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ABSTRACT 

Near Infrared Spectroscopy (NIRS) has been implemented in various areas due to its 

non-invasive and rapid measurement features. A NIRS calibration model can be 

transferred among different instruments using calibration transfer methods. According 

to review paper reported by J. Worksman, the most popular calibration transfer 

methods of spectra standardization methods require primary and secondary 

instruments to acquire transfer samples at the same samples. However, if the primary 

instrument is broken, then the existing model cannot be transferred using these 

methods. Artificial Neural Network (ANN) that has the capability of adapting new 

environmental conditions. Thus, this study aims to investigate the feasibility of an 

adaptive ANN (AANN) as an alternative in transferring models from primary to 

secondary instruments with transfer samples collected on secondary instruments only. 

First, ANN was developed and optimized using primary instrument’s spectrum. Then, 

the optimized ANN was adapted to secondary instruments using transfer samples 

collected on secondary instruments, in which the weights and biases of the ANN were 

updated. Finding show that the excellent results were obtained using proposed AANN 

and 20 transfer samples, with the best averaged root mean squared error of prediction 

(RMSEP) of 0.1017% and the best averaged correlation coefficient of 0.7898, 

followed by Direct Standardization – Artificial Neural Network (DS-ANN) and Direct 

Standardization – Adaptive Artificial Neural Network (DS-AANN) in corn oils 

prediction applications. The proposed AANN outperformed previous works Piecewise 

Direct Standardization – Partial Least Squared (PDS-PLS) with RMSEP of 0.1321% 

and 0.1150%, and correlation coefficient of 0.7780 and 0.7785, for m5/mp5 and 

m5/mp6 respectively. Hence, proposed AANN has the capability to transfer the 

existing calibration model to secondary instruments without the involvement of 

primary instrument.
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ABSTRAK 

Spektroskopi Inframerah Hampir (NIRS) telah dilaksanakan di pelbagai bidang kerana 

ciri pengukurannya yang tidak invasif dan cepat. Model penentukuran NIRS dapat 

dipindahkan di antara instrumen yang berbeza menggunakan kaedah pemindahan 

penentukuran. Menurut kertas kajian yang dilaporkan oleh J. Worksman, kaedah 

pemindahan penentukuran yang paling popular dari kaedah standardisasi spektrum 

memerlukan instrumen primer dan sekunder untuk memperoleh sampel pemindahan 

pada sampel yang sama. Namun, jika instrumen primer rosak, maka model yang ada 

tidak dapat dipindahkan menggunakan kaedah ini. Rangkaian Neural Buatan (ANN) 

yang memiliki kemampuan untuk menyesuaikan keadaan persekitaran baru. Oleh itu, 

kajian ini bertujuan untuk mengkaji kemungkinan ANN suai (AANN) sebagai 

alternatif dalam memindahkan model dari instrumen primer ke instrumen sekunder 

dengan sampel pemindahan dikumpulkan pada instrumen sekunder sahaja. Pertama, 

ANN dikembangkan dan dioptimumkan menggunakan spektrum instrumen primer. 

Kemudian, ANN yang optimum disesuaikan dengan instrumen sekunder 

menggunakan sampel pemindahan yang dikumpulkan pada instrumen sekunder, di 

mana berat dan bias ANN dikemas kini. Hasil kajian menunjukkan bahawa hasil yang 

sangat baik diperoleh dengan menggunakan cadangan AANN dan 20 sampel 

pemindahan, dengan nilai purata ralat terkuasa dua min punca daripada ramalan 

(RMSEP) 0.1017% dan pekali korelasi rata-rata terbaik 0.7898, diikuti dengan 

Penyeragaman Langsung – Rangkaian Neural Buatan (DS-ANN) dan Penyeragaman 

Langsung – Rangkaian Neural Buatan Suai (DS-AANN) dalam aplikasi ramalan 

minyak jagung. Cadangan AANN mengatasi karya sebelumnya Penyeragaman 

Langsung Sesecebis – Terkuasa Terkecil Separa (PDS-PLS) dengan RMSEP 0.1321% 

dan 0.1150%, dan pekali korelasi masing-masing 0.7780 dan 0.7785, untuk m5 / mp5 

dan m5 / mp6. Oleh itu, AANN yang dicadangkan mempunyai kemampuan untuk 

memindahkan model penentukuran yang ada ke instrumen sekunder tanpa penglibatan 

instrumen primer.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 

Near infrared spectroscopy (NIRS) is a secondary analytical approach that 

measures the absorption of electromagnetic radiation consists of wavelengths from 

780nm to 2500nm. NIRS measures the absorption according to overtones and 

combinations of vibrational modes of the C-H, O-H, and N-H chemical bonds [1]. The 

chemical bonds' vibration was created by emitting the near infrared light. The 

absorption was recorded through the reflected light back to the sensors and produced 

the spectra representing important information on the sample. Near infrared (NIR) 

spectrum is mixed by various interested chemical information and unwanted noises 

from variant backgrounds [2]. Consequently, a tedious modelling process is needed to 

optimize a predictive model for a specific NIRS application with specific instruments. 

Before modelling process, the near infrared (NIR) spectrum needed to pre-

process and sample separation. First, sample selection method was applied to NIRS 

application to improve the performance of the predictive model because the samples 

were distributed uniformly and cover the range of the validation. SPXY algorithm 

were selected for sample selection method compared to KS algorithm because the 

performance of SPXY was better than KS [3]–[5]. Second, NIR spectrum needed to 

pre-process with SNV to remove the unwanted noises and baseline shift effect. The 

SNV has been chosen because SNV easy to implement and performance is better than 

MSC [6]. After that, PCA was used to compress the data into few numbers of principle 

and to reduce the dimension of input of the predictive model [7]–[10].  
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After pre-processing samples, the predictive model needed to optimize. For 

optimizing the predictive model, the parameter of the predictive model could be tuned 

such as number of iterations, weights and biases. ANN was chosen as a predictive 

model  because ANN has been widely used in NIRS researches [11]–[15]. Besides, the 

typical non-linear algorithms (i.e. Artificial Neural Network (ANN), AdaBoost, local 

algorithm (LA), support vector machine (SVM), and extreme learning machine 

(ELM)) for NIRS in food analysis was reviewed by M. Zareef et. al. [16]. ANN can 

be considered as the most popular non-linear algorithm among these algorithms.  For 

instance, ANN coupled with NIRS was used to predict nitrogen content [12], [15], zinc 

oxide content [13], dry matter content [17], protein content [11], moisture content [18], 

and blood glucose [14]. Hence, ANN is considered as a popular calibration model in 

NIRS applications. 

Ideally, a reliable calibration model developed with consistent spectra can be 

re-used in secondary instruments. However, direct use of an optimized calibration 

model from one (primary) to another instrument (secondary) often caused the 

performance of the existing model to be invalid or degraded [19], [20] because there 

are differences among the spectra acquired by primary and secondary instruments [21], 

[22]. This inconsistency of the spectral response among different instruments could be 

due to the manufacturing process and measurement environmental conditions. 

Calibration transfer can solve the inconsistency of the spectra response among 

different instruments by standardizing the spectrum or updating the model. Calibration 

transfer is a method to transfer the model from one instrument to other instruments 

using similar samples and measurement conditions. The technique of recent calibration 

transfer methods was reported by J. Worksman [21]. According to that review paper, 

calibration transfer methods were focus to correct the spectrum of the secondary 

instruments according to the spectrum of the primary instrument e.g. Direct 

Standardization [9], Piecewise Direct Standardization [23], and canonical correlation 

analysis (CCA) [24]. However, the existing model cannot be transferred using spectra 

standardization methods if the primary instrument is broken. Hence, an existing model 

can be directly transfer to secondary instruments with only transfer samples collected 

on secondary instruments is worthy to be studied. 

On the other hand, the adaptive capability of ANN has been demonstrated in 

pretrained models. There are two steps to implement this algorithm. First, an ANN is 

optimized using primary datasets to produce a trained model. Second, adaptive 
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algorithms are used so that the trained ANN can be adapted to other applications. This 

approach adapts the existing model to suit other applications using various algorithms 

e.g. transfer learning [25], Adaptive Convolutional Neural Network (ACNN) [26], and 

pretrained algorithm [27]. 

Consequently, the learning and optimization costs of ANN can be substantially 

minimized. A trained ANN from a primary instrument may be applied to secondary 

instruments using adaptive algorithms as an alternative transfer calibration strategy. 

Since the adaptive ability of ANN in NIRS applications has not been studied, this study 

aims to investigate the feasibility of the ANN adaptive algorithm in a NIRS transfer 

model application.  

1.2 Problem statement 

To transfer calibration model among different instruments, the instrument that 

used for calibration is called primary instrument, while the other instruments are the 

secondary instruments. One of popular calibration transfer method is to standardize 

the spectra from the secondary instruments to align with the primary spectra [28]. 

When a calibration model is used in secondary instruments, the calibration model will 

be invalid. This is because the changes among different instruments and different 

conditions will degrade the prediction accuracy of the model. Most of the calibration 

transfer methods require the primary and secondary instruments to acquire transfer 

samples at the same samples. However, if the primary instrument is broken, then the 

existing model cannot be transferred using spectra standardization methods. Therefore, 

an alternative that can directly transfer an existing model to secondary instruments 

without transfer samples collected on primary instrument is worthy to be investigated. 

1.3 Hypothesis 

Adaptive Artificial Neural Network (AANN) has a comparative performance 

achieved by ANN that trained using the calibration dataset and existing calibration 

transfer i.e. Direct Standardization - Artificial Neural Network (DS-ANN). 
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1.4 Aim 

The adaptive ability of Artificial Neural Network (ANN) can apply to near 

infrared spectroscopic analysis i.e. corn data. Adaptive ANN (AANN) has the 

comparative performance achieved by the existing calibration transfer method i.e. DS. 

Corn data was chosen because the corn data was used for calibration transfer research. 

The corn data set comprises NIR reflectance spectra and oil content from 80 corn 

samples.  Three instruments scanned each sample. Each instrument acquired 80 

spectra. Hence, the total spectra were 240 spectra. The spectra were acquired in the 

range 1100-1498 nm at each instrument.  

 

1.5 Objectives 

This research work embarks on the following objectives: 

 

1. To establish the relationship between the acquired NIR spectra and corn oil 

values using Artificial Neural Network among different instruments. 

 

2. To construct Adaptive Artificial Neural Network with and without Direct 

Standardization for transferring the model among different instruments. 

 

3. To evaluate the calibration transfer performance among different instruments 

based on root mean squared error of prediction, the correlation coefficient of 

prediction, and the number of transfer samples used. 
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1.6 Scopes of study 

To fulfil the stated objectives, the scope of this project will be divided into three 

according to objectives: 

 

1. To establish the relationship between the acquired NIR spectra and corn oil 

values using Artificial Neural Network for different instruments. 

a) The dataset consisted of NIR spectra measured using three NIRS 

instruments (namely, m5, mp5, and mp6) on 80 corn samples 

(http://software.eigenvector.com/Data/Corn/index.html). 

b) SNV and SPXY were used for data pre-processing and data separation, 

respectively. 

c) Artificial Neural Network (ANN) model was used. 

 

2. To construct Adaptive Artificial Neural Network with and without Direct 

Standardization for transferring the model among the different instruments. 

a) Direct Standardization - Artificial Neural Network (DS-ANN) and 

Adaptive Artificial Neural Network (AANN) were used to transfer the 

model from primary to secondary instruments. 

 

3. To evaluate the calibration transfer performance among different instruments 

based on root mean squared error of prediction, the correlation coefficient of 

prediction, and the number of transfer samples used. 

a) All methods were created by using MATLAB toolbox (2018a). 

b) Evaluate the models' performance by calculating the root mean square 

error of prediction (RMSEP), the correlation coefficient of prediction, 

and the number of transfer samples used. 
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1.7 Research contribution 

This research contributes to the calibration transfer in NIRS by using Adaptive 

Artificial Neural Network (AANN). AANN can reduce the computing cost and sample 

preparation by updating the trained model's weight and bias and without rerun the 100 

times process for each number of hidden neurons. AANN only needed a set of transfer 

samples of secondary instruments to transfer the trained model. The proposed AANN 

transferring a model from primary to secondary instruments achieved the best 

averaged RMSEP of 0.1017%, followed by Direct Standardization – Artificial Neural 

Network (DS-ANN) and Direct Standardization – Adaptive Artificial Neural Network 

(DS-AANN) of 0.1114% and 0.1149 %, respectively. 

1.8 Outline of the thesis 

Chapter 1 shows the problem of NIRS. This thesis investigates the feasibility 

of the ANN adaptive algorithm in a NIRS transfer model application.   Chapter 2 

explains the background and motivation of the calibration transfer in NIRS. The 

calibration transfer process and the calibration transfer methods were discussed in 

Chapter 2. Chapter 3 describes the process to develop ANN and the calibration transfer 

method i.e. Direct Standardization – Artificial Neural Network (DS-ANN) and 

Adaptive Artificial Neural Network (AANN). Chapter 3 also discussed the procedure 

to evaluate the calibration transfer methods' performance. Chapter 4 shows the root 

mean squared error of prediction, the correlation coefficient of prediction, and the 

number of transfer samples used for calibration transfer method, AANN, DS-ANN, 

and DS-AANN. Lastly, Chapter 5 concludes the result of this experiment and 

recommends some interesting research for future work.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter discusses the calibration transfer review is discussed in this 

chapter, i.e. motivation of the calibration transfer, calibration transfer between 

different conditions, same instruments, and different instruments. After that, the trend 

of ANN and adaptive algorithm with ANN are discussed and explained the reason to 

proposed the adaptive algorithm with ANN. Lastly, corn dataset and NIRS 

applications and problems are also discussed in this chapter. 

2.2 Calibration transfer 

Calibration transfer methods can be classified into two categories i.e. 

calibration transfer between instrument and calibration maintenance as reported by J. 

Worksman [21]. Calibration transfer is to transfer the model from one instrument to 

another using similar samples and measurement conditions shown in Figure 2.1. 

Calibration maintenance uses the same calibration model to adapt to new measurement 

and sample conditions as shown in Figure 2.2. 
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