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Abstract. Multi-bolted joint configurations are commonly used in joining different parts in various engineering 
sectors, ability of bolts to transfer by-pass stress to adjacent bolts prone of net-tension to occur compared to single-
bolt joint configurations. There is bearing-bypass envelope has been proposed but due to complexities in bearing 
damage leading to difficulties in predicting failure modes. More recently, strength prediction works in composite 
structures are carried out within finite element framework to take into advantage of advanced computing technology. 
Current work implemented a three-dimensional Extended Finite Element Method (XFEM) framework of single-row 
multi-bolted joints to predict the bearing stress at failure, validated against experimental datasets. A testing series 
comprised of different clamping load and number of bolts in a single row. All testing series failed in net-tension 
failure mode, suggesting prominent effect from stress concentration. Crack initiation and propagations shows 
similarity within XFEM and experimental observations. Good agreements were found (less than 10% discrepancy) 
due to ability in 3-D modelling to capture effect of bolt load and frictional load transfer. 

INTRODUCTION 

Materials engineers and scientists worldwide are chasing to produce an engineering material that is not only light 
but has excellent mechanical properties. One class of advanced engineering materials is known as “composite 
materials” comprised of reinforcing fibers and matrix binder that is formerly used in aircraft and automotive 
industries, but as a result of price drop over last four decades, these materials were implemented in manufacturing, 
civil engineering applications and defence sectors. Commercially used reinforcing fibers are carbon, glass and 
aramid fibers but these synthetic fibers require mineral coring and associated to human health hazards. Nishino, 
Hirao and Kotera [1] has reported that kenaf fibers possess excellent modulus of elasticity and elongation at break. 
Natural fibers such as kenaf fibers are renewable, has good thermal and acoustic insulations, and less hazardous 
during handling process. drilling holes, and due to plate discontinuity, stress concentration is prone to occur and 
reduce the loading capacity of the respective plates. Anders and Ahmad [2] has carried out experimental work on 
notched plate problem and found that notched strength is largely dependent upon hole size, plate thickness and plate 
lay-ups. However, in bolted joint problems, bearing strength at failures exhibited much more complex damage 
mechanisms as three primary failure modes may occur dependent upon clamping load, lay-up types and friction 
coefficient. Single-lap joint is the most prominent joint types, however due to unsymmetrical loading path subjected 
to secondary bending occurrence. This increased the tensile stress at the vicinity of the hole edge and reduce its 
loading capacity. Effect of secondary bending is significant with dissimilar joining plates with higher relative 
material modulus.  

In multi-bolted joints, there is an interaction between bearing stress and by-pass loading transferred to adjacent 
bolts. Crews and Naik [3] initially proposed bearing-bypass interaction envelope for CFRP and later by Hung and 
Chang [4] proposed damage accumulation model to predict composite joints strength as subjected to bi-axial by-pass 
load, however due to anisotropy and inhomogeneity introduce more complexities in predicting failure modes. Their 
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models ignore the three-dimensional nature such as bolt bending and unsymmetrical loading effect. Among the 
factors which affect the strength of multi-bolt joints are the interaction of stress fields among adjacent fasteners, bolt 
configurations and number of bolts in a vertical or horizontal bolt lines. Godwin, Matthews and Kitty [5] conducted 
an experimental study of glass-reinforced plastic (GFRP) multi-bolt joints and found that vertical multi-bolts 
arrangement to loading direction was weaker than horizontally configurations. Experimental investigations on 
single-row CFRP with three-bolt joints were carried out by McCarthy and Gray [6] and found that by increasing bolt 
pitch equally leading to more evenly loading sharing between adjacent bolts. Similarly, as the diameter of centre bolt 
increased, the respective bolt able to carry higher joint load as load distribution were improved. Increasing plate-
width tends to improve the load distribution balance. On the other hand, increasing clamping load in two outer bolts 
incline to balance the load distribution, however fatigue resistance design may not allow such unequal clamping load 
to different bolts in the joints. 

McCarthy, McCarthy and Gilchrist [7] found that net-tension modes were susceptible to occur in multi-bolt 
joints due to by-pass loading transfer within adjacent bolts. It was suggested the outer bolts transfer bearing stress to 
adjacent bolts leading to tendency for net-tension failure to occur. Most of strength prediction works in bolted joint 
problems were implemented within finite element framework such as progressive damage modelling. Failure 
criterion and degradation law used are Hashin [8] formulation and Yamada-Sun [9] law respectively in progressive 
damage modelling implemented by McCarthy, McCarthy and Lawlor [10] work based on ply-by-ply basis. Three 
steps were implemented as follows: (i) stress analysis, (ii) implementation of failure criteria and (iii) degradation of 
material properties. McCarthy used homogeneous material properties based on Classical Laminate Plate Theory 
(CLPT) used as elastic material properties, however this theory is applicable to unidirectional composites, they also 
elaborate the use of proper contact interaction between bolt-hole and other contact regions. However, available 
CLPT theory is not applicable to woven fabric composites as there are existing crimping region.  Ishikawa and Chou 
[11] proposed notable three classical models based on Classical Laminated Plate Theory (CLPT) of 2-D woven 
fabric composites that able to predict thermo-elastic properties. However, these formulations were based on micro-
scale modelling known as representative volume element (RVE), complex mathematical formulations were involved 
as multi-scale modelling were involved leading to its impractical use.  

Current work was carried out to implement a 3-dimensional finite element approach to predict bearing stress at 
failure in single-row multi-bolted woven fabric kenaf composite joints. The modelling framework explicitly includes 
frictional loading transfer, clamping load and surface interactions by using ABAQUS CAE Version 6.13 by 
implementing physically-based constitutive law. Extended Finite Element Method (XFEM) were implemented 
which were introduced by Moes et al., [12] and was implementing in predicting bearing stress at failure in single-
bolt double-lap and single lap CFRP joints [13]. XFEM is extended from classical finite element expression which 
has enhanced function to enable the crack be tracked visually. The strength prediction works were validated against 
experimental datasets, subsequently discussed in discussion section. 

EXPERIMENTAL FRAMEWORKS 

The experimental framework was carried out and its description on composite plate preparations, testing series 
investigated and mechanical testing are given in following section. The elastic and material properties used were 
also carried out and implemented within finite element modelling in later stage. 

Testing Coupon Preparations 

Fabrications of woven fabric kenaf fiber reinforced polymer (KFRP) panels were carried out at Fabrication 
Laboratory, Universiti Tun Hussein Onn Malaysia (UTHM). Kenaf yarn has a nominal diameter of 0.7 mm were 
weaved by using weaving handloom machine combined with epoxy resin (and hardener) to produce woven fabric 
KFRP panels. Cross-ply plain weave plate was used in current study with a stacking sequence of (0/90)s. The 
composite panels were allowed to harden for 24 hours under high pressure and visible voids were inspected.  

A testing coupon has a plate width, W = 25 mm and gauge length, l = 165 mm. Plate end distance, e were fixed 
to normalised end distance, e/d = 4 and corresponding normalized plate width was taken as W/d = 5. 5 mm diameter 
circular holes were drilled according to testing series, with 23 mm pitch spacing, p were provided between adjacent 
holes. The fastener systems used in current joint configuration system are steel washers and steel bolts. M5 bolts and 
washers were installed and bolt load were applied with finger-tight and torque wrench (in case of torque, T=5 Nm) 
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shank and bore hole were assumed in all models to eliminate the effect of clearance, low tolerance in aerospace 
sector were allowed and to the lesser extent in civil engineering sector. 

Generation of Materials and Geometrical Properties 

The boundary conditions and applied displacements were assigned accordingly to resemble mechanical testing 
conditions. As described earlier, elastic properties of KFRP used in the present model were obtained from 
independent experimental set-up and were considered as “smeared-out” properties, given in Table 2. The unnotched 
strength, σo and fracture energy, Gc were also determined independently, both material properties were later used as 
constitutive model parameters described in next section. Woven fabric KFRP composites plates were modelled with 
nominal plate thickness of 2.1 mm. 

TABLE 2. Material properties of KFRP lay-up used in current work 

Lay-up Ex 
(MPa) 

Ey 
(MPa) vxy 

σo 
(MPa) 

Gc 
(kJ/m2) 

PX2 
(0°/90°)s 2260.33 2260.33 0.07 54.70 5.3 

Boundary condition at far-left is held fixed and applied displacement was assigned at the far-right as shown in 
Figure 2. All surface interactions were modelled as “master-slave” interaction and penalty friction value were 
implemented with friction coefficient of 0.3 and 0.1 for composite-composite and composite-steel surfaces 
respectively. Master surface was assigned in materials with larger modulus and exhibited less deformable than 
relatively weaker joining materials (assigned with slave surface). The contact between two surfaces was modelled as 
small sliding and surface-to-surface as sliding formulation and discretization method respectively. Combination of 
small sliding and surface-to-surface discretization gives more realistic physical perturbation and cover larger contact 
area between contact pairs. XFEM regions were assigned within the net-tension plane at the vicinity of Bolt 1 as 
observed during mechanical testing. Y-symmetry was assigned at the y-axis to represent half-model configurations 
as idealized previously. 

