of the form y y  ,  y a  , 

 ,  Re 0  . Such numerical methods also yield the exact solution when 

solving the above-mentioned problem. Whilst rational methods have been well 

established in the past decades, most of them are not ‘completely’ exponentially-

fitted. Recently, a class of one-step exponential-rational methods (ERMs) were 

discovered. Analyses showed that all ERMs are exponentially-fitted, hence implying 

L-stability. Several numerical experiments showed that ERMs is more accurate than 

existing rational methods in solving general initial value problem. However, ERMs 

have several weaknesses: i) every ERM is non-uniquely defined; ii) may return 

complex values; and iii) less accurate numerical solution when solving problem 

whose solution possesses singularity. Therefore, the first purpose of this study is to 

modify the original ERMs so that the first two weaknesses will be overcomed. 

Theoretical analyses such as consistency, stability and convergence of the modified 

ERMs are presented. Numerical experiments showed that the modified ERMs and 

the original ERMs are found to have comparable accuracy; hence modified ERMs 

are preferable to original ERMs. The second purpose of this study is to overcome the 

third weakness of the original ERMs where a variable step-size strategy is proposed 

to improve the accuracy ERMs. The procedures of the strategy are detailed out in this 

report. Numerical experiments have revealed that the affects from the 

implementation of the strategy is less obvious. 

 

Keywords: Exponential-rational method, Modified exponential-rational method, 

Variable-step-size strategy. 
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ABSTRAK 

 

Kaedah-kaedah berangka yang bersesuaian secara eksponen adalah menarik kerana 

kestabilan L adalah terjamin apabila menyelesaikan masalah nilai awal yang 

berbentuk y y  ,  y a  ,  ,  Re 0  . Kaedah-kaedah berangka yang 

sedemikian juga menghasilkan penyelesaian tepat apabila menyelesaikan masalah 

yang dinyatakan di atas. Walaupun kaedah-kaedah nisbah telah menjadi mantap 

dalam beberapa dekad yang lalu, sebahagian besar daripada kaedah-kaedah ini tidak 

bersesuian secara eksponen sepenuhnya. Baru-baru ini, satu kelas kaedah-kaedah 

eksponen-nisbah satu-langkah (ERM) telah ditemui. Beberapa analisis menunjukkan 

bahawa semua ERM adalah bersesuaian secara eksponen, maka mengimplikasikan 

kestabilan L. Beberapa pengujian berangka menunjukkan bahawa ERM adalah lebih 

tepat berbanding dengan kaedah-kaedah nisbah yang sedia ada dalam menyelesaikan 

masalah nilai awal umum. Walau bagaimanapun, ERM mempunyai beberapa 

kelemahan: i) setiap ERM tidak ditakrifkan secara unik; ii) boleh mengembalikan 

nilai-nilai yang kompleks; dan iii) penyelesaian berangka yang kurang tepat apabila 

menyelesaikan masalah yang penyelesaiannya mempunyai ketunggalan. Oleh itu, 

tujuan pertama kajian ini adalah untuk mengubah suai ERM yang asal supaya dua 

kelemahan yang pertama akan diatasi. Analisis teori seperti kekonsistenan, kestabilan 

dan penumpuan bagi ERM yang diubahsuai dibentangkan. Pengujian secara 

berangka menujukkan bahawa ERM yang telah diubahsuai dan ERM yang asal 

didapati mempunyai ketepatan yang setara; maka ERM yang diubahsuai lebih sesuai 

berbanding ERM yang asal. Tujuan kedua kajian ini adalah untuk mengatasi 

kelemahan ketiga ERM yang asal, di mana satu strategi saiz-langkah boleh ubah 

telah diperkenalkan untuk meningkatkan ketepatan ERM. Prosedur strategi telah 

dinyatakan secara terperinci dalam laporan ini. Pengujian secara berangka telah 

menunjukkan bahawa kesan daripada pelaksanaan strategi ini adalah kurang jelas. 

 

Kata-kata kunci: Kaedah eksponen-nisbah, Kaedah eksponen-nisbah diubahsuai, 

Strategi saiz-langkah boleh ubah. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background of the Study 

We consider the numerical solution of the initial value problem 

      , ,      .y x f x y y a      (1.1) 

If the solution of (1.1) is known to be periodic or oscillate with a known frequency, 

then a numerical integration formulae based on trigonometric functions is 

appropriate (Lambert, 1973). On the other hand, if the solution of (1.1) possesses 

singularities, then a numerical integration formulae based on rational functions will 

be much more effective. In both cases, unconventional methods are preferable as 

they adapt to the structure or to the solution of the problem better than conventional 

methods. 

 

Unconventional methods are special numerical methods which are developed to 

solve certain types of initial value problems, where in the main, conventional 

methods such as linear multistep methods and Runge-Kutta methods will perform 

poorly. Besides incorporating trigonometric functions and rational functions as non-

polynomial interpolants to form new special methods, other commonly used non-

polynomial interpolants are logarithmic functions and exponential functions. For 

excellent surveys and various perspectives on numerical methods based on various 

non-polynomial interpolants, refer to Lambert & Shaw (1965), Shaw (1967), 

Lambert (1973), Lambert (1974), Luke et al. (1975), Fatunla (1976), Wambecq 

(1976), Evans & Fatunla (1977), Fatunla (1978), Lee & Preiser (1978), Fatunla 

(1982), Fatunla (1986), Van Niekerk (1987), Van Niekerk (1988), Wu (1998), Wu & 
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Xia (2000a), Wu & Xia (2000b), Wu & Xia (2001), Ikhile (2001), Ikhile (2002), Wu 

& Xia (2003), Ikhile (2004), Ramos (2007), Okosun & Ademiluyi (2007a), Okosun 

& Ademiluyi (2007b), Teh et al. (2009), Yaacob et al. (2010), Teh (2010), Teh et al. 

(2011), Teh & Yaacob (2013a), and Teh & Yaacob (2013b). 

 

1.2 Statement and Scope of the Study 

All the works mentioned above have discussed various formulations of one-step 

rational methods as well as some rational methods in a multistep setting that are 

based on various forms of rational interpolants. These rational interpolants possess 

either both numerator and denominator being polynomial expressions or only one of 

them is a polynomial expression. However, Teh (2010) and Teh & Yaacob (2013b) 

suggested that the incorporation of exponential function into conventional rational 

function to form a new kind of rational interpolant in developing a rational method 

with special properties. The resulting methods are rational methods that are 

exponentially-fitted because they yield exact solutions when solving the problem 

y y  ,  y a  ,  ,  Re 0  .            (1.2) 

These exponentially-fitted methods are known as one-step exponential-rational 

methods (ERMs) which suggest an approximation to the theoretical solution of (1.1) 

at 1nx   is given by 

2

1

0
1

1

k
c hi

i

i
n

a h c e

y
bh










, 1 0bh  .             (1.3) 

where b , 1c , 2c  and ja  for 0,1, ,j k   are parameters that may contain  ny x  and 

higher derivatives of  ny x . Note that 0ja   if k  is set to 0. If an ERM has order p, 

then this particular ERM is called a p-ERM. Teh (2010) developed all ERMs of order 
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2 until order 5, together with their respective local truncation errors and stability 

functions. Stability analyses had showed that all ERMs developed are L-stable. 

Furthermore, all ERMs proposed were compared numerically with those existing 

rational methods in the articles mentioned above, using some test problems. 

Numerical results showed that almost all ERMs gave more accurate numerical 

solutions in solving (1.1). 

 

However, some of the ERMs are less accurate if compared to the existing rational 

methods of Ikhile (2001) and Ramos (2007) when solving problem in (1.1) whose 

solution possesses singularity. A solution to this could be found in the works by 

Ikhile (2002) and Ikhile (2004). Ikhile (2002) considered an extrapolation method 

involving rational method as basic integrator and a variable step-size strategy was 

embedded. A similar approach was considered in Ikhile (2004). Findings from both 

papers showed that extrapolation approaches with step-size control are more accurate 

than those extrapolation approaches with constant step-size especially in solving 

problem whose solution possesses singularity. In view of this, with the variation in 

the step-size, the numerical results of ERMs can be improved when solving problem 

(1.1) whose solution possesses singularity. Therefore, a variable step-size strategy 

will be introduced in this study for numerical implementations purposes. 

 

Despite the strong stability characteristics and better accuracies of ERMs in (1.3), 

there are two shortcomings of ERMs. Firstly, there are actually two different ERMs 

for each order of accuracy due to the fact that two different expressions of 2c  

emerged during the derivation process. In other words, a p-th order ERM is not 

unique but two different methods. At this moment, no criterion or condition has been 
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devised to determine which ERM is better for the same order of accuracy. In view of 

this, we wish to modify the original ERM of Teh (2010) and Teh & Yaacob (2013b) 

so that the modified ERM will yield only one method for each order of accuracy. 

 

Secondly, the parameter 
2c  of each ERM in (1.3) may contain an expression with 

square root. In other words, there are times where ERM will produce numerical 

solutions that are complex numbers due to the square root evaluations of the 

parameter 2c . In order to retrieve numerical solutions that are only real numbers, Teh 

(2010) and Teh & Yaacob (2013b) chose to consider the real parts of the resulting 

complex values and ignored the imaginary parts of the complex values that were 

found numerically to be very small. However, by ignoring the imaginary parts of the 

complex values will somehow affect the degree of accuracy of the numerical 

solutions. Therefore, we wish to modify the original ERM of Teh (2010) and Teh & 

Yaacob (2013b) so that the modified ERM does not involve square root evaluations 

but at the same time retain the L-stability. 

 

1.3 Objectives of the Study 

From the statements and scopes made in Section 1.2, it is clear that our main 

objectives are: 

a) To develop a new class of one-step modified exponential-rational methods 

for the numerical solutions of (1.1); and 

b) To develop a strategy of variation in step-size for the new modified 

exponential-rational methods as well as for those existing one-step rational 

methods. 
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1.4 Significance of the Study 

This research is of significance to the domain of unconventional methods based on 

rational functions as it extends the knowledge that currently exists in that field. This 

is because a new class of one-step modified exponential-rational methods that are 

free from the shortcomings of the original exponential-rational methods, is derived. 

At present, these kind of rational methods have never been reported elsewhere. 

Another important discovery is that the variation step-size strategy for conventional 

one-step method such as Runge-Kutta method, can be easily extended to 

unconventional one-step method such as one-step rational method. 

 

1.5 Outline of Report 

In Chapter 2, we review some rational methods found in the literature, together with 

their rational interpolants, local truncation error analyses and stability analyses. 

 

Chapter 3 is about the developments of a new class of modified exponential-rational 

methods. Generalizations of the new methods, corresponding local truncation errors 

and absolute stability analyses are presented. Generalized order of consistency and 

convergence are also presented. An example of modified exponential-rational 

method is generated and compared with other existing rational methods in the same 

order in solving some test problems. 

 

Chapter 4 is about the implementation of variation step-size strategy on rational 

methods. Numerical experimentations are carried out to illustrate the efficiency of 

the variation step-size strategy in improving the numerical accuracy. 
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Chapter 5 contains some summaries of our findings in this study and several 

recommendations for future research. 



CHAPTER TWO 

LITERATURE REVIEWS 

 

2.1 Introduction 

In this chapter, an introduction to the first order initial value problems will be carried 

out in the next section, followed by an extensive discussion on unconventional 

methods that are based on rational functions. We also note that the variables ‘h’ 

appear in this chapter and the following chapters are referred as step-size of 

numerical methods. 

 

2.2 Initial Value Problems For First Order Ordinary Differential Equations 

A first order ordinary differential equation    ,y x f x y   together with an initial 

condition constitutes an initial value problem 

      , ,   .y x f x y y a     (2.1) 

The most important theorem is the standard theorem which states the sufficient 

conditions for a unique solution of (2.1) to exist. This theorem is given as below 

(Lambert, 1991): 

 

Theorem 2.1 (Existence of unique solution of an initial value problem) 

Let  ,f x y , where :f     , be defined and continuous for all  ,x y  in the 

region D defined by a x b  , y  , a and b are finite, and let there exists a 

constant L such that 

    , , * *f x y f x y L y y    (2.2) 
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holds for every    , , , *x y x y D . Then for any  , there exists a unique 

solution  y x  of the problem (2.1) where  y x  is continuous and differentiable for 

all  ,x y D . 

 

The requirement (2.2) is known as a Lipschitz condition and the constant L as a 

Lipschitz constant. If  ,f x y  is differentiable with respect to y, then from the mean 

value theorem 

    
 

 
,

, , * * ,
f x y

f x y f x y y y
y


  


 (2.3) 

where y  is a point in the interior of the interval whose end-points are y and *y , and 

 ,x y ,  , *x y  are both in the region D (Lambert, 1973). Therefore, if we choose 

 
 

 
,

,
sup ,
x y D

f x y
L

y





 (2.4) 

then condition (2.2) of Theorem 2.1 is satisfied (Lambert, 1973). 

 

If there are more than one first order ordinary differential equations that need to be 

solved at one time, then we are facing a system of m simultaneous first order 

ordinary differential equations in m dependent variables 1y , 2y , …, my . If each of 

these variables is defined at the same initial point, then we have an initial value 

problem for a first order system (Lambert, 1991) 

 

   

   

   

1 1 1 2 1 1

2 2 1 2 2 2

1 2

, , , , , ,

, , , , , ,

                                              

, , , , , .

m

m

m m m m m

y f x y y y y a

y f x y y y y a

y f x y y y y a







  

  

  





 



 (2.5) 
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For simplicity, system (2.5) can also be expressed in vector form by introducing the 

following vector notation: 

 
T

1 2 my y yy  , 

 
T

1 2 my y y   y  , 

 

 

 

 

1 1 2

2 1 2

1 2

, , , ,

, , , ,
,

, , , ,

m

m

m m

f x y y y

f x y y y
x

f x y y y

 
 
 

  
 
 
 

f y









, 

 

 

 

 

1

2

m

y a

y a
a

y a

 
 
 

  
 
 
 

y


, 

and 

1

2

m









 
 
 
 
 
 


. 

Hence, the vector form of system (2.5) is 

    , ,   x a   y f y y . (2.6) 

 

Theorem 2.1 readily generalizes to give necessary conditions for the existence of a 

unique solution to system (2.6); where the region D is now defined by a x b  , 

iy    for 1,2, ,i m  , and conditions (2.2) is replaced by the condition 

    , , * * ,x x L  f y f y y y  (2.7) 

where  ,x y  and  , *x y  are in D, and     denotes a vector norm (Lambert, 1973). 

If  ,xf y  is differentiable with respect to y, then from the mean value theorem 
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,

, , * * ,
x

x x


  


f y
f y f y y y

y
 (2.8) 

where the notation implies that each row of the Jacobian  ,x f y y  is evaluated at 

different mean values which are internal points of the line segment from  ,x y  to 

 , *x y , all of which are points in region D (Lambert, 1973). Therefore, if we choose 

 
 

 
,

,
sup ,
x D

x
L






y

f y

y
 (2.9) 

then condition (2.7) is satisfied (Lambert, 1991). 

 

Some of the solutions of scalar problem (2.1) and system (2.6) can be obtained 

analytically. When an initial value problem can be solved analytically, then this 

particular problem has one theoretical solution for (2.1) and m theoretical solutions 

for (2.6). Numerical integration formulae for problems (2.1) and (2.6) are used when 

they cannot be solved analytically, where theoretical solution(s) cannot be obtained. 

Numerical integration formulae will give approximate solutions for the theoretical 

solutions. There are three popular integration methods for problems (2.1) and (2.6). 

We can either use linear multistep methods, predictor-corrector methods or Runge-

Kutta methods to obtain the approximations for initial value problems. These 

numerical methods are classical numerical methods and can be found in most text 

books on numerical solutions of initial value problems. For more information on 

conventional numerical methods for initial value problems, see Henrici (1962), 

Milne (1970), Gear (1971), Stetter (1973), Lambert (1973), Jain (1984), Butcher 

(1987), Fatunla (1988), Lambert (1991), Hairer & Wanner (1991), Hairer et al. 

(1993), Iserles (1996) and Butcher (2003). 
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2.3 Unconventional Methods Based On Rational Functions 

Let us consider the initial value problems (2.1) where y , f   and  ,x a b  a 

finite interval on the real line. Conventional one-step scheme is given by 

  1 , ,n n n ny y h x y h    (2.10) 

where  , ,n nx y h  is the increment function; and conventional linear multistep 

method is described by 

 
0 0

k k

j n j j n j

j j

y h f  

 

   (2.11) 

where j  and j  are real coefficients. The basic formulation of (2.10) and (2.11) is 

based on the local representation of a polynomial of the theoretical solution to (2.1). 

If (2.10) and (2.11) were used to pursue the numerical solutions that possess 

singularities, then (2.10) and (2.11) fail woefully near the singular points (Lambert, 

1973; Fatunla, 1982; Van Niekerk, 1988; and Ikhile, 2001). This is because (2.10) 

and (2.11) are formulated on the basis that the initial value problems (2.1) satisfy the 

existence and uniqueness theorem, so that polynomial interpolation can be applied 

quite successfully in the formulation (Ikhile, 2001). 

 

A natural step would appear to be the replacement of the polynomial function for 

both (2.10) and (2.11), by a rational function due to its smooth behaviour in the 

neighbourhood of singularities (Ikhile, 2001). Lambert & Shaw (1965) were the first 

researchers to use rational interpolant in developing one-step rational methods that 

are suitable to solve (2.1) whose solutions possess singularities. Lambert & Shaw 

(1965) had assumed that the theoretical solution of (2.1) can be represented locally in 

the interval  1,n nx x   by the rational interpolant of the form (Wambecq, 1976) 
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 nP x

F x
b x




 (2.12) 

where  
0

n i

n ii
P x a x


  is a polynomial of degree n; b and ia  for 0,1, ,i n   are 

parameters that may contain approximations of  ny x  and higher derivatives of 

 ny x . On imposing the requirements that  n ny F x ,  1 1n ny F x   and 

     s s

n nf F x , one gets a class of one-step explicit rational methods based on 

interpolant (2.12) which involve the first  1s   derivatives of y, which is given by 

(Lambert, 1973) 

 
 

   

     

11

1 1
1

,  0,1,2,
! ! 1

s si ss
i n n

n n n s s
i n n

y yh h
y y y s

i s s y hy



 


   
 

  , (2.13) 

where, in the case 0s  , the term 
1 !

is

i

h

i

  is taken to be zero. The local truncation 

error of (2.13) is 

 
 

   
    
   

 

2
1

2
2 32

2 ! 1

s
s

ns s

n s

n

y xh s
y x O h

s s y x




 

 
  

  
  

, (2.14) 

and we can say that method (2.13) has order 1s  . Each method of the class (2.13) is 

seen to be truncated Taylor series with a rational correcting term (Lambert, 1973).  

On applying (2.13) to the test equation given in (1.2), the stability functions of 

method (2.13) for 0,1,2,s    can be easily obtained. The value s decides the 

number of derivatives to be evaluated in (2.13) i.e. a total of 
 m

ny  for 

1,2, , , 1m s s  . The higher the value of s, the more derivatives evaluations need 

to be carried out, which might be time consuming especially in solving large scale 

problems. Lambert & Shaw (1965) also showed that implicit one step formulae, 

explicit and implicit multistep formulae were possible based on interpolant (2.12). 



 

13 

 

According to Fatunla (1986), Fatunla (1988), Ikhile (2001) and Ikhile (2004), the 

very first multistep method based on rational interpolant was developed by Luke et al. 

(1975). Luke et al. (1975) suggested a replacement of the rational interpolant (2.12) 

by the generalized rational function 

 
 

 
m

n

P x
F x

Q x
            (2.15) 

where  
0

m i

m ii
P x a x


  and  

1
1

n i

n ii
Q x b x


   are polynomials of degree m and 

n respectively. We note that ia  and ib , are parameters that may contain 

approximations of  n jy x 
 and higher derivatives of  n jy x 

 for  0 1j k , where k 

is the step number. Luke et al. (1975) had developed the simplest two-step predictor-

corrector formulae given by 

  
 

2

1 1 1

2

1 1

2 2

2 2

n n n n n

n

n n n

y y y hy y
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and 
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           (2.17) 

respectively. According to Fatunla (1986) and Ikhile (2004), higher order formulae 

are quite unwieldy and their generalized formulations are almost impossible. The 

approach to derive these predictor-corrector methods can be found in Luke et al. 

(1975), Fatunla (1986), Fatunla (1988) and Ikhile (2004). 

 

Later, Lambert (1974) also quoted a selection of one-step rational methods based on 

some specifications of rational interpolant given by (2.15). In the case of one-step 

methods, we note that ia  and ib  of (2.15) are parameters that may contain 

approximations of  ny x  and higher derivatives of  ny x . On the other hand, in the 
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case of multistep methods, we note that ia  and ib  are parameters that may contain 

approximations of  n jy x 
 and higher derivatives of  n jy x 

 for   0 1 1j k  , 

where k is the step number. Lambert (1974) had quoted five examples of one-step 

rational methods and two examples of 2-step rational methods, together with their 

corresponding order conditions and stability properties. All of these methods in 

Lambert (1974) are all component applicable to the system (2.6).  For those who are 

interested with these methods, one can refer to Lambert (1974). 

 

For the discussion of order condition, we pick the simplest form derived from 

rational function    0 0F x a b x   i.e. 

 
1

n n
n n

n n

hy y
y y

y hy



 


. (2.18) 

Method (2.18) can also be obtained by using 0s   in equation (2.13). From (2.18), 

there are two things that we need to take good care of. Firstly,  y x  and  y x  of 

initial value problems (2.1) must not vanish simultaneously (Lambert, 1974). 

Secondly, if h is such that n ny hy  vanishes, we must choose another value for h 

(Lambert, 1974).  Similar to the usual procedure for linear multistep methods, we can 

associate a non-linear operator with each rational method derived from (2.15). For 

method (2.18), the operator is  ;P z x h    defined as 

      
   

   
; ,

hz x z x
P z x h z x h z x

z x hz x


      

 

where  z x  is an arbitrary function such that  z x  and  z x  do not vanish 

simultaneously for all  ,x a b  (Lambert, 1974). If    1; pP z x h O h     for 

sufficiently differentiable  z x , we can say that the method has order p, and the 
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local truncation error is  1 ;n nT P y x h     , where  y x  is now taken to be the 

theoretical solution of the initial value problems. Lambert (1974) had proven that 

method (2.18) is L-stable. Below is the definition of A-stability follow by the 

definition of L-stability (Lambert, 1973): 

 

Definition 2.1 (A-stability) 

A numerical method is said to be A-stable if its region of absolute stability contains 

the whole left-hand half plane Re 0h  . 

 

Definition 2.2 (L-stability) 

A one-step numerical method is said to be L-stable if it is A-stable and, in addition, 

when applied to the scalar test equation y y  ,   a complex constant with 

Re 0  , it yields  1n ny R h y  , where   0R h   as Reh  . h  is the 

step length and  R h  is the stability function for the one-step method. 

 

Besides multistep methods mentioned in Lambert (1974) and those from Luke et al. 

(1975), Fatunla (1982) had suggested that the theoretical solution of (2.1) is locally 

approximated by 

  

1

,

1
k k

r

r

r

A
F x

a x





 (2.19) 

where A and ra  for  1 1r k  are parameters that may contain approximations of 

 n jy x   and higher derivatives of  n jy x   for   0 1 1j k  , where k is the step 

number. The resultant algorithms are k-step explicit rational methods for general 

initial value problems as well as problems whose solutions possess singularities. The 
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singularities are the poles of (2.19) and could be overstepped by adjusting the step-

size (Fatunla, 1982). The proposed algorithms are stable and their order corresponds 

with the step number k (Fatunla, 1982). 

 

Consider the case when the denominator of (2.19) is linear, that is 1k  .  Since the 

order corresponds with the step number k, therefore the explicit one-step method 

derived from (2.19) will always have order 1. This one-step explicit method is given 

by 
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. (2.20) 

The non-linear operator  ;P z x h    associate with method (2.20) is specified by 

    
 

   

2

;
z x

P z x h z x h
z x hz x

     
, (2.21) 

where  z x  is an arbitrary function with the constraint that  z x  and  z x  do not 

vanish simultaneously for all  ,x a b . The method (2.20) is said to be of order p if 

   1; pP z x h O h     and the local truncation error 1nT   is given by  ;nP y x h    

where  y x  is taken to be the theoretical solution to (2.1). Fatunla (1982) also 

proposed a 2-step scheme with 2k   which yield the following integration formula, 
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           (2.22) 

with 
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Fatunla (1982) also gave the following generalization of the k-step rational methods 

based on interpolant (2.19) as 

 

1

1

n
n k k

r

r

r

y
y

a x







 (2.23) 

with ra  for  1 1r k  are parameters that may contain approximations of  n jy x 
 

and higher derivatives of  n jy x 
 for   0 1 1j k  , where k is the step number.  

Similar to a linear multistep method, a k-step method based on (2.23) also requires 

 1k   starting values, which can be generated by one-step method. In Fatunla 

(1986), method (2.20) was used as the basic integrator to form a polynomial 

extrapolation scheme and a rational extrapolation scheme. According to Fatunla 

(1986), the rational extrapolation scheme is more efficient and more accurate than 

the polynomial extrapolation scheme in solving a problem whose solution possesses 

singularity. 

 

Van Niekerk (1987) and Van Niekerk (1988) had claimed that the resultant 

algorithms approximated by the interpolant function (2.19) can only be applied if the 

initial value 0 0y  . While in the case of an initial value 0 0y  , the numerical result 

will fail at the beginning of the integration. Hence, Van Niekerk (1987) had 

developed a one-step rational method which can be applied to an initial value 

problem without any restriction on the initial value. Let the theoretical solution  y x  

of (2.1) be approximated by (Van Niekerk, 1987) 

 
1

n
n n

n n

b
y a

c x
 


 (2.24) 
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where 
na , 

nb  and 
nc  are parameters that may contain approximations of  ny x  and 

higher derivatives of  ny x . After some algebraic manipulation involving Taylor 

series expansion of  1ny x  , Van Niekerk (1987) developed the following one-step 

rational method 
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2

n

n n
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h y
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y hy



 

 
.            (2.25) 

Van Niekerk (1987) had claimed that method (2.25) is a first order method.  

However, upon careful reviews and inspections, we have found out that method (2.25) 

is actually a second order method. Hence, we make a correction to the work of Van 

Niekerk (1987).  Method (2.25) has been applied successfully to a problem whose 

solution possesses singularity and a problem with oscillatory property. Numerical 

results had shown that method (2.25) produces better results compare to the method 

(2.22) that proposed by Fatunla (1982), when solving problem whose solution 

possesses singularity. Algorithm (2.24) can be easily generalized to a higher order 

algorithm. For instance 
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n n n
n

n n n n

a b x
y

c x d x




 
, (2.26) 

where na , nb , nc  and nd  are parameters that may contain approximations of  ny x  

and higher derivatives of  ny x . According to Van Niekerk (1987), the rational 

method that developed through the approximation algorithm (2.26) yields a second 

order method. However, our reviews and inspections reveal that the rational method 

that developed through the approximation algorithm (2.26) is actually a third order 

method. Hence, we make another correction to the work of Van Niekerk (1987). 

Numerical results generated from the method corresponding to (2.26) compare 
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favourably to the numerical results obtained with a fourth order multistep method of 

Fatunla (1982). 

 

In Van Niekerk (1988), he made another attempt to propose a generalized higher 

order one-step rational method which can be applied to an initial value problem 

without any restriction on the initial value. Let the theoretical solution  y x  of (2.1) 

be approximated by a finite continued fraction defined by 
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 (2.27) 

where k denotes the order of the function  kT x  and ia  for 0,1, , , 1i k k   are 

parameters that may contain approximations of  ny x  and higher derivatives of 

 ny x . Van Niekerk (1988) had considered the approximation of  y x  by 

   1
1 0

2

,
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n
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n

a x
T x y a
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 (2.28) 

where ny  denotes the approximate value of  ny x , the final integration formula is 
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. (2.29) 

Notice that (2.29) is identical to (2.25) of Van Niekerk (1987). According to Van 

Niekerk (1988), the order condition of the method will correspond to the degree of 

the function (2.27). In other words, method (2.29) should be a first order method 

because the corresponding function  1T x  is in first degree. Van Niekerk (1988) also 
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gave the derivations of a second order method which correspond to  2T x  and a third 

order method which correspond to  3T x . However, our reviews and inspections 

reveal that method (2.29) which based on  1T x  is not a first order method but 

actually a second order method; the method correspond to  2T x  is not a second 

order method but actually a third order method; and the method correspond to  3T x  

is not a third order method but actually a fourth order method. In view of this, we can 

say that a method which corresponds to function  kT x  is a  1k  -th order method.  

Hence, we make some corrections to the work of Van Niekerk (1988). Van Niekerk 

(1988) had shown that the structure of a method became more complicated when we 

increase the order of the method, which also imply increasing the degree of function 

(2.27). This makes the derivations of higher order methods become more difficult.  

However, numerical results had shown that these three methods of order 2, 3 and 4, 

are able to solve problem whose solution possesses singularity, stiff initial value 

problem and stiff system of non-linear equations accurately. 

 

Ikhile (2001) had considered for the solution of initial value problem (2.1), the 

rational interpolant is given by 
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, 1K  , 0l  , 0K l  ,          (2.30) 

where 
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 , 1K  , 0l  , 0K l  .           (2.31) 

Based on the interpolant in (2.30), Ikhile (2001) had considered the one-step rational 

method as 
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, 1K  , 0l  , 0K l  ,          (2.32) 

where 

 1 1

0

K l
j

K l n j n

j

P x a x


  



 , 1K  , 0l  , 0K l  ,          (2.33) 

for the initial value problems (2.1) where 
1ny 
 and  1ny x   are the numerical and 

theoretical solutions of (2.1) respectively. From (2.32) and (2.33), we note that A, jb  

for  1 1j K  and ja  for   0 1j K l   are parameters that may contain 

approximations of  ny x  and higher derivatives of  ny x . Ikhile (2001) had showed 

that the attainable order of the method (2.32) is at least 2 1K l  . The rational 

interpolant (2.30) is then specialized to take the form of 
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.           (2.34) 

In the sense of (2.34), Ikhile (2001) had proposed the specialized one-step rational 

method given by 
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,           (2.35) 

with order of accuracy equals to 1K  . From (2.35), we note that B, A and jb  for 

 1 1j K  are parameters that may contain approximations of  ny x  and higher 

derivatives of  ny x . Ikhile (2001) gave some examples of (2.35) for different 

values of K. For 1K  , (2.35) becomes 
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,            (2.36) 
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which is a second order method. Notice that (2.36) is identical to (2.25) and (2.29).  

For 2K  , (2.35) becomes 
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,          (2.37) 

which is a third order method. Ikhile (2001) had claimed that 
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           (2.38) 

is the equivalent formulation of (2.35). Ikhile (2001) had revealed that (2.36) and 

(2.37) are quite impressive when solving (2.1) whose solutions possess singularities. 

 

Ikhile (2002) gave a more general rational interpolant compare to (2.30) which is 

given by 
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where 
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 ,           (2.40) 
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 ,           (2.41) 

for 1k  , 1s  , 0m  , 1s m  , 0k s  . Based on the interpolant in (2.39), Ikhile 

(2002) had considered the one-step rational method as 
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where 



 

23 

 

 1 1

0

m
j

m n j n

j

Q x d x 



 ,            (2.43) 
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 ,            (2.44) 

with 1k  , 1s  , 0m  , 1s m  , 0k s  , for the initial value problem (2.1). We 

note that 1ny   and  1ny x   are the numerical and theoretical solutions of (2.1) 

respectively. From (2.42), (2.43) and (2.44), we note that jb  for  1 1j k ; jd  for 

 0 1j m  and ja  for   0 1j k s   are parameters that may contain 

approximations of  ny x  and higher derivatives of  ny x . Ikhile (2002) had shown 

that the attainable order of the method (2.42) is 2 1m k s   . According to Ikhile 

(2002), (2.42) with 1k s   and 0m   yields the rational methods given by (2.13).  

For 1k s   and 0m  , Ikhile (2002) had obtained the method given by (2.36) and 

used it as a basic integrator to form a polynomial extrapolation scheme and a rational 

extrapolation scheme. According to Ikhile (2002), the rational extrapolation scheme 

is more accurate than the polynomial extrapolation scheme in solving a problem 

whose solution possesses singularity. 

 

Ikhile (2004) had showed a class of one-step rational methods given in the form of  

1

1

1

1

n
n k

j

j n

j

y
y

b x









, 1k  ,           (2.45) 

where jb  for  1 1j k  are parameters that may contain approximations of  ny x  

and higher derivatives of  ny x . The process of obtaining the method is by matching 

with its Taylor’s series, and solve for the parameters jb  for  1 1j k . According to 
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Ikhile (2004), the order of (2.45) is equals to k. For 1k  , (2.45) reduces to (2.18) 

while for 2k  , the following method is obtained 
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.          (2.46) 

Next, methods (2.36) and (2.46) were used as basic integrators to form two 

polynomial extrapolation schemes and two rational extrapolation schemes. 

According to Ikhile (2004), (2.46) has perform better than (2.36) in both polynomial 

and rational extrapolation schemes in solving a problem whose solution possesses 

singularity. 

 

Ramos (2007) came out with a new approximation algorithm, which according to 

Ramos (2007), was inspired by the work of Van Niekerk (1987).  Ramos (2007) had 

suggested an approximation to the theoretical solution  1ny x   of (2.1) given by 
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where  a h  is sufficiently differentiable unknown function of the step-size that has 

to be determined and it is assume that     0na h y x  . Ramos (2007) gave the final 

integration formula which is a second order and A-stable method as 
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The method (2.48) is identical to (2.25) of Van Niekerk (1987), (2.29) of Van 

Niekerk (1988) and (2.36) of Ikhile (2001). The local truncation error of (2.48) is 

given by 
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where  ny x ,  ny x  and  ny x  denote the first, second and third derivatives of 

the theoretical solution  ny x  respectively. Method (2.48) has been tested on a stiff 

problem, a stiff system, a singular perturbed problem and an autonomous problem. 

Numerical results had shown that method (2.48) performs very well when solving 

these problems. 

 

Okosun & Ademiluyi (2007a), and Okosun & Ademiluyi (2007b) had proposed a 

class of k-step rational methods that are based on the same generalization of the k-

step rational methods of Fatunla (1982) given by (2.23), but with ra  for  1 1r k  

are parameters that may contain approximations of  ny x  and higher derivatives of 

 ny x . It is important to note that the process of obtaining the schemes as shown in 

Okosun & Ademiluyi (2007a), and Okosun & Ademiluyi (2007b) is by matching 

with its Taylor series. This approach is very different from that of Fatunla (1982) 

which interpolates the known values ny  and ny  at previously computed points 

(Ikhile, 2004). According to their articles, the resulting 2-step second order method 

and 3-step third order method are 
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and 
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   (2.50) 

respectively. However, our reviews and inspections reveal that methods (2.49) and 

(2.50) are incorrect due to the mistakes made in the process of derivations as shown 

in Okosun & Ademiluyi (2007a), and Okosun & Ademiluyi (2007b). Hence, we 
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make some corrections to the works of Okosun & Ademiluyi (2007a), and Okosun & 

Ademiluyi (2007b) by presenting the correct 2-step schemes and 3-step schemes as 

shown below: 
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and 
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         (2.52) 

respectively. Numerical results shown in Okosun & Ademiluyi (2007a), and Okosun 

& Ademiluyi (2007b) had confirmed the suitability of these methods in solving 

problem whose solution possesses singularity. 

 

On adopting the idea of Okosun & Ademiluyi (2007a) and Okosun & Ademiluyi 

(2007b), Yaacob et al. (2010), Teh et al. (2011) and Teh & Yaacob (2013a) have 

came out with three different classes of 2-step rational methods. For the ease of 

discussion, rational methods in multistep setting are generally called rational 

multistep methods (RMMs). Yaacob et al. (2010) chose to modify the interpolant 

(2.12) by changing the interval of integration from  1,n nx x   to  2,n nx x  . This yields 

a class of 2-step p-th order rational methods known as RMM1(2,p), which can be 

expressed as follows: 

0

2

k
j

j

j

n

a h

y
b h
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where b and ja  for 0,1, ,j k   are parameters that may contain  ny x  and higher 

derivatives of  ny x . By doing the same modifications to the interval of integration 
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of interpolants (2.27) and (2.35), the following 2-step rational methods can be 

attained: 
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  ,          (2.55) 

respectively. Formula (2.54) belongs to a class of 2-step p-th order rational methods, 

known to be RMM2(2,p) in Teh et al. (2011). On the other hand, Teh & Yaacob 

(2013a) considered another class of 2-step p-th order rational methods based on the 

formula (2.55), or better known as RMM3(2,p). 

 

RMMs of order 2 until order 5 were derived for each class of RMM i.e. RMM1(2,p), 

RMM2(2,p) and RMM3(2,p). Absolute stability analysis for each derived method is 

carried out and a comparison in the sense of L-stability and A-stability can be shown 

in Table 2.1. 
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Table 2.1: Stability Analyses of 2-step RMMs 

Order (p) RMM1(2,p) RMM2(2,p) RMM3(2,p) 

2 A-stable A-stable A-stable 

3 Not A-stable Not A-stable A-stable 

4 Not A-stable A-stable A-stable 

5 Not A-stable Not A-stable Not A-stable 

 

From Table 2.1, we can see that there is no L-stable method in either RMM1(2,p), 

RMM2(2,p) or RMM3(2,p). In general, numerical comparison among RMM1(2,p), 

RMM2(2,p) and RMM3(2,p) showed that: RMM3(2,p) outperform RMM2(2,p) and 

RMM1(2, p) when solving scalar initial value problems including problem whose 

solutions possesses singularity; and when solving initial value problem with system 

of ordinary differential equations, all three classes of RMMs have comparable 

accuracy. Therefore, the strength of RMM3(2,p) becomes apparent when solving 

scalar initial value problems (Teh & Yaacob, 2013a). In addition, RMM1(2,p), 

RMM2(2,p) and RMM3(2,p) are more accurate than the RMMs proposed by Okosun 

& Ademiluyi (2007a) and Okosun & Ademiluyi (2007b) (Yaacob et al., 2010; Teh et 

al., 2011; Teh & Yaacob, 2013a). 

 

Yaacob et al. (2010), Teh et al. (2011) and Teh & Yaacob (2013a) have showed that 

generalizations to r-step p-th order RMM1, RMM2 and RMM3 are possible. This 

can be achieved by simply extending the interval of integration from  2,n nx x   to 

 ,n n rx x   on the interpolants (2.12), (2.27) and (2.35). Hence, RMM1(r,p) (read as r-

step p-th order RMM1), RMM2(r,p) and RMM3(r,p) are given by 
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  ,          (2.58) 

respectively. We note that these three extended classes of RMMs are variable order 

methods that are independent of the step number r. However, at this moment, there 

are no numerical experimentations being carried out to verify the efficiency of the 

formulae (2.56), (2.57) and (2.58). 

 

Teh et al. (2009) and Teh (2010) have made a collective review on several classes of 

one-step rational methods proposed by Lambert & Shaw (1965), Van Niekerk (1987), 

Van Niekerk (1988) and Ramos (2007). Existing rational methods of order 2 until 

order 5 were derived and comparisons in terms of absolute stability and numerical 

accuracy were carried out. Table 2.2 showed the stability analyses in the sense of A-

stability and L-stability for the methods mentioned in this paragraph. 
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Table 2.2: Stability Analyses of Several Existing One-step Rational Methods 

Order 

Lambert & 

Shaw (1965) 

Van Niekerk 

(1987) 

Van Niekerk 

(1988) 

Ramos 

(2007) 

2 A-stable A-stable A-stable A-stable 

3 Not A-stable L-stable Not A-stable A-stable 

4 Not A-stable A-stable A-stable A-stable 

5 Not A-stable L-stable Not A-stable Not A-stable 

 

Findings from Teh et al. (2009) and Teh (2010) showed that all existing rational 

methods by Lambert & Shaw (1965), Van Niekerk (1987), Van Niekerk (1988) and 

Ramos (2007) are suitable in solving a variety of initial value problems such as stiff 

problem and problem whose solution possesses singularity. However, rational 

methods that are L-stable or A-stable are more preferable when solving stiff problem. 

According to Teh et al. (2009) and Teh (2010), rational methods from Van Niekerk 

(1987) are the most suitable to solve stiff problems; followed by rational methods 

from Van Niekerk (1988). Rational methods given by Lambert & Shaw (1965) can 

be used to solve stiff problem if the step-size of integration is sufficiently small. 

Rational methods given by Lambert & Shaw (1965) still produce good results under 

this restriction, particularly for explicit methods. Furthermore, rational methods from 

Lambert & Shaw (1965) are the cheapest algorithms to implement. As for the 

rational methods based on interpolant (2.47) by Ramos (2007), they do not perform 

as good as those rational methods given by Van Niekerk (1987) and Van Niekerk 

(1988). However, when solving problem whose solution possess singularity, rational 

methods from Ramos (2007) are the most suitable and most accurate. 
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Stability issue arises from the implementation of numerical method to stiff problem 

is always a great concern when developing numerical method for initial value 

problem. Therefore, L-stability or A-stability in a numerical method is desirable or 

even better if L-stability or A-stability is guaranteed. From our readings of previous 

works including the works by Teh et al. (2009) and Teh (2010), the stability 

conditions of a particular class of rational methods are affected by the underlying 

rational functions (or interpolants). All existing rational methods mentioned earlier 

were based on conventional rational functions. If these existing rational methods are 

applied to the scalar test problem given in (1.2), then none of them give an exact 

solution to the test problem (1.2) (Teh & Yaacob, 2013b). In other words, none of the 

existing rational method is exponentially-fitted. There are two advantages for a 

numerical method being exponentially-fitted: firstly, it returns the exact solution to 

the test problem (1.2) and secondly, L-stability is guaranteed (Wu, 1998). 

 

To develop exponential-fitted rational methods, conventional rational functions (or 

interpolants) such as (2.12), (2.15), (2.19), (2.23), (2.27), (2.32), (2.35), (2.42), (2.45) 

or (2.47) need to be modified. An example of such modification was done by Teh 

(2010) and Teh & Yaacob (2013b) when they suggested the following approximation 

to the theoretical solution of (2.1) by the formula 

2

1

0
1

1

k
c hi

i

i
n

a h c e

y
bh










, 1 0bh  ,          (2.59) 

where b, 1c , 2c  and ia  for 0,1, ,i k   are parameters that may contain  ny x  and 

higher derivatives of  ny x . We have observed that the numerator of formula (2.59) 

is the composition of a polynomial and an exponential function, while the 

denominator is a polynomial of degree 1. According to Teh (2010) and Teh & 
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Yaacob (2013b), formula (2.59) is known as one-step exponential-rational method 

(in brief as ERM). If an ERM has order p, then this particular ERM is noted as p-

ERM. ERMs of order 2 until order 5 were developed and discussed in Teh (2010) 

and Teh & Yaacob (2013b); and all of them are proved to be L-stable. Findings from 

Teh (2010) and Teh & Yaacob (2013b) had showed that the capability of ERMs in 

solving problem whose solution possesses singularity is less obvious but in return, 

ERMs are more reliable in solving general initial value problems including non-stiff 

and stiff problems. 

 

Despite ERMs’ strong stability characteristics and better accuracies, they have two 

shortcomings which could be observed from the findings of Teh (2010) and Teh & 

Yaacob (2013b). First, from the process of derivations, one must have noticed that 

the parameter 2c  of a p-ERM in (2.59) is not unique. In other words, a p-ERM is not 

unique but two different methods which share the same order of accuracy. Secondly, 

the parameter 2c  of every p-ERM contains expression with square root. In other 

words, there are times where an ERM will produce numerical solutions that are 

complex numbers due to the square root evaluations. These two disadvantages of 

ERMs become the main rationales of this new study, where we wish to modify the 

original ERMs in (2.59), so that the newly modified ERMs are free from the two 

defects mentioned above. The developments and implementations of the new 

modified ERMs will be presented in Chapter 3. 

 

Last but not least, all ERMs as well as most of the existing rational methods are 

implemented using constant step-size where error estimation at each integration step 

is neglected. However, there are two exceptions. Both Ikhile (2002) and Ikhile (2004) 
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considered variable step-size strategies in extrapolation methods. The difference 

between these two papers is: formula (2.36) becomes the basic integrator in Ikhile 

(2002) while formula (2.46) becomes the basic integrator for Ikhile (2004). Findings 

from both papers showed that extrapolation methods with step-size control are more 

accurate than those extrapolation methods with constant step-size especially in 

solving problem whose solution possesses singularity. Perhaps with the variation in 

the step-size, the numerical results of ERMs may be improved when solving problem 

(1.1) whose solution possesses singularity. In view of this, a strategy of variation in 

step-size for the newly modified ERMs and other existing one-step rational methods 

will be considered. Further discussions on this topic will be presented in Chapter 4. 

 

2.4 Conclusions 

In this chapter, we have done some literature reviews for the up-coming studies in 

this report, where we have clearly stated out the areas of research that have not been 

explored. We are ready to study them in the following chapters. 



CHAPTER THREE 

ONE-STEP MODIFIED EXPONENTIAL-RATIONAL METHODS 

 

3.1 Introduction 

In this chapter, we shall derive an explicit one-step modified exponential-rational 

method with generalized parameters. We shall present and explain the process of 

derivations, as well as its generalized local truncation error and stability function 

analysis. Consistency and convergence properties of the one-step modified 

exponential-rational method will be discussed as well. Last but not least, we shall test 

our newly developed method using some test problems. 

 

3.2 Preliminaries 

We are considering the initial value problem 

 ,y f x y  ,  y a  , 

y ,  ,f x y  ,  ,x a b  ,            (3.1) 

where f is assumed to satisfy all the conditions in order that (3.1) has a unique 

solution. The interval  ,a b  is divided into a number of subintervals  1,n nx x   with 

0x a  and 0nx x nh  , such that h is the step-size. Suppose that we have solved 

numerically the initial value problem in (3.1) up to a point nx  and have obtained a 

value ny  as an approximation of  ny x , which is the theoretical solution of (3.1).  

From Lambert (1973) and Lambert (1991), assuming the localizing assumption that 

no previous truncation errors have been made, i.e.  n ny y x , we are interested in 
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obtaining 
1ny 
 as the approximation of  1ny x  . For that purpose, we suggest an 

approximation to the theoretical solution  1ny x   of (3.1) given by 

0

1 ,  1 0,  0,1,2, ,
1

hyn
yn

k
j

j

j

n

a h ce

y bh k
bh









   



             (3.2) 

where b, c  and ja  for 0,1, ,j k   are parameters that may contain  ny x  and 

higher derivatives of  ny x  and h is the step-size. In view of this, these parameters 

have to be determined during the derivation process. The value k presented in (3.2) 

decides the number of derivatives to be evaluated in (3.2) i.e. a total of 
   m

ny x  for 

1,2, , 2m k  . The higher the value of k, the more derivatives evaluations need to 

be carried out. 

 

Formula (3.2) is the modified version of the original exponential-rational method 

shown in formula (2.59). One has noticed that the exponential functions in both (3.2) 

and (2.59) are different. Hence, we regard (3.2) as one-step modified exponential-

rational method, or in brief as MERM. If a MERM has order p, then this particular 

MERM is called a p-MERM. With the p-MERM in (3.2), we associate a difference 

operator L defined by 

     
 

 

MERM
0

; 1

hy x
k

y xj

jp
j

L y x h y x h bh a h ce






         , 0k  , 2p  ,           (3.3) 

where  y x  is an arbitrary function, continuously differentiable on  ,x a b  .  

Expanding  y x h  and exponential function 
   hy x y x

e


 as Taylor series, and 

collecting terms in (3.3) gives the following general expression: 

  0 1 1 2

0 1 1 2MERM
; k k k

k k kp
L y x h C h C h C h C h C h 

 
          .       (3.4) 
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We note that iC , 0,1,2,i   in (3.4) contains corresponding parameters that need to 

be determined in the derivation processes. To facilitate the derivation of MERM, the 

order and local truncation error of p-MERM are defined as follows. 

 

Definition 3.1 The difference operator (3.3) and the associated modified 

exponential-rational method (3.2) is said to be of order 2p k   if, in (3.4), 

0 1 2 2 0kC C C C      , 3 0kC    for 0,1,2,k   . 

 

Definition 3.2 The local truncation error at 1nx   of (3.2) is defined to be the 

expression  
MERM

;n p
L y x h


    given by (3.3), when  ny x  is the theoretical solution 

of the initial value problem (3.1) at a point nx .  The local truncation error of (3.2) is 

then 

   3 4

3MERM
; k k

n kp
L y x h C h O h 


    .            (3.5) 

 

From Definition 3.1, it is important to note that 

2k p  ,              (3.6) 

since we are going to use this expression in the remainder of this chapter. 

