
Abstract—Functional Electrical Stimulation requires an accurate 
model of electrically stimulated muscles to control the muscle 
contraction force. Characterization of electrically stimulated muscle 
is complex because of the non-linearity and time-varying nature of 
the system with interdependent variables. The muscle model consists 
of relatively well known time-invariant passive properties and 
uncertain time-variant active properties. In this research a new 
approach for estimating nonlinear active properties of the electrically 
stimulated quadriceps muscle group is investigated. The objective of 
this study is to develop a model that could be used to describe active
joint properties including continuous-time nonlinear activation 
dynamics and nonlinear static contraction. As an example, the 
modelling of a freely swinging lower leg by electrical 
stimulation of the quadriceps is considered. 

Keywords—Knee joint, functional electrical stimulation, genetic 
algorithm, fuzzy inference system

I. INTRODUCTION

HE identification of the joint/muscle properties of lower 
limbs in people with spinal cord injury (SCI) has been a 

topic of active research for several decades. Many researchers 
have developed electrically stimulated muscle models ranging 
in levels of sophistication from simple to complex. The use of 
electrical signals to restore the function of paralyzed muscles 
is called functional electrical stimulation (FES). FES is a 
promising method to restore mobility to individuals paralyzed 
due to SCI. Modelling and parameter identification of both the 
passive and active joint properties are needed to improve 
control of this nonlinear time varying system. In order to 
develop a control strategy for the FES to make the movement 
of the leg correctly, a proper model of the stimulated muscle 
has to be used. Most muscle models built either on 
experimental or physiological bases are not appropriate for 
control applications, since these models characterize each 
muscle feature alone, and sometimes there is no connection 
between the modelled features which may prevent from 
modelling the whole muscle as one model [7]. 
      The muscle is assumed to consist of two components: an 
active force generator and parallel passive properties. Riener 
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and Edrich [10] suggested that active and passive muscle 
properties should be identified separately as it is easier so to 
identify. Other researchers such as Zajac [11] and Pandy et al.
[12] used a musculo-tendon model, in which the passive and 
the active forces are generated by single muscle. However, 
such models have too many parameters that cannot be 
identified non-invasively due to the muscle-joint redundancy 
of the musculoskeletal system. The muscle force is controlled 
by changing the number of active motor units by pulse width 
modulation, using constant-frequency stimulation. The active
component is composed of two parts: muscle activation and 
muscle contraction. Muscle activation [Nm] is computed from 
the pulse width of electrical stimulation. Muscle contraction 
results from combination of the moment-angle and moment-
velocity relations. Therefore, muscle contraction is computed
from the knee joint angle and the knee joint velocity. 
    This paper describes a new estimation method of active 
component of electrically stimulated knee joint model using 
genetic algorithm (GA) to fit the experimental data. Fuzzy
modelling is used to represent the active components 
(combination of the muscle activation and contraction) of the 
knee joint model. The inputs for the fuzzy inference system
(FIS) are stimulation pulse width, knee joint angle and knee 
joint velocity, while the output is the active torque. The
method requires passive properties and equation of motion to 
be known a priori. Passive properties such as elasticity 
moment and viscosity are identified using the pendulum test. 
The equation of motion is represented by a dynamic model of 
the lower limb using the Visual Nastran4D (Vn4D) computer 
aided design software program. The model is implemented in 
MATLAB/SIMULINK with Fuzzy Logic Toolbox and the 
computed motion is visualized by graphic animation using 
Vn4D.

II. MATERIAL AND METHODS

The shank-quadriceps dynamics are modelled as the 
interconnection of a passive part and an active part. The total 
knee-joint moment is given by [4]

dsgi MMMMM a (1)

where aM refers to an active knee torque produced by 

electrical stimulation, sM is the knee joint elastic moment and 

dM is the viscous moment representing the passive behaviour 

of the knee joint. The inertial ( iM ) and gravitational ( gM )
moments are represented by the Vn4D dynamic model of the 
lower limb in this study.
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In this section, first the use of pendulum test result for 
optimizing the passive properties and masses of the lower limb 
model is briefly described. Second, an electrically stimulated 
swinging leg test is presented to get the experimental data to 
realize the new technique of identification.  Lastly a new 
method for evaluating a fuzzy system’s performance to 
represent the active components of  knee joint model is 
outlined. The estimation procedure of the active properties of 
paraplegic using the optimized segment masses and the passive 
properties of the knee joint model are as shown in Figure 1. 

Fig. 1. Estimation procedure

A. Pendulum Test
Pendulum test can be used to evaluate the viscosity and 

elasticity moments of the knee to represent passive resistances 
to joint motion associated with structural properties of the joint 
tissue and of muscular-tendon complex. In this study, firstly 
the result obtained from the pendulum test is used with GA 
optimization approach to identify and estimate the passive 
properties such as elasticity moment, damping coefficient of 
viscosity and mass of the foot and shank of paraplegic. The 
goal of GA optimization process is to minimize the error 
between the knee angle obtained experimentally and from the 
model.

