
Schriften des Instituts für Dokumentologie und Editorik — Band 12

Digital Scholarly Editions as
Interfaces

edited by

Roman Bleier, Martina Bürgermeister, Helmut W. Klug,

Frederike Neuber, Gerlinde Schneider

2018

BoD, Norderstedt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kölner UniversitätsPublikationsServer

https://core.ac.uk/display/162030288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.d-nb.de/ abrufbar.

Digitale Parallelfassung der gedruckten Publikation zur Archivierung im
Kölner Universitäts-Publikations-Server (KUPS). Stand 20. November 2018.

2018
Herstellung und Verlag: Books on Demand GmbH, Norderstedt
ISBN: 978-3-7481-0925-9
Einbandgestaltung: Julia Sorouri; Coverbild: “Desktop” von Franz Konrad
(www.franzkonrad.com/gallery/desktop-2008-2010) .
Satz: Roman Bleier und LuaTEX

http://dnb.d-nb.de/
http://www.franzkonrad.com/gallery/desktop-2008-2010

Digital Scholarly Editions as Interfaces, edited by Roman Bleier, Martina Bürgermeister, HelmutW. Klug, Frederike Neuber,
Gerlinde Schneider. Schriften des Instituts für Dokumentologie und Editorik 12. Books on Demand, 2018, 249–263.

Critical Editions and the Data Model as Interface

Hugh A. Cayless

Abstract

Critical editions of classical text pose some unique problems that highlight the
importance of the editor’s contribution to the creation of the edition. The article
discusses the issues involved in creating these editions and proposes a method for
creating digital critical editions that foregrounds the edition’s data model, thereby
enabling an intuitive and powerful interface for reading digital critical editions online.
It presents the results of experiments with this method that are being undertaken by
the Digital Latin Library project, a joint effort of the Society for Classical Studies, the
Medieval Academy of America, and the Renaissance Society of America.

There are many interfaces involved in the creation and use of digital critical editions.
Not just the ones presented to readers, but those in play in the data formats used
and between the layers of software employed to render the “user interface”. As a
beginning, it is worth enumerating some of the functions of interfaces:
1. They hide implementation details and complexity.
2. They serve as a contract governing the interaction between two parties.
3. They serve as generalizable protocols.

These functions are obviously interrelated. Interfaces define rules for interaction
between two parties (parties that may be human or machine). These rules pare down
the set of things one party can ask another to do, and because they reduce that set of
interactions, they (ideally) make for a reproducible and easy to learn protocol which
can be used across a variety of similar systems. Critical editions, as they exist in
Classics, have a relatively standard form: a text is presented at the top of the page,
while at the foot, there are notes keyed to the line or other numbered section and
to the specific word or phrase affected. These notes present variant forms found in
the manuscript tradition of the text, the conjectures of previous editors, conjectures
by the editor which they are not confident enough to place in the main text, and
other notes that elucidate how the editor established the main text. As a very small
example, take R.A.B. Mynors’ Oxford Classical Text of Vergil’s Eclogues, poem 1, line
59. The text has:

Ante leves ergo pascentur in aethere cerui
(Sooner then will the agile stags graze in the air)

250 Hugh A. Cayless

and the apparatus has:

59 pascuntur P aethere] aequore Ribbeck e recc.