FIGURE 2. Boundary condition and loading applied of 3-D multi-bolted joints model 

The mesh ahead of hole edge (particularly area under washers) were refined and remaining plate regions were 
made coarser to save computational effort as shown in Figure 3. Full integration method was implemented to avoid 
hour-glassing effect (in case of using reduced integration technique).  In current study, damage stabilization value of 
1 x 10-5 was implemented throughout all models and first-order brick elements with element designation code of 
C3D8I (an 8-node linear brick, incompatible modes) was used as element type. These elements were chosen as only 
first-order elements and brick elements were compatible in current standard ABAQUS Version 6.13 with XFEM 
framework. Brick elements are prone to shear locking phenomenon, however, these effect can be avoided by using 
incompatible modes. 

FIGURE 3. Meshing of 3-D multi-bolted joints model based on experimental plate geometry (The notch edge at Bolt 1 is 
enlarge for visual clarity) 

Bolt 1 Bolt 2 Bolt 3 

Bolt 3 Bolt 2 Bolt 1 
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as given by Point A, at this point, the damage is progressively took place. At this point, the respective plate still able 
to carry more load until ultimate load. Point B shows ultimate failure load from current modelling work which 
associated to catastrophic failure. Ultimate load is given as the crack reached about a radius of hole size. After Point 
B, the crack is propagated until separated completely, Point B to Point C occurred in a short period of time 
(catastrophic failure). 

FIGURE 8. Joint behaviour of testing coupon in PX2 with 2BT5 laminate designation 

Validation of XFEM Models with Experimental Datasets 

Table 3 showed comparison between experimental results and strength predictions for all testing series 
understudied. As expected, bearing stress at failure of KFRP plates with 5 Nm bolt load showed better agreement 
compared to strength prediction in 2-D modelling. From Table 3, a very good agreement was found under torqued 
condition (both 2 bolts and 3 bolts models gives discrepancy of less than 5%). Good correlation was also found 
under finger-tight loading. Current model implemented 3-D modelling framework, therefore the load transfer due to 
friction and bolt load was physically represented. Current work used sliding load taken from load-displacement 
profiles which showed a slight plateau to indicate slippage of joining plates to calculate the actual (true) bolt load 
applied. 

In 3-D modelling framework, effect from secondary bending, bolt tilting, joining plates sliding, bearing contact 
and applied bolt load were explicitly modelled. It is expected that effect of secondary bending is less significant in 
multi-bolt problem compared to single-bolt problem due to less bolt tilting in multi-hole problem leading to less 
edge lifting. Secondary bending effect is relying on bolt tilting and penetration of washers may exhibit on composite 
surface. Exhibition of secondary bending increases the tensile stress, and therefore reduce the loading capacity of 
respective composite plates compared to equivalent double-lap joints. Secondary bending phenomenon can be 
captured properly in 3-D modelling, however implementation of “smeared-out” properties is expected to give good 
prediction with thicker plates (Larger edge lifting than necessary may exhibited in thinner plates as secondary 
bending occurred if smeared out elastic properties are used).  

Under torqued condition, the effect of hole elongation as remote loading applied is small compared to finger-
tight condition. It is expected that better predictions are shown under torqued condition due to less hole elongation 
exhibited (current work used “smeared out” properties that may not represented well hole elongation, but 
assumptions of self-similar crack may offset the hole elongation effect. 
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TABLE 3. Material properties of KFRP lay-up used in current work 

Torque 
condition 

Experimental 
bearing stress at 

failure, σexp 
(MPa) 

XFEM 
predictions in 
2D, σXFEM, 2D 

(MPa) 

Discrepancy 
(%) 

XFEM 
predictions in 
3D, σXFEM, 2D 

(MPa) 

Discrepancy 
(%) 

2 bolts Finger-tight 110 105 - 4.5 103 + 6.4 
Torque 148 172 + 16.2 144 + 2.7 

3 bolts Finger-tight 124 132 + 6.5 122 + 1.6 
Torque 159 199 + 25.2 164 - 3 

*Finger-tight = 0.5 Nm
*Torque = 5 Nm

CONCLUSIONS 

As expected, multi-bolted joints are prone to net-tension failure and it was in-line with analytical approach due to 
ability by-pass loading transfer to adjacent bolts. Good agreements were found in all testing series (less than ±10% 
discrepancy). Better predictions of bearing stress at failure were found under torqued case compared to previously 2-
dimensional model as a result of applied bolt load is incorporated physically in the model (previous 2-D models 
rigorously adding sliding stress to predicted bearing stress). Moreover, 3-D modelling able to capture frictional load 
transfer, secondary bending and proper contact interaction (current model used “master-slave interaction” that 
allows penetration of slave surface onto master surface, similar physical observations under bearing after slippage 
occurred). 
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