B. Swinging leg test using electrical stimulation 
Active properties including muscle activation and 

contraction are identified from an electrically stimulated 
swinging leg test. The computer controlled functional 
electrical stimulator system is tested on paraplegic subject. 
HASOMED current-controlled stimulation device was used to 

send the signals to the muscles. The unit is small and the 
generators can deliver trains of stimuli with variable current 
strengths and variable pulse widths. The technical 
specifications of this device are listed in Table 1. In the PC-
controlled configuration the stimulator device can be simply 
connected to PC via USB interface port.

TABLE I
TECHNICAL CHARACTERISTICS OF THE STIMULATOR

Parameter Range

Current 0 . . . 126mA in 2mA steps

Pulse width s steps

Frequency 25 Hz

The identification experiment was performed on the knee
joint of paraplegic subject.The subject sat on a chair, which 
allowed the lower leg to swing freely, while the hip angle was 
fixed at 70° of flexion as shown in Figure 2. 

Fig. 2. Computer controlled functional electrical stimulator system

The quadriceps muscle was stimulated using adhesive 
surface electrodes with the cathode (negative) placed just 
proximally over the estimated motor point of rectus femoris 
and the anode (positive) approximately 4-cm proximal of the
patella as shown in Figure 3. Electrodes are applied to the skin 
above the relevant muscles at a distance of 10-15 cm.

Fig. 3. Electrode placement on the quadriceps muscle
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The knee joint angle was monitored by a goniometer with the 
arrangement shown in Figure 4.

Fig. 4 Arrangement of goniometer

       The stimulation current was fixed to 40mA and frequency 
was set to 25Hz with a doublet type pulse.  The input and 
output from this experiment are shown in Figures 5 and 6
respectively. Active component identification was performed 
on the quadriceps (knee extensor) muscle group only. The 
subject was a 48 year-old T2&T3 incomplete paraplegic male, 
20 years post-injury with height = 173cm and weight =80kg.
Informed consent was obtained from the subject.

Fig. 5. Stimulation pulsewidth

Fig. 6. Knee angle

C. Identification Approach
1.  Lower Limb Model and Passive Properties
The lower limb model is a swinging leg composed of two rigid 
segments: the thigh and the shank-foot. The model of a 
dynamic system of the lower limb thus built using Vn4D is 
shown in Figure 7. 

Fig. 7.  Lower limb model

It is vital that the dimensions of the leg are chosen correctly. 
This is because the simulation results will be dependent upon 
the dimensions. The lower limb model dimensions are based 
on the subject’s lower limb measurements as shown in Table 2. 

TABLE II
ANTHROPOMETRIC DATA OF PATIENT

Segment Length 
[m]

Thigh 0.4239
Shank 0.4256
Foot 0.0675

The estimated passive properties such as elastic moment and 
viscous moment from pendulum test have been applied to the 
model as passive joint moments as shown in Figure 8.

Fig. 8. Schematic representation of the model developed

2. Identification of active properties using genetic algorithm
Fuzzy inference system is used to represent the non-linear 

active components of the knee joint model.  The model 
represents the muscle activation and contraction in one FIS
with three inputs; namely pulse width, knee joint angle and 
knee joint velocity,  and active torque as output. The active 
torque is added with the passive torque as an input to the lower 
limb model and this will produce the knee angle as the output
as shown in Figure 9. GA is used to identify the FIS properties 
with the goal to minimize the error between the knee angles 
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obtained experimentally and from the model response. The 
output prediction errors can be defined as follows:-

)(ˆ)()( tytyte                                                       (2)
where )(ty is the experimental data and )(ˆ ty is the estimated 
current output of knee angle.  The estimated output, one 
measure the ‘goodness of fit’ of the identified model using the 
objective function by minimizing the mean-squared error 
(MSE)
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Fig.  9. Optimization of active properties

GAs are search algorithms based on the mechanics of 
natural selection and population genetics theory. They were 
introduced  in 1975 by John Holland [2]. First, an initial 
population comprising 50 individuals is generated. Each 
individual corresponds to a chromosome, which is a set of 
specific genes from the biological point of view. The 
performance of each member of the population is assessed 
through an objective function imposed by the problem. This 
fires the process of selecting pairs of individuals which will be 
mated together during reproduction. Each individual is 
assigned a fitness value derived from its raw performance 
measure, given by the objective function. This value is used in 
the selection to bias towards more fit individuals. Highly fit 
individuals, relative to the whole population, have a high 
probability of being selected for mating, whereas less fit 
individuals have a correspondingly low probability of being 
selected [1].