We are given the line number in question, then the variant form pascuntur (the present
tense instead of the future, which is what the text has). ‘P’ indicates the manuscript
Vaticanus Palatinus lat. 1631, we are told in the preface. Why we would care that P
has the present tense is left unclear – most likely because P and R (Vaticanus Vat. lat.
3867, which has pascentur) are the only witnesses of the older manuscripts that have
this poem, and so it is worth noting when they disagree. The present tense is not
impossible, but the future makes better sense, and it continues in the next line. It is
obvious in the apparatus what word in the line pascuntur would replace, so a lemma
is not provided. In the next noted variant, however, we are given one, marked off
with a right square bracket. The word ‘aequore’ (sea) was printed by Ribbeck in his
1859 Teubner edition, based on later (recentiores) manuscripts. The following line is
‘and the waves will leave the fish naked on the shore’ (freta destituent nudos in litore
pisces), so one can see the appeal of ‘Sooner will the agile stags feed in the sea’. Even
in just this single line of text and single line of apparatus, there is a lot of information.
Apart from the fact of the variations, it all points elsewhere: if you do not know
what ‘P’ denotes, you have to go and look it up, and likewise ‘Ribbeck’ and recc. both
require external knowledge: the one of the publication history of the text and the
other of how the editor uses the Latin abbreviation recc. as a siglum. It is defined
in the Sigla Codicum of the edition as codices saec. nono recentiores, ‘more recent
manuscripts from the ninth century’ – P is 4th or 5th century and R, 5th century. This
kind of compression is absolutely typical in the critical apparatuses of Classical texts.
Capital Latin letters are used for major manuscripts, lowercase Latin letters for less
important ones or for families of manuscripts. Greek letters are used for theoretical,
lost manuscripts from which extant ones are descended. Sometimes lowercase Greek
letters represent families. These symbols are defined by the editor in the preface.1

The interface of the printed edition gives us the bare facts of textual variation
with pointers to fuller details elsewhere. But it also obeys our list of functions: it
presents the reader with variants stripped of the underlying details; once the reader
understands the apparatus’ “code”, they can simply note the alternate possibilities in
passing or dig deeper; the form follows a pattern repeated in most similar editions,
and uses conventions and abbreviations the reader will be familiar with (the bracketed
lemma, and the single letter siglum for example). Printed apparatuses do vary between
minimalist and maximalist poles (Tarrant ch. 7), that is between presenting only
the notes that the editor considers necessary for the establishment of the text and

1 Karl Maurer has a nice summary of the kinds of symbols and abbreviations used in critical apparatuses
at udallasclassics.org/maurer_files/APPARATUSABBREVIATIONS.pdf. Accessed 16 March 2017.

http://udallasclassics.org/maurer_files/APPARATUSABBREVIATIONS.pdf

Critical Editions and the Data Model as Interface 251

presenting a fuller view of the tradition (Mynors’ apparatus is a minimalist one).
But the difference is mainly one of quantity and type of notes rather than form.
A maximalist approach might list several variant spellings of a word, for example.
A minimalist might argue that while this might be interesting to a student of the
manuscript traditions, it does not actually help one read the text. There is a tension
in this debate over what is better for the reader: simplicity and ease of use, or better
access to the textual tradition with extra complexity. Should the editor work hard to
reduce the interpretive burden of the reader, or try to get out of the way between the
reader and the history of the text?

Our brief examination of the form of a printed text and apparatus immediately
raises the question of what can (or should) then be done in a digital context with
this kind of text. Freed from the spatial constraints of print, is there any reason to
compress the information therein and to divert readers wanting more information
elsewhere? Is there a justification for a minimalist approach to apparatus construction,
or should we prefer maximalism, or even “totalism”? Why not record every known
variant, whether significant or not? Moreover, we nowadays may have access to
images of the manuscripts and to digitized copies of older editions. Why not present
them as well, or at least link to them? It quickly becomes clear from this line of
thinking that a digital critical edition has the potential to become a complex web
application in its own right. And then the question becomes “where do we start?”
There is an almost infinite variety to web applications and their expressions online.

The framework for the investigation of digital critical editions discussed here comes
from the Digital Latin Library project (DLL), a collaborative effort of the Society for
Classical Studies, the Medieval Academy of America, and the Renaissance Society of
America. The DLL Project has a two-fold mission:
1. To publish and curate critical editions of Latin texts, of all types, from all eras,

and to facilitate an ongoing scholarly conversation about these texts through
open collaboration and annotation.

2. To facilitate the finding and, where openly available and accessible online, the
reading of all texts written in Latin.

The first of these goals will be met by the creation of a Library of Digital Latin Texts,
a series of new, born-digital critical editions to be published under the auspices of the
aforementioned learned societies.2

The answer to the question of where to start, or at least the answer that the Digital
Latin Library project has chosen, brings us back around to the topic of interfaces and
to the realization that we have to be very careful about what we choose to adopt,
copy, and invent. The tension between simplicity and complexity resurfaces again
and again. As a pilot edition, the project’s Principal Investigator, Sam Huskey, chose

2 See digitallatin.org/about-project/mission-and-goals. Accessed 16 March 2017.

http://digitallatin.org/about-project/mission-and-goals

252 Hugh A. Cayless

Figure 1: Calpurnius’ first eclogue.

Critical Editions and the Data Model as Interface 253

Cesar Giarratano’s 1910 edition of Calpurnius Siculus’ Bucolica. A glance at the first
page (fig. 1) is enough to show that Giarratano leaned well towards the maximalist
end of the spectrum. Twelve lines of text merit sixteen lines of apparatus. This was
good, because a more complex apparatus seemed likely to give whatever format we
chose a better workout.

One of the first questions the project had to address was just how to format the
data for its editions. Several options presented themselves. A relational database
might serve well as a store for aligned collation tables of all the sources, for example.
There are a number of scholars who have argued for using directed graphs where
any version of the text can be constructed by following a particular path through
the graph (Schmidt). These approaches both would tend to favor the maximalist
approach, as well as more automation in the construction of the text. They should,
in theory, scale up to many sources extremely well. To add a new source, the editor
would transcribe it, tokenize it (turn it into a structure where each word is an atomic
member), and align that tokenization with the main data structure, into which it
could then be ingested.3 As Andrews argues, this kind of digital philology holds out
a lot of promise as a means for investigating the textual tradition. What it does not
necessarily do is point us at an interface for readers to interact with.

In a database or a variant graph, the qualitative aspects of the different witnesses
– their worth as witnesses – will tend to be flattened. We can imagine a parallel
system of metadata that provides weights or probability measures for variants, but
such a system would entail a new and potentially formidable level of complexity. For
the study of certain types of texts, this may not matter. If your object of study is
how a text was variously presented, then not having, nor attempting to create an
authoritative version is an advantage. But in Classics we are usually concerned with
what the ancient author wrote, and less in how the text has changed over time except
insofar as the patterns of change can hint at the original. This motivation necessarily
involves privileging some witnesses over others.

Moreover, in the case of Classical texts, what we get from the textual tradition
usually is not sufficient to understand what the ancient author wrote:

In almost all cases those writings have survived, if they have survived at
all, only in copies many stages removed from the originals, copies of which
not a single one is free from error. Often the errors are so great that it is no
longer possible to tell what the author meant to say. (West 7–8)

In the case of Calpurnius, the best manuscripts we have date to the early 15th century.
Calpurnius’ dates are uncertain. He probably wrote during the reign of Nero (54–68
CE) but might have been as late as the 3rd century CE. Regardless of when he wrote

3 Many of these processes could be automated or crowd-sourced.

254 Hugh A. Cayless

the original poems, however, the best evidence we have for his text comes from a time
at least twice as far removed from the poet as from us! The best an editor of classical
texts can do (in most cases) is to achieve a best-guess approximation of the original
source. Conjecture is a necessary part of this process, as the sources may at times not
provide any satisfactory readings at all. Because of the state of most classical texts, it
is not enough just to produce a comprehensive snapshot of the textual tradition and
hand that off to an unprepared reader.

On the other hand, having such data available to the reader of an edition would be
a boon if they were interested in exploring the text’s history. An interface support-
ing a multiplicity of varying sources might (in theory) enable the generation of an
algorithmically “best” text, where each word displayed is the best-supported choice.
It would also permit the reader to trace different threads of the manuscript tradition
and see how those threads manifest in the text. It would offer the reader the chance
to become more of an expert in that tradition, and to build their own versions of the
text to suit their own needs.

We did not want to rule out this kind of approach to edition-making, but at the same
time we felt that such work could not actually replace the traditional, editor-curated
presentation of a text. Given that such an artifact was still a central requirement, we
decided to focus on determining a suitable format for it and testing that format against
Giarratano’s complex apparatus. Because of the DLL project team’s expertise with
TEI, it was an obvious choice. Though it probably would not permit the representation
of unlimited variance,4 we would be able to retro-convert existing, out-of-copyright
editions (like Giarratano’s 1910 edition) to digital form without having to start by
breaking them up into their sources.5

A random sampling of Calpurnius’ first eclogue (ll. 8–9) may provide us with a
suitable example to work through:

O. Hoc potius, frater Corydon, nemus, antra petamus
ista patris Fauni,

O(rnytus): Let’s rather, brother Corydon, head for this wood
those groves of father Faunus,

4 Schmidt’s (2009) dismissal of TEI as a suitable format because of the problem of representing structural
variance was premature, however, as we will see.

5 Even with a maximalist edition, much information from the sources has been discarded. It is impossible
to automatically derive a fair representation of, e.g., P from the information given in Mynors’ apparatus,
and it would be impossible even with a maximalist edition. That being the case, one could not extract
the data necessary to perform the workflow described above.

Critical Editions and the Data Model as Interface 255

The apparatus in the new edition for these lines has:

8 O.] om. N (a.c.) Corydon] χεδρ2 edd. coridon NGβνκλγμπρ1φαηr Barth
1613 corridon P nemus] nemora (in mg.) G1 antra] NG Glaeser sqq. ista PV
edd. ante Glaeser
9 ista] NG Glaeser sqq. antra PV edd. ante Glaeser

So, first N omits the speaker label (but the omission was corrected by the copyist),
then there are a variety of different spellings of Corydon’s name, G has nemora (the
plural form) instead of nemus, and P, V, and editions before Glaeser’s swap antra and
ista.

The DLL edition models this with the following TEI:

<l n="8"><app>
<lem xml:id="lem1.7−label"><label type="speaker">O.</label></lem>

<rdg wit="#N" xml:id="rdg1.7−omission" ana="#subtractive"/>
<witDetail wit="#N" target="#rdg1.7−omission" corresp="#rdg1.7−label"

type="correction−original"/>
</app>Hoc potius, frater <app>

<lem wit="#𝜒 #𝜖 #𝛿 #𝜌2" source="#edd.">Corydon</lem>
<rdg wit="#N #G #𝛽 #𝜈 #𝜅 #𝜆 #𝛾 #𝜇 #𝜋 #𝜌1 #𝜙 #𝛼 #𝜂 #r"

source="#Barth1613" ana="#orthographical">coridon</rdg>
<rdg wit="#P" ana="#orthographical">corridon</rdg>

</app>, <app>
<lem>nemus</lem>
<rdg wit="#G" ana="#morphological"><add place="margin">nemora</add></rdg>

</app>, <app type="transposition">
<lem wit="#N #G" xml:id="l8a1lem1" require="#l9a1lem1">antra</lem>
<wit><ref target="#Glaeser">Glaeser</ref> sqq.</wit>
<rdg wit="#P #V" xml:id="l8a1rdg1" require="#l9a1rdg1"

ana="#ordinal" copyOf="#l9a1lem1"/>
<wit>edd. ante <ref target="#Glaeser">Glaeser</ref></wit>

</app> petamus</l>
<l n="9"><app type="transposition">

<lem wit="#N #G" xml:id="l9a1lem1" require="#l8a1lem1">ista</lem>
<wit><ref target="#Glaeser">Glaeser</ref> sqq.</wit>
<rdg wit="#P #V" xml:id="l9a1rdg1" require="#l8a1rdg1"

ana="#ordinal" copyOf="#l8a1lem1"/>
<wit>edd. ante <ref target="#Glaeser">Glaeser</ref></wit>

</app> patris <persName ref="#Faunus">Fauni</persName> ...</l>

Again, there is a lot happening here. TEI’s is actually a different data model than
that of the printed edition: variations are placed inline rather than removed into
notes, related features are linked rather than being represented in shorthand, and
features that are implicit in the formatting of the print edition are made explicit and
machine-actionable. TEI uses the app element to represent variation, so each entry
in the printed apparatus will have a corresponding app. What is to be printed in
the main text (if anything) goes in a child lem element, and variant readings go in

256 Hugh A. Cayless

rdgs. So the speaker label that is missing in N goes in the lem, and its absence is
represented by an empty rdg. The following witDetail signals that the omission
was corrected. It is empty because this is a common feature of the text and the
@type="correction−original" signals that when the apparatus is rendered, “(a.c.)”
for ante correctionem will be printed (meaning the source had this reading before it
was corrected). Conceptually then, this data structure places “O.” and its absence at
the same point in the text. Similarly, in the next entry, “Corydon” and the variant
spellings “coridon” and “corridon” occupy the same notional place in the stream of text.
In the next variant noted by Giarratano, G has nemora added in the margin, which
DLL models using the add element. The final variant is the most interesting. NG have
antra…ista and PV ista…antra, the same words, but inverted. This poses a problem of
the sort that Schmidt and Colomb assert is more easily solved with a variant graph.
But in fact, it poses very little difficulty for TEI, and even better, we can not only avoid
the repetition of text with linking attributes,6 but we can use @require to note the
interdependency between the two. We would not want to prefer the reading of NG
and then PV in the next line, nor the reverse, as it would yield nonsense (antra…antra
or ista…ista). If we prefer ista in line 8, then we must have antra in 9, and vice versa.

The TEI is obviously much more verbose than the compressed printed text and
apparatus, but it goes well beyond the capabilities of print as well. Apparatus entries
are categorized with @ana, meaning they can be filtered or searched on. Supporting
manuscript witnesses and previous editions are linked to in @wit, @source, and wit

elements, and other features like add and persName appear. Verbosity is often held
up as a criticism of XML-based languages, but modern XML editors with smart
autocomplete features make typing it not particularly onerous for an editor, and the
fact that it can be parsed directly into a data structure for purposes of display and
manipulation makes it extremely powerful. It is also important to remember that
TEI’s data model is not simply the tree structure that it gets from XML, but also the
graph created by the use of its linking attributes (Cayless).

The majority of TEI-based web applications rely on transforming their TEI sources
into HTML for display. Compared to TEI, HTML is a semantically impoverished
language, so an XSLT transformation risks discarding information in the source.
Indeed, the default behavior of an XSLT transform where there is no matching
template for an element is to put the element’s contents into the result, but discard
the element itself, meaning that unless TEI elements are explicitly mapped to HTML,
they will emerge from a transformation as plain text. Web browsers have long
been happy to render pages with nonstandard elements, but the recently-published
W3C Custom Elements Working Draft offers us a standard way to define our own

6 Schmidt and Colomb call @copyOf a “non-standard” attribute, but as a member of the set of global
attributes, available on every TEI element, it could hardly be more standard.

Critical Editions and the Data Model as Interface 257

Figure 2: antra selected.

elements and add custom appearance and behaviors to them. For our purposes,
this means we can use slightly-modified TEI directly in the browser with CSS and
JavaScript enhancements. We can leverage the TEI data model directly in the reading
environment. The screenshots in figures 2 and 3 illustrate this process in action. Each
variance in the text is flagged with a button in the margin. When clicked, the button
opens a dialog box which allows the reader to select an alternate reading, which
is then swapped into the text in place of the lemma. The reader is thus able to see
directly how the text changes if they make a choice different from the editor’s. In
the first example, we see the default text, with the entry for antra in line 1.8 opened
(fig. 2).

In the second, ista has been selected instead of antra (fig. 3). Because the lemmas
and readings in lines 8 and 9 are linked with @require, when the reading in line 8 is
selected, the corresponding reading in line 9 is also changed automatically. Swapping
the two words does not much affect the sense of the lines, but it does allow the reader
to directly experience the effect. The version Giarratano (and all editions starting
with Glaeser’s) prefers seems more poetic. The chiasmus, Hoc … nemus, antra … ista,
is a typical poetic figure, and the placement of antra next to nemus both means the
thought of line 8 is complete in itself and tends to intensify the common bucolic trope
“Let’s get out of the hot sun into the shade”, leaving line 9 to expand on the thought.
The rejected reading, ista … antra, is a little simpler, and parallel to Hoc … nemus. The
ability to read these alternatives in place allows readers to experience both instead of
having to mentally construct the version in the apparatus for themselves.

258 Hugh A. Cayless

Figure 3: ista promoted to the text.

The web interface of the edition uses a JavaScript library called CETEIcean,7 built
by Raffaele Viglianti and myself, which takes a pointer to a TEI file on the web and
loads it into the browser, making some changes along the way. The TEI namespace is
removed, element names are prefixed with ”tei-”, as the Custom Elements specification
demands, and the document is inserted into the body of the HTML page running
CETEIcean. Elements are either simply styled with CSS, or in the case of the TEI
equivalents to HTML elements with special, predefined behaviors like links, the
HTML is inserted alongside the TEI source, which is hidden.8 The result is HTML
looking like the example below (the speaker label in line 8).
<tei−app data−teiname="app" id="id55">
<tei−lem xml:id="lem1.7−label" id="lem1.7−label" data−teiname="lem">
<tei−label type="speaker" data−teiname="label">O.</tei−label>

</tei−lem>
<tei−rdg wit="#N" xml:id="rdg1.7−omission" id="rdg1.7−omission"

ana="#subtractive" data−teiname="rdg"></tei−rdg> <tei−witdetail wit="#N"
target="#rdg1.7−omission" corresp="#rdg1.7−label"
type="correction−original" data−teiname="witDetail">a.c.</tei−witdetail>

</tei−app>

A few additional points to note: elements with @xml:ids have them copied over as
@xml:id and as plain @ids. Each element gets a new @data−teiname, which preserves

7 github.com/TEIC/CETEIcean.
8 These include links (TEI ref and ptr) and tables, which have properties that cannot be controlled using

CSS.

http://github.com/TEIC/CETEIcean

Critical Editions and the Data Model as Interface 259

the name of the original element (crucially its case, which the browser’s Document
Object Model discards). Elements that will need to be addressed, like app, get assigned
new @ids if they do not already have them. Like @xml:ids, @xml:lang attributes are
copied into HTML @lang. All of the element’s attributes are preserved. Besides relying
on CETEIcean, the DLL Viewer uses its own JavaScript to add the marginal apparatus
controls, resolve any @copyOf references by writing the content of the target into
the referring element, and to write out a traditional-style apparatus under the text.
In some cases, we will wish to insert HTML content into a TEI element. TEI ref
elements are one example, which function similarly to HTML hyperlinks. The easiest
way to get the expected behavior from them is to insert an element
inside the tei−ref. “Derivative” content like this is distinguished from original in
two ways, depending on the browser’s capabilities. If the browser supports Shadow
DOM, which permits the insertion into an element of content to be displayed instead
of the element’s regular DOM content, then that is used. Otherwise, the original
content (if any) is wrapped in an HTML span element with display:none; set so it
will be invisible, and a copy of that content wrapped in an with the
@href set to the tei−ref’s @target. Doing this keeps the original content available,
in a consistent way, so that it can be serialized back to TEI XML.

Keeping the TEI data model around means that we can operate on it directly in the
browser, and it turns out to be very useful. The functions that allow the swapping of
apparatus lemmas and readings into the main text rely on using and manipulating
the data model of the TEI text. If a reading is selected by clicking, the function simply
converts the corresponding tei−rdg into a tei−lem, and the tei−lem into a tei−rdg.
The page’s CSS does the rest: tei−rdg’s present in the main text have display:none;
set, and so are invisible and have no effect on the page’s layout. Turning a tei−lem
into a tei−rdg therefore makes it disappear, and the new tei−lem appears instead.
Any lemmas or readings linked to the changed ones with @require or @exclude are
automatically processed in turn, so that any dependencies are resolved. The DLL
Viewer application thus roughly follows the model-view-controller model, where
the model is the browser DOM, the view is the browser’s view, governed by the
application’s CSS, and the controller is the DLL Viewer’s JavaScript code.

Instead of requiring an XML transform via XSLT to HTML, the DLL Viewer entails
the creation of a simple HTML web page, with links to CSS for displaying the trans-
formed document content and a few lines of JavaScript to load the source document.
Because it can be run simply from a web page, no server-side code is required at
all. The DLL’s project workflow for Calpurnius uses an HTML page in the Viewer’s
GitHub Pages site, which loads the source file from the GitHub repository in which it
resides. Whenever changes are pushed to the project repository, those changes are
automatically displayed in the corresponding Viewer page. Put simply, the technology
enables a variety of collaborative, versioned editing workflows, which require very

260 Hugh A. Cayless

little setup and which leverage existing systems to do their work. The workflow’s
simplicity means that the feedback loop between XML editing and review of the web
presentation is very tight, allowing the editor to experiment with the encoding and
to check whether it is compatible with the Viewer’s interpretation.

This kind of feedback is very useful in helping clarify the decisions the editor has
to make in encoding the text. For example,
<app>
<lem>nocturnaque</lem>
<rdg wit="#G" ana="#orthographical">noturnaque</rdg>

<rdg wit="#N" ana="#additive"><add place="inRas">no<hi
rend="superscript">c</hi>turna</add>que</rdg>

</app>

Here, the text has nocturnaque. The Codex Gaddianus (G) has noturnaque, and the
Codex Neapolitanus (N) has an erasure before -que into which nocturna has been
inserted. Giarratano has

noturnaque G, nocturnaque N (nocturna in ras.).

Here we have a case where the encoding can represent the state of the variant more
closely than the printed version could. The representation of that variant in the
Viewer will be something like

nocturnaque] noturnaque G «no𝑐turna»que N

But this highlights an issue with the encoding and the functionality in the Viewer.
Giarratano adopted a policy of recording every variation in G, as he felt he was the
first to do a proper job of collating it. But does that mean noturnaque is a viable
reading for nocturnaque? Not on the face of it, since noturna is not a Latin word.
It could be argued, however, that having all of the variants from G means the DLL
edition could display the edition with all of G’s changes applied. It is important to
recognize that this would not be the same as viewing G, as the text contains readings
from other sources too. We might wonder too, whether «nocturna»que is really a
variant at all. It is possibly interesting as signaling that a misspelling like that of G
was corrected in N, but it would be silly to promote it to the text. Perhaps, then, it
would be better to encode these variants using note rather than rdg so that they are
visible in the apparatus, but not able to be substituted for the correct reading.
A similar case occurs on line 13:

Quo me cumque vocas, sequor, Ornyte; nam mea Leuce,
(Where you call me, I follow, Ornytus; for my Leuce, …)

Critical Editions and the Data Model as Interface 261

In the apparatus, we get

leuce NGAPπεχ2 edd., leute καχ1, lene φηρνθrs, lance γμ, luce b, lauce λδβ

as variants of the name of Corydon’s beloved, Leuce (Λεύκη, literally “White Poplar”,
the name of one of the daughters of Oceanus). It is not surprising that copyists
who did not know Greek might mangle her name in various ways, but it is also not
especially helpful to know how it was mangled if you’re just trying to read the text,
and it is quite clear that ‘Leuce’ is correct. Again, the editor and encoder has to choose
whether these variations are significant enough that they could be promoted to the
text, or whether they should be confined to notes.

Tarrant, as a minimalist, would almost certainly argue that none of these variants
should be represented in the apparatus at all. But the TEI data model permits us a
middle ground between the maximalist and minimalist poles. We can record variants
that are interesting because they provide support for an editor’s choice of reading for
the text, or because they represent previously unpublished information, or make a
point about the transmission of the text, but that should not be able to make it into the
text itself. Such a distinction could be made by recording the less-textually-significant
variants as notes, or by otherwise classifying the apparatus entries and readings.
The LDLT Guidelines already recommend such classifications, by means of the @ana
attribute. Lexical, morphological, and orthographic variants are thus marked, and
can be filtered out in the Viewer. We can thus, to an extent, accommodate both a
maximalist and minimalist view of the text simultaneously.

The LDLT Guidelines have been released and continue to be revised, and the Viewer
code is likewise in development in a publicly hosted repository.9 The goal for the
current phase of Viewer development is to create a JavaScript library which can be
plugged into any one of a variety of content management systems or web frameworks.
Some issues remain to be resolved: since the current editorial workflow relies on
a web page fetching the TEI XML from another site (a GitHub repository in this
case), search engine indexing is problematic. Google will in some cases execute
JavaScript embedded in a web page that builds page content, and then index the
generated content rather than just the plain HTML. But experiments thus far do not
hold out much promise for this working with Viewer pages. The alternative is to
pre-transform the TEI into HTML Custom Elements and use the Viewer just to style
the page. This approach will produce an indexable document, and does not discard
any of the source’s data model, so it is likely that the final version of the DLL’s Library
of Digital Latin Texts will take this approach.

Probably the greatest disadvantage of the approach we have taken is one shared
with other TEI projects: to produce an edition, one must learn TEI. The unwillingness

9 See github.com/DigitalLatin/viewer. Accessed 16 March 2017.

262 Hugh A. Cayless

to learn a new technology is frequently raised as an objection to textual scholars
doing work like this. There are various ways to deal with it. One being to say that,
just as one must learn to type into a word processor, or to format a bibliography, or
collate manuscripts in order to produce a critical edition, they must learn to encode
their texts to produce a digital critical edition. Handing the work over to an expert
encoder is another option. And we may imagine that once the data patterns inherent
in these editions have stabilized, interfaces that make their construction a little easier
can be constructed. So, both human and technological solutions are possible. At this
early stage, when we are still learning what needs to be represented, and how best to
model it, we are planning to rely on a hands-on approach.

In the solution presented here, the user interface is constructed directly from the
data model used by the editor, essentially acting as a “skin” over it rather than as
a separate artifact derived from the source. We can activate or suppress different
aspects of the edition as needed. This presents a marked advantage over print editions
in which a very full critical apparatus, not to mention other types of apparatus that
may be present, can actually compromise readability by breaking up the text too much.
Editions where each page consists of a handful of lines of text followed by many lines
of notes are not pleasant to use when one’s goal is simply to read the text. Furthermore,
we can allow the user directly to manipulate the data model, and to see the effects of
their experimentation at once. Besides the user-driven apparatus outlined in this paper,
we have the opportunity to produce Linked Data-ready documents, where entities
that appear across many digital resources are registered and linked. Persons, places,
organizations, events, manuscripts, and other editions are some of the axes across
which we can link editions to other web resources. The possibilities are practically
endless, but that brings us back to the need for intuitive andwell-understood interfaces
to help our readers to navigate the editions we will produce.

Bibliography

Andrews, Tara L. “The Third Way.” Variants: The Journal of the European Society for Textual
Scholarship, vol. 10, 2013, pp. 61–76.

Calpurnius Siculus, Titus. Calpurnii Et Nemesiani Bucolica. Edited by Ceasar Giarratano. Naples,
Detken & Rocholl, 1910.

Cayless, Hugh A., “Rebooting TEI Pointers”, Journal of the Text Encoding Initiative, vol. 6, 2013,
doi:10.4000/jtei.907. Accessed 16 March 2017.

Denicola, Domenic, editor. Custom Elements, W3C Working Draft 13 October 2016, www.w3.or-
g/TR/2016/WD-custom-elements-20161013/. Accessed 16 March 2017.

Huskey, Samuel, et al. The Digital Latin Library. digitallatin.org. Accessed 16 March 2017.
Huskey, Samuel and Hugh Cayless, LDLT Guidelines: XML Patterns for Encoding Critical Editions.

digitallatin.github.io/guidelines/LDLT-Guidelines.html. Accessed 16 March 2017.

https://doi.org/10.4000/jtei.907
https://www.w3.org/TR/2016/WD-custom-elements-20161013/
https://www.w3.org/TR/2016/WD-custom-elements-20161013/
http://digitallatin.org
https://digitallatin.github.io/guidelines/LDLT-Guidelines.html

Critical Editions and the Data Model as Interface 263

Schmidt, Desmond, and Robert Colomb. “A Data Structure for Representing Multi-Version Texts
Online.” International Journal of Human - Computer Studies, vol. 67.6, 2009, pp. 497–514.

Tarrant, R. J. Texts, Editors, and Readers: Methods and Problems in Latin Textual Criticism.
Cambridge, Cambridge University Press, 2016.

Virgil.Opera; Recognovit Brevique Adnotatione Critica Instruxit R. A. B. Mynors. Oxonii (Oxford),
E Typographeo Clarendoniano (Clarendon P.), 1969.

West, M. L. Textual Criticism and Editorial Technique Applicable to Greek and Latin Texts.
Stuttgart, B. G. Teubner, 1973.