 

3.3 Derivation of One-step Modified Exponential-Rational Method 

The derivation of one-step MERM is all about finding the unknown coefficients 

(parameters) b, c and ja  for 0,1, ,j k   in formula (3.2). First, we must determine 

the desired order accuracy by setting an arbitrary value for p. Then, the value of k can 

be obtained once the arbitrary value of p is determined using the equation (3.6). Next, 
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from (3.3), we have to expand  y x h  and    hy x y x
e


 as Taylor series and also 

expand the polynomial 
0

k
j

j

j

a h


  up to degree k. After that, we must arrange the 

expanded (3.3) until equation (3.4) is achieved. Upon comparison between the 

expanded (3.3) and (3.4), we can identify the expressions which correspond to 0C , 

1C , …, 2kC   and 3kC  . Finally, with 0 1 2 0kC C C     , and taking  y x  as the 

theoretical solution of the initial value problem (3.1) i.e.    ny x y x , we can 

obtain a system of 2k   simultaneous equations as shown below: 
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The system of equations in (3.7) is used to determine the unknown coefficients b, c 

and ja  for 0,1, ,j k  . These coefficients, in fact, facilitate a generalization of 

MERMs of arbitrary order p. In other words, the coefficients can be computed once 

the desired order of accuracy (p) is determined. 

 

On solving the system (3.7) for the unknown coefficients b, c and ja  for 

0,1, ,j k   using MATHEMATICA 8.0 software, we obtain the following 

generalized formulae: 

               

        

2 21 1 2

0 2 2 1

2 ! ! 1 !

1 ! 2 ! !

p p p p p

n n n n n

n p p

n n n n

y y p p y p y y
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p y y p p y y

  

 

    
   

  
,           (3.8) 
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j p j p j p
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p p
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     (3.9) 
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,          (3.10) 

and 

               

        

2 21 1 2

2 2 1

2 ! ! 1 !

1 ! 2 ! !

p p p p p

n n n n n

p p

n n n n

y y p p y p y y

c
p y y p p y y

  

 

    
   

  
,         (3.11) 

where  n ny y x  and 
     m m

n ny y x  for 1,2, ,j k  , 2p k   and 1,2, ,m p   

by the localizing assumption. We note that formulae (3.2) and (3.8) – (3.11) are valid 

provided that   0n ny y x  . 
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3.4 Local Truncation Error of Modified Exponential-Rational Method 

In the process of identifying the expressions which correspond to 0C , 1C , …, 2kC   

and 
3kC 
 and taking  y x  as the theoretical solution of the initial value problem (3.1) 

i.e.    ny x y x , we found that 
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,          (3.12) 

for arbitrary value of p (or arbitrary value of k). Therefore, from Definition 3.2, the 

local truncation error (in brief as LTE) of a p-MERM (3.2) is given by 
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,         (3.13) 

where  n ny y x ,  n ny y x  , 
     p p

n ny y x  and 
     1 1p p

n ny y x
 
  by the 

localizing assumption. We note that the LTE formula (3.13) is valid provided that 

  0n ny y x  . The parameters b and c in formula (3.13) are determined from the 

formulae (3.10) and (3.11), respectively.  

 

3.5 Absolute Stability Analysis of Modified Exponential-Rational Method 

The absolute stability analysis of a p-MERM can be obtained easily by applying the 

formulae (3.2) and (3.8) – (3.11) to the Dahlquist’s test equation: 

y y  ,   0y a y ,  ,  Re 0  .          (3.14) 

It can be shown that, the application of a p-MERM (3.2) to the Dahlquist’s test 

problem resulted in the following difference equation: 

 1n ny R z y  , z h .           (3.15) 
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We note that  R z  is the stability function of a p-MERM. Clearly 0ny   as n  

if and only if 

  1R z  .            (3.16) 

 

A p-MERM is absolutely stable for those values of z for which the condition in (3.16) 

holds. The region of absolute stability of a p-MERM is defined as   : 1z R z   

or the set of points in the complex plane such that the approximated solution remains 

bounded after many steps of integrations (Butcher, 2008). 

 

On applying the Dahlquist’s test equation (3.14) to formulae (3.8) – (3.11) and 

simplifying them using MATHEMATICA 8.0 software, we arrive at the following 

results: 

0 0a  , 0ja  , 0b   and nc y .           (3.17) 

Then, apply the test equation (3.14) to formula (3.2) and also substitute the results in 

(3.17) into formula (3.2) to yield the followng: 
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           (3.18) 

If we let z h , then we obtain 

1

z

n ny e y  , 

and according to equation (3.15), the stability function of p-MERM is 

  zR z e .            (3.19) 
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In other words, the stability function of MERM for any order of accuracy is always 

the function given in equation (3.19). On setting iz x y  , we obtain the region of 

absolute stability of a p-MERM as illustrated in Figure 3.1. 

 

 

 

 

 

 

Figure 3.1 Region of absolute stability of a p-MERM 

 

The shaded region in Figure 3.1 is the region of absolute stability of a p-MERM, 

where the condition   1R z   is satisfied. From Figure 3.1, we can see that the 

region of absolute stability of a p-MERM contains the whole left-hand half plane, 

which show that any p-th order MERM is A-stable. In addition, on using 

MATHEMATICA 8.0, we have found out that   0R z   as  Re z  . This 

shows that any p-th order MERM is also L-stable. 

 

3.6 Consistency and Convergence Analyses of Modified Exponential-

Rational Method 

We now show that any p-th order MERM is consistent with the differential equation 

in (3.1) by the following definition. 
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Definition 3.3 The MERM (3.2) is said to be consistent if (3.5) satisfy 

 
MERM0

1
lim ; 0n ph

x a nh

L y x h
h 

 

    .          (3.20) 

 

From Definition 3.2,  
MERM

;n p
L y x h


    is essentially the local truncation error for a 

p-MERM. It can be shown that the local truncation error for any p-th order MERM 

satisfy the condition in (3.20), which directly implies any p-th order MERM is 

consistent with the differential equation in (3.1). Below is a proof which shows that 

the local truncation error for any p-th order MERM does satisfy the condition in 

(3.20): 
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Lastly, according to Fatunla (1988), the convergence of a p-MERM can be verified, 

since its application to the Dahlquist’s test equation (3.14) results in the following 

difference equation: 

  0

n
h

ny e y .            (3.21) 

We note that equation (3.21) is derived from equation (3.18). From equation (3.21), 

since   0
n

he    as n  for all h  with  Re 0  , we have 0ny   as n  

which, in the limit, does satisfy 
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0

lim n n
n
h

y y x



 .           (3.22) 

This is because the theoretical solution of test equation (3.14) also behaves like 

  0ny x   as n . In other words, both ny  and  ny x  approach zero as n 

approaches infinity. 

 

3.7 Numerical Experiments and Comparisons 

Theoretically, newly developed MERMs and existing rational methods are effective 

methods in solving initial value problem (3.1). However, we still need to clarify 

whether MERMs and existing rational methods can solve the following classes of 

(3.1): 

(a) (3.1) whose initial condition   0y a   ; 

(b) (3.1) in non-autonomous form; 

(c) (3.1) in autonomous form; and 

(d) (3.1) whose solutions possess singularities. 

 

According to Teh (2010), rational methods suggested by Lambert & Shaw (1965), 

Van Niekerk (1987), Van Niekerk (1988) and Ikhile (2001) face no difficulty in 

solving initial value problem (3.1) whose initial condition   0y a   . All ERMs 

by Teh (2010) are capable to solve (3.1) with initial condition   0y a   , except 

for 2-ERM(1) and 2-ERM(2). This is because the parameters 2c  and b for 2-ERM(1) 

and 2-ERM(2) become undefined if the initial condition is zero. As for the MERMs 

given by formula (3.2), it is very obvious that a p-th order MERM is not designed to 

solve initial value problem with initial condition zero because the exponential 

function will be undefined. 
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Item (b) and item (c) should not cause any problem to any existing rational method 

but just to make sure that our new MERMs manage to cope with non-autonomous 

problem and autonomous problem. Lastly, we want to investigate whether MERMs 

can solve problem whose solutions possess singularities as stated in item (d). We 

note that previous researches show that existing rational methods have no difficulty 

in solving this kind of problem. 

 

For the investigations mentioned above, we choose to compare the third order 

MERM with existing third order rational methods from Lambert & Shaw (1965), 

Van Niekerk (1987), Van Niekerk (1988), Ikhile (2001) and Teh & Yaacob (2013b). 

Third order rational methods are chosen due to simplicity, the requirement of fewer 

evaluations of higher derivatives and less computational time. Some test problems 

are used to check the accuracy of these third order rational methods with different 

number of integration steps. We present the maximum absolute relative errors over 

the integration interval given by   
0
max n n

n N
y x y

 
  where N is the number of 

integration steps. We note that  ny x  and ny  represents the theoretical solution and 

numerical solution of a test problem at point nx . 

 

We present the third order rational methods that are involved in the following 

numerical experimentation and comparisons. Firstly, the new third order MERM, or 

3-MERM: 
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We note that 3-MERM (3.23) is L-stable as mentioned in Section 3.5. The third order 

rational method by Lambert & Shaw (1965) is given by 
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.          (3.24) 

Absolute stability analysis showed that formula (3.24) is not A-stable (Teh, 2010). 

 

The third order rational methods by Van Niekerk (1987) and Van Niekerk (1988) are 

given by 

  
      

1

2
22

2 22 2

3 2
         ,

12 6 6 3 2 2

n n
n n

n n

n n n

n n n n n n n n n n n n

hy y
y y

y hy

h y y y

y hy y y y hy y h y hy y h y y




 



  


              

 (3.25) 

and 

2 3

1
2 2 3

n n
n n n n

n n

y yh h
y y hy y

y hy


 
    

 
,          (3.26) 

respectively. Absolute stability analyses showed that formula (3.25) is L-stable while 

formula (3.26) is not A-stable (Teh, 2010). From formulae (3.24) and (3.26), we note 

that the third order rational methods of Lambert & Shaw (1965) and Van Niekerk 

(1988) are identical. The third order rational methods from Ikhile (2001) is given by 
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.          (3.27) 

Absolute stability analysis showed that formula (3.27) is A-stable (Teh, 2010). 
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Lastly, the two third order exponential-rational methods (ERMs) from Teh & Yaacob 

(2013b) denoted by 3-ERM(1) and 3-ERM(2) are: 
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respectively. We note that 

       2 2 2

2 3 4 2 3 2n n n n n n n n n nU y y y y y y y y y y              . 

Absolute stability analysis showed formulae (3.28) and (3.29) are L-stable (Teh & 

Yaacob, 2013b).  
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Problem 3.1 

   2 4y x y x x    ,  0 3y  ,  0,0.5x . 

The theoretical solution is   24 1 2xy x e x   . Problem 3.1 is a non-stiff 

differential equation, and also a non-autonomous problem. 

 

Problem 3.2 (Fatunla, 1982) 

  2002000 9x x xy x e e xe       ,  0 10y  ,  0,10x . 

The theoretical solution is   20010 10 10x x xy x e xe e      . Problem 3.2 is stiff 

differential equation, and also a non-autonomous problem. 

 

Problem 3.3 (Ramos, 2007) 

     
2

1 1 21002 1000y x y x y x    ,  1 0 1y  ,  0,1x ; 

        2 1 2 21y x y x y x y x    ,  2 0 1y  ,  0,1x ; 

The theoretical solutions are   2

1

xy x e  and  2

xy x e . Problem 3.3 is a stiff 

system, and also an autonomous problem. 

 

Problem 3.4 (Yaakub and Evans, 2003) 

     101 100 0y x y x y x    ,  0 1.01y  ,  0 2y   ,  0,10x . 

The theoretical solution is   1000.01 x xy x e e   . Problem 3.4 can be reduced to a 

system of first order differential equations, i.e. 

   1 2y x y x  ,  1 0 1.01y  ,  0,10x ; 

     2 1 2100 101y x y x y x    ,  2 0 2y   ,  0,10x . 
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The theoretical solutions are   100

1 0.01 x xy x e e    and   100

2

x xy x e e    .  

Problem 3.4 is a stiff system, and also an autonomous problem.  

 

Problem 3.5 (Ramos, 2007) 

   
2

1 ,y x y x     0 1y  ,  0,0.8x . 

The theoretical solution is    tan 4y x x   . Problem 3.5 is an example of 

problem whose solution possesses singularity. From the theoretical solution, notice 

that the solution becomes unbounded in the neighbourhood of the singularity at 

4 0.785398163367448x   . 



Table 3.1: Maximum Absolute Relative Errors of Various Third Order Methods with respect to the Number of Steps (Problem 3.1) 

N 

Lambert & 

Shaw (1965) 

Van Niekerk 

(1987) 

Van Niekerk 

(1988) 

Ikhile (2001) 3-ERM(1) 3-ERM(2) 3-MERM 

16 5.07503(-06) 3.25864(-04) 5.07503(-06) 5.84945(-05) - - 4.24138(-07) 

32 6.28976(-07) 2.93414(-05) 6.28976(-07) 7.85013(-06) - - 5.28343(-08) 

64 7.82908(-08) 3.83339(-06) 7.82908(-08) 1.01742(-06) - - 6.58942(-09) 

 

Table 3.2: Maximum Absolute Relative Errors of Various Third Order Methods with respect to the Number of Steps (Problem 3.2) 

N 

Lambert & 

Shaw (1965) 

Van Niekerk 

(1987) 

Van Niekerk 

(1988) 

Ikhile (2001) 3-ERM(1) 3-ERM(2) 3-MERM 

100 7.08987(+01) 1.51505(+00) 7.08987(+01) 4.71235(+00) 8.05125(-01) 8.05075(-01) 2.51013(-02) 

1000 7.48249(-01) 3.57558(-01) 7.48249(-01) 6.24419(-02) 2.36491(-02) 1.43271(-01) 8.52263(-03) 

10000 1.06282(-03) 1.44188(-03) 1.06282(-03) 1.34363(-03) 2.76633(-05) 1.93116(-04) 2.67342(-05) 

100000 1.10728(-06) 1.89317(-06) 1.10728(-06) 1.44295(-05) 2.86579(-08) 6.40614(-07) 3.33494(-08) 

 



Table 3.3: Maximum Absolute Relative Errors of Various Third Order Methods with respect to the Number of Steps   1y x  (Problem 3.3) 

N 

Lambert & 

Shaw (1965) 

Van Niekerk 

(1987) 

Van Niekerk 

(1988) 

Ikhile (2001) 3-ERM(1) 3-ERM(2) 3-MERM 

160 2.19212(+02) 3.17981(-01) 2.19212(+02) 8.23205(-03) 5.19877(-05) 3.96606(+01) 2.64155(+00) 

320 2.90442(-05) 3.84679(-05) 2.90442(-05) 1.34220(-03) 1.99991(-06) 3.28414(-06) 8.10996(-06) 

640 2.01537(-11) 2.01373(-11) 2.01537(-11) 4.49640(-15) 4.21885(-15) 4.10783(-15) 4.05231(-15) 

 

Table 3.4: Maximum Absolute Relative Errors of Various Third Order Methods with respect to the Number of Steps   2y x  (Problem 3.3) 

N 

Lambert & 

Shaw (1965) 

Van Niekerk 

(1987) 

Van Niekerk 

(1988) 

Ikhile (2001) 3-ERM(1) 3-ERM(2) 3-MERM 

160 2.18514(-01) 5.06153(-04) 2.18514(-01) 5.28030(-03) 3.14264(-05) 4.72343(-02) 2.00709(-04) 

320 2.16581(-06) 2.16300(-06) 2.16581(-06) 7.00650(-05) 1.86383(-07) 6.49753(-07) 6.70213(-07) 

640 1.96714(-11) 1.96536(-11) 1.96714(-11) 4.10783(-15) 2.77556(-15) 2.33147(-15) 2.88658(-15) 

 



Table 3.5: Maximum Absolute Relative Errors of Various Third Order Methods with respect to the Number of Steps (Problem 3.4) 

N 

Lambert & 

Shaw (1965) 

Van Niekerk 

(1987) 

Van Niekerk 

(1988) 

Ikhile (2001) 3-ERM(1) 3-ERM(2) 3-MERM 

1280 2.91323(-05) 1.67276(-04) 2.91323(-05) 2.15408(-05) 7.46251(-04) 1.68219(-04) 3.74217(-05) 

2560 3.12721(-06) 1.56050(-05) 3.12721(-06) 3.18139(-06) 3.31054(-06) 2.48349(-05) 4.58719(-06) 

5120 3.67925(-07) 1.24983(-06) 3.67925(-07) 4.38761(-07) 1.96674(-07) 1.16168(-06) 5.65849(-07) 

 

Table 3.6: Maximum Absolute Relative Errors of Various Third Order Methods with respect to the Number of Steps (Problem 3.5) 

N 

Lambert & 

Shaw (1965) 

Van Niekerk 

(1987) 

Van Niekerk 

(1988) 

Ikhile (2001) 3-ERM(1) 3-ERM(2) 3-MERM 

16 2.39514(-02) 2.10235(-01) 2.39514(-02) 5.20857(-04) 3.93191(+00) 1.51616(-01) 4.46280(-01) 

32 5.73126(-03) 5.01590(-02) 5.73126(-03) 6.22138(-05) 5.87270(+00) 3.47699(-02) 9.22318(-02) 

64 1.72803(-02) 2.15491(-01) 1.72803(-02) 9.67085(-05) 4.01475(+00) 1.52879(-01) 3.74109(-01) 
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3.8 Discussions and Conclusions 

From Table 3.1, we can see that the third order rational method of Ikhile (2001) and 

Van Niekerk (1987) generated the least accurate numerical results, while the 

remaining third order rational methods by Lambert & Shaw (1965) and Van Niekerk 

(1988) are found to have comparable accuracy in solving Problem 3.1. Our new 3-

MERM turned out to have better accuracy compared to other existing third order 

rational methods. The third order methods 3-ERM(1) and 3-ERM(2) are unable to 

return any result because this problem causes the expressions 2c  in (3.28) and (3.29) 

to become undefined. 

 

Problem 3.2 is indeed a very stiff, non-autonomous problem. From Table 3.2, we can 

see that 3-MERM and 3-ERM(1) generated results that are comparable in accuracy 

for 10000N   and 100000N   in solving Problem 3.2, followed by 3-ERM(2). 

Third order rational methods by Lambert & Shaw (1965), Van Niekerk (1987), Van 

Niekerk (1988) and Ikhile (2001) are found to have comparable accuracy for 

N 1000, 10000 and 100000, except for Ikhile (2001) which converged slowly to 

the exact solution for  100000N  . 

 

Problem 3.3 is a stiff system, but less ‘stiffer’ than Problem 3.2. From Table 3.3 and 

Table 3.4, we can see that 3-ERM(1) generated satisfying results for 160N   

compared to other third order rational methods. In view of this, we can say that 3-

ERM(1) is potential to achieve high accuracy with a smaller number of integration 

steps. 3-MERM and 3-ERM(2) are only found to have comparable accuracy for 

320N   and 640N  . Numerical results generated by the third order rational 
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methods of Lambert & Shaw (1965), Van Niekerk (1987) and Van Niekerk (1988) 

are less satisfying for 160N   especially when computing the component  1y x . 

 

Problem 3.4 is a stiff system arises from the reduction of a second order initial value 

problem to a system of coupled first order differential equations. From Table 3.5, it 

can be seen that 3-MERM, 3-ERM(1), third order rational methods of Lambert & 

Shaw (1965), Van Niekerk (1988) and Ikhile (2001) are found to have comparable 

accuracy except for 1280N  . On the other hand, 3-ERM(2) and third order method 

of Van Niekerk (1987) are found to have comparable accuracy in solving Problem 

3.4 for any number of integration steps. 

 

Lastly, the results from Table 3.6 clearly showed that the third order rational method 

of Ikhile (2001) is the most suitable method in solving a problem whose solution 

possesses singularity because it yields more accurate numerical results. 3-MERM, 3-

ERM(2) and the third order rational method of Van Niekerk (1987) are comparable 

in accuracy; while the third order rational methods of Lambert & Shaw (1965) and 

Van Niekerk (1988) are comparable. 3-ERM(1) returns the least satisfying results 

among all third order rational methods. 



CHAPTER FOUR 

VARIABLE STEP-SIZE STRATEGY FOR 

ONE-STEP RATIONAL METHODS 

 

4.1 Introduction 

An efficient integrator must be able to change the step-size because it is needed to 

ensure that the step-size is small enough to generate numerical results up to certain 

accuracy, and at the same time, to ensure the step-size is large enough to avoid 

unnecessary computational work (Hairer et al., 1993; Butcher, 2008). In this chapter, 

a variable step-size strategy adopted from Butcher (2008) and is introduced to be 

applied to one-step rational methods. We also showed that the adopted variable step-

size strategy which is originally for Runge-Kutta methods could be easily extended 

to other one-step numerical schemes such as one-step rational methods. 

 

4.2 The Variable Step-size Strategy 

Consider the numerical integration of the initial value problem 

    ,y x f x y x  ,  y a  , : m mf     ,  ,x a b , 

for the following discussions of variable step-size strategy. Before the numerical 

integration started, an initial step-size, say 0h  is selected. The programme then 

computes two approximations to the solution, 1y  and 1ŷ . First, the value 1y  is 

obtained with step-size 0h . After that, integrate twice along the same interval  ,a b  

by halving the step-size 0h  i.e. 0 2h , yields the value of 1ŷ . Then an estimate of the 

error for the less precise result is 1 1ŷ y . We want this error estimation to satisfy 

1 1ŷ y Tol


  ,              (4.1) 
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where Tol is the desired tolerance prescribed by the user. If the inequality (4.1) is 

satisfied, then the computed step is accepted and this also means that 1y  is accepted 

and will be used to compute 2y  with the same step-size 0h . However, if 

1 1ŷ y Tol


                (4.2) 

is satisfied, then the computed value of 1y  and step-size 0h  are rejected. Following 

this, 1y  has to be recalculated using a new step-size, say 1h . The new step-size 1h  is 

obtained using the formulae: 

1 0h h r  ,              (4.3) 

where 

1

1

1 1

min max 0.5,0.9 ,2.0
ˆ

pTol
r

y y





  
   

        
  

.           (4.4) 

From equation (4.4), we note that p is the order of the rational method, and Tol is the 

same user prescribed tolerance shown in (4.1) and (4.2). Equation (4.3) showed that 

the new step-size 1h  is in fact the step-size 0h  being adjusted by the factor r from 

equation (4.4). 

 

After obtaining 1h , the programme then computes two new solutions, say 
 1 new

y  and 

 1
ˆ

new
y . As mentioned earlier, the value 

 1 new
y  is obtained with step-size 1h . After that, 

integrate twice along the same interval  ,a b  by halving the step-size 1h  i.e. 1 2h , 

yields the value of 
 1

ˆ
new

y . Then, the validation processes take place using the 

inequalities 

   1 1
ˆ

new new
y y Tol


  ,             (4.5) 
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or 

   1 1
ˆ

new new
y y Tol


  .             (4.6) 

If (4.5) is satisfied, then the step-size 1h  is accepted. This also means that 
 1 new

y  is 

accepted and will be used to compute 2y  with the same step-size 1h . If (4.6) is 

satisfied, the step-size 1h  and the current solution 
 1 new

y  are rejected and a new 

adjusted step-size, say 2h  will be identified using equations 

2 1h h r  ,              (4.7) 

where 

   

1

1

1 1

min max 0.5,0.9 ,2.0
ˆ

p

new new

Tol
r

y y





  
   
   
    
   

  

.           (4.8) 

Finally, the process to recalculate a new 1y  is carried out again using the new 

adjusted step-size 2h  until the error estimation is less than the prescribed tolerance. 

 

As the computation progresses, the error estimations in (4.1) and (4.5) can be 

generalized to 

ˆ
i iy y Tol


  ,             (4.9) 

where 1i   are some positive integers. Similar generalization for (4.2) and (4.6) is 

given by 

ˆ
i iy y Tol


  .           (4.10) 

Formulae for the new step-size stated in equations (4.3) and (4.7) and their 

corresponding r in equations (4.4) and (4.8) can be generalized as 

1n nh h r   , 0,1,2,3,n  ,           (4.11) 
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and 

1

1

min max 0.5,0.9 ,2.0
pTol

r
err


  

         
  

,          (4.12) 

respectively. We note that err is the generalized error estimation ˆ
i iy y


 , Tol is the 

user prescribed tolerance, and p is the order of the underlying rational method. Let’s 

briefly explain equation (4.12). From equation (4.12),  
1

1pTol err   was multiplied by 

0.9, where 0.9 is known as the safety factor. The safety factor was introduced to 

increase the possibility that the error will be accepted next time as the new step-size 

1nh   is also accepted (Butcher, 2008; Hairer et al., 1993). Furthermore, to prevent the 

step-size 1nh   from increasing or decreasing too fast, the step-size ratio was usually 

forced to lie between two bounds such as 0.5 and 2.0 (Hairer et al., 1993; Butcher, 

2008). 

 

While applying variable step-size strategy, there is another crucial element that we 

need to take good care of. Since step-size will be varied throughout the computation, 

there will be at one point where the step-size exceeded the right boundary of the 

integration interval  ,a b . In order to track this kind of situation, every time when a 

step-size nh  is accepted at the point ix , we must check whether the next point, say 

1ix   (or equivalent to i nx h ) still lie in the interval  ,a b  i.e. 

1ix b  .            (4.13) 

If (4.13) is satisfied, then the computation continues without any interruption. 

However, if 1ix   is found to coincide with or greater than the right boundary b i.e. 

1ix b  ,            (4.14) 
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then the programme immediately rejects 1ix   and the current step-size nh . The 

current step-size nh  is then replaced by a final step-size, say bh  which can be 

obtained using the formula 

b ih b x  .            (4.15) 

Lastly, the programme will perform a last integration to obtain the numerical 

approximation at the point x b , say by , using the new step-size bh  obtained from 

(4.15). 

 

Similar routine is applied when a step-size nh  is rejected at the point ix . When a 

step-size nh  is rejected, the current ix  and iy  are also rejected. A new ix  is then 

recalculated using the new step-size 1nh  . This time, we want to check whether the 

new ix  (or equivalent to 1 1i nx h  ) still lie in the interval  ,a b  i.e. 

ix b .             (4.16) 

If (4.16) is satisfied, then the programme continues finding the new iy  using the new 

step-size 1nh  . On the contrary, if the new ix  is found to coincide with or greater than 

the right boundary b i.e. 

ix b ,             (4.17) 

then the programme immediately rejects ix   and the step-size 1nh  . The step-size 1nh   

is then replaced by a final step-size, say bh  which can be computed using the formula 

1b ih b x   .            (4.18) 

Lastly, the programme will perform a last integration to obtain the numerical 

approximation at the point x b , say by , using the new step-size bh  obtained from 
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(4.18). Finally, we summarized the flow of the variable step-size strategy presented 

in this section in Figure 4.1, Figure 4.2 and Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Main routine (A) 
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Figure 4.2 Subroutine (B) to compute 
by  

 

 

 

 

 

 

 

Figure 4.3: Subroutine (C) to compute 
by  

 

4.3 Numerical Experiments and Comparisons 

In this section, we solved Problem 4.1 – Problem 4.5 with the variable step-size 

strategy described in this Section 4.2, using the third order MERM (as in (3.23)) and 

existing third order rational methods from Lambert & Shaw (1965) (as in (3.24)), 

Van Niekerk (1987) (as in (3.25)), Van Niekerk (1988) (as in (3.26)), Ikhile (2001) 

(as in (3.27)) and Teh & Yaacob (2013b) (as in (3.28) and (3.29)). For the case of 

constant step-size, it is sufficient to present the maximum absolute relative errors 

over the interval of integration  ,a b  as described in Section 3.7. 

 

B 

Compute b ih b x   

Compute once with 
bh  to obtain 

by  

Stop 

C 

Compute 1b ih b x    

Compute once with bh  to obtain 
by  

Stop 
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However, for the case of variable step-size, it is less informative if we only present 

the maximum absolute relative errors. It is because there are other parameters such as 

the tolerance Tol which will affect the total number of successful steps within the 

interval  ,a b . We denote: 

a. TOL as the user prescribed tolerance Tol, 

b. METHOD as the various third order rational method used in comparison, 

c. STEP as the total number of successful steps within the interval  ,a b , and 

d. MAXE as the maximum absolute relative error defined by 

  
0 STEP
max n n
n

y x y
 

 . 

We note that  ny x  and ny  represents the theoretical solution and numerical solution 

of a test problem at point nx . We also note that 3q   for Problem 4.1 – Problem 4.5. 

 

Problem 4.1 

   2 4y x y x x    ,  0 3y  ,  0,0.5x . 

The theoretical solution is   24 1 2xy x e x   . 

 

Problem 4.2 (Fatunla, 1982) 

  2002000 9x x xy x e e xe       ,  0 10y  ,  0,1x . 

The theoretical solution is   20010 10 10x x xy x e xe e      . 

 

Problem 4.3 (Ramos, 2007) 

     
2

1 1 21002 1000y x y x y x    ,  1 0 1y  ,  0,1x ; 

        2 1 2 21y x y x y x y x    ,  2 0 1y  ,  0,1x ; 
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The theoretical solutions are   2

1

xy x e  and  2

xy x e . 

 

Problem 4.4 (Yaakub and Evans, 2003) 

     101 100 0y x y x y x    ,  0 1.01y  ,  0 2y   ,  0,10x . 

The theoretical solution is   1000.01 x xy x e e   . Problem 4.4 can be reduced to a 

system of first order differential equations, i.e. 

   1 2y x y x  ,  1 0 1.01y  ,  0,10x ; 

     2 1 2100 101y x y x y x    ,  2 0 2y   ,  0,10x . 

The theoretical solutions are   100

1 0.01 x xy x e e    and   100

2

x xy x e e    . 

 

Problem 4.5 (Ramos, 2007) 

   
2

1 ,y x y x     0 1y  ,  0,0.8x . 

The theoretical solution is    tan 4y x x   . From the theoretical solution, notice 

that the solution becomes unbounded in the neighbourhood of the singularity at 

4 0.785398163367448x   . 
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Table 4.1: Comparisons of Various Third Order Rational Methods in Solving 

Problem 4.1  0 0.1h   

TOL METHOD STEP MAXE 

210  

Lambert & Shaw (1965) 5 1.72972(-04) 

Van Niekerk (1987) 5 4.88854(-03) 

Van Niekerk (1988) 5 1.72972(-04) 

Ikhile (2001) 5 1.43693(-03) 

3-ERM(1) - - 

3-ERM(2) - - 

3-MERM 5 1.40311(-05) 

410  

Lambert & Shaw (1965) 6 1.10009(-04) 

Van Niekerk (1987) 49 1.16717(-04) 

Van Niekerk (1988) 6 1.10009(-04) 

Ikhile (2001) 13 1.15537(-04) 

3-ERM(1) - - 

3-ERM(2) - - 

3-MERM 5 1.40311(-05) 

610  

Lambert & Shaw (1965) 33 1.13273(-06) 

Van Niekerk (1987) 332 1.14899(-06) 

Van Niekerk (1988) 33 1.13273(-06) 

Ikhile (2001) 64 1.14626(-06) 

3-ERM(1) - - 

3-ERM(2) - - 

3-MERM 12 1.27510(-06) 
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Table 4.2: Comparisons of Various Third Order Rational Methods in Solving 

Problem 4.2  0 0.0001h   

TOL METHOD STEP MAXE 

210  

Lambert & Shaw (1965) 10001 1.10728(-06) 

Van Niekerk (1987) 10001 1.89317(-06) 

Van Niekerk (1988) 10001 1.10728(-06) 

Ikhile (2001) 10001 1.44295(-05) 

3-ERM(1) 10001 2.86596(-08) 

3-ERM(2) 10001 6.42108(-07) 

3-MERM 10001 3.33495(-08) 

410  

Lambert & Shaw (1965) 10001 1.10728(-06) 

Van Niekerk (1987) 10001 1.89317(-06) 

Van Niekerk (1988) 10001 1.10728(-06) 

Ikhile (2001) 10001 1.44295(-05) 

3-ERM(1) 10001 2.86596(-08) 

3-ERM(2) 10001 6.42108(-07) 

3-MERM 10001 3.33495(-08) 

610  

Lambert & Shaw (1965) 10001 1.10728(-06) 

Van Niekerk (1987) - - 

Van Niekerk (1988) 10001 1.10728(-06) 

Ikhile (2001) - - 

3-ERM(1) 10001 2.86596(-08) 

3-ERM(2) 10001 6.42108(-07) 

3-MERM 10001 3.33495(-08) 
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Table 4.3: Comparisons of Various Third Order Rational Methods in Solving 

Problem 4.3   1y x   0 0.1h   

TOL METHOD STEP MAXE 

210  

Lambert & Shaw (1965) 167 1.06219(-02) 

Van Niekerk (1987) 165 1.03222(-02) 

Van Niekerk (1988) 167 1.06219(-02) 

Ikhile (2001) 141 1.60290(-02) 

3-ERM(1) 10 7.82458(-03) 

3-ERM(2) 156 1.36322(-02) 

3-MERM 148 1.04070(-02) 

410  

Lambert & Shaw (1965) 191 1.09986(-04) 

Van Niekerk (1987) 189 1.12825(-04) 

Van Niekerk (1988) 191 1.09986(-04) 

Ikhile (2001) 395 8.97524(-05) 

3-ERM(1) 93 1.56436(-04) 

3-ERM(2) 160 1.22566(-04) 

3-MERM 162 1.14548(-04) 

610  

Lambert & Shaw (1965) 476 7.92328(-07) 

Van Niekerk (1987) 477 8.10994(-07) 

Van Niekerk (1988) 476 7.92328(-07) 

Ikhile (2001) 385 7.17341(-07) 

3-ERM(1) 397 7.32652(-07) 

3-ERM(2) 441 1.01760(-08) 

3-MERM 1005 8.79066(-07) 
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Table 4.4: Comparisons of Various Third Order Rational Methods in Solving 

Problem 4.3   2y x   0 0.1h   

TOL METHOD STEP MAXE 

210  

Lambert & Shaw (1965) 167 1.33297(-04) 

Van Niekerk (1987) 165 1.34738(-04) 

Van Niekerk (1988) 167 1.33297(-04) 

Ikhile (2001) 141 6.08929(-03) 

3-ERM(1) 10 2.89992(-03) 

3-ERM(2) 156 1.72521(-04) 

3-MERM 148 5.32186(-05) 

410  

Lambert & Shaw (1965) 191 3.65677(-05) 

Van Niekerk (1987) 189 3.68719(-05) 

Van Niekerk (1988) 191 3.65677(-05) 

Ikhile (2001) 395 9.53541(-08) 

3-ERM(1) 93 9.90454(-05) 

3-ERM(2) 160 1.78079(-05) 

3-MERM 162 1.25284(-05) 

610  

Lambert & Shaw (1965) 476 3.63422(-09) 

Van Niekerk (1987) 477 3.72452(-09) 

Van Niekerk (1988) 476 3.63422(-09) 

Ikhile (2001) 385 1.14095(-09) 

3-ERM(1) 397 1.22592(-09) 

3-ERM(2) 441 1.02564(-11) 

3-MERM 1005 2.05168(-09) 
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Table 4.5: Comparisons of Various Third Order Rational Methods in Solving 

Problem 4.4  0 0.1h   

TOL METHOD STEP MAXE 

210  

Lambert & Shaw (1965) 958 7.88256(-05) 

Van Niekerk (1987) 1611 7.79836(-05) 

Van Niekerk (1988) 958 7.88256(-05) 

Ikhile (2001) 521 3.66823(-04) 

3-ERM(1) 399 9.84281(-04) 

3-ERM(2) 1593 8.78372(-05) 

3-MERM 694 2.33427(-04) 

410  

Lambert & Shaw (1965) 4334 1.03121(-06) 

Van Niekerk (1987) 10667 1.06762(-07) 

Van Niekerk (1988) 4334 1.03121(-06) 

Ikhile (2001) 1893 7.35386(-06) 

3-ERM(1) 1227 1.15590(-04) 

3-ERM(2) 7927 3.07927(-07) 

3-MERM 3357 3.15480(-06) 

610  

Lambert & Shaw (1965) 21856 1.07760(-08) 

Van Niekerk (1987) 80389 5.74256(-09) 

Van Niekerk (1988) 21856 1.07760(-08) 

Ikhile (2001) 9781 1.13378(-07) 

3-ERM(1) 123196 1.16102(-06) 

3-ERM(2) 56182 6.46744(-09) 

3-MERM 17083 3.41138(-08) 
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Table 4.6: Comparisons of Various Third Order Rational Methods in Solving 

Problem 4.5 

TOL 0h  METHOD STEP MAXE 

210  

0.1 

Lambert & Shaw (1965) - - 

Van Niekerk (1987) - - 

Van Niekerk (1988) - - 

Ikhile (2001) 8 8.31976(-03) 

3-ERM(1) - - 

3-ERM(2) - - 

3-MERM - - 

0.01 

Lambert & Shaw (1965) 80 1.84024(-03) 

Van Niekerk (1987) - - 

Van Niekerk (1988) 80 1.84024(-03) 

Ikhile (2001) 80 8.28983(-06) 

3-ERM(1) - - 

3-ERM(2) - - 

3-MERM - - 

0.001 

Lambert & Shaw (1965) 800 2.43201(-04) 

Van Niekerk (1987) 800 4.43592(-03) 

Van Niekerk (1988) 800 2.43201(-04) 

Ikhile (2001) 800 1.16650(-07) 

3-ERM(1) - - 

3-ERM(2) 800 3.08424(-03) 

3-MERM 800 6.31692(-03) 
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4.4 Discussions and Conclusions 

From Table 4.1, all third order rational methods require 5 successful steps within the 

interval  0,0.5  when the prescribed tolerance is 210 . However, 3-MERM turned 

out to have better accuracy compared to other existing third order rational methods in 

solving Problem 4.1. When the prescribed tolerance is decreased to 410 , there is a 

great increase in the number of successful steps for the third order method of Van 

Niekerk (1987) and a slight increase in the number of successful steps for the third 

order method of Ikhile (2001). On the other hand, the number of successful steps for 

the methods of Lambert & Shaw (1965), Van Niekerk (1988) and 3-MERM remain 

(or almost) unchanged. In the case when the prescribed tolerance is 410 , 3-MERM 

also turned out to have better accuracy compared to other existing third order rational 

methods. When the prescribed tolerance is 610 , all third order methods are found to 

have comparable accuracy but with different number of successful steps within 

 0,0.5 . We can see that 3-MERM is the cheapest in computational cost, followed by 

Lambert & Shaw (1965), Van Niekerk (1988), Ikhile (2001), and lastly Van Niekerk 

(1987).  For all three case, the third order methods 3-ERM(1) and 3-ERM(2) are 

unable to return any result because this problem causes the expressions 2c  in (3.28) 

and (3.29) became undefined. However, it doesn’t mean that 3-ERM(1) and 3-

ERM(2) failed to solve non-autonomous problem such as Problem 4.1. 

 

Problem 4.2 is indeed a very stiff differential problem, as the initial step-size is set to 

0 0.0001h   so that stability and convergence of numerical solution generated by all 

third order rational methods are guaranteed under specific prescribed tolerance. With 

this initial step-size, we observed from Table 4.2 that, all third order rational methods 
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required 10001 successful steps within the interval  0,1  for all three prescribed 

tolerance i.e. 210 , 410  and 610 . Hence, the generated maximum absolute relative 

errors for every prescribed tolerance are found to be identical. As the total number of 

successful steps are the same, we can see that 3-ERM(1) and 3-MERM generated 

results that are comparable in accuracy and also more accurate compared to other 

existing third order rational methods. We wish to point out that: third order method 

of Van Niekerk (1987) failed to converge while third order method of Ikhile (2001) 

suffered too many step-size rejections when the accepted error estimate is set to be 

bounded by 610 . Therefore, there are a few things that need to be considered when 

solving non-autonomous stiff problem using rational methods with variable step-size 

i.e., careful selection of initial step-size and looser prescribed tolerance if high 

accuracy is unnecessary. 

 

Problem 4.3 is also a stiff problem but less ‘stiffer’ than Problem 4.2. From Table 

4.3 and when the tolerance is 210 , we have observed that 3-ERM(1) required only 

10 successful steps to achieve better accuracy compared to other existing methods in 

computing the component  1y x . However, this is not the case when computing the 

component  2y x  because 3-MERM turned out to be the most accurate method with 

148 successful steps and almost comparable to the rest of the methods, as shown in 

Table 4.4. When the tolerance is decreased to 410 , the numerical results for both 

components  1y x  and  2y x  all seem to follow a similar pattern previously 

observed in the case of 210 . Third order method of Ikhile (2001) achieved better 

accuracy compared to other methods but with 395 successful steps, that are almost 

twice the number of successful steps of Lambert & Shaw (1965) and Van Niekerk 
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(1988). However, the increase in the number of successful steps also improve the 

accuracy and this is obviously seen in Table 4.4, where third order method of Ikhile 

(2001) achieved far more accurate result compared to other third order rational 

methods in computing the component  2y x . Finally, when the prescribed tolerance 

is set to 610 , we note that 3-ERM(2) turned out to have the best accuracy in 

computing both components  1y x  and  2y x . Except for 3-MERM which suffered 

from a certain amount of step-size rejection, remaining rational methods 

demonstrated almost comparable number of successful steps. The initial step-size 

0 0.1h   does not cause any difficulty to obtain the approximated solution for this 

stiff problem. 

 

Problem 4.4 is a stiff system arises from the reduction of a second order initial value 

problem to a system of coupled first order differential equations. From Table 4.5, 

when the prescribed tolerance is 210 , 3-ERM(1) is the cheapest method if an 

accuracy of 410  is desired. Alternatively, one can choose the third order methods of 

Lambert & Shaw (1965) or Van Niekerk (1988) if an accuracy of 510  is preferable 

with 958 successful steps. When the tolerance is decreased to 410 , 3-ERM(1) still 

remain as the cheapest method but its maximum absolute relative error is 

unsatisfactory compared to other third order methods. We would recommend the 

third order method of Ikhile (2001) due to its maximum absolute relative error and 

also the total number of successful steps. Third order method of Van Niekerk (1987) 

and 3-ERM(2) are not recommended due to their large number of successful steps, 

unless higher accuracy is desired. Finally, when the prescribed tolerance is further 

decreased to 610 , it seems to have a few options based on our point of view. For 
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example, if computational cost is our main concern, then third order method of Ikhile 

(2001) could be a good choice. If we wish to have a balance between computational 

cost and accuracy, we would recommend 3-MERM or perhaps even the third order 

methods of Lambert & Shaw (1965) and Van Niekerk (1988). If our only concern is 

the accuracy, then 3-ERM(2) could be the first choice followed by Van Niekerk 

(1987). We note that 3-ERM(1) is quite unsatisfactory in terms of computational cost 

and accuracy. The initial step-size 0 0.1h   works just fine for this stiff system. 

 

We would like to discuss Problem 4.5 and Table 4.6 in a different manner as the 

presentation of Table 4.6 is also different from the previously shown tables. Problem 

4.5 is a problem whose solution possesses singularity at 

4 0.785398163367448x   . Since we are using variable step-size, either one of 

the following situations could happen: the computed step-size nh  could overstep the 

singularity or it couldn’t; both somehow affected by the prescribed tolerance. We 

shall not face this kind of difficulty if constant step-size strategy is implemented. As 

we can observe from Table 4.6, the prescribed tolerance is set to 210  with three 

different initial step-size 0 0.1h  , 0.01 and 0.001. We have found out that using 

stricter prescribed tolerance such as 410  or 610  will generate step-size nh  that 

could not overstep the singularity and hence causing divergence in the approximated 

solution. When the initial step-size is 0 0.1h  , we can see that only the third order 

rational method of Ikhile (2001) is able to return converging numerical solution with 

only 8 successful steps. When the initial step-size is decreased to 0 0.01h  , more 

methods are returning converging solution, but the method of Ikhile (2001) generated 

results of better accuracy. Finally, when the initial step-size is further decreased to 
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0 0.001h  , third order methods of Ikhile (2001) still outperformed other third order 

rational methods. After several tests, we note that 3-ERM(1) failed to generate any 

converging numerical solution even with the initial step-size 0 0.0001h   and 

0 0.00001h  , using the same tolerance 210 . The interval of integration for this 

problem is  0,0.8 . It has been shown in Table 4.6 that, initial step-size 0 0.1h  , 

0.01 and 0.001 required a total of 8, 80 and 800 successful steps respectively, to 

return converging numerical solution. In other words, there is no step-size rejection 

occurred during the integration along the interval  0,0.8 , using these three initial 

step-size. 



CHAPTER FIVE 

SUMMARY AND CONCLUSION 

 

The ideas of the research work contained in this report are twofold: (i) the 

discoveries of a new class of explicit one-step modified exponential-rational methods, 

and (ii) the proposal of a variable step-size strategy and implementation to several 

one-step rational methods. 

 

After a short introduction in Chapter 1 and some literature review to support the 

rationale of our studies in Chapter 2, the main contributions of this research begin 

with Chapter 3. In Chapter 3, we have presented a new class of modified 

exponential-rational methods (MERMs) which are explicit one-step methods that are 

based on rational functions. The general formulation of MERM is given in (3.2) 

while the order condition and local truncation error for a MERM are explained in 

Definition 3.1 and Definition 3.2. The parameters b, c and ja  for 0,1, ,j k   are 

generalized in Section 3.3 and the generalized formulae were shown in equations 

(3.8) – (3.11). On choosing an integer of 2p   (i.e. the order of a MERM), the 

parameters for a specific MERM can be determined and these parameters are unique 

for a chosen integer. The principal local truncation error term is also generalized as 

in equation (3.13). Sections 3.5 and 3.6 showed that each MERM is L-stable, 

consistent by Definition 3.3 and convergence for any order or accuracy. We have 

chosen some test problems to evaluate the effectiveness of MERMs and other 

existing rational methods in terms of numerical accuracy. From the numerical 

experiments conducted, MERMs and ERMs from Teh & Yaacob (2013b) are found 

to have comparable accuracy, and they generated more accurate numerical results 
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compared to existing rational methods of Lambert & Shaw (1965), Van Niekerk 

(1987), Van Niekerk (1988) and Ikhile (2001) in solving non-stiff problem (Problem 

3.1) and stiff problems (Problems 3.2, 3.3 and 3.4). All these tests seem to indicate 

that MERMs are suitable and more reliable for general initial value problems whose 

solutions possess no singularities. However, MERMs are not suitable for problems 

whose solutions possess singularities, as was shown in Table 3.6. Finally, MERMs 

and ERMs of Teh & Yaacob (2013b) are comparable in terms of numerical accuracy. 

However, we suggest MERMs over ERMs for the numerical solution of first order 

initial value problem because MERMs are uniquely defined but ERMs are not 

uniquely defined as explained in Chapter 1 and Chapter 2. 

 

In Chapter 4, we have discussed and presented a variable step-size strategy to be 

implemented together with one-step rational methods. Detailed explanation on the 

strategy is carried out in Section 4.2 and the strategy is further summarized in three 

flow charts shown in Figure 4.1, Figure 4.2 and Figure 4.3. We have chosen some 

test problems to evaluate the implementation of variable step-size strategy in several 

selected third order rational methods from the literature. The evaluation is based on 

the total number of successful steps needed to complete the integration along the 

interval  ,a b ; and the maximum absolute relative errors correspond to the 

prescribed tolerance and also total number of successful steps. Numerical 

experimentations showed that the proposed variable step-size strategy is workable in 

all selected rational methods. However, there are some needs of precautions 

especially in solving stiff problem and problem whose solution possesses singularity. 

These precautions are selection of initial step-size and selection of prescribed 

tolerance for the error estimation. The variable step-size strategy could be improved 
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by introducing another subroutine to control the step-size nh  so that it would 

overstep the singularity and convergence of numerical solution is guaranteed when 

solving problem whose solution possesses singularity. In our research, the initial 

step-size was supplied by the user to the code based on his/her mathematical 

knowledge or previous experience. According to Hairer et al. (1993), a bad choice of 

the initial step-size will be quickly adjusted by the step-size control but nevertheless, 

when this happens too often and when the initial guess of step-size is too bad, much 

computing time can be wasted. Therefore, future improvement of our proposed 

variable step-size strategy would include subroutine to let the computer decide the 

initial step-size. Another suggested improvement is to introduce a straightforward 

mechanism of doubling the step-size i.e. 

1 2n nh h  ,              (5.1) 

if specified error estimation is fulfilled. For example, Butcher (2008) suggested the 

adjusted step-size in equation (5.1) if the error estimation is less than 0.04 Tol . The 

motive of doubling the step-size is to accelerate the numerical integration and at the 

same time, avoiding unnecessarily excessive small step-size which contributed to 

extra computational cost. All these suggestions will be considered in future study. 

 

With the above summary and conclusion, we conclude this report. 
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