The configuration of the fuzzy expert system model is
shown in Figure 10. In the fuzzification, crisp inputs are 
fuzzified into linguistic values to be associated to the input 
linguistic variables. After fuzzification, the inference engine 
refers to the fuzzy rule base containing fuzzy IF-THEN rules 

to derive the linguistic values for the intermediate and output 
linguistic variables. Once the output linguistic values are 
available, the defuzzifier produces the final crisp values from 
the output linguistic values. One of the methods to make sure 
that the universe of discourse covers the whole range without 
going over is by applying scaling factors. Therefore four
scaling factors are used to normalize the variables between -1 
to +1. These are; (S1) knee angle scaling factor, (S2) 
pulsewidth scaling factor, (S3) angular velocity scaling factor 
and (S4)  scaling factor of fuzzy system output.

Fig. 10.  A fuzzy expert system model

In order to efficiently design a controller while assuring 
high performance, the fusion of Fuzzy Logic Control (FLC)
and GA is steadily growing, mainly to optimise fuzzy rules 
and/or fuzzy membership functions (MFs) [8]. Tarng and Nian 
[9]. proposed an automatic synthesis of MFs based on a GA to 
control non-linear and time-varying tuning processes. The 
effectiveness of the technique was shown by a computer 
simulation and by experimental verification. In this study GA 
based optimization of the fuzzy system is adapted for 
modelling purposes. There are 689 parameters to optimize
including 60 parameters relating to the triangular MF, 625 rule 
weights for the fuzzy rules and 4 scaling factors. The first rule 
for this system with three inputs (pulsewidth, angle and 
velocity) and one output is as: ‘If input 1 is MF 1 and input 2 
is MF 1 and input 3 is MF1, then output 1 is MF 1’. There are 
5 MFs, therefore the combination of different rules for this 
system can reach up to 625 rules. 

III. RESULTS AND DISCUSSION

A new method comprising a genetic algorithm and 
unconstrained membership function overlap to automatically 
design fuzzy systems of the active muscle properties is 
presented. In this study, genetic algorithms with two point 
crossover and mutation operators are used to optimise 689
parameters. Population size was set to 50 and crossover and 
mutation probabilities were 0.8 and 0.001 respectively. The 
automatic GA optimization process generated up to 170
generations of solutions. The best solution was kept and the 
rest were discarded. No significant change in the mean square 
error (MSE) was observed after the 90th generation. Figure 11
shows the convergence curve, where the MSE is decreasing 
with number of generations. The minimum MSE achieved was 
2.5.
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Fig. 11  Convergence of the GA

The responses of the active experimental knee angle and the 
simulation result are shown in Figure 12.  It is noted that the 
two agree closely with one another.

Fig. 12. The experimental by measured and simulated knee angles

The nonlinear active components represented by non-linear 
function of fuzzy model with scaling factor for the 
normalization and denormalization of 3 fuzzy system inputs 
and outputs were as S1= 0.0061322, S2=0.0059891, 
S3=0.0082962  and S4=91.696. In the fuzzy system, 625
weights associated with the fuzzy rules between 0 and 1 were
optimised. The fuzzy system takes into account the 
nonlinearity in the active component of the knee joint model.  
The presence of the non-linearities in the active components of 
the joint model can be noted on this uneven surface shape of 
the fuzzy mapping surface. Figure 13 shows the cross section 
of the fuzzy control surface of pulsewidth and fuzzy output 
relationship with fixed knee angle and angular velocity. Figure 
14 shows the cross section of the fuzzy control surface of knee 
angle and fuzzy output relationship with fixed pulse width and 
angular velocity and Figure 15 shows the cross section of the 
fuzzy control surface angular velocity and fuzzy output 
relationship with fixed pulse width and knee angle.  These 3 
surfaces were generated by the 625 fuzzy rules.    

Fig. 13. Fuzzy control surface of pulsewidth and  output

Fig. 14. Fuzzy control surface of knee angle and output

Fig. 15 Fuzzy control surface of angular velocity and output.
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IV. CONCLUSION

    A new approach of identification and estimation of the 
active properties of the knee joint of SCI patient has been 
presented. Fuzzy model identification has shown an effective 
tool for the approximation of uncertain nonlinear systems. GA 
has been used to optimize the fuzzy system properties by 
optimizing the membership functions, weight rules and scaling 
factors to represent the active properties with combination of 
muscle activation and contraction. The identified and 
estimated stimulated model exhibited good prediction 
capabilities. This model can be used with passive joint 
properties to get the complete model of knee joint. The
complete model of joint thus obtained can be used for the 
design of controllers for FES stimulation. 
.
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