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Abstract: 
The plant holobiont is a relatively recent term in biology, introduced to address the 

assembly composed by the plant itself and its associated microbes. In order to address 

evolutionary selection within this frame, it becomes necessary to study plant-associated 

microbes, or microbiome, as a whole.  

A number of studies underpin the hypothesis that the picture of the plant microbiome is not 

yet complete in a number of aspects: from the role of abiotic factors in shaping microbial 

communities, to the whole microbial composition itself. The full comprehension of the 

microbiome scenario is, however, crucial to address the plant holobiont and therefore plant 

health. 

A still overlooked component of the plant microbiome, which I called overlooked microbial 

eukaryotes, includes a vast range of microbes, spanning from photoautotrophs to parasites, 

and has been proven to have prominent roles in other contexts such as soil or freshwaters. 

I applied ecological approaches as well as field experiments in order to address this 

overlooked component as a key of the still incomplete picture of the plant holobiont. 

Amplicon sequencing on natural A.thaliana populations from 15 sites in Germany, France, 

Spain, and Sweden, revealed that overlooked microbial eukaryotes are not occasional 

partners of the plant holobiont, both epiphytical and endophytical. On the contrary, they 

are able to widely interact with key hubs of the plant leaf microbiome such as 

Sphingomonas sp and the family of Caulobacteraceae, independently of the surrounding 

abiotic factors.   

Among others, microalgae have proven to be major shapers of microbial diversity for 

bacteria, fungi, and oomycetes. A newly established network analysis tool revealed that the 

presence of selected microalgae like Bracteacoccus sp. are linked to fluctuations of the 

pathogen Pseudomonas viridiflava, opening potential new fields in plant immunity 

research. 

The role of microalgae within the plant holobiont is also likely expressed by the symbiosis 

with lichenising fungi. A tight association between lichenising fungi and potential algal 

partners was found in shaping the leaf microbial diversity, prominently the epiphytic 

compartment. 

Amplicon sequencing on a time course-common garden experiment revealed that, beside 

microalgae, consumers like amoeboid organisms of the groups Lobosa, Conosa, Ciliophora 

also shape microbial diversity and follow specific succession patterns over time. 
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Furthermore, the key role of overlooked microbial eukaryotes in the plant holobiont seems 

to be stable even at low concentrations. In fact, pools of low abundant overlooked microbial 

eukaryotes shape microbial diversity, to an extent never assessed before. 

In all these experiments, a key finding was the marginal effect of plant ecotype, as well as 

the marginal effect of latitudinal-climatic factors (with the exception of oomycetes), 

compared to the impact of overlooked microbial eukaryotes.  

 

My work gives novel insights into the ecology and the successions of overlooked microbial 

eukaryotes, revealing scenarios in which primary producers shape microbial diversity 

through the presence of single taxon such as Bracteacoccus sp, or together with lichenising 

fungi. They also influence microbial population through consumers and predators like 

Ciliophora and Lobosa, which undergo successions over time. My work further supports 

the autonomy of the assembly of microbial community from the plant host genetic 

background and from province related features, underpinning a core and multilevel role of 

overlooked microbial eukaryotes in the plant holobiont. 
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Zusammenfassung: 
Der Pflanzenholobiont ist ein neuartiger Begriff in der Biologie, der eingeführt wurde, um 

die Gesamtheit der Pflanze selbst und ihrer assoziierten Mikroben zu beschreiben. Um 

evolutionäre Selektion in diesem Rahmen zu verstehen, ist es notwendig 

pflanzenassoziierte Mikroben oder Mikrobiome in ihrer gesamten Komplexität zu 

untersuchen. 

Eine Reihe von Studien untermauert die Hypothese, dass das Bild des Pflanzenmikrobioms 

in viele Aspekten noch nicht vollständig ist. Diese Aspekte beinhalten die Rolle der 

abiotischer Faktoren bei der Zusammensetztung mikrobieller Gemeinschaften bis hin zur 

gesamten mikrobiellen Zusammensetzung selbst. Das vollständige Verständnis des 

Pflanzenholobionts ist jedoch entscheidend, da die Zusammensetzung des Mikrobiomes 

Ausschlag gebend für die pflanzliche Gesundheit ist. 

Eine noch immer verborgene Komponente des Pflanzenmikrobiomes, die im Verlauf als 

verdeckte mikrobielle Eukaryoten bezeichnete werden, umfasst eine große Bandbreite von 

Mikroben, die von photoautotrophen Organismen bis zu Parasiten reichen. In anderen 

Habitaten wie Böden und Süßwasser wurde bereits gezeigt, dass diese versteckten 

mikrobiellen Eukaryoten eine herausragende Rolle spielen. Ich habe sowohl ökologische 

Ansätze als auch Feldexperimente angewendet, um diese verborgene Komponente als 

Schlüssel für das noch unvollständige Bild des Pflanzenholobionts zu untersuchen. 

Amplikon-Sequenzierung von natürlichen A.thaliana-Populationen an 15 Standorten in 

Deutschland, Frankreich, Spanien und Schweden zeigte, dass versteckte mikrobielle 

Eukaryoten keine gelegentlichen Partner von Pflanzenholobionten sind und sowohl 

epiphytisch als auch endophytisch vorkommen. Des Weieteren sind sie in der Lage, 

unabhängig von den umgebenden abiotischen Faktoren mit Schlüsselorganismen des 

Pflanzenblatt-Mikrobioms, wie Sphingomonas sp. und der Familie der Caulobacteraceae, 

in Wechselwirkung zu treten. Unter anderem haben sich Mikroalgen als Hauptverursacher 

der mikrobiellen Vielfalt für Bakterien, Pilze und Oomyceten erwiesen. Das neu etablierte 

Netzwerkanalyse-Tool zeigte, dass ausgewählte Mikroalgen wie Bracteacoccus sp. zu 

einer geringeren Konnektivität des Erregers Pseudomonas viridiflava führten und eröffnet 

neue Möglichkeiten in der Pflanzenimmunitätsforschung. 

Die Rolle von Mikroalgen innerhalb von Pflanzenholobionten wird wahrscheinlich auch 

durch die Symbiose mit lichenisierenden Pilzen beeinflusst. Ein Einfluss von 
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lichenisierenden Pilzen und deren potentiellen Algenpartnern auf der mikrobiellen 

Diversität von Blättern, insbesondere in dem epiphytischen Kompartiment, wurde bereits 

nachgewiesen. 

Die Amplicon-Sequenzierung bei einem Zeit-abhängigen Feld-Experiment ergab, dass 

Konsumenten wie amöboide Organismen der Gruppen Lobosa, Conosa, Ciliophora neben 

Mikroalgen auch die mikrobielle Diversität beeinflussen und im Laufe der Zeit bestimmte 

Sukzessionsmuster aufweisen. Darüber hinaus scheint die Schlüsselrolle versteckter 

mikrobieller Eukaryoten in Pflanzenholobionten auch bei niedrigen Konzentrationen stabil 

zu sein.  In der Tat, prägen Gruppen von wenig abundanten versteckten mikrobiellen 

Eukaryoten die mikrobielle Diversität in einem Ausmaß, das zuvor noch nie bestimmt 

wurde. 

In allen diesen Experimenten war ein Hauptergebnis der marginale Effekt des 

Pflanzenökotyps sowie der marginale Effekt von Breitengrad und Klimafaktoren (mit 

Ausnahme von Oomyceten) im Vergleich zu den Auswirkungen verborgener mikrobieller 

Eukaryoten. 

 

Meine Arbeit gibt wichtige Einblicke in die Ökologie und das zeitliche Auftreten von 

versteckten mikrobiellen Eukaryoten. Darüber hinaus enthüllen meine Ergebnisse 

Szenarien, in denen Primärproduzenten die mikrobielle Diversität durch die Anwesenheit 

eines einzelnen Taxons wie Bracteacoccus sp oder zusammen mit lichenisierenden Pilzen 

formen. Sie beeinflussen auch die mikrobielle Gemeinschaften durch Konsumenten und 

Prädatoren wie Ciliophora und Lobosa, welche in ihrem Auftreten einem zeitlichen Muster 

folgen. Meine Arbeit unterstützt auch eine Unabhängigkeit der Zusammensetzung der 

mikrobiellen Gemeinschaft von dem genetischen Hintergrund der Pflanze und von 

Breitgrad-bezogenen Merkmalen, was eine Kern- und Multilevel-Rolle verborgener 

mikrobieller Eukaryoten in Pflanzenholobionten untermaue
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1. Introduction 
1.1 Plant microbiome: ecological importance and implications 

for plant health 
In their native environment, plants are surrounded by thousands of microbes, which form 

numerous communities and influence the plant health and productivity (Berendsen et al., 

2012; Buée et al., 2009; Lindow and Brandl, 2003; Vorholt, 2012). Some of these 

associations can be beneficial (mutualistic), neutral (commensalistic), or deleterious 

(pathogenic) (Thrall et al., 2007). 

Associations between plant and microbes, both pathogenic and mutualistic have been 

studied for centuries. One of the first being described was mycorrhizal symbiosis (Bary, 

1863) and nodulation symbiosis of Rhizobium sp. (Leonard, 1943). 

Recently, more than one hundred years after the first approach to mutualistic plant-microbe 

interactions, the focus is enlarging, trying to encompass a much higher number of plant 

interactors, including those microbes that are not cultivable in the laboratory environment. 

This generated the so-called culture-independent approaches (Hugenholtz et al., 1998).  

The technological advance of high throughput culture-independent methods was crucial to 

disentangle complex and multivariate microbial interactions. Innovative approaches such 

Figure	1.1:	The	plant	holobiont,	adapted	from	Kroll	et	al.,	2018 
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as metagenome or amplicon sequencing (Caporaso et al., 2012) (discussed later), allowed 

an integrated and complex formulation of a new biological concept: the so-called 

“holobiont” (Rosenberg and Zilber-Rosenberg, 2016). It is an entity comprehending a 

multicellular host and its associated microbiota, in which evolutionary selection takes place 

between host and microbes and between microbe and microbe (Hassani et al., 2018).  

In this frame, it becomes clear that plant evolutionary pathway shall never be separated 

from the microbial consortia included in the holobiont. In a study of 2015 (Hardoim et al., 

2015), it was reported that bacterial cells colonizing each gram of root, not only outnumber 

the cells of the entire host plant, but also represent more microbes than people existing on 

Earth.  

The importance of plant-associated microbiome has been widely assessed in the past years, 

from being associated with the evolution of multicelluarity itself (McFall-Ngai et al., 2013), 

to the remarkable role in interfering with pathogens, suppressing them in the soil (Cordovez 

et al., 2015; Weller et al., 2002), or in some cases enhancing them (Partida-Martinez and 

Hertweck, 2005).  

Ultimately, in certain plants like mosses, microbiome is so important for plant health that 

its absence implies the impossibility for the moss to germinate (Hornschuh et al., 2006), or 

to successfully reproduce (Peñuelas et al., 2014). 

Studies on bacteria prove that microbial colonization of the plant host does not happen 

randomly (Cardinale et al., 2015), and across distantly related plant species, different 

microbial assemblies can be found (Schlaeppi et al., 2014). Quantitative differences are 

also present between the root (Berendsen et al., 2012; Philippot et al., 2013), and the 

phyllosphere (Vorholt, 2012). 

In the light of the holobiont concept, these different microbiomes across species were 

analyzed both concerning host-microbe interactions and concerning microbe-microbe 

interactions(Hassani et al., 2018). 

If on one hand there is strong evidence that microbial assemblies are linked to the host 

phylogeny (Lundberg et al., 2012) and to the conditions of the immune system (Lebeis et 

al., 2015), on the other hand, these assemblies seem to diverge only quantitatively from 

species to species (Schlaeppi et al., 2014), and in some cases they largely overlap 

(Hacquard et al., 2015). This means that not only host-derived factors are relevant in 

shaping microbiome assembly, but also environmental factors must be taken in 

consideration.  
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Examples of these environmental factors are biogeography –the distribution of species and 

ecosystem through time-  (Coleman-Derr Devin et al., 2015) or soil type (Bulgarelli et al., 

2012). 

Among these other environmental variables there is also the presence of other microbes. 

For instance, the already mentioned disease suppressive soils have a positive effect on plant 

health. This is mostly due to the presence of a definite microbial assembly which actively 

counteracts the colonization of a pathogen directly, or indirectly (van der Heijden and 

Hartmann, 2016; Zamioudis et al., 2015). This final effect can be due to competition on the 

nutritional aspects (Mercado-Blanco and Bakker, 2007) or to the active secretion of 

antimicrobial compounds (Van Acker et al., 2014). 

However, not only competitive interactions take place in phyllosphere/rhizosphere 

microbiome. It is now consolidated knowledge that many bacteria and fungi form together 

what is called a biofilm. The biofilm is a matrix-like structure formed by the Extracellular 

PolySaccharides (EPS) (Bogino et al., 2013; Guennoc et al., 2017). EPS are harnessed by 

bacteria and fungi as protection from pathogens or for facilitated inter-species chemical 

signaling (Steidle et al., 2001).  

There has been proof that chemical signaling is a key to understand microbial dynamics, in 

particular quorum sensing is a chemical signaling process which takes place across 

microbes, typically gram-negative bacteria (Miller and Bassler, 2001).  

Originally believed to be only a chemical-based way of monitoring population growth, 

quorum sensing has been discovered to play a major role within plant holobiont (von 

Bodman et al., 2003). In fact, many intra and inter-kingdom interactions rely on quorum 

sensing signals to be developed (Jarosz et al., 2011). It has been reported that microbes in 

the phyllosphere, as well as in the rhizosphere, actively use it or interfere between other 

species quorum sensing in order to compete or cooperate with the present microbes 

(Hartmann and Schikora, 2012). Finally, there has been evidence that the plant itself is able 

to interfere in microbial quorum sensing, thereby exerting a top-level role in shaping 

microbial diversity (Bauer and Mathesius, 2004). 

All these studies mentioned have been of invaluable importance in opening the field of 

plant microbiome research and in further addressing its dynamics. However, there are a 

number of issues which still remain unsolved: 

What role does biogeography play in plant microbiome structure and dynamics? Is it 

enough to explain what before was accounted just as stochasticity? Are there other 
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dynamics which may be of great relevance that are still not yet tackled in plant microbiome 

studies? 

As already mentioned, biogeography seems to be of primary importance for microbe 

distribution.  However, this has been demonstrated mainly for fungi (Coleman-Derr Devin 

et al., 2015; Tedersoo et al., 2014). In recent studies, it was reported that seasonality and 

location explained up to circa 50% of bacteria variation (Agler et al., 2016a), leaving 

another 50% of variation unexplained. In the same article, it was reported that additional 

variation portions can be explained by the presence of other microbes, like Albugo sp. and 

Dioszegia sp., but the variation accounted by these two microbes still leave a large part of 

bacterial variability unexplained.  

On the other hand, there has been evidence of other ecological processes taking place on 

the leaf, for instance predation due to certain protists is reported to shape bacterial diversity 

on the leaf and in the roots, especially for the taxonomic group Rhizaria-Cercozoa, hereafter 

“Cercozoa”(Flues et al., 2018).  

It becomes logical to think that the picture of microbiome that had been analyzed so far 

may be incomplete, and therefore deserves full attention. 

 

1.2  The incomplete picture: ecological insights from 

overlooked microbial eukaryotes can reveal the missing piece of 

the puzzle 
The aforementioned protists (par 1.1) do not officially constitute a kingdom nor a 

taxonomically defined group (Adl et al., 2005; Parfrey et al., 2010). Their definition has 

been reformulated many times, including sometimes unicellular, sometimes multicellular 

organisms (Parfrey et al., 2011). One of the latest definitions encompasses an extremely 

high number of species, very heterogeneous in terms of phylogeny and occupied niche, on 

many occasions including or excluding fungal microbes as well (Parfrey et al., 2011). For 

the purposes of this study, I propose to focus only on some of these groups with an 

alternative definition. As overlooked microbial eukaryotes, I am going to address only 

those eukaryotic organisms unicellular or multicellular, which are classified neither within 

the fungal kingdom nor within oomycetal subphylum and that are found to be associated 

with the plant holobiont. (fig 1.2, 1.3). 
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The ecological relevance of overlooked microbial eukaryotes in microbial consortia has 

already been assessed for unrelated ecosystems such as freshwaters (Simon et al., 2016) or 

oceans (Moreira and López-Garcı́a, 2002). This is the reason why only investigating 

overlooked microbial eukaryotes in an ecological framework would allow to unravel at 

Figure	1.2	Overlooked	microbial	eukaryotes	in	the	plant	holobiont	frame			

Figure		1.3	A	glimpse	into	overlooked	microbial	eukaryotes	communities	on	the	leaf	surface:	A-B:	Diathomes	(Bacillariophyta),	
B,	 likely	 belonging	 to	 the	 genus	 Navicula	 sp,	 C:	 Unknown,	 D:	 Testate	 amoeba,	 (Tecofilosea),	 E:	 Nematode	 (Nematoda),	
F:bottom-left,	 Bacillariophyceae	 (Diatom),	 middle-elongated:	 germinated	 fungal	 spore,	 lkely	 belonging	 to	 the	 genus	
Cladosporium,	bottom-middle-right:	unknown	amoeba 
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least part of the missing tile of plant holobiont, as it has been done already for the rest of 

the known plant associated microbiome (Vandenkoornhuyse Philippe et al., 2015).  

Considering plant-associated overlooked microbial eukaryotes in an ecological framework 

does not mean just considering the amount and the identity of species that are plant-

associated. On the contrary, I propose a framework featuring the evaluation of 

biogeography and dispersal potential, the role of primary producers and 

consumers/predators, as well as the assessment of the role of low abundant taxa in microbial 

consortia. 

1.2.1 Biogeography of overlooked microbial eukaryotes: which are the 

ecological drivers of microbial populations? 

In recent studies on marine plankton, (Lima-Mendez et al., 2015), it has been reported how 

a large part of overlooked microbial eukaryotes interactions is conserved among several 

locations across the oceans, although over a third of the reported interactions remain on a 

local scale.  

This issue of local versus global scale of microbial dispersal and activity is of great 

ecological importance and often a target of microbial biogeography studies. 

Studies on biogeography of organisms, including microbes, often use the notions of 

province and habitat: the first one defined as a region, the biotic composition of which, 

reflects the legacies of historical events (de Candolle, 1820; Martiny et al., 2006). In other 

words, province is the latitudinal/geographical location linked to that specific community. 

The habitat is described as an environment defined by the combination of its abiotic and 

biotic characteristics (de Candolle, 1820). Of course, a province can contain different 

habitats and vice versa. A typical example is the Mediterranean coastal habitat, which can 

be individuated in extremely distant provinces like California, South Africa, and Australia. 

Concerning microbial ecology, four different hypotheses explaining the recovered 

distribution of microbes have been formulated (Martiny et al., 2006)(fig 1.4): 
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1. Biogeography does not exist 

(Cosmopolitism hypothesis): 

implying that the entire microbial 

diversity is reachable everywhere. 

The entire world is constituted by 

one province and one habitat 

2. Biogeography reflects the 

environmental variation within 

the single province (Baas-

Becking hypothesis (Baas-

Becking, 1934)): One province, 

several habitats. Also known as 

“everything is everywhere, environment selects”. 

3.  Biogeography is in essence shaped by historical events that might influence present-

day assemblages include dispersal limitation and past environmental conditions, both 

of which can lead to genetic divergence of microbial consortia. In short multiple 

provinces but only one habitat. 

4. Biogeography is driven by both historical events and contemporary environmental 

conditions. In other words, the diversity can be shaped by multiple habitats and multiple 

provinces. 

It has to be clarified that none of the cited hypotheses has to be considered true or false per 

se.  In a recent study on Finnish freshwaters, (Heino et al., 2010) diatoms (brown algae) 

have been found to follow rather geographical gradients than a habitat-specific patch, 

thereby matching more the third mentioned hypothesis. On the other hand, a study on other 

fresh water green alga (Synura petersenii) (Boo et al., 2010) supports the hypothesis that 

both habitat conditions and latitudinal dispersal are equally influential for the biogeography 

of the studied microbe, thereby matching the fourth hypothesis. 

This demonstrates how all four hypotheses can be applicable to virtually all microbes, 

including species which share a relatively close phylogeny.   

Concerning plant microbiome, in the light of the holobiont concept, not only microbe 

biogeography has to be considered, but also the host biogeography.  

Most of the macro-organisms, and therefore plants as well, follow the fourth hypothesis in 

terms of biogeography. This is why it is not surprising that, given the knowledge achieved 

so far on plant microbiome, both habitat and province are hypothesized to play the most 

Figure	 1.4:	 Province	 vs	 habitat:	 the	 four	 hypotheses	 of	
(microbial)	 ecology,	 the	 scheme	 represents	 the	 different	
formulations	 of	 province	 and	 habitat	 impact	 on	 microbial	
community.	Adapted	from	Martiny	et	al.,	2006 
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significant role in shaping plant microbiome composition (Redford et al., 2010). However, 

to the best of my knowledge, no study so far has tackled the distribution of plant-associated 

overlooked microbial eukaryotes. The first step to understand overlooked microbial 

eukaryotes impact in plant holobiont would be to investigate how much their distribution 

is linked to the host, or to which extent that it is independent.  

 

1.2.2 Plant holobiont encompasses several primary producers: 

autotrophic organisms associated with plants 

In ecology, all organisms able to produce their own food source through photosynthesis 

(autotrophs),  are called primary producers (Lindeman Raymond L., 1942). This definition 

includes all macro and micro-organisms which possess chloroplasts and are able to perform 

photosynthesis. This encompasses not only plants, but also macroalgae, microalgae, as well 

as some strains of photosynthetic bacteria such as Chloroflexi and Cyanobacteria. The 

distinction between macroalgae and microalgae is mainly morphology-based, since 

phylogenetically both are composed of the same taxonomical groups. There is also an 

ecological divergence, since macroalgae are eminently aquatic, while microalgae are also 

terrestrial (Bonanno and Orlando-Bonaca, 2018). Microalgae are a polyphyletic group 

including several taxonomic groups, sometimes distantly related (Chlorophyta and 

Ochrophyta, the main ones) (Metting, 1996). 

Biogeography of microalgae however does not seem to be connected with their phylogeny. 

For example, Klebsomorbidium sp., a free living terrestrial alga which a recent study 

(Ryšánek et al., 2015) found to be genetically homogeneous on a global scale, whereas 

heterogeneous on a local scale.  

In the past years, many studies have tackled the distribution and the phylogeny of 

microalgae, however, very little knowledge is available on their possible interactions with 

higher plants, and therefore their impact on the plant holobiont (Škaloud and Rindi, 2013). 

A more explored field regarding microalgae and plant holobiont is the one belonging to 

lichens. 

Lichens are stratified, often leafy structures called thalli which includes a fungus, typically 

belonging to the phylum of Ascomycota, and a microalga (De Bary, 1879). Entire families 

of fungi are recovered in nature only within lichens, and consolidated studies indicate that 

lichenising fungi evolved earlier than believed (Lutzoni et al., 2001). This indicates that 

most of the non-lichenising fungi have actually evolved from lichenising ancestors through 
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independent gene losses. This finding underpins the ecological and phylogenetical 

relevance of lichenising fungi and triggers the question of what could be their interaction 

within the plant holobiont (Lutzoni et al., 2001).  

Concerning the algal symbiont, otherwise known as phycobiont, the most widespread one 

belongs to the family of Trebouxiophyceae, in most of the cases, to the genus Trebouxia 

sp. (Ahmadjian, 1960) 

Lichens have been widely studied and characterized across ecosystems and most of them 

show behavior of pioneer colonizers (Lawrey, 1991).  

Certain kind of lichens, known as “foliicoulous lichens” are reported to live eminently on 

tree leaves (Lücking, 1999) on top or under the cuticle (fig 1.5), however, this seems to be 

a phenomenon limited to a certain climatic province -the tropical one (Lücking, 1999)- with 

a few exceptions in temperate areas like the Balcans and a few forests in France (Serusiaux, 

1989). 

Most of the studies conducted on these lichens support microhabitat factors as key factor 

for  foliicoulous lichen establishment (Lücking, 1999). The main ones appear to be the 

floating temperature of the shady understory, and the so called light gaps (Favero-Longo 

and Piervittori, 2010; Rogers et al., 1994)  -physical openings among the forest canopy, 

large enough to let UV light to reach the understory. 

Figure	1.5:	Structure	of	foliicoulous	lichen;	Vertical	section	through	Strigula	smaragdula.	
CU:	 leaf	 cuticle;	 CX:	 lichen	 cortex;	 PH:	 lichen	photobiont	 (algae	belonging	 to	 the	genus	
Cephnleuros);	LI:	lichen;	LE:	leaf.	Adapted	from	Serousiaux	et	al.,	1989		
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Interestingly, little or no evidence has been shown on the role of the plant host on which 

the lichen is living (Favero-Longo and Piervittori, 2010; Lücking, 1999; Serusiaux, 1989). 

In fact, the lack of difference in lichen community between primary and secondary forest 

suggest that environmental factors and microhabitat factors are the most prominent 

variables determining lichen community.  

At present, little is known about foliicoulous lichen interaction with bacteria. However, 

many studies on other lichens (fructicose, foliose) typical of other substrates, indicate a 

signature of a lichen microbiome presence (Bates et al., 2011; Grube and Berg, 2009; Grube 

et al., 2009; Mushegian et al., 2011; Rogers, 1988).  

The bacterial species recovered (mainly a-proteobacteria) seem more bound to the 

phycobiont rather than to the fungal partner (Grube et al., 2009). The ability of those 

bacteria to stimulate algal growth by secreting auxin highly underpins the link between 

bacteria and phycobiont (Grube and Berg, 2009). However, the bacterial species found to 

be related to lichens are also involved in phosphorus and nitrogen mobilization (Bates et 

al., 2011), which happens also to benefit the fungal partner. The genera found to be 

prominent in lichen microbiome are typically the ones known to occur in the endophytic 

compartment of the leaf (Grube and Berg, 2009). Examples are Burkholderia, 

Stenotrophomonas, Pseudomonas (Grube and Berg, 2009), but also Methilobacterium and 

Sphingomonas (Grube et al., 2009; Mushegian et al., 2011). Other studies indicate a major 

role of the Rhizobiales order in general (Bates et al., 2011). 

It is still debated whether lichen microbiome assembly is correlated with the lichen species 

(Bates et al., 2011), or not (Mushegian et al., 2011). Instead, what is not debated is that the 

major correlator for lichen microbiomes is actually the substrate nature, and the 

microhabitat conditions that the resemblance with plant leaf endophytes underlines. The 

discovery of an impact of lichens on the plant holobiont in plants other than tree or mosses 

and in temperate ecosystems would open new fields in plant ecology and microbiology 

research. 

 

1.2.3 Micropredators: heterotrophic microbes shaping the overall 

diversity of plant associated microbes 

I have already mentioned that heterotrophic organisms are certainly part of the microbial 

consortia associated with plants, especially roots (par 1.1). Among the most most well-

known interactors is the taxonomic group of Rhizaria-Cercozoa (Flues et al., 2018). 



Alfredo Mari Chapter 1 Introduction 

 11 

However, not just Rhizaria-Cercozoa are part of plant-associated microbes. It has been 

recently reviewed that other organisms belonging to the groups of Lobosa, Conosa and 

Ciliophora, populate plant holobiont (Smith and Wilkinson, 2007). From here onwards I 

will refer to them as “amoeboid organisms”. In that study, it has been pointed out that 

certain testate amoebas, belonging to Lobosa taxonomic group can be found in 59% of the 

cases on mosses, and on trees in 16% of the cases. Remaining percentages are assigned to 

algae (2%), forbs (6%), and grasses (9%). Such a remarkable trace of presence on mosses, 

suggests that this occurrence may be other than stochastic. This conclusion is supported by 

further studies (Fiz-Palacios et al., 2013) which found other member of Arcellinidae (a 

Lobosa sub-group, including testate amoebas) to live more prominently on mosses than on 

soil.  

The dynamics behind these co-occurrences remain to be clarified. However, the fact that 

distribution of amoeboid organisms would be rather influenced by the substrate 

abundance/quality (Heger et al., 2013; Schipper et al., 2001) seems not to be debated. The 

dispersal potential seems as well to have a role in amoeboid organisms distribution, which 

of course is different between taxonomic groups (Heger et al., 2013). For example 

Ciliophora appear to have a more intense cosmopolitan behavior (Borror, 1980; Foissner, 

1999) than other taxonomic groups like Lobosa or Conosa. Any link with plant genotype 

is yet to be clarified. 

Concerning substrate, happens that for most of the amoeboid organisms, this is constituted 

of bacteria and other microbial eukaryotes. It is not surprising then, that micro-heterotrophs 

diversity is majorly connected with bacterial diversity (Ploch et al., 2016). 

I have already mentioned the peculiarity of bacterial communities associated with plants 

(see par 1.1). If there is a connection between bacterial communities and amoeboid 

organisms, it would be logical that terrestrial amoeboid organisms were then associated 

with higher plants indirectly through a bacterial-feeding connection. 

Such a hypothesis is underpinned by a study on the main taxonomic groups among 

amoeboid organisms (Fiz-Palacios et al., 2013), which showed a coincidence of genetic 

differentiation of amoebas into Lobosa and Conosa group with the corresponding 

differentiation of higher plants, especially of mosses.  

These studies together show that the dispersal, and therefore the colonization of different 

environments by amoeboid organisms, is mainly driven by circumstantial factors such as 

substrate nature, prey distribution, and environmental factors (Heger et al., 2013).  
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This importance of environmental factors and nutrient source, justifies their large diffusion 

of amoeboid organisms. Studies on meat processing plants and on drinking water (Poitelon 

et al., 2009; Vaerewijck et al., 2008) have found eukaryotic diversity strikingly similar to 

the one found on mosses or on the soil, of course with quantitative differences, indicating 

an extremely high dispersal potential and adaptability. 

The large dispersal of amoeboid organisms, however, does not imply minor roles in 

microbial diversity shaping and in general, in ecology. On the contrary: a number of studies 

underlines that their relationship with bacteria is not only just related to feeding (Delafont 

et al., 2015; Nowack et al., 2016; Okubo et al., 2018) but also to mutualistic interactions 

and gene transfer. In fact, endocytobiosis is a phenomenon which involves amoeboid 

organisms and bacteria, and is fundamental for bacteria pathogenicity, especially towards 

mammals (Scheid, 2014). It has been proven that amoebas often host bacterial populations 

inside their cytoplasm and lysosomes (Cosson and Soldati, 2008). This often determines an 

increased pathogenicity of the endosymbiont bacteria, as it has been proven for Legionella 

sp.(Cosson and Soldati, 2008; Okubo et al., 2018).  In the same study, it is proposed that 

this “amoebic passage” is actually crucial for the bacterium to also develop opportunistic 

pathogenicity against mammals. Concerning plants, no evidence has been found so far of 

such effect on plant pathogens. However, a study from 2007 (Hilbi et al., 2007), reviews 

that amoebas like Dictiostelium discoideum are actually used to determine which strains of 

Pseudomonas aeruginosa, (relatively close to the plant pathogens P.syringae and 

P.viridiflava) is virulent or not. It is remarkable to notice that the virulence of such bacteria, 

is tightly connected to the presence of LasR genes, involved in quorum sensing signaling.  

Amoeboid organisms are well known to be able to interfere with bacterial quorum sensing 

and therefore be of major importance for the development of pathogenicity, especially of 

bacteria (Cosson and Soldati, 2008; Hilbi et al., 2007; Scheid, 2014). These findings would 

underpin the hypothesis that also plant pathogens could acquire or strengthen their 

pathogenicity through an “amoebic passage” as well. However, apart from the consolidated 

knowledge on Cercozoa already demonstrated in previous studies (Flues et al., 2018; Ploch 

et al., 2016; Sapp Melanie et al., 2018), the role of all these other taxonomic groups 

(Lobosa, Conosa, Ciliophora, Metazoa) in association with higher plant hosts like crops or 

just A.thaliana has hardly been addressed so far. A proceeding in this sense will be of great 

advance in understanding community dynamics and successions, including prey-predator 

interactions. 
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1.2.4 Keystone species are not necessarily abundant: the role of rare taxa 

in microbial assembly 

Within microbial consortia, especially in oceans environments, the so-called rare taxa  have 

been studied for a long time (Lynch and Neufeld, 2015). Rare microbial communities show 

a remarkable diversity, however, their role remains to be fully clarified (Fuhrman, 2009; 

Sogin et al., 2006). There have been different theories proposed to explain the presence of 

rare microbes, including the transient hypothesis (Pedrós-Alió, 2011). It proposes that the 

reason why they display low abundance is just due to the fact that they are close to 

extinction. Another theory, actually more grounded to several observation in several 

ecosystems, hypothesize the active role of rare taxa, which not necessarily are on the way 

to be extinct, triggering effects which are disproportioned compared to their size or 

population abundance (Campbell et al., 2011; Jones and Lennon, 2010; Shade et al., 2012).  

An interesting theory developed from these observations hypothesize the role of rare taxa 

as a reservoir of organisms that are waiting for more favorable conditions to bloom 

(Epstein, 2009; Lennon and Jones, 2011).  In some cases, this “stand by” to wait for 

favorable conditions, has been interpreted as a crucial mechanism to foster resilience of 

microbial networks after a major perturbation (Ainsworth et al., 2015; Fuhrman, 2009).  

Recently an interesting study has tackled this hypothesis thoroughly by addressing the 

ecology of the so called CRT (Conditional Rare Taxa) (Shade et al., 2014). In this study, 

CRT are identified through a ratio between skewness and kurtosis of their abundance 

curves. The CRT calculated in this manner, in datasets sequenced with an adequate depth, 

seem to be responsive (bloom) explicitly after an induced mechanical perturbation 

(artificial lake water mixing). This finding confirms the aforementioned hypothesis of rare 

taxa being crucial for microbial communities’ resilience. 

Despite the insights into rare microbe ecology, it is still unclear whether or not the 

biogeography of rare taxa follows the biogeography of abundant taxa (Galand et al., 2009; 

Newton et al., 2013; Reveillaud et al., 2014; Youssef et al., 2010).  

Another issue which still remains debated is what could be set as a threshold to define a 

taxon as rare or not rare. Some studies (Reveillaud et al., 2014) set this threshold to the 

0.001% of the overall abundance. However, this arbitrary solution poses the problem that 

such low concentrations of microorganisms can become difficult to detect and distinguish 

from the noise (Fuhrman, 2009). Furthermore, in geographical sampling, it would become 
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important to define a threshold per site, in order not to consider rare, what may be abundant 

in the next site (Fuhrman, 2009). 

This is the reason why several studies tackling the biological question of the importance of 

rare taxa, often choose different thresholds, sometimes different by several order of 

magnitude (Campbell et al., 2011; Debroas et al., 2015; Galand et al., 2009). 

Most of the previous mentioned studies have been focused on ocean, or human microbiome. 

Little is known so far about the role of terrestrial rare taxa. A hint comes from a recent 

study that identifies soil rare bacterial community as responsible for a decreased plant fresh 

weight, and therefore triggering a negative effect on plant production (Hol et al., 2010).  

In conclusion, there has been evidence that rare bacterial biosphere is of crucial importance 

for microbial community dynamics. However, little or no knowledge has been collected  

on rare overlooked microbial eukaryotes. Few studies have tackled the biogeography of 

them (Schiaffino et al., 2016), however, no conclusion has been drawn on their possible 

impact on the rest of the microbial community. I hypothesize that low abundant overlooked 

microbial eukaryotes can have an effect comparable to low abundant bacteria, on microbial 

community. 

 

1.3 Methods to study microbiome: high throughput amplicon 

sequencing 
Amplicon sequencing has been widely used in a number of studies aiming to characterize 

the complexity of microbiomes, on plants and on other systems (Hacquard et al., 2015). 

Amplicon sequencing aims to target a so-called barcode sequence within the target 

organism genome, amplify it, and determine its sequence (Caporaso et al., 2012). The 

obtained reads are then paired, clustered in Operational Taxonomical Units (OTUs), and 

flagged with the extracted representative sequence (Caporaso et al., 2010). A taxonomy is 

then assigned to the representative sequence, based on available sequence references. The 

relative abundance of a certain species is meant as the abundance of the OTU represented 

by the representative sequence whose taxonomy assignment match that certain specie 

(Caporaso et al., 2010). The whole approach therefore relies entirely on the amplification 

of the barcode sequence, which ideally should be able to discriminate organisms at species 

or at least genus level. 

The traditional strategy was to design very specific primers, able to target an entire class, 

order or kingdom, and, if they were specific enough, automatically exclude any other 
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possible misamplification. However, this approach still creates a number of other 

abundance-related biases (Schirmer et al., 2015). Of course, the more specific the primers 

are, the more successful is the strategy. In case of usage of universal primers, the risk of 

misamplification grows steeply (Agler et al., 2016a, 2016b).  

In the case of the present study on plant microbiome, however, the choice of universal 

primers to amplify overlooked microbial eukaryotes is mandatory. In fact, as already 

mentioned previously, overlooked microbial eukaryotes encompass a vast range of 

phylogenetically heterogeneous organisms. This means that the barcode sequence of 

overlooked microbial eukaryotes and the host will have similar barcode primer sites. This 

feature makes it necessary to develop a new solution to allow a universal primer approach 

targeting specifically overlooked microbial eukaryotes and avoid the misamplification of 

the host DNA. 

1.3.1 Network analysis majorly strengthen ecological analysis  

Amplicon sequencing data have been recently classified in the category of the so-called 

“big data”. big data are data whose dimension and complexity is so massive, that usual 

software facilities are not fast or efficient enough to process and mine them. While this 

classification is still under debate, it is actually consolidated knowledge that microbiome 

sequencing data should be approached with tools similar to the ones commonly used for 

big data analysis. These includes data subsetting, clustering, filtering, and network analysis.  

Figure	1.6:	Inferring	a	network,	from	the	input	data	(a),	to	the	scoring	via	similarity	matrices(b),	filtering	out	the	
high	p-values	(c)	to	the	final	output	(d).	Adapted	from	Faust	and	Raes	(2012). 
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Network analysis has already been used many times to disentangle microbiome data 

(Barberán et al., 2012; Faust et al., 2015; Lima-Mendez et al., 2015). In summary, it uses 

the principles of graph theory in order to represent microorganisms as nodes and their 

positive or negative co-occurrence as edges (Barabasi, 2009; Faust and Raes, 2012). 

Network analysis can be deployed in numerous contexts and for different subsets of data. 

In the past, it allowed to draw holistic conclusions on the dynamics of certain species, 

without losing the complete picture of surrounding microbial interactions (Lima-Mendez 

et al., 2015). Since network analysis was deployed for the first time on biological data, 

there has been a growing demand for tools able to infer networks in a more solid and 

reliable way (Faust and Raes, 2016) and as well as accessory tools for network comparison. 

For the first need, several new techniques were developed and proposed to the scientific 

community, in some cases developing extremely precise and powerful instruments, able to 

combine the best characteristics of already present tools in a multi-layer fashion (Pilosof et 

al., 2017). Concerning network comparison, the tools available so far, mainly allow a 

qualitative comparison (Goenawan et al., 2016; Landeghem et al., 2016), which only in few 

cases can restitute a detailed picture of the discrepancies within the two networks, and in 

no case provide supporting statistics. 

Therefore, it is necessary to improve network comparison by the deployment of a new tool 

able to compare networks quantitatively and provide supporting statistics. 

 

1.4 Aim of the thesis and experimental setup 
With the term overlooked microbial eukaryotes I aim to encompass all eukaryotic 

organisms assigned neither to the fungal nor to oomycetal group associated to the plant 

holobiont. Those organisms and microorganisms, also colloquially known as protists, are 

extremely heterogeneous both in terms of ecological niche and in terms of phylogeny (Adl 

et al., 2005; Parfrey et al., 2010, 2011), including microalgae (Chlorophyta), parasitic 

plasmodia (Apicomplexa), as well as predator amoebas (Lobosa, Conosa).  

The plant microbiome has been dissected and deeply investigated so far (Hassani et al., 

2018), mainly for roots, and first piece of knowledge about certain groups of overlooked 

microbial eukaryotes start now to be achieved (Flues et al., 2018; Sapp Melanie et al., 

2018).  

However, many taxonomical groups remain neglected, from predators to photoautotrophs. 

A number of studies underpin the hypothesis that the picture of the plant microbiome is not 
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yet complete (Agler et al., 2016a; Hassani et al., 2018). Until this picture becomes 

complete, it will be hard to fully understand plant microbiomes and plant holobiont 

dynamics and its direct impact on plant health (Hassani et al., 2018). 

In this study, I aim to contribute in completing this picture, by specifically addressing 

overlooked microbial eukaryote classes through the following biological questions: 

• What are the factors determining the dispersal of overlooked microbial eukaryotes 

associated with plants? Are they more linked to biogeographical factors or to 

microhabitat features? 

• Are they important within microbial consortia? What is their connectivity with 

keystone species? 

• Narrowing down the focus: which ones are the most important? What is the role of 

microalgae in microbial consortia? And what the role of amoeboid organisms? 

• Is there any microbial succession taking place? And what is the role of the host 

genotype? 

• Is the relevance of overlooked microbial eukaryotes dependent on their abundance? 

What is the role of low abundant overlooked microbial eukaryotes? 

In order to tackle these questions, I designed two experimental setups:  
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The first one consisted of a latitudinal sampling of natural, stable populations of A.thaliana. 

I chose A.thaliana in order to allow easier lab experimental follow-ups, given the extensive 

knowledge and resources available concerning the genetics of this species. In order to 

collect as much data as possible on the latitudinal distribution, I chose 15 sites across 4 

countries: Germany, Spain, France and Sweden. Each site had a different history in terms 

of soil, neighboring plants and anthropogenic impact. I proposed the following 

classification of the sites based on these variables in: natural, agricultural, urban, suburban. 

I called these classifiers biomes which were equally distributed across the four countries, 

apart few exceptions (see M&M).  

The second setup consisted of a common garden experiment in Cologne field soil, in which 

four ecotypes of A.thaliana (Ksk, Ws-0, Col-0, Sf-2) were planted and sampled monthly 

starting from November and ending in March. Both setups were set running for three 

consecutive years: 2015, 2016, 2017.   

I then performed a microbiological survey using amplicon sequencing, through Illumina 

technology. I chose to amplify bacterial, fungal and oomycetal markers, respectively 16S 

(V3 and V5 regions) for bacteria, internal spacer sequences ITS1 and ITS2 for fungi and 

Figure	1.7	The	biomes	and	provinces	of	the	investigated	sites 
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oomycetes, as described in (Agler et al., 2016a). Concerning overlooked microbial 

eukaryotes I chose as reference markers eukaryotic 18S (V4-5 and V8-9 regions), as 

suggested in (Hadziavdic et al., 2014). 

With collected data, I aim to draw ecological conclusions based on a holistic approach, 

therefore narrowing down the focus on single genera or specie as little as possible. In order 

to do so, I chose to use tools like network analysis, which allow a wide and reliable 

representation of microbial interactions. I also used supporting statistics like ANOVA and 

Mantel test to disentangle the network analysis results. A proposal of methodological 

improvement to compare differential network analysis will be also deployed in order to 

validate the data and if possible to draw further conclusions 
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2. Results 
2.1 Ecological relevance of microbial eukaryotes in the plant 

holobiont 

2.1.1 Sequencing taxonomical markers from microbial eukaryotes: blocking 

oligos substantially increase sequencing resolution 

The amplification of universal eukaryote taxonomic markers within a plant system is highly 

susceptible to off-target 

amplification from the 

plant DNA itself. These 

amplicons typically 

reach almost 90% of the 

total amplicons  

(Hanshew et al., 2013). 

Another issue to be 

considered is that the 

target of this 

amplification are 

typically taxa which are 

less abundant than other 

communities like bacteria(Martiny et al., 2006). The approach I designed is aiming to 

prevent the amplification of the host DNA by selectively and physically blocking its 

complete amplification. This has the side effect of favouring microbial eukaryote rDNA 

Figure	2.	1;	The	presence	of	oligos	determines	the	formation	of	the	shorter	amplicon	only	for	A.thaliana	DNA,	
but	not	for	overlooked	microbial	eukaryotes	DNA.	PCR	with	the	adding	of	blocking	oligos,	on	the	left	the	control.	
Letter	A	indicates	the	well	in	which	is	ran	Arabidopsis	thaliana	DNA,	among	the	pure	cultures	used	were	Vanella	
sp.,	and	Cercomonas	sp.,	see	materials	and	methods	for	further	details.	

Figure	2.	2;	Blocking	oligos	target	specifically	the	host	DNA	determining	the	formation	
of	a	shorter	amplicon	lacking	the	barcoded	primer	binding	site.	The	off	target	amplicon	
is	therefore	not	further	amplified	in	the	second	step	of	the	PCR.	With	the	blue	arrow	
are	depicted	the	universal	primers,	with	the	red	segments	are	depicted	the	blocking	
oligos 
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over host rDNA amplification, by reducing the competition for amplification among the 

fragments, rendering de facto microbial eukaryote rDNA more “detectable” for the taq 

polymerase, and therefore more amplifiable. The approach followed to achieve this goal 

included the design of the so-called host DNA blocking oligos: DNA sequences matching 

specifically the 18S of Arabidopsis thaliana, able to align within the fragment flanked by 

the universal primer sites with much higher specificity than primers themselves. This 

interference leads to amplification of a smaller fragment that lacks universal primer binding 

sites. In the second step of the PCR, the smaller, off target fragment is therefore lost and 

not further barcoded (fig 2.1).  

This process allows to lower significantly the amount of barcoded plant amplicon in the 

two step PCR process. 

In order to design the oligos, I started from A.thaliana 18S. I excised in silico random oligos 

35 to 40 bp long. I then proceeded to select the most effective oligos based on careful 

evaluation of melting temperature, GC content, but most importantly specificity of the 

oligos to A.thaliana  18S itself. I then tested the candidate oligos by adding them to the 

PCR reagents (see M&M) and by testing them on A.thaliana, as well as on DNA from pure 

isolates of overlooked microbial eukaryotes (see M&M). The expected outcome of this test 

is to see bands of equal length for microbial eukaryotes tester with or without the addition 

Figure	2.	3;	The	presence	of	 the	oligos	 in	 the	amplified	mock	community	 determines	a	higher	amount	of	 target	
microbial	eukaryote	18S	amplicon.	Results	obtained	through	qPCR	on	the	amplicons	of	the	2step	PCR.	Percentages	
indicate	the	initial	concentration	of	tester	18S	amplicon	(S.boulardii)	before	the	2step	PCR.	Colors	indicate	the	adding	
of	 oligos	 (blue),	 and	 the	 non-adding	 (black).	 Each	 treatment	 and	 mock	 has	 been	 repeated	 in	 three	 technical	
replicates.	 stars	 indicate	 significant	 p-value	 according	 to	 Wilcoxon-Mann-Whitney	 test,	 in	 this	 case,	 all	 the	
treatments	show	a	pvalue	<	0.001 
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of blocking oligos. Instead, for A.thaliana full length amplicon is expected (with universal 

primer binding sites) only in case oligos are not added. With the addition of the oligos, we 

should see only the shorter amplicon depicted in fig 2.1 and no full-length amplicon (with 

universal primer binding site). 

The results in fig 2.2 confirm the ability of these oligos to effectively block the 

amplification of full-length A.thaliana amplicon.  

However, the efficiency of blocking oligos in a realistic context (like DNA populations 

extracted from the field) remains an open question. In order to test the efficiency of the 

candidate blocking oligos, I prepared different DNA mock communities, including bacteria 

DNA, plant DNA, and different concentrations of Saccharomyces boulardii DNA (fig 2.3, 

x axis -18S amplicon-) as a microbial eukaryote probe (see M&M). After conducting a 

normal two step PCR for library preparation (see M&M), I quantified S.boulardii 

amplicons through qPCR. Figure 2.3 shows how the usage of blocking oligos increases 18S 

amplicon (S.boulardii) up to 100.000 fold. These results show that the designed oligos are 

particularly suitable for low starting concentrations of microbial eukaryote DNA to 

significantly decrease off target DNA amplification. For these reasons this method can be 

effectively used for heterogeneous taxonomic groups such as microbial eukaryotes, as well 

as rare taxa analysis (see chapter 2.4). 

2.1.2 Shedding light on leaf-associated overlooked microbial eukaryotes: more 

than 14 subdivisions compose the mosaic 

This experimental setup deployed on the geographical sampling allowed to discover a 

completely unexplored diversity within the leaf habitat. After quality filtering, there were 

clustered 3725 OTUs (Operational Taxonomic Units) whose taxonomy was assigned to 

more than 300 species. According to current taxonomy, more than 14 macro taxonomical 

groups (subdivisions) of overlooked microbial eukaryotes are represented. The recovered 

diversity is summarized in fig 2.4.  

For the endophytic compartment, unclassified reads represent 39% of the recovered reads, 

another 48% are represented by Metazoa, leaving 13% of the reads being represented by 

all the other 13 taxonomical groups. The epiphytic compartment is composed by less than 

15% of unclassified OTUs, while more than 40% is represented by Metazoa, leaving circa  

40% to the known taxa. These 40% are largely dominated by Chlorophyta and Cercozoa 

(see supplementary figure 1)  
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These results are the very first indication of the presence of taxonomical groups never 

associated before with the plant holobiont. The presence of parasitc groups like 

Apicomplexa, and of predators like Ciliophora or Lobosa opens new chapters in plant-

associated microbiology and underpins a potential predator-prey relationship taking place 

on the leaf.  

On the other hand, the presence of multiple photoautotrophic groups (Chlorophyta and 

Ochrophyta) also inside the mesophyll appears surprising and triggers the biological 

question of what could be the role of photosynthetic organisms in a host that already 

performs photosynthesis.  

 

 

Figure	2.	4;	Taxa	based	phylogenetic	tree	displaying	the	recovered	overlooked	microbial	eukaryotes	diversity.	Each	
leaf	represents	a	species,	the	Subdivision	stripe	represents	the	major	taxonomic	groups	to	which	each	leaf	belongs,	
the	 compartment	 distribution	 stripe	 represents	 the	 compartment	 distribution,	 calculated	 as	 percentage	 of	
occurrence	 in	 endophytic	 or	 epiphytic	 samples:	 endophyte	 (yellow)	 or	 epiphyte	 (grey),	 and	 finally	 a	 relative	
abundance	stripe,	in	which	is	depicted	the	relative	reads	abundance	overall.		
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2.1.2.1 Connected microbes: overlooked microbial eukaryotes as a fundamental 

part of microbial food webs 

In order to obtain a picture of leaf-associated microbiome as a whole, I also had to include 

a focus on bacteria, fungi and oomycetes in my setup. This allowed me to deeply and widely 

analyse biotic interactions including overlooked microbial eukaryotes, which have 

remained neglected for years.  

The goal was to have a detailed dataset of microbial composition of the compartment, 

across sites and location, in order to draw meaningful and solid conclusion on biotic 

interactions on the leaf. 

To achieve this I added the following components to my experimental setup: 16S rDNA 

(V3 and V5) for bacteria, and the rDNA intergenic sequence ITS (1 and 2) for fungi and 

oomycetes. After having assessed an almost complete overlap between the couples of loci 

in terms of recovered diversity, I decided to restrict the analysis on the loci that were 

providing more resolved and rich diversity (Agler et al., 2016a). This means that the results 

displayed from this paragraph onwards are coming from bacteria V5, fungal ITS2, 

oomycete ITS1 (see M&M).  

The recovered bacteria diversity is composed of 11224 OTUs assigned to 24 phyla. It 

appears dominated by Proteobacteria and Actinobacteria, followed by Firmicutes and 

Bacteroidetes as shown in fig 2.5. Among these four phyla, Proteobacteria are by far the 

most abundant one, counting 5644 OTUs alone, assigned to 326 species. With the exception 

of Firmicutes, mainly found in endophytic compartment, Proteobacteria, Actinobacteria 

and Bacteroidetes are equally distributed across epiphytic and endophytic compartment. 

The fungal scenario appears less diverse, with 8503 OTUs assigned to 6 phyla only. 

Ascomycetes are the most prominent, showing 5195 OTUs clustered in 760 taxa, 

Basidiomycetes follow with 1019 OTUs clustered in 290 taxa.  

Finally, oomycetes with 2776 OTUs show the lowest diversity, with only 55 taxa 

represented.  

The results shown in this paragraph are in line with what has already been described and 

reviewed in previous studies (Agler et al., 2016a; Hassani et al., 2018; Vorholt, 2012). 

Adding a broad and accurate amplicon sequencing of microbial eukaryotes makes it 

possible to investigate previously non-targeted inter-kingdom interactions, as well as 

classical ecological questions such as the role of primary producers, consumers and 

decomposers on a microbial scale.  
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Moreover, it is now possible to tackle other biologically meaningful questions: how are 
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microbes distributed across the sites and locations? In other words, is the biogeography of 

organisms influenced by habitat or province factors? How is the genotype of the host 

involved in shaping the diversity of the hosted microorganisms? And how important is the 

presence of other microbes in shaping any microbial population 

2.1.3 Biogeography of leaf microbiome: habitat and province shape 

microbial diversity depending on the taxonomic group  

I decided to tackle the aforementioned questions by investigating the role of geographical 

province versus microhabitat on the community assembly. As a first step, I classified each 

site as natural, suburban, urban, or agricultural. This classification took into consideration 

the history of the soil, but mostly the proximity to anthropogenic impact. (see materials and 

Figure	 2.6	 The	 compartment	 microhabitat	 is	 the	 main	 shaper	 of	 microbial	 diversity.	
Biogeography	 impacts	 microbes	 differently	 according	 to	 their	 taxonomy.	 Biome	 and	
Province	 (Country)	have	differential	effects	over	microbial	diversity.	Obtained	by	ANOVA	
test	on	alpha	diversity	of	bacteria,	fungi,	oomycetes	and	microbial	eukaryotes.	 
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methods for a detailed description per site). Contextually I considered the Country as a 

variable able to group sites connected by the shortest possible distance. Moreover, the 

variable Country was usually encompassing groups of similar latitudes, with the only 

exception of Sweden (see introduction).  

Following this classification, it is possible to draw the first picture of possible main 

biogeographical drivers of microbial assembly. Country mainly represents geographical 

distance and is therefore linked to microbial dispersal ability, and the biome represents 

microhabitat features such as habitat-related biotic interactions or microclimatic variables. 

I quantified the impact of country and biome on microbial assembly by performing 

ANOVA on alpha diversity tables of bacteria, fungi, oomycetes and overlooked microbial 

eukaryotes respectively. Results of this analysis are shown in figure 2.6. The microhabitat 

represented by the mesophyll is by far the main correlator with microbial alpha diversity 

for all the microbial groups considered: bacteria, fungi, oomycetes and overlooked 

microbial eukaryotes, which is in line with previous observations(Cardinale et al., 2015; 

Vorholt, 2012). These results find confirmation in the Principal Coordinate analyses, which 

finds a clear separation between the compartments but unclear clustering due to biome or 

geographical location (Supplementary_video1-4, 

https://github.com/AlfredoMari/chetproject0001/tree/master/Results). However, OTUs 

were defined epiphytic or endophytic based on their unique presence in one or the other 

compartment (see M&M). Therefore, this finding may be considered with caution. It is 

interesting however to notice that overlooked microbial eukaryotes exhibit higher 

percentage of variation accounted for the compartment compared to other taxonomic 

groups. 

It seems that the biogeography can have a variable impact on microbiome from group to 

group. Bacteria and overlooked microbial eukaryotes are more affected by biome than by 

latitudinal distance. Fungi are equally affected, whereas for oomycetes there is a clear 

latitudinal trend prevailing on biome related factors.  

These findings suggest that, with the exception of oomycetes, geographical distance plays 

a marginal role in shaping microbial diversity. This diversity appears to be more affected 

by biome-related variables such as substrate and soil features, as well as microhabitat 

features like leaf compartment. This major relevance of local factors disconnected from 

latitudinal, large scale features leads to the question of what other local factors may play a 

role in shaping microbial diversity. A plausible hypothesis is that microhabitat, as well as 
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biome, can be drastically influenced by biotic factors, such as microbial interactions (Wisz 

et al., 2013).  

This triggers a couple of working questions: how are biotic interactions shaped after 

including overlooked microbial eukaryotes? How are typical latitude-related features 

(temperature, rain) involved in shaping microbiome? In order to answer these questions, I 

inferred a microbial network starting from single OTUs, including features like year of 

sampling and environmental information collected on the sites (see M&M). 

2.1.4 Fitting overlooked microbial eukaryotes and environmental features in 

microbial networks provides insights on biotic interactions on the phyllosphere  

The geographical sampling involved several locations at different provinces, highly 

different regarding climatic variables and proximity to anthropogenic pollution. This makes 

each site likely to have a unique composition and evolution of the phyllosphere 

microbiome.  

In order to investigate the interplay between environmental variables and OTUs I inferred 

a scale free network, using the CoNet platform (See M&M) with stringent cutoffs chosen 

after recent studies (Faust and Raes, 2016) in order to minimize background noise and 

consider only solid interactions after permutations. I inferred the network using OTUs from 

all the analysed markers (18S, Bacteria, Fungi, Oomycetes). Only consensus edges holding 

a p-values lower than 0.05 after 1000 permutations and 100 bootstrap iterations were 

considered.  

2.1.4.1 Chlorophyta and Metazoa are key nodes in microbial networks  

The resulting network consists of 786 nodes and 25934 edges, (fig 2.7). It appears sparse, 

with a density of 9.2% of actual connections over potential connections. Negative 

interactions prevail among inter-kingdom connections, whereas positive interactions are 

mostly intra-kingdom. By evaluating the betweenness centrality score g, two nodes can be 

identified as the most influential hubs: one belonging to the family of Nocardiaceae and the 

other to the family of Pseudonocardiaceae. In terms of degree (number of connections) the 

highest node belongs to an unknown fungal OTU (741 connections), followed by 

Saprospiraceae (715 connections). Nodes such as Sphingomonadales, and Albugo sp. (~250 

connections) appear among the top 20 organisms with highest degree (supplementary table 

2, https://github.com/AlfredoMari/chetproject0001/tree/master/Results).  
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Overlooked microbial eukaryotes show far lower degree if compared to the nodes 

mentioned above, with on average 60 edges each. Overlooked microbial eukaryote nodes 

are assigned to Metazoa, and Chlorophyta, two of the most abundant subdivisions among  

18S pool after unclassified. Two nodes are assigned to Bracteacoccus sp., (Chlorophyta).  

Ranking 

(Betweenness 

Centr.based) 

Lineage Degree Betweenness 

Centrality 

1 OTU-

FITS2denovo77527 741 0.2297512 

2 OTU-BV5denovo18472 715 0.18311814 

3 Saprospirales 523 0.05423583 

4 Saprospiraceae 523 0.05423583 

5 Saprospirae 523 0.05423583 

6 OTU-BV5denovo14812 455 0.04564049 

7 Ellin517 

(Verrucomicrobia) 320 0.00863405 

8 Pedosphaerales 320 0.00863405 

9 Verrucomicrobia 320 0.00863405 

10 OTU-BV5denovo34137 320 0.00863405 

11 Pedosphaerae 320 0.00863405 

12 Kaistobacter sp. 319 0.01216833 

13 Albugo sp. 275 0.00582929 

14 OTU-BV5denovo572867 250 0.00473542 

15 OTU-BV5denovo300126 231 0.0018659 

16 Albugo sp. 228 0.00297411 

17 Sphingomonas sp. 228 0.00168686 

18 OTU-BV5denovo556005 221 0.00147127 

19 Sphingomonas sp. 

 218 0.0016739 

20 OTU-BV5denovo439380 215 0.00126771 

323 Bracteacoccus sp. 61 0.06 

Table	2.1	Bracteacoccus	is	not	in	the	top	20	nodes	classified	by	degree,	however,	has	high	betwennesss	centrality.	Extract	
from	Network	Metadata.	Full	table	in	Supplementary	table	
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As shown in figure 2.7 all of microbial eukaryotes show only negative inter-kingdom 

correlations, with no connection between each other. These connections are limited to some 

bacteria (Sphingomonadales, Methylobacterium), and several oomycetal nodes. 

Correlation between Sphingomondales and Chlorophyta is also confirmed by a linear  

regression analysis which displays linear correlation between Chlorophyta and 

Sphingomonadales abundance (supplementary figure 2). Interestingly, this correlation 

takes place only endophytically. 
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2.1.4.2 Bracteacoccus sp. hampers connections towards potential pathogens  

such as Pseudomonas viridiflava 

In the previous paragraph, I briefly mentioned the presence of Bracteacoccus sp. as a node 

in the inferred microbial network. However, the node assigned to Bracteacoccus sp., is 

not in the top 20 nodes with highest closeness centrality or high degree (see supplementary 

table 2 https://github.com/AlfredoMari/chetproject0001/tree/master/Results).  

At a first glance this would indicate a not crucial role of Bracteacoccus sp within 

microbial consortia. I argued otherwise, since interestingly, despite its low degree, 

Bracteacoccus sp shows high levels of betweenness centrality, index of centrality of a 

node in the network.  

Inferring network on the overall OTUs for all the samples gives us an accurate picture of 

microbial interactions. However, this does not provide enough information on how much 

of the network potential rewiring is due to the presence of a single node, in this case 

Bracteacoccus sp. In order to tackle this, I inferred two networks, respectively considering 

only samples without (-Brac) or with (+Brac) Bracteacoccus sp. using the already 

mentioned CoNET platform. The standard measurements of the two networks provided 

important details such as the number of nodes and edges: 114 nodes/ 1261 edges in –Brac 

Figure	2.8	The	qualitative	comparison	between	+Brac	and	–Brac	network	reveals	that	pathogens	like	P.	viridiflava	are	
absent	in	networks	including	Bracteacoccus	sp.	Directed	differential	network	based	on	the	comparison	between	-Brac	
and	+Brac	using	the	Cytoscape	app	Diffany.	 	Incoming	red	edges	indicate	decreased	connections	in	+Brac	network	
compared	to	–Brac.	Incoming	green	edges	indicate	viceversa	increasing	connections	in	+Brac	network	compared	to	–
Bra.	 
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network and 51 nodes/319 edges in +Brac. The +Brac network appears to be generally 

denser, with higher clustering coefficient compared to –Brac (0.67 vs 0.53) and more 

heterogeneous (heterogeneity coefficient: 0.8 vs 0.7).  

22% of the nodes overlap between the two networks. Figure 2.8 depicts a 

differential network after the comparison between –Brac and +Brac taking –Brac as a 

reference. It is already possible to notice the major differences in terms of nodes and 

edges, mainly nodes assigned to the order of Pseudomonadales. However, what the 

picture depicts, does not provide quantitative insights into such comparison.   

Currently available tools infact allow to visualize differences across two 

different networks (DyNet, Goenawan et al., 2016) or to qualitatively visualize 

differential networks such as the one depicted in figure 2.8 (Diffany, Van Landeghem et 

al., 2016). In order to provide that quantitative insight, I designed a statistical comparison 

platform, able to perform an edge by edge comparison which has not been available so 

far. 

 

2.1.4.2.1 A new pipeline for solid and quantitative network 

comparison unravels the lack of correlation between Brac+ and Brac- network 

In order to quantitatively compare two networks, I designed a platform which had to be 

customizable, modular, and deployable in reasonable computational times. The strategy 

was based on converting the two networks into two distance matrices, which can be filled 

with any quantifiable property of the network edge. Other studies have used directly 

downstream network-generated distance matrices (Williams et al., 2014) to compare the 

networks, however this entails using only one edge score (typically the edge weight). 

Instead my pipeline, starting from the already calculated network, can be fed with 

virtually any possible edge score. It can be applied to any combination of networks 

inferred with any pipeline. 
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The matrices are then 

compared using Mantel 

correlogram test giving a 

correlation on the 

comparison of the matrices 

divided into classes 

(Legendre and Legendre, 

1998), as summarized in 

figure 2.9. Mantel 

correlogram is performed 

through the qiime platform 

(Caporaso et al., 2010) and 

allows 500 permutations to 

calculate a pvalue 

(Bonferroni correction). 

Since the comparison is 

based on distance matrices 

produced from the edge 

scores of the networks, the 

correlation between distance 

classes reflects the 

correlation between edge 

score classes.  

Figure	2.9	Workflow	 scheme	of	 the	network	 comparison	pipeline.	Nodes	
composing	 both	networks	 are	 kept	 in	 both	distance	matrices,	 scores	 are	
assigned	based	on	which	edge	score	the	user	want	to	feed	in.	Edge	scores	
between	 differentially	 present	 nodes	 are	 by	 default	 assumed	 to	 be	 not	
existing,	and	therefore	set	to	1.	Mantel	correlogram	compares	the	distance	
matrices	divided	into	classes	following	the	Sturge’s	rule. 
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The platform also provides a tracking table listing which edges compose which edge class. 

This is a simple way to track which interactions are conserved or not across the networks, 

but most importantly, how much they are / they are not correlated across the networks. (see 

M&M).  

The platform is coded in PERL language and allows PYTHON codes and R subscripts to 

run in parallel and in background, using the LSF management platform (Songnian et al., 

1993). This way, the computational time needed to perform the comparison is substantially 

reduced (See M&M). Currently, a comparison between two medium networks (~300 nodes 

each), depending on network connectivity and number of nodes, harnesses averagely from 

10 to 100 sec of CPU time.  

I applied this pipeline on the aforementioned Bracteacoccus sp+/- comparison, basing the 

comparison on the edge weight variable. The results are depicted in figure 2.10, showing 

that most of the edge classes are not significantly correlated. This indicates that the two 

networks exhibit major divergence and almost do not share a core of conserved interactions, 

as the previous analysis (fig 2.8) suggested. The tracking table (supplementary table 3 

https://github.com/AlfredoMari/chetproject0001/tree/master/Results ) shows as main 

components of the non-correlated classes, edges including Pseudomonadales, 

Pseudomonadaceae, Pseudomonas and Pseudomonas viridiflava, thereby confirming the 

qualitative analysis performed with Diffany, which was individuating the same genera to 

be not conserved across the two networks (figure 2.8). Most of them show a corrected p-

Figure	2.10;	Brac-	and	Brac+	do	not	correlate	in	almost	any	edge	weight	class.	Pipeline	deployed	+Bracteacoccus	and	
–Bracteacoccus	(feeding	the	edge	weight	as	parameter),	on	the	x	axis	are	displayed	the	class	index,	calculated	via	
Sturge	rule.	The	values	are	transfrormed	logarithmically.		The	Mantel	R	(y	axis)	spans	from	-1	(no	correlation)	to	1,	
maximal	correlation.	Each	correlation	between	the	classes	displays	the	p-value	after	500	permutations,	most	of	them	
are	not	significant,	indicating	no	correlation	between	the	two	networks.	 
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value higher than 0.05. The only ones showing a significant pvalue are 

Gammaproteobacteria and Pseudomonadales. However, they display a Mantel R score still 

close to 0, indicating a lack of conservation of these interactions across the two networks.  

The results obtained with this new method largely confirm analysis displayed in figure 2.8 

(Diffany-based). Therefore, it is possible to conclude then that the presence of 

Bracteacoccus sp  particularly affects the connectivity of pathogens orders like 

Pseudomonadales, or more specifically pathogens like P. viridiflava. With the displayed 

pipeline, however, it was possible to quantify how solid this hampering of pathogens was.  

Moreover, the substantial consistency of the presented pipeline with previously known 

qualitative methods demonstrates its reliability. This method can be therefore deployed in 

multiple different contexts, on any pairwise network comparison, irrespective of the 

inferring methods.  
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2.2 Investigating the role of producers in terrestrial ecosystems 

2.2.1 Overlooked microbial eukaryotes shaping microbial diversity: 

Bracteacoccus sp., is a keyplayer, together with Metazoa, Lobosa and Ciliophora 

Network inferring made it possible to 

dissect meaningful ecological 

interactions between single OTUs. 

However, this does not allow to 

delineate conclusions on the overall 

impact of overlooked microbial 

eukaryote communities. I hypothesize 

that, beside the singular interactions 

displayed in network analysis, 

overlooked microbial eukaryotes can 

have remarkable effects on entire 

microbial communities. In order to 

disentangle the impact of all 

overlooked microbial eukaryote 

Figure	 2.11a	 Overlooked	 microbial	
eukaryotes	 have	 a	 remarkable	
impact	 on	 alpha	 diversity	 of	
Bacteria,	 Fungi	 and	 Oomycetes.	
Bracteacoccus	is	prominent	shaping	
factor	 in	 all	 cases.	 Bacteria	 are	
depicted	in	panel	A,	followed	Fungi	
(panel	B),	and	Oomycetes	(panel	C).	
figure	 displays	 ANOVA	 on	 alpha	
diversity	of	each	panel,	showing	the	
variation	explained	(h2 score)	by	the	
presence	 of	 each	 overlooked	
microbial	 eukaryotes.	 Only	
significant	 pvalues	 are	 displayed.	
Notation	 of	 pvalues	 follows	 ,	 *=	
pvalue	 <0.05,	 **=	 pvalue<0.01,	
***pvalue<0.001. 
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taxonomic groups, I focused on the alpha diversity of the other three target groups analysed: 

Figure	 2.11b	 Overlooked	 microbial	 eukaryotes	 (OME)	 have	 a	 remarkable	 impact	 on	 alpha	 diversity	 of	 Bacteria,	 Fungi	 and	
Oomycetes.	 Bracteacoccus	 is	prominent	shaping	 factor	 in	all	cases.	Alpha	diversity	 is	 often	 increased	by	overlooked	microbial	
eukaryotes.	Bacteria	are	depicted	in	panel	A,	followed	Fungi	(panel	B),	and	Oomycetes	(panel	C).	figure	depicts	alpha	diversity		
panel	diversity	in	Endophytic	samples(Up)	or	Epiphytes(Down)	for	every	overlooked	microbial	eukaryotes	group	displayed	on	top	
of	 the	boxplot..	P-	values	are	calculated	after	Wilcoxon-Mann-Whitney	test.	Notation	of	pvalues	follows		*=	pvalue	<0.05,	**=	
pvalue<0.01,	***pvalue<0.001 
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bacteria, fungi and oomycetes.  

For each sample, I first established whether or not it contained reads from each of 

overlooked microbial eukaryotes groups that I aim to tackle (Chlorophyta, Lobosa etc), 

including the candidate Bracteacoccus sp., found to be a key player in network analysis. 

Based on this criterion, I then labelled all the samples as positive or negative. Using this 

labelling as a partitioning variable, I was then able to use ANOVA in order to unravel how 

the targeted diversity variation was distributed across biotic factors, and what is the impact 

of overlooked microbial eukaryotes in such scenario.  

What can be observed for all the target groups is a prominent part of variation explained 

by Bracteacoccus sp., (in the endophytic compartment) which, in the case of Fungi is 

responsible alone of more than 30% of variance (fig 2.11).  

The major overlooked microbial eukaryotes groups involved in driving endophytic bacteria 

variation are Ochrophyta and Chlorophyta, together with the microalga Bracteacoccus sp, 

underpinning a major role held by photosynthetic organisms on endophytic bacteria. 

Notably, also heterotrophic subdivisions such as Apicomplexa and Lobosa seem to harbour 

differential bacterial diversity (fig 2.11 A2), especially in the epiphytic compartment (fig 

2.11 A1). However, no significant variation percentage explained by Apicomplexa was 

found. Lobosa effect on epiphytes appears remarkable especially since I previously showed 

Lobosa reads as mainly endophytical. Concerning heterotrophs, Ciliophora and Lobosa, 

together, explain a large portion of variance. However, this joint effect is largely connected 

to year variation as well. Conversely Cercozoa hold 4% of variation independently from 

other taxa or variables.  

Concerning fungal diversity, apart from the nestedness of variation accounts, patterns are 

similar to those of the bacteria scenario, with Lobosa having an impact only in defined 

years, and Bracteacoccus holding the major percentage. For oomycetes, only 

Bracteacoccus steers a significant variation portion. 

What appears clear from my analysis on amoeboid organisms is a variable but ubiquitous 

portion of variation accounted for Ciliophora, Lobosa, Metazoa and Chlorophyta. 

Overlooked microbial eukaryotes seem in general to determine the increasing of bacterial 

diversity as well, with the exception of Chlorophyta. It would be possible then to connect 

the presence of overlooked microbial eukaryotes to a higher stability and resilience of the 

community due to the enhancement of alpha diversity (Elmqvist Thomas et al., 2003; 

Lozupone et al., 2012).  
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2.2.2 Chloroplastic DNA confirms presence of algal reads in the 

endophytic compartment 

The previously shown findings of the major role of algae, made it imperative 

to better understand algal distribution across the leaf compartments. In order 

to do so, I checked for the presence of algal chloroplast DNA within samples 

containing Chlorophyta 18S.  

Within Chlorophyta, more than 60% of the reads belong to the phylum of 

Trebouxiophyceae. I therefore decided to focus on this phylum. In total, 11 

OTUs of Trebouxiophyceae chloroplastic DNA, and only 2 OTUs accountable 

for other chlorophyte genera were recovered. The presence of algal plastid 16S 

DNA overlaps with 18S in 96,4 % of the 16S samples, supporting the 

hypothesis of a photosynthetic activity of such organisms.   

Figure	2.	 12a	 A	 large	part	 of	 samples	 contain	algal	 18S	 but	 not	 chloroplast	 16S,	 introducing	 the	
hypothesis	 of	 active	and	 inactive	algae.	The	 figure	displays	 the	number	of	 samples	which	overlap	
between	 Trebouxiophyceae	 18S	 and	 algal	 chloroplastic	 16S,	 numbers	 inside	 the	 venn	 diagrams	
represents	 the	 number	 of	 samples.	 The	 so-called	 "Active	 Trebouxiophyceae"	 samples	 (GREEN)	
contain	both	chloroplastic	16S	and	Treb	18S,	the	"Inactive	Trebouxiophyceae"	(in	BLUE)	contain	18S	
but	not	16S,	finally	in	RED	are	depicted	the	absent,	the	samples	in	which	no	Trebouxiophyceae	18S	
nor	chloroplastic	16S	was	found 	
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However, the contrary is not always true the contrary: samples containing algal 18S overlap 

with chloroplastic 16S in roughly 50% of the total algal 18S samples (fig 2.12a), meaning 

that another 50% contains Trebouxiophyceae 18S but no plastidial 16S (fig 2.12a). These 

“algae without chloroplast” are mainly concentrated in the endophytic leaf samples (fig 

2.12b). Interestingly, no clear trend is found across the collection sites or across other 

variables underpinning a minor role of environmental variables and location factors as 

shown in fig 2.7. These findings would support the hypothesis of competitive algal 

photosynthetic activity on the leaf surface and can open contextually new fields of 

investigation on potential algal interaction inside the mesophyll.   

 

2.2.3 Endophytic lichens belong to Lecanorales order 

In the context of discovering potential roles played by the algal community on the leaf, I 

wondered whether this occurrence of algae in the endophytic compartment could be 

correlated with the presence of specific orders of fungi, which normally maintain lichen 

symbiosis with microalgae and cyanobacteria. As previous studies already clarified 

Figure	 2.	 12b	 Active	 Trebouxiophyceae	 are	 mainly	 epiphytic,	 Inactive	 distribute	 mainly	 endophytically.	 No	 clear	
distribution	over	site	is	found.	Overlap	between	Trebouxiophyceae	18S	and	algal	chloroplastic	16S,	like	in	figure	2.12a.	
Plots	 on	 the	 right	 side	 display	 the	 distribution	 of	 Active,	 Inactive,	 Absent	 Trebouxiophyceae,	 respectively,	 over	
compartment,	and	over	site.	Plots	display	sample	occurrence	in	the	indicated	condition	 
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(Hawksworth, 1988), fungi of the classes of Leotiomycetes, Dothideomycetes, 

Eurotiomycetes, and of the orders Helotiales and Lecanorales normally engage lichen 

symbiosis with certain species of algae of the family of Trebouxiohyceae. I investigated all 

the classes mentioned above and what is possible to observe is a co-occurrence especially 

of Lecanorales with the 18S belonging to the algal class Trebouxiophyceae, with very high 

overlap (up to 98 %).  

However, only the just mentioned Lecanorales show a substantial overlap also with algal 

chloroplastic 16S, of more than 70% of the samples, as shown in fig 2.13. Whereas no 

sample negative either for Trebouxiophyceae 18S or Chloroplastic 16S, contains 

Lecanorales reads.  

Concerning site distribution, I have observed that these Lecanorales-Trebouxiophyceae 

samples are preferably distributed in urban sites, such as ERG or EY, located in Germany. 

Concerning compartment distribution, more than 70% belong to epiphytic compartment, 

while 12% is accounted for endophytic samples (see fig 2.13). Especially in the sites UPP, 

EY and KFC, (Germany and Sweden), I found reads belonging to the lichen family of 

Parmeliaceae. All these samples contained Trebouxia sp reads as well. Among them, few 

OTUs appear belonging to the lichen genus Parmelia. 

This suggests not just a co-presence of algae within the analysed ecosystems, but also a 

developed network of mutual interactions in which algae can play a major role.  

Figure	2.13;	Lecanorales	distribute	mainly	across	 active	Trebouxiophyceae.	 They	are	distribute	mainly	across	German	
urban	sites,	and	mainly	epiphytically.	Distribution	of	the	samples	clustered	by	the	presence	or	absence	of	the	fungal	family	
of	Lecanorales.	 
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2.2.3.1 Lichenising fungi impact on bacteria diversity only when co-occurring 

with Algae 

In order to further dissect the putative lichen presence on the leaf, I then analysed the impact 

of Chlorophyta and lichenising 

fungi on bacteria alpha diversity, 

via ANOVA. I especially focused 

on the already mentioned 

Lecanorales. Notably, Lecanorales 

show a significant effect only in the 

samples in which is shared the 

presence of algal chloroplast. This 

finding highly underpins the 

hypothesis of lichen presence and 

active role in shaping bacterial 

diversity of the leaf. These findings 

(fig 2.14) show for the first time 

that not only can lichens be found 

on the surface of and inside the 

mesophyll of a weed like 

A.thaliana, but they can also be a 

major shaper of leaf microbiome.  

 

 

 

 

2.2.3.2 Dissecting the role of 

lichen on the leaf. Time course over different ecotypes reveals fluctuations 

across time, but not across genotype 

In order to dissect further aspects of this algal-fungal co-occurrence, I analysed data from 

a separate experiment, a common garden experiment in which four different ecotypes of 

Arabidopsis thaliana (KSK, WS0, Sf2, Col-0) were planted in the same field over three 

years, harvested and sequenced monthly (See Materials and Methods). By plotting the 

Figure	 2.	 14;	 Lecanorales	 have	 impact	 on	 bacterial	 diversity	 only	
when	co-occurring	with	algal	chloroplast.	 	First	evidence	of	lichens	
presence	 on	 the	 leaf.	 Obtained	 by	 ANOVA	 on	 the	 geographical	
sampling	bacterial	alpha	diversity.	The	percentages	display	 the	h2	
score	considering	as	partitioning	variables	the	presence	or	absence	
of	the	fungal	order	of	Lecanorales,	as	well	as	the	presence/absence	
of	 Chlorophyta	as	 a	whole.	 *	 indicates	 p-value	<0.05,**	 a	pvalue	
<0.01,	***	a	p-value	<0.001 
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relative abundance of Chlorophyta across different ecotypes we can observe no clear trend, 

having all genotypes hosting all the displayed families (supplementary figure 3 ).  

Concerning Lecanorales, conversely, we observe an occurrence peak in December, 

decreasing in the following months (fig 2.15). Given this scenario, I hypothesized that the 

reason of this shift could be found in the presence of other microbes, therefore we 

investigated whether or not Lecanorales or Trebouxiophyceae had a similar or stronger 

Figure	2.	15;	Lecanorales	follow	a	month	distribution,	with	the	highest	peak	in	March	Obtained	
through	Lecanorales	occurrence	across	time	in	field	experiment	-	time	course.		 

Figure	2.	16	Within	the	time	course,	Lecanorales	are	not	distributed	consistently	compared	to	the	geographical	
sampling.	Lecanorales	distribution	across	the	remaining	variables,	ecotype,	overlap	(of	algal	chloroplastic	16S	
and	algal	18S),	and	year	variation.	Notably,	the	ecotype	Ws-0	does	not	show	any	presence	of	Lecanorales	across	
all	three	years.	
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impact on bacteria diversity, as seen previously in the latitudinal sampling. I therefore 

performed ANOVA on bacteria diversity in the same way as mentioned in the previous 

paragraph. I also included the presence-absence of algal chloroplastic DNA as partitioning 

variable. The results of ANOVA (fig 2.1) show significant percentages of variation 

accounted for Trebouxia (more than 13% cumulatively) and Lecanorales (total 7.2%). 

Remarkably, these results are consistent with the ones found in the geographical sampling 

(fig 2.14). However, differently from geographical sampling, in the common garden 

experiment, Lecanorales account alone for a small but significant portion of variation. 

Another feature worth to mention is that most of effect size of Lecanorales and Trebouxia 

sp. are linked to month variation, underpinning a link to microbial successions within 

microbiome. These results, together with the latitudinal sampling suggest that the lichen 

life on the plant and inside the plant might be not stochastic and a potentially important 

aspect of plant holobiont.  

 

Figure	2.17;	Lecanorales	and	Trebouxia	are	confirmed	to	be	connected	variables	in	shaping	bacterial	diversity,	
irrespectively	from	ecotype.	Evidence	of	lichens	role	connected	to	time	successions.	Obtained	through	ANOVA	
on	common	garden	field	experiment	bacterial	alpha	diversity.	Percentages	display	the	h2	score.	P-value	code:	
*=p-value	<0.05,	**=p-value	<0.01,	***=p-value	<0.001,	non-	significant	p-values	are	labeled	with	NS.		
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2.2.4 Mechanisms underlying algae role in leaf ecosystem do not involve 

differential sugar productions 

All these results suggest a mutual interaction between algae belonging to the family of 

Trebouxiophyceae and lichenising fungal partner. However, I still could not exclude that 

algal presence could have had an impact on the microbiome by actively providing nutrients, 

mainly sugar.  

In order to investigate this issue, I first assumed that high abundant microalgae could 

influence more nutrient composition (Jones and Mayfield, 2012). I therefore considered the 

most abundant phylum in the ecological sampling (Trebouxiophyceae – supplementary 

figure 4), and within it, one of the most abundant and free living organism, Microthamnion 

kuetzingianum.  

I decided to investigate the nutrient composition of the leaf surface with a leaf wash 

experiment (see M&M) in order to reveal whether the application of microalgae on the leaf 

surface led to a different composition of epiphytic sugar content. It is known that algae are 

able to form their own biofilm by the secretion of the so-called EPS (extracellular 

polymeric substances) which typically are composed by sugar (Ramanan et al., 2015a). I 

hypothesized that M.kuetzingianum presence on the leaf could lead to a change in EPS 

composition of the leaf surface. The results in figure 2.18 show the absolute equality 

between the control and the two algal replicates tested, indicating that the tested algae do 

not modify the sugar composition of the leaf surface. However, in replicate MK2 a slightly 
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higher quantity of glucose is visible. It is interesting to notice though the high basal 

concentration of free glucose apparently present on the leaf surface, which potentially could 

be of microbial origin. These results do not exclude the presence of algal derived EPS on 

the leaf, which is still likely, given the high amount of sugar in general recovered. They 

instead underpin a marginal role, if any, of M. kuetzingianum as possible major constructor 

of biofilm. 
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Figure	2.	18	Sugar	composition	of	the	leaf	surface	does	not	change	after	the	application	of	M.	kuetzingianum.	Obtained	
through	enzimatic	 test	 on	 leaf	washes	 for	 plants	 treated	with	Microthamnion	 kuetzingianum	 (MK)	 in	 two	biological	
replicates	 (MK1,	MK2)	and	the	 control,	 solution	of	MgCl2	 in	 two	 independent	biological	 replicates	 (Control	1	and	2).	
Separately,	 technical	 controls	 were	 added,	 containing	 sterile	 solutions	of	 the	displayed	pure	 sugars:	Glc-6P,	 Glucose,	
Fructose,	and	Sucrose.	The	increasing	of	the	absorbance	of	the	technical	controls	after	the	adding	of	the	correct	enzyme	
(G6DPH	for	Glc-6-Phosph,	Hexokinase	for	glucose,	PGI	for	Fructose	and	Invertase	for	Sucrose	–see	complete	experimental	
design	in	M&M--)	indicate	clearly	that	the	assay	is	technically	reliable. 
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2.3 Dissecting the role of heterotrophs and amoeboid organisms: 

predators on the leaf surface 
As previously shown in paragraph 2.1.2, several subdivisions revealed by 18S sequencing 

have heterotrophic lifestyle. I also showed in paragraph 2.2.1 that a relatively large part of 

variation for bacteria, fungi and oomycetes is explained by the simple presence of 

overlooked microbial eukaryotes groups such as Lobosa, Ciliophora and Metazoa. In order 

to better tackle this question, I used the time course in order to observe which was the 

underlying pattern. 

 

2.3.1 Successions of consumers: different time for different predators 

In order to dissect time course data, I performed ANOVA in the same way as shown in 

paragraph 2.2.1, including the presence of presumed producer families as partitioning 

variables (figure 2.19). Apart from the month and the year, which are the main drivers of 

diversity, respectively 25% and 10% of variance highly nested with each other, what 

follows is Lobosa and Ciliophora (fig 2.18).  

What is really surprising is that a portion of variation is also explained by the joint variable 

Lobosa or Ciliophora and ecotype, a variable, which alone has no significant impact on 

bacteria diversity.  

Figure	 2.19;	 Month	 variation	 is	 the	 key	 shaper	 of	 microbial	 diversity	 ,	 its	 nestedness	 underpins	 microbial	
successions.	Obtained	through	ANOVA	on	bacteria	alpha	diversity	on	the	experimental	common	garden	field	
sampling,	 percentages	 display	 h2.	 pvalue	 code:	 *=pvalue	 <0.05,	 **=pvalue	 <0.01,	 ***=pvalue	 <0.001,	 non	
significant	pvalues	are	labled	with	NS 
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Given the relevant impact of the month variable, I then dissected the composition of 

Lobosa, Ciliophora and Metazoa over the sampled months. As shown in figure 2.20 for 

both Lobosa and Ciliophora, in the month of November there is a peak of overall abundance 

and diversity, followed by a steep decrease of both in the following months. Whereas, in 

the same context, Metazoa show a different trend, displaying a peak in December and a 

following decrease of both abundance and diversity. This major shift between November 

Figure	2.20;	Successions	of	heterotrophic	groups	underpin	a	role	of	Metazoa	in	common	garden	experiment.	On	x	
axis	are	clustered	the	different	months	of	sampling,	from	October	until	March,	divided	in	all	the	ecotypes	(Col-O,	
KsK,	Sf-2,	Ws-O),	each	color	represent	a	subphylum,	as	indicated	in	the	legend.	 
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and December for Ciliophora and Lobosa, but not for Metazoa, suggests a radical change 

in biotic interactions rather than a change in environmental conditions, which remained 

stable across those two months (See Mapfile_Common_garden.xlsx at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M ). These findings 

indicate as well that ecotype has a role only in defining pioneer organisms such as Lobosa 

and Ciliophora, whereas major predators take over the leaf only in a second moment. 

2.4 United they stand: rare taxa play an important role in shaping the 

diversity, but only if taken together 
The results shown so far highlight the impact of overlooked microbial eukaryotes on other 

kingdoms. It was already mentioned the highly variable abundance across overlooked 

microbial eukaryotes, with entire groups being low abundant (Lobosa) and others 

conversely being highly abundant (Metazoa). 

I consider this scenario of mixed high abundant and very low abundant taxonomic groups 

as an ideal situation to study the impact of rare taxa in an ecological perspective (Shade et 

al., 2014). Network analysis is usually abundance-limited, implying that can hardly deal 

with low abundance or even rare taxa. On the other hand, there is evidence that rare taxa 

can hold a key role in shaping microbial diversity and fostering community stability and 

resilience (Lozupone et al., 2012; Shade et al., 2011). I chose an approach similar to the 

one used for evaluating the impact of single taxa, with the difference that I considered as 

rare taxa only the ones present in the 10th percentile of the overall overlooked microbial 

eukaryotes abundance. I then tested these taxa both grouped together and by subdivision, 

Figure	2.21a;	Rare	overlooked	microbial	eukaryotes	have	a	remarkable	impact	on	alpha	diversity	of	Bacteria,	Fungi	and	
Oomycetes.	 However,	 only	 if	 taken	 as	 a	 pool.	 Bacterial	 alpha	 diversity	 is	 increased	 by	 rare	 overlooked	 microbial	
eukaryotes.	Bacteria	are	depicted	in	panel	A,	 followed	by	Fungi	(panel	B),	and	Oomycetes	(panel	C).	picture	displays	
ANOVA	on	panel	alpha	diversity,	percentages	display	h2	score,	showing	the	variation	explained	by	the	presence	of	each	
overlooked	microbial	eukaryotes.	Only	significant	pvalues	are	displayed.	Notation	of	pvalues	follows		*=	pvalue	<0.05,	
**=	pvalue<0.01,	***pvalue<0.001. 
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in order to see any possible synergistic effect. These taxa presence/absence (listed in 

Supplementary_table_3.xlsx 

https://github.com/AlfredoMari/chetproject0001/tree/master/Results), were then 

Figure	2.21b;	Rare	overlooked	microbial	eukaryotes	(Rare	OME)	have	a	remarkable	impact	on	alpha	diversity	of	Bacteria,	
Fungi	and	Oomycetes.	However,	only	if	taken	as	a	pool.	Bacterial	alpha	diversity	is	increased	by	rare	overlooked	microbial	
eukaryotes.	Bacteria	are	depicted	in	panel	A,	followed	by	Fungi	(panel	B),	and	Oomycetes	(panel	C).	Boxplots	depicts	
panel	 diversity	 in	 Endophytic	 samples(Up)	 or	 Epiphytes(Down)	 for	 every	 overlooked	 microbial	 eukaryotes	 group	
displayed	on	top	of	the	boxplot.	P-	values	are	calculated	after	Wilcoxon-Mann-Whitney	test.	Notation	of	pvalues	follows		
*=	pvalue	<0.05,	**=	pvalue<0.01,	***pvalue<0.001. 
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considered as partitioning variable for ANOVA test on bacteria, fungal, oomycetal alpha 

diversity, as a whole or divided by subdivision. 

The striking result observable in bacteria and oomycetes (fig 2.21a) is that the rare taxa 

taken in pool accounts for significant portions of variation whereas no rare taxa taken by 

subdivision lead to a comparable effect. (fig 2.21a) Fungi constitute an exception, in fact, 

rare taxa as a whole do not have any accountable influence, except for Conosa, which 

account less than 5% of variation.  

These findings underpin the hypothesis of a relevant role held by overlooked microbial 

eukaryotes rare taxa in shaping microbial diversity, however mostly when present together 

in the same samples. Among all the components of the rare taxa pool, Conosa seem to 

harbor the major effects. However, the low number of samples considered (2) does not 

allow to draw conclusion from this last result. A remarkable conclusion that is possible to 

delineate is that overlooked microbial eukaryotes rare taxa as a pool (but not singularly) 

enhance bacterial alpha diversity which is known to lead to a more stable and resilient 

community (Elmqvist Thomas et al., 2003; Lozupone et al., 2012)
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3. Discussion 
Community composition and interactions between terrestrial organisms and 

microorganisms on plant hosts has been investigated since centuries. However many 

features like biogeography or niche definition have remained debated (Agler et al., 2016a; 

Coleman-Derr Devin et al., 2015). This was mainly due to the substantial lack of 

sufficiently large scaled studies, able to provide statistical support to formulated working 

hypotheses (Prosser et al., 2007).  

It is consolidated knowledge that the plant host harbours communities of micro-organisms 

and constitutes a micro-ecosystem itself (Hardoim et al., 2015). It is also well known that 

the plant is able to recruit beneficial microbes (Berendsen et al., 2012). The presence of 

these beneficial communities often coincides with enhanced plant fitness and enhanced 

resistance to disease. For crops, this can be translated into more stable and prosperous 

production (Berendsen et al., 2012). 

The studies focusing on plant microbiomes have usually covered bacteria, fungi, and 

oomycetes (Hacquard et al., 2016; Vorholt, 2012). However, especially concerning the leaf, 

most of them have found high portions of microbial variation which still remained 

unexplained (Agler et al., 2016a). Therefore, underpinning the hypothesis of the presence 

of other interactors, possibly with top-level role. I hypothesize that this missing part of the 

mosaic can be represented by unidentified microbial eukaryotes. 

The knowledge gathered so far on the plant holobiont regarding microbial eukaryotes often  

suffers from a too narrow focus, on one hand able to give precise insights on singular 

species, but on the other hand hardly able to reflect the bigger picture of ecological 

interactions (Bonkowski, 2004; Ploch et al., 2016; Sapp Melanie et al., 2018).  

What I aim at, in this study, is to investigate interactions among plant microbiota focussing 

on unidentified microbial eukaryotes, within the frame of the plant leaf.  

These overlooked microbial eukaryotes, also colloquially known as “protists”, are 

extremely diverse (Parfrey et al., 2010), both in terms of biology and of phylogeny (Adl et 

al., 2005). Many of them are still unclassified and their cultivability is not yet assessed 

(Parfrey et al., 2011). That is the reason why I opted for a culture-independent approach 

(geographical sampling on natural A.thaliana populations) using Illumina amplicon 

sequencing technology deployed with universal primer approach. This choice allows to 

encompass the broadest possible phylogenetic picture of microbes (bacteria, fungi, 
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oomycetes and remaining microbial eukaryotes) without losing taxonomic resolution. In 

order to follow this approach, it was required in first place to develop the strategy 

mentioned in paragraph 3.1.  

Following this path, I aimed to answer the following biological questions: 

1. What are the abiotic and biotic factors influencing the diversity of phyllosphere 

microbes? Is their distribution driven by geographical province, or by micro-habitat 

variables? 

2. What is the role of producers among microbial consortia? Are they also involved in 

mutualistic relationships? If this is the case, which kind of interactions do they engage 

in and how is the host involved? 

3. What is the role of consumers in the phyllosphere? Do they actively shape microbial 

diversity? Are there microbial successions due to predation? Is the plant host actively 

modulating consumer behaviour? 

4. Does the impact of microbes only depend on their abundance? What is the role of the 

rare biosphere in the plant holobiont? Do they have remarkable impact on the microbial 

assembly? 

In order to answer these questions, I conducted two experiments: geographic sampling of 

natural populations of A.thaliana across Spain, Sweden, France and Germany (15 sites in 

total) and a common garden experiment in which four different ecotypes were sampled 

monthly between November and March. Both experiments were conducted over three 

years. 

What follows is the discussion of the results of these experiments in the light of the 

aforementioned biological questions. 
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3.1 Methodological advances in amplicon sequencing and 

downstream data analysis 

3.1.1 Blocking oligonucleotides enhance sequencing resolution and 

improve low abundant taxa’s detectability 

The objective of the experimental setup was to delineate the main features of microbial 

eukaryotes associated with A.thaliana. As mentioned above, I accomplished that by 

choosing Illumina amplicon sequencing, following an approach established recently (Agler 

et al., 2016a). I expanded this approach to this experimental design for addressing 

unidentified microbial eukaryotes. I chose to do so by designing barcoded primers on V4 

and V9 regions of eukaryotic 18S, in order to obtain the broadest possible picture of 

microbial eukaryotes landscape (par 2.1.1). 

However, targeting eukaryote 18S with universal primer approach had the disadvantage 

that high abundant off-target DNA fragments are often strongly amplified, mainly host 

DNA, sacrificing read depth and masking diversity (Hanshew et al., 2013). My design of 

blocking oligos, which bind to the template between the binding sites of the primers 

(paragraph 2.1.1) efficiently solves this problem by increasing the detectability of microbial 

eukaryotes more than 100000-fold.  

Similar approaches have been attempted before: particularly a previous method described 

peptide nucleic acid that are highly specific to non-target templates and which physically 

block their amplification (Lundberg et al., 2013). These oligos work efficiently even in 

single-step amplifications, however their production is expensive, limiting rapid 

development of multiple oligos for new loci or for blocking several non-targets. Other 

approaches, such as using oligos modified with a C3 spacer (Vestheim and Jarman, 2008) 

are also more costly and worked best when they block the universal primer binding site, 

instead of the sequence between the binding sites.  

The approach I propose, does not interfere with the primer binding site, and allows multiple 

blocking oligos to be deployed together. It is easy to design and not expensive. 

By using this tool, I demonstrate that amplicon sequencing with a universal primer 

approach can be applied to microbial eukaryotes without necessarily losing resolution of 

target sequences. On the contrary, it improves detectability especially of low abundant taxa. 

Moreover, the versatility of the oligos and the low costs of the strategy indicate this 

approach as the most suitable in large scale amplicon sequencing such as this study. 
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3.1.2 A new network comparison pipeline provides customizable, 

modular and solid statistics for ecological studies 

For the last years, microbiome analysis, has involved large deployment of graph theory in 

order to infer and model ecological interactions between OTUs or taxa in the shape of edges 

between nodes (Barabasi, 2009; Barberán et al., 2011). This analysis strategy is statistically 

very solid, and is perhaps one of the best tool to handle complex data such as microbiome 

data (Faust and Raes, 2012).  Given the complexity and heterogeneity of microbiome data, 

it often happens that the inferring of the network may involve only part of the dataset. This 

creates the necessity of further analysis platform able to compare networks inferred from 

different subsets of the main dataset. Typically, in previous studies, such comparison has 

been achieved by comparing general network properties such as clustering coefficient, 

density, radius etc.(Faust et al., 2015). However, to the best of my knowledge, no available 

platform provides further calculation of the edge conservation between two networks, in a 

pairwise manner (not as a general parameter), supported by a solid statistical validation.  In 

paragraph 2.1.4.2.1 I introduced a new bioinformatics platform able to extract further 

information from a comparison between two networks. The case displayed regarded two 

networks inferred under the same conditions, on two data sets respectively including and 

excluding the algae Bracteacoccus sp.  

Current platforms like the Cytoscape app VennDiagrams mainly compare node and edge 

overlap in a qualitative manner (Saito et al., 2012). The app Dynet, instead, compares 

provided networks by calculating a core of shared nodes and then drawing a resulting 

network based on a comparison with the shared core (Goenawan et al., 2016). This 

approach is more insightful than the one provided by VennDiagrams, however, it ignores 

nodes and edges which are lost from one network to another, revealing a bias for highly 

connected nodes and shared nodes (Goenawan et al., 2016). Moreover, it calculates the 

divergence between the two networks by calculating a rewiring score (D score) which is 

prominently based on properties of nodes, rather than edges. This feature, together with the 

shared core bias, mines the possibility to compare very different networks, possibly lacking 

a sufficiently large core.  

A more successful approach is achieved by the Cytoscape app Diffany, which offers a 

calculation of differentials and consensus network based on a customizable reference 

network (usually one of the networks being compared) and it is based on edge scores such 



Alfredo Mari Chapter 3 Discussion 

 57 

as edge weight (Landeghem et al., 2016). Differential and consensus network are then 

displayed in a directed resulting network which allows a visual comparison of the 

negatively or positively correlated edges across the two networks compared.  

While Diffany provides a more accurate edge comparison compared to Dynet, it does not 

discriminate between a lost edge and a changed interaction type of the edge itself 

(Landeghem et al., 2016). Both platforms (Dynet and Diffany) include the edge weight as 

unique edge value in the comparison and do not allow any further parameter to be tested. 

Moreover, Diffany and Dynet do not provide statistical validation of their comparison, 

since they do not perform any statistical test on permutated edges.  

The platform that I present here goes beyond the classical comparison of general network 

measurements, and beyond the calculation of network rewiring. It aims at achieving a 

detailed comparison of the two networks based on virtually any inferred edge score.  

After dividing the edges in classes based on the provided score, it provides information on 

the composition of the classes. This allows the user to visualize which edge starting from 

which node is positively/negatively conserved between the two networks. Lost edges are 

by default assigned a lack of correlation score (1), and specifically tracked down. This way 

they are clearly identifiable as lost edges.   

As the most important and last step, it succeeds in calculating solid and reliable statistics 

(through Mantel test and Mantel correlogram after 500 permutations) on edge classes. 

Thereby the user can quantify how strong the edge (lack of) correlation is.  

Other approaches have also tackled network comparison based on statistics, by using 

distance metrics such as Jaccard diversity index, instead of Mantel correlogram (Widder et 

al., 2014), or by using PERMANOVA (Williams et al., 2014). Both approaches open 

glimpses on general correlation of the two networks based on edge score. However, in the 

last example, PERMANOVA was calculated directly on the incidence matrix. This 

calculation provides a general correlation score, similar to the one provided by regular 

Mantel test. Instead, my approach based on a distance matrix inferred from edge features 

compares the two networks edge by edge (grouped in classes). Thereby it offers a more 

detailed picture, since every component of the correlation can be tracked down and 

analysed further. Moreover, the implementation in perl guarantees a fast and efficient 

deployment, with an ordered and trackable output, since it makes large use of LSF system 

(Songnian et al., 1993) to parallelize and run subscripts in background.  

In order to finally validate the platform with real biological data, I compared two networks 

inferred from samples containing or not containing the species Bracteacoccus sp. both with 
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Diffany and with the presented pipeline, customized to evaluate edge weight, and thereby 

comparable to Diffany. The working hypothesis was the matching of the qualitative 

divergences recovered with Diffany with the quantitative results achieved with my pipeline. 

While the results largely agree in terms of which edges differentially connect in the two 

networks, my pipeline gives further insights into possible correlation between high weight 

and conservation of the edges across the two networks.   

This pipeline can therefore be considered as an important methodological step forward. Its 

modularity and customizability allow it to be applied in virtually any kind of pairwise 

network comparison on virtually any property of the inferred edge. In the ecology field, it 

can allow more solid and reliable statistical analysis on network inferring and comparison, 

especially for large scale microbiome study. 

 

3.2 Overlooked microbial eukaryotes biogeography appears to 

be shaped by microhabitat factors rather than by geographical 

province 
At the beginning of this chapter I mentioned a few biological questions as object of this 

study. The first one concerned the biogeography of the microbes associated with plant 

holobiont. From a recent study (Agler et al., 2016a), it emerged that a large portion of 

variability, especially concerning bacteria, remains still ambiguously assigned to sampling 

location and seasonality, or just unexplained.  

I aimed to disentangle the biological meaning of this location. The formulated working 

hypothesis was that both overlooked microbial eukaryotes and other microbes distribute 

differently across site, triggering the question: is this differential distribution due to 

latitudinal driven dispersal, or to microhabitat variables? 

In order to test this hypothesis, I analysed the microbial composition of natural populations 

of A. thaliana leaves 15 sites divided into 4 biomes (Natural, Suburban, Agricultural, 

Urban) equally distributed across 4 countries (France, Spain, Sweden, Germany).  

Displayed results indicate that biogeography of microbes differs across different taxonomic 

groups: for bacteria and overlooked microbial eukaryotes biome is leading, for oomycetes 

– province,  for fungi - both. 

This last result agrees with previous studies which reveal a latitudinal pattern over fungal 

diversity distribution (Tedersoo et al., 2014).  
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For all the displayed groups, the compartment seems to harbour the most of the variability. 

However, this finding may be treated with caution, since the epiphytic OTUs were obtained 

by filtering the OTUs from whole leaf samples against endophytic OTUs (M&M). 

The results I found on bacteria community match what has previously been discovered in 

a study on bacterial biogeography on populations living on Arctic and Antarctica ice 

shelves respectively (Varin et al., 2012). In that case, there have been detected quantitative 

discrepancies between the two poles communities, however the two populations were 

qualitatively similar, being dominated by Cyanobacteria and Proteobacteria. According to 

my results, Proteobacteria are also the main phylum composing bacteria leaf microbiome. 

Some studies interpreted the cause of this differential abundance between the two poles to 

differential “colonisation potential” (Cavicchioli, 2015). The colonisation potential is 

defined as the efficiency of a taxonomic group to establish a new community in a previously 

not colonized niche (Martiny et al., 2006). It is higher in case the taxonomic group has not 

restricted feeding habits and if the group has large population densities and broad range of 

dispersal possibilities, like in the case of bacteria.  

In this case, this means that bacteria can potentially colonise every latitude The divergent 

populations are then determined by microhabitat conditions, like the biome, following what 

is known as Baas-Becking hypothesis (Baas-Becking, 1934).  

In conclusion, the Baas-Becking hypothesis fits the displayed results on bacteria, and may 

mean that the role of the plant host is rather marginal within microbial assembly, as it has 

been previously shown for roots (Schlaeppi et al., 2014). 

Of course, different taxonomic groups have different colonisation potential. In the case of 

oomycetes, whose dimensions, dispersal efficiency and biology are radically different 

compared to bacteria, I expect them to have lower colonisation potential. 

In fact, as reported in paragraph 2.1.3, oomycetes are significantly affected by latitudinal 

factors rather than by microhabitat factors. This would mean that for oomycetes, the 

dispersal is more crucial than the adaptation to a different microhabitat.  

In fact, by checking the differential composition of oomycetal taxa across the sites, I found 

that the whole genus Albugo sp. is completely absent in Sweden. Possibly because the fact 

of being an obligate biotroph could have harmed the dispersal over a geographical barrier 

such as Baltic sea, or, more likely, because of less evident anthropogenic contribution in 

Albugo sp. dispersal (Santini et al., 2013).  

Regarding overlooked microbial eukaryotes, most of the biogeography studies were based 

on freshwater, ocean or soil samples (Martiny et al., 2006). However, these studies found 
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similar results compared to what is reported in paragraph 2.1.3. In fact, I found that 

microbial eukaryotes are affected by both province and biome (figure 2.6), even though 

biome is leading over province by 4%. This is consistent with what was found in a recent 

study (Schiaffino et al., 2016), in which microbial eukaryotes of fresh waters of Patagonia 

and Antarctica lakes, were found to be affected by province and by microhabitat conditions 

such as water pH, conductivity, or presence of other microbes. In other contexts, this similar 

importance of habitat and province has been questioned, underpinning a prevalent role of 

latitudinal distribution (Filker et al., 2016). However, in that case, the geographical distance 

was so high (Austrian Alps vs Chile and Ethiopia) and connected to so many different 

biomes itself, that discrimination between habitat and province was hard if not impossible. 

It is interesting to notice the great intra-kingdom variability in terms of colonisation 

potential, but also of feeding habits of overlooked microbial eukaryotes. Their 

heterogeneous composition, including pathogens, saprotrophs, symbionts, and 

photoautotrophs, delineates a scenario in which each class and possibly each genus can be 

differentially impacted from province or microhabitat conditions (Heger et al., 2013).  

The aforementioned study (Schiaffino et al., 2016) reported a decrease of latitudinal effect 

together with the decrease of body size. I did not observe such correlation in my data, 

although the reported findings on bacteria (biome driven) and overlooked microbial 

eukaryotes (province-biome driven), would underpin this hypothesis. 

It has to be noticed that the mentioned studies on biogeography of microbes in free-living 

conditions (oceans/ice/freshwater) are substantially in line with the results presented in this 

study on plant holobiont. This may indicate that the role of the plant host, at least 

concerning the phyllosphere, shall be rather limited. 

These findings trigger one biological question: if biomes and province are almost equally 

important for overlooked microbial eukaryotes, what are the characteristics of the biome 

and of the different provinces? In other words: if biome and country impact microbial 

diversity in different ways, how can we dissect them in order to extract the real factors 

shaping microbial diversity?  

Concerning provinces, I considered as relevant features the environmental factors listed in 

M&M such as temperature and precipitation rate. This choice is due to the fact that such 

variables are often latitude dependent. Moreover, for some locations, it was possible to 

retrieve climatic data only from one station for two or three sites.  

Concerning biome, I classified them based on the soil history and based on proximity to 

anthropogenic areas. This means that each biome is likely to constitute an ensemble of 
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(micro)habitat factors, which include of course specific or even unique biotic interactions 

taking place. In order to tackle biotic interactions, I addressed the co-occurrence/co-

absence of the recovered taxa, which have been reported to be e phaenomenon typical of 

microhabitats and specific biomes (Martiny et al., 2006).  

3.2.1 Overlooked microbial eukaryotes and microhabitat: biotic 

interactions are not influenced by province related variables, 

underpinning a bond with the biome variable 

In order to disentangle the biome effect and the province effect, a comprehensive analysis 

of occurring biotic interaction across my samples was needed. I then chose to infer a 

microbial network starting from the original clustered OTUs. This is probably the most 

powerful instrument to date to deal with highly complex systems such as ecological 

interactions (Barberán et al., 2011; Faust and Raes, 2012). This is the reason why I deployed 

it on my data, obtaining a picture of ecological interactions over three years of sampling, 

including environmental features as nodes. Notably, overlooked microbial eukaryotes 

connect with key hubs like Sphingomonas sp. and Methilobacterium sp., underpinning a 

possible association, but excluding an association with the environmental nodes, which 

remained disconnected from almost every node. The fact that environmental factors such 

as temperature and latitude do not connect with any of the nodes is in line with a theory 

underpinning that biotic interactions are rather linked to microhabitat variables and do not 

form any large-scale pattern, for instance province-based (Wisz et al., 2013). As a proof, 

they do connect in case of reduced scale network inference, for instance by building 

networks from single biomes or sites or in case the abundance thresholds are lowered (fig 

2.8). 

It is interesting to notice the striking abundance of negative over positive interactions, the 

latter being distributed solely intra-kingdom and not inter-kingdom.  

There have been studies which considered the quality of microbial interactions as the main 

feature to build reference models on microbial consortia stability and dynamics (Wisz et 

al., 2013). Specifically, it has been reported that a high network stability is correlated to the 

prevalence of competitive (negative) interactions (Coyte et al., 2015). In this experiment 

context, this would imply a high stability of the inferred interactions, confirmed by the fact 

that no nodes connect to the “Year” variable.  

As a second confirmation, alpha diversity analysis (fig 2.11) shows no significance of the 

year on the variation of microbial assembly in all investigated groups. However, what do 
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positive and negative interaction mean in an ecological frame? Several studies up to now 

reported that during favourable abiotic conditions, biotic interactions tend to be negative 

and competition rate is much higher (Callaway et al., 2002; Mod et al., 2016). Whereas, 

when the microhabitat conditions become harsh, for instance after a perturbation, 

mutualistic interactions become the majority of interactions (Mod et al., 2016). The 

absolute prevalence of negative interactions would then suggest a relatively stable habitat 

in which no major perturbations are likely to have happened, at least recently before 

sampling. 

These results, together with the findings reported in chapter 2.1.3, show that both 

geographical and habitat factors are almost equal shapers of microbial eukaryote diversity. 

Concerning province as shaper of overlooked microbial eukaryote diversity, it is not 

possible to draw major conclusions, apart from acknowledging that geography may play a 

role in terms of dispersal potential rather than climatic variables. Along these lines, since 

analysed overlooked microbial eukaryotes are phylogenetically very heterogeneous, an 

analysis on geographical dispersal coupled with phylogenetic analysis on every class or 

even genus singularly would be needed. However, a candidate-based approach would open 

new interesting perspectives on latitudinal biogeography of overlooked microbial 

eukaryotes. 

The key outcome of this study concerning biogeography is assessing the importance of 

biome, microhabitat and biotic factors correlating with the diversity of overlooked 

microbial eukaryotes.  

The primacy of habitat, biotic factor and local scale communities in the leaf environment 

would seem sound, if we consider that the plant holobiont, especially within the leaf, offers 

at least two microhabitats (endophytic and epiphytic compartment). Those two 

environments, are differently affected by abiotic (rain, UV rays, temperature) and biotic 

factors (the presence of apoplast in endophytic compartment, presence of other microbes) 

and therefore definitely able to shape microbial communities. It remains to be tackled what 

could be the role of the host in such a consortium development. I will address this question 

later in the chapter. 

Through network analysis I highlighted the major interactions between OTUs. However, 

this leaves the impact of overlooked microbial eukaryotes groups, and other biotic 

interactors, such as bacteria, fungi and oomycetes still unclear. In other words, which 

overlooked microbial eukaryotes have which kind of impact on microbe-microbe 

interactions? Do they influence the increase or decrease of microbial diversity? In order to 
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tackle these questions, I chose to narrow my analysis to two ecologically important 

taxonomic groups: green algae (Chlorophyta), and amoeboid organisms (Lobosa, 

Ciliophora), together with Metazoa. 

 

3.3 The leaf in the leaf: microalgae in both compartments 

reveal unexpected microbial dynamics 
In all the investigated sites, and across all the three years, I found a substantial part of reads 

belonging to the subdivision Chlorophyta, known also as green algae. Remarkably I found 

their presence not just on the leaf surface but also inside the leaf mesophyll. I also detected 

at low abundance but repeatedly the presence of Chlorophyta inside not just leaves, but also 

root endophytic compartment (par 2.2.2, figure 2.11). This finding is unlikely due to 

contamination for a number of reasons: (1) the fact of having found such presence across 

all three years of sampling, in such different locations; (2) the fact of having manually 

harvested the samples always in a team of multiple people, and (3) in case of the few root 

samples, also the usage of a different DNA extraction kit. The almost total overlap of algal 

chloroplastic DNA with algal 18S (more than 97% of the 16S samples) (fig 2.11), supports 

the hypothesis of an active role held by green algae within plant microbiota.  

This hypothesis is also underpinned by network analysis. Among several thousands of 

OTUs, after stringent cut-off filters and bootstrapping, only Chlorophyta and Metazoa were 

displayed in the network, engaging mainly negative interactions with bacteria and fungi. 

Among them, a single taxon, Bracteacoccus sp. was also found as relevant node. It is 

important to specify that network analysis implies ecological correlations between OTUs, 

but does not allow any further ecological conclusion on alpha diversity, which needs to be 

addressed by supporting statistics or specific experimental designs.  

By performing the supporting variance analysis on alpha diversity distribution, I displayed 

not only that Chlorophyta have a significant impact on microbial consortia, but also that I 

could quantify how abiotic and biotic factors (like the simple presence-absence of 

microalgae) can condition alpha diversity of microbiologically crucial kingdoms (Bacteria, 

Fungi). Interestingly, Chlