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Ahstract: Combined heat and mass transfer in free, forced and mixed convection flows along
a porous wedge with internal heat generation in the presence of uniform suction or injection is
investigated. The boundary-layer analysis is formulated in terms of the combined thermal and solute
buoyancy effect. The flow field characteristics are analyzed using the Runge-Kutta—Gill method, the
shooting method, and the local nonsimilarity method. Due to the effect of the buoyancy force, power
law of temperature and concentration, and suction,/injection on the wall of the wedge, the flow field
is locally nonsimilar. Numerica! calculations up to third-order level of truncation are carried out
for different values of dimensionless parameters as a special case. The effects of the buoyancy force,
suction, heat generation, and variable wall temperature and concentration on the dimensiaonless
velocity, temnperature, and concentration profiles are studied. The results abtained are found to be
in good agreement with previously published works.
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INTRODUCTION

The study of convection heat and mwass transfer and fluid flow in porous media has received great attention
in recent years. Most of the earlier studies were based on Darcy’s law, which states that the volume-averaged
velocity is proportional to the pressure gradient. Excellent reviews of natural convection flows in porous media
have been presented by many authors (see, e.g., {1-7)). Many practical applications of convective heat transfer
exist, for example, in chemical factories, in heaters and coolers of electrical and mechanical devices, in lubrication

of machine parts,etc—The-earliest-activities in this field include the works of Gebbart and Pera [8] and Pera and

Gebhart [9], where similarity solutions were obtained for a natural convection flow from a vertical surface and a
horizontal surface, respectively. Chen and Yuh [10] and Kandasamy and Devi [11] studied this problem for the case
of an inclined surface and a wedge surface. Many contemporary problems of heat and mass transfer do not admit
similarity solutions {12-14]. The nonsimilarity of boundary layers may results from a variety of causes, such as
surface mass transfer, nonuniform wall temperature and concentration, and variable pressure gradient.
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Fig. 1. Flow analysis along the wedge wall:
{1) wedge; (2) porous wall.

Several numerical approaches have been developed for obtaining nongimilar solutions in boundary layers.
Among them, the local nonsimilarity method is one of the most well known methods. This method was developed by
Sparrow and et al. [15, 16] and has been applied by many investigators to solve various nonsimilar boundary-layer
problemms [17-18]. The numerical scheme was also applied to several representative problems of boundary-layer
analysis [20-22], and the results obtained were found to be in excellent agreement. However, all of the published
works in this field did not reveal any applications of the local nonsimilarity method for solving the problem of
nonsimilar convective heat and mass transfer in the boundary-layer flow over a wedge. Apparently, the effect of
injection and suction on mixed convection along a permeable wedge with a variable surface heat flux embedded into
g Darcian porous medium seems not to have been investigated.

The present study addresses the buoyancy force effects on the boundary-layer flow over a porous wedge with
heat generation in the presence of uniform mass suction or injection with a nonuniform pressure gradient. The
governing equations are obtained in terms of local nonsimilarity equations. Numerical solutions are obtained by
employing the method of local nonsimilarity and the Runge-Kutta—Gill integration scheme in conjunction with
the shooting method to satisfy the conditions at the boundary-layer edge. It is, thus, expected that the local
nonsimilarity approach should yield more accurate results for the velocity, temperature, and concentration fields
than those of the local similarity model. Results obtained from this study will be helpful in predicting flow, heat
and mass transfer, and solute or concentration dispersion about intrusive bodies, such as salt domes, magnetic
intrusions, piping, etc.

1. MATHEMATICAL ANALYSIS

A two-dimensicnal laminar boundary-layer flow of a viscous incompressible fluid past a porous wedge s
considered (Fig. 1). The fluid is assumed to be Newtonian, and variations of its properties due to femperature
depend on density and viscosity. The density variation and buoyancy effects are taken into account in the momentum
equation (Boussinesq approximation). Let the x axis be taken along the wedge generatrix and the y axis be normal
to it. The viscous dissipation effect and the Joule heat are neglected owing to finite conductivity of the fluid.
A constant suction or injection is imposed on the wedge surface. Under these assumptions, the governing equations
of the problem have the form
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" The boundary conditions are

u=0, v=-wv, T =Tu(z)=Twt+hz" C=C,(z) = Cx + b2z at y=0,

u=U(z), T=Tsn C=Cx at y=o0

In these equations, u and v are the corresponding velocity components in the = and y directions, respectively, Usc 18
the flow velocity on the outer edge of the boundary layer, v is the kinematics viscosity, g is the acceleration due
to gravity, 2 is the linear coefficient of thermal expansion, 8* is the volumetric coefficient of thermal expansion,
', Ty, and Ty, are the temperature of the fluid inside the thermal boundary layer, the plate temperature, and the
free-stream fluid temperature, respectively, C, Ch, and C., are the corresponding concentrations, 0 is the total
angle of inclination of the wedge, K is the permeability of the wedge wall, a is the thermal conductivity of the fluid,
D is the effective diffusion coefficient, vo is the suction (injection) velocity, the term Qo{Too — 1) is assumed to be
the amount of heat generated {absorbed) per unit volume, and (g is & constant, which may take either a positive or
a negative value. If the wall temperature T, exceeds the free-stream temperature T, the source term represents
a heat source at Qo < 0 and a heat sink at Qp > 0. The third and the forth terms on the right side of Eq. (2) are
the buoyancy force and porosity of the wedge wall acting on the fluid elements.
Following [23], we performn the replacement of variables:
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(U=az™, m=p3/2-5)20, 0= {1/7 is the Hartree pressure gradient parameter, and € is the total angle of
the wedge)-
The continuity equation (1) is satisfied by delining a stream function 1z, y) such that
ok &y
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The velocity components can be expressed as
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Tntroducing a buoyancy parameter 7 = Gr,/Re? and a wedge parameter { = Ex(—m)/2 = | — yl[(m +

1)z/(20U)]M?, we can write the governing partial differential equations of the problem as
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Here the primes denote partial derivatives with respect to 1, Sc is the Schmidt number, Pr is the Prandtl nupmber,
Re, is the Reynolds pumber, Gry is the Grashof number, Grg and Grg are the modified Grashof numbers for
concentration and temperature, N is the buoyancy ratio, -y; is the buoyancy parameter, & is the heat-source
parameter, snd A is the porosity parameter:
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Tt may be observed that Egs. (3) remain partial differential equations after the transformation, with terms
containing 8/8¢ in the right side. In this system of equations, it is obvious that the nonsimilarity aspects of the
problem are embodied in terms containing partial derivatives with respect to £. This problem does not admit
similarity solutions. Thus, to obfain a solution of the system containing terms with derivatives with respect to £
it is necessary to employ a numerical scheme suitable for partial differential equations.

2. LOCAL NONSIMILARITY SOLUTION

This Section deals with the local nonsimilarity method initiated by Sparrow and Yu [16] and applied by many
investigators to solve various nonsimilarity boundary-value problems. Let us formulate the system of equations for
the local nonsimilarity model with reference to the present problem.

At the first level of truncation of system (3), the terms containing £ 8/8¢ are smali. This is particularly true
for £ < 1. Thus, the terms with £9/8¢ in the right sides of Egs. (3) can be deleted. As a result, we obtain the
system of equations
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Equations (4) can be regarded as a system of ordinary differential equations for the functions f, §, and ¢. The
variable £ is considered as a parameter. For the next level of ttuncation, we introduce the functions
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As a result, we obtain equations up to the third level of truncation:
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Systemn (6) is obtained by differentiating system (5) with respect to £. In this set, all the terms in the right
side are retained. Differentiating system (6) with respect to £ again, we obtain system (7), in which the derivatives
of the functions fa, B2, and w; with respect to § are neglected. The systems obtained satisfy the following boundary
conditions:

e = 2s  FE0=0 060 =p60 =1
(61 0) = 91(63 U) = lPl(f: O) - 01
(

f1(&,0) = fi
F2(E,0) = F4(6 0y =02(60) =&0)=0; (8)

fll¢,00)=1, 0(¢,00) = (¢, 00) = f1(€,00) = B (£, 00) = 1(£,00) =0,
Fh (€, 00) = 62(£, 00) = (&, oo) = 0.

As at the lower levels of truncation, system (5)—(7) together with the boundary conditions {8) contins nine
functions f, fi, fa, 0, 61, B2, @, 1, and o, which are mutually coupled. The total order of this systen is now
21. For given values of the pertinent parameters, these equations can be treated as ordinary differential equa tions
that contain the parameter £ From the solutions of the above-derived equations, we are interested in dtaining
solutions only for the functions f, f, and ¢ and their derivatives. System (5)—(7) is solved by the Runge—Kutta —Gill
integration method in conjunction with the shooting technigue. The details of the computational technique have
already been discussed in [24, 25]. It should be noted here that five to seven iterations were suflicient 1 ensure

convergence of the solutions within 10-8. .



Table 1. Comparison of the values of f7(£,0) and —#’(£,0) for different values of Grs /Rel

Grz Data of {26] Present. work
2
Res £7(6,0) —8'(£,0) £7(£,0) —6'(5,0)
0 0.33206 0.292 68 0.33206 0.292 68
0.2 0.55713 0.33213 0.55707 0.33225
0.4 0.75041 0.35879 0.75007 0.35910
0.6 0.92525 0.37937 0.92449 0.37986
0.8 1.08792 0.39640 1.08700 0.39685
1.0 1.24170 0.431106 1.24062 0.41149
2.0 1.92815 0.46524 1.92689 0.46551
10.0 5.93727 (0.64956 ] 593660 0.64959
e o
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Fig. 2. Effect of the buoyancy parameter on the velocity (dotted curves), temperature (solid curves),
and concentration (dot-and-dashed curves) profiles at m = 0.6667, S=f£=014d=01and 1 = —2
(1), —1.5 (2), —1(3), —0.5 {4), 0.1 (5), 1 (6}, 5 {7), and 10 (8).

3. RESULTS AND DISCUSSION

In the present investigation, the results are obtained by two different methodologies, namely, the Runge—
Kutta—Cill method in conjunction with the shooting technique and the local nonsimilarity method with the third
level of truncation. The two-point boundary-value problem of the nonsimilar system of ordinary differential equa-
tions is obtained by the Falkner—Skan tramsformation. This system of ordinary differential equations with initial
conditions that take into account the skin friction and the rate of heat and mass transfer is integrated by the
Runge—Kutta-Gill method. The results are presented graphically for the dimensionless velocity, temperature, and
concentration distributions as functions of » for various prescribed parameters. The numerical computation is car-
ried ont for Pr = 0.72, N =1, 8¢ = 0.62, A=0.1,and n =04 in the power law of temperature and concertration.
In order to validate our method, we compared the skin friction f”(0) and the rate of heat transfer —6'(0) ohtained
for different values of Gry/ Re? (Table 1) with those of Minkowycz (26] and found them to be in excellent agreernent.

The effect of the buoyancy parameter on the dimensionless velocity and temperature distributions inside
the boundary layer in the presence of a heat source and suction aligned at an angle of 72° to the horizontal axis
is illustrated in Fig. 2. The positive vaiues of the buoyancy parameter correspond to an assisting flow past the
wedge, while the negative values of the buoyancy parameter correspond to an opposing flow past the wedge. In the
assisting flow, the convection mode is dominated by forced convection at 11 < 1, by free convection at y; > 1. and
by mixed convection at v1 = L. Tt is seen in Fig. 2 that an increase in the buoyancy parameter v, increases the
fluid velocity inside the boundary layer, but decreases the finid temperature and concentration, whereas adecrease
in the buoyancy parameter decreases the fluid velocity inside boundary layer, but increases the fluid temperature
and concentration, It is also noted that the mode dominated by free convection exerts a substantially grester effect
on the velocity profile than the modes dominated by mixed and forced convection.
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Table 2. Analysis of skin friction and rate of heat and mass transfer
st Pr—0.72, N=1,S¢ =062, m=2/3,n=04,8=01,¢(=01,2=01,80d =01

m £7(6.9) (¢, 0) w'(£,0) £7(0,m) 8'(0,7m) ' (0.7)
—2.0 0.123672 | —0.504939 | —0.476211 | —6.836002 1.475289 1.357969
—1.5 0.430123 | —0.560138 | —0.534981 | —3.822628 (1.602907 0.563315
—10 0.776502 | —0.611620 | —0.5730934 | —2.225439 0.291086 0.277669
—0.56 1.043462 | —0.644848 | —0.504438 | —1.018297 0.111728 0.112787
0.1 1.330282 | —0.677709 | —0.634625 0.188519 | —0.030944 —0.018700
10 1.749301 | —0.718189 | —0.671839 1.732609 | —0.174579 —0.151439
5.0 3.313301 | —0.839868 | --0.783977 7.045659 | —0.485509 —0.440071
10.0 A4.068368 | —0.938448 | —0.876607 | 12.331609 —-0.663532 —0.602591

£, (a) 0,0 (b)

Fig. 8. Effect of the index in the
curves), temperature (solid curves),

0

05

powe
and concentration

1.0 1.5

and & — 0.1: (a) free comvection (y1 = 5); (b} fore
(v — 1); m = 0 (1), 0.0909 (2), 0.3333 (3), 0.6667

2:5 1)

¢ law of the free-stream velocity on the velocity (dotted
(dot-and-dashed curves) profiles at A=01
ed convection (v = 0.1); (¢) mixed convection
(4), and 0.8000 (5).
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Fig. 4. Effect of suction on the velocily (dotted curves), ternperature (solid curves), and concern-
tration (dot-and-dashed curves) profiles at n = 0.4, A= 0.1, and § = 0.1: {a) forced convection; (b)
free convection; § = (0.1 (1), 1 (2), 2 (3), and 3 (4).

The values of the skin friction and the rate of heat and mass transfer are listed in Table 2. It follows from
Table 2 that the skin friction increases with increasing buoyancy parameter, whereas the rate of heat and mass
transfer decreases. .

Figure 3 illustrates the effect of the index in the power law of the free-stream velocity near the leading edge
(¢ = 1) on heat and mass transfer in the convective flow past a porous wedge in the presence of the buoyancy force
and suction. The index m in the power law of the free-stream velocity has different effects on velocity inside the
boundary layer in the case of the free, forced, and mixed convection modes. It is seen that an increase in m increases
the fluid velocity inside the boundary layer in the case of the free and mixed convection modes (see Figs. 3a and
3b). On the contrary, in the forced convection mode, an increase in mm decreases slightly the fluid velocity inside
the boundary layer (see Fig. 3b). In addition, an increase in the power index m decreases both the temperature
and concentration inside the boundary layer for all convection modes (free, forced, and mixed convection).

Figure 4 shows the variations of the velocity, temperature; and concentration profiles in the forced and. free
convection modes in the presence of the heat source for different values of suction. § > 0. The dimensiconless wedge
parameter ¢ is related to the suction parameter as § = | 5|, where 5 = —uy((m + 1)/(2wa))/220-™)/2 and v > 0.
It is seen in Fig. 4 that an increase in the suction parameter S increases the fluid velocity inside the boundary
layer, but decreases the fluid temperature and concentration.

Figure 5 presents the heat-source effect on the velocity, temperature, and concentration profiles near the
leading edge (¢ = 1) on heat and mass transfer in the cases of forced, frec, and mixed convection past the porous
wedge in the presence of suction (5 = 1). Tt is observed that an increase in the heat-source parameter decreases
the Auid velocity inside the boundary layer in the free and mixed convection modes (see Figs. 5b and §c), but
the velocity profile in the forced convection mode remains constant (see Fig. b5a). In addition, an increase in
the heat-source parameter decreases significantly the fluid temperature inside the boundary layer for all modes of
convection, but the fluid concentration in the boundary layer remains constant (see Fig. 5).

The effect of the Schumidt number on the velocity, temperature, and concentration profiles is lustrated in
Fig. 6. Tt is seen from this figure that the fluid concentration decreases with an increase in the Schmidt number,
whereas there are only minor changes in the velocity and concentration profiles. This causes the concentration
buoyancy to decrease, yielding a small reduction in the fiuid velocity. The decrease in the concentration field due
to the increase in the Schmidt number can be illustrated, for instance, with hydrogen (Sc = 0.32) being replaced
by water vapour {Sc = 0.62) and then by ammonia (Sc = 1.00) in the said sequence. The decrease in concentration
due to the increase in Sc can be explained by the combined effect of the magnetic field and the buoyancy lorce on
the wedge wall.
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CONCLUSIONS

Extensive numerical integrations are carried out with the use of the Runge-Kutta—Gill methed in conjunction
with the shooting method and the local nonsimilarity method with the third-order level of {runcation. Results of
numerical calculations in wide ranges of the problem parameters are presented. In particular, it is found that the
pasitive sign of the buoyancy parameter leads to acceleration of the fluid flow, whereas the negative sign of the
buoyancy parameter means deceleration of the fluid flow. The opposing flow causes a decrease in the pressure
gradient and the boundary-layer separation. Furthermore, the temperature and concentration inside the boundary
layer increase with increasing power index in the law of the free-stream velocity for all convection modes. With
increasing heat-source parameter, the fluid velocity inside the boundary layer substantially decreases in the free
convection mode, slightly decreases in the mixed convection mode, and remains constant in the forced convection
mode. The buoyancy force with the heat source and suction on the wall has a substantial effect on the flow field
and, thus, on the rate of heat and mass transfer from the sheet to the fluid. A method of solving the nonlinear
Falkner-Skan boundary-layer problem is proposed in the paper. Such a numerical solution with the third level of
truncation for the flow past a porous wedge is obtained for the first time.

The authors wish to acknowledge the financial support recetved from MOSTI under the FRGS0405 and
FRGS0406 grants.
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