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Local spectra of adaptive domain decomposition
methods

Alexander Heinlein1,2, Axel Klawonn1,2, and Martin Kühn1

1 Introduction

For second order elliptic partial di�erential equations, such as di�usion or elasticity,
with arbitrary and high coe�cient jumps, the convergence rate of domain decom-
position methods with classical coarse spaces typically deteriorates. One remedy
is the use of adaptive coarse spaces, which use eigenfunctions computed from lo-
cal generalized eigenvalue problems to enrich the standard coarse space; see, e.g.,
[18, 6, 5, 4, 21, 22, 3, 16, 17, 14, 7, 8, 23, 1, 19, 2, 13, 20, 9, 10, 11]. This typically
results in a condition number estimate of the form

  C tol or   C
1
tol

(1)

of the preconditioned system, where C is independent of the coe�cient function and
tol is a tolerance for the selection of the eigenfunctions.

Obviously, the robustness of the adaptive domain decomposition methods is
therefore closely related to the choice of tol. Whereas for a pessimistic choice, i.e.,
tol ⇡ 1, the adaptive coarse space can resort to a direct solver, a very optimistic
choice can lead to bad convergence behavior of the method. The interest thus is to
choose an adequate tolerance splitting bad and good eigenmodes. We will consider
certain representative examples of coe�cient functions in two dimensions.

Note that we are not going to discuss other important properties of the adaptive
coarse spaces considered here, such as

• condition number and iteration counts of the methods,
• costs for the computation of the eigenvalue problems and the coarse basis func-

tions, respectively,
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• necessary communication in a parallel implementation and the ratio of local and
global work.

Thus, we do not claim to draw a general comparison of the di�erent adaptive
methods. We only want to discuss reasonable choices for the user-defined tolerance
for di�erent, exemplary coe�cient distributions and the di�erent types of eigenvalue
problems. We hope that this gives some insight for further discussions.

Model problems and domain decomposition notation We consider the variational
form of a second order elliptic partial di�erential equation, such as di�usion or
elasticity, and denote the coe�cient by ⇢ 2 R+ which is assumed to be constant on
each finite element. In matrix form, the problem reads Ax = b.

Now, let ⌦ be decomposed into nonoverlapping subdomains ⌦1, . . . ,⌦N and �
be the interface of this domain decomposition. We define corresponding subdomain
sti�ness matrices A(i) with Neumann boundary conditions on @⌦i , i = 1, . . . ,N
and the block diagonal matrix AN := blockdiag

i

�
A(i)) which is not assembled in

the interface degrees of freedom. For an edge E or its closure E shared by the
subdomains ⌦i and ⌦j , we obtain the matrix A(i, j)

a by assembly of the degrees of
freedom on E or E, respectively, in the matrix A(i, j)

na := blockdiag
�
A(i), A(j)� .

The Schur complements with respect to Z = E, Z = E, or any other Z ⇢ �
are obtained from A(i, j)

na or A(i, j)
a by elimination of all remaining local degrees of

freedom ZC :

S(i, j)
⇤,Z := A(i, j)

⇤,Z Z � A(i, j)
⇤,Z ZC

�
A(i, j)
⇤,ZC ZC

��1 A(i, j)
⇤,ZC Z

with ⇤ 2 {a,na}. We also need S(i)
Z := A(i)

Z Z � A(i)
Z ZC

�
A(i)
ZC ZC

��1 A(i)
ZC Z .

In addition to that, let the matrices AE and ME be matrix discretizations of the
one-dimensional bilinear forms aE (u, v) :=

�
⇢E,maxDxt u,Dxt v

�
and bE (u, v) :=

h�1 Õ
xk 2E

�ku (xk) v (xk) with �k :=
Õ

{t2⌧h :k2dof(t)}
⇢t . Here, ⇢t is the constant coe�-

cient on the element t 2 ⌧h and ⇢E,max(x) := max
�

lim
yi 2⌦i!x

⇢(yi), lim
yj 2⌦ j!x

⇢(yj)
 
.

Dxt denotes the tangent derivative with respect to the edge ei j , and the xk correspond
to the finite element nodes on the edge. Consequently, AE and ME are the sti�ness
matrix and a scaled lumped mass matrix on the edge E.

2 Various adaptive coarse spaces in domain decomposition
Overlapping Schwarz methods We extend the nonoverlapping subdomains to
overlapping subdomains ⌦0

1, ...,⌦
0
N

and consider two-level overlapping Schwarz
methods of the form

M�1
OS�2 = �A�1

0 �
T +

N’
i=0

RT

i
A�1
i

Ri,
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with overlapping matrices Ai = Ri ART

i
, i = 1, ...,N , where Ri is the restriction

matrix to the overlapping subdomain ⌦0
i
, and the coarse matrix A0 = �

T A�. Here,
the columns of � are the coarse basis functions. We consider three di�erent adap-
tive coarse spaces for overlapping Schwarz methods, i.e., the Spectral Harmonically
Enriched Multiscale (SHEM) [7], the Overlapping Schwarz Approximate Compo-
nent Mode Synthesis (OS-ACMS) [9], and the Adaptive Generalized Dryja-Smith-
Widlund (AGDSW) [10, 11] coarse spaces.

In all these approaches, the coarse space consists of vertex- and edge-based
energy-minimizing basis functions, i.e., the interior values �I are given by �I :=
�A�1

I I
AI��� for given interface values ��. The vertex-based basis functions are

nodal basis functions of Multiscale Finite Element Method (MsFEM) [12] type with
di�erent choices of edge values; cf. [7, 9, 10, 11]. The edge-based basis functions are
energy-minimizing extensions of the solutions of generalized eigenvalue problems
corresponding to the edges of the nonoverlapping domain decomposition.

For an edge E of the nonoverlapping domain decomposition, we consider the
following edge eigenvalue problems.
(Ov1) SHEM coarse space [7]: find (⌧E, µE) 2 Vh

0 (E) ⇥ R s. t.

✓T AE ⌧E = µ
�1
E ✓

T ME ⌧E 8✓ 2 Vh

0 (E) .

(Ov2) OS-ACMS coarse space [9]: find (⌧E, µE) 2 Vh

0 (E) ⇥ R s. t.

✓T S(i, j)
E
⌧E = µ

�1
E ✓

T AE E ⌧E 8✓ 2 Vh

0 (E) .

(Ov3) AGDSW coarse space [10, 11]: find (⌧E, µE) 2 Vh

0 (E) ⇥ R s. t.

✓T S(i, j)
E ⌧E = µ

�1
E ✓

T AE E ⌧E 8✓ 2 Vh

0 (E) .

Let the reciprocal eigenvalues µE be ordered nondescendingly. Then, we se-
lect eigenpairs with µE > tol to obtain a condition number estimate of the form
(M�1

OS2 A)  Ctol that is independent of the coe�cient function ⇢. Note that we
use the reciprocal eigenvalue only for comparison with the adaptive coarse spaces
for nonoverlapping domain decomposition methods. For the AGDSW coarse space,
the matrix on the left hand side is singular. Therefore, we obtain infinity reciprocal
eigenvalues in our numerical results.

Nonoverlapping methods In the nonoverlapping domain decomposition methods
FETI-1 and FETI-DP, we use the block diagonal matrix AN and introduce a jump
operator B for the interface with B := (B1, . . . ,BN ), u = (uT1 , . . . ,uTN )T , and ui :
⌦i ! R, i = 1, . . . ,N such that Bu = 0 if and only if u is continuous across the
interface. The FETI master system is given by


AN BT

B 0

� 
u
�

�
=


f
0

�
.
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In FETI-1, the null space of AN is handled by a projection P such that we solve
the following system reduced to the Lagrange multipliers and preconditioned by the
nonadaptive, projected Dirichlet preconditioner PM�1

D
PT

PM�1
D

PT BA+
N

BT PT� = PM�1
D

PT d

with corresponding right hand side PM�1
D

PT d. We have M�1
D
= BDblockdiag

�
S(i)
�i

�
BT

D
,

where BD is a scaled variant of B. In FETI-DP, we subassemble AN in a selected
number of degrees of freedom on the interface, e.g., all vertices, and denote the
resulting nonsingular matrix by eAN . In the nonadaptive case, we then solve the
preconditioned system

M�1
D

BeA�1
N

BT� = M�1
D

ed.
Adaptive constraints can then be enforced by, e.g., a second projection P0 (see [22]
for FETI-1 or [17, 14] for FETI-DP) or via a generalized transformation-of-basis
approach; see [15]. In FETI-1/-DP and BDD(C) methods, the operator PD = BT

D
B is

used for proving condition number bounds and thus also appears in some generalized
eigenvalue problems.

In this paper, we consider the the GenEO eigenvalue problems for FETI-1 (or BDD
methods); see [22]; which were first introduced for overlapping Schwarz methods;
see [21]. A PD-based estimate based coarse space was motivated in [18]. There, PD

was localized to PD,E by extracting from B and BD the rows only considering the
jumps on the corresponding edge (in 2D). A condition number bound for the 2D case
was proven in [17]. The method was extended to a robust three dimensional version
in [14]. We present results with ⇢-scaling as (NOv2a) and deluxe-scaling as (NOv2b).
Another PD-based coarse space was proposed by [3] for BDDC with deluxe-scaling.
In the eigenvalue problems, the matrix operator A : B = A(A + B)+B is used and
the cuto� of the interface Schur complement at the edge S(i)

�i |E
is used on the right

hand side. The energy comparison was generalized to arbitrary scaling matrices
D(i) in [17]. Extensions of this method to three dimensions were considered, e.g.,
in [23, 1, 19, 2, 13]. We present results for ⇢-scaling as (NOv3a) and deluxe-scaling
as (NOv3b).
(NOv1) GenEO coarse space (FETI-1/BDD) [22]: find (⌧�i , µ�i ) 2 Vh(�i)⇥R s. t.

✓T S(i)
�i
⌧�i = µ

�1
�i
✓T

�
BT

i
M�1

D
Bi)⌧�i 8✓ 2 Vh(�i).

(NOv2) PD-based coarse space no. 1 (FETI-DP/BDDC) [18]: find (⌧�i , µ�i ) 2�
ker S(i, j)

na,�i j

�? ⇥ R s. t.

✓T PT

D,ES(i, j)
na,�i j

PD,E⌧�i j = µ�i j ✓
T S(i, j)

na,�i j
⌧�i j 8✓ 2

�
ker S(i, j)

na,�i j

�?
.

(NOv3) PD-based coarse space no. 2 (FETI-DP/BDDC) [3]: find (⌧E, µE) 2
Vh

0 (E) ⇥ R s. t.



Local spectra of adaptive domain decomposition methods 5

✓T S(i)
E : S(j)

E ⌧E = µE✓
T
�
D(j),T

E S(i)
�|E

D(j)
E + D(i),T

E S(j)
�|E

D(i)
E
�
⌧E 8✓ 2 Vh

0 (E)

Let the (reciprocal) eigenvalues be ordered nondescendingly. Then, we select
eigenpairs with µ�1

�i
, µ�i j , or µE greater than tol. For the (NOv1) and the (NOv3)

eigenvalue problems, the matrix on the left hand side is singular, therefore, we obtain
infinity (reciprocal) eigenvalues in our numerical results. For (NOv1), note that the
authors of [22] do not incorporate the eigenvectors corresponding to zero eigenvalues
into the coarse space. With all three eigenvalue problems (NOv1)-(NOv3), we then
obtain adaptive methods with a condition number bound   Ctol that is independent
of the coe�cient function ⇢.

3 Numerical results

In this section, we present results for a di�usion problem on⌦ = (0,1)2 decomposed
into nine subdomains. We used a rectangular domain decomposition and slightly
curved edges for the subdomain in the center to prevent the appearance of symmetric
e�ects. We set homogeneous Dirichlet boundary conditions for the edge with x = 0
and homogeneous Neumann boundary conditions elsewhere.

The local spectra of the di�erent adaptive coarse spaces for eight di�erent co-
e�cient distributions are shown in Figures 1 and 2. The critical eigenvalues and
reciprocal eigenvalues, respectively, are displayed above the spectral gap, which is
hatched in gray. They are plotted side by side if they are close to each other. A wide
spectral gap simplifies the choice of an appropriate tolerance tol. In addition to that,
the number of critical eigenvalues is related to the dimension of the coarse space. As
can be observed from our results, there are significant di�erences in the width of the
spectral gap and the number of critical eigenvalues for the depicted model problems.

The use of harmonic extensions in the eigenvalue problems of the OS-ACMS
coarse space can reduce the number of bad eigenmodes compared to the cheaper
one-dimensional integrals in the related SHEM coarse space. A similar behavior can
be observed for the expensive deluxe-scaling compared to the cheaper ⇢-scaling for
the PD-based approaches for FETI-DP/BDDC. For several coe�cient distributions,
the width of the spectral gap is larger than two orders of magnitude for all approaches,
whereas it is quite small, e.g., for channel-type coe�cient distributions.

Note that the plots in Figures 1 and 2 contain much more information, which we
cannot discuss here due to lack of space. We hope that the results presented here
give some insight for further investigations.
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Fig. 1 For each exemplary coe�cient distribution, domain decomposition and coe�cient distri-
bution is shown on the left hand side. Large coe�cients with ⇢ = 1e6 are shown in black (low
coe�cients with ⇢ = 1 are not shown). The di�erent subdomains are shown in di�erent colors on
a layer underneath the large coe�cients. The corresponding (reciprocal) eigenvalues µ are shown
on the right hand side. Large values (greater 500) are distributed horizontally within the columns
to visualize their number. The gap between good and bad eigenmodes is shown in gray.
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Fig. 2 For each exemplary coe�cient distribution, domain decomposition and coe�cient distri-
bution is shown on the left hand side. Bottom image: coe�cient function generated from the
microstructure of a dual-phase steel; courtesy of Jörg Schröder, University of Duisburg-Essen, Ger-
many, originating from a cooperation with ThyssenKruppSteel. Large coe�cients with ⇢ = 1e6 are
shown in black (low coe�cients with ⇢ = 1 are not shown). The di�erent subdomains are shown in
di�erent colors on a layer underneath the large coe�cients. The corresponding (reciprocal) eigen-
values µ are shown on the right hand side. Large values (greater 500) are distributed horizontally
within the columns to visualize their number. The gap between good and bad eigenmodes is shown
in gray.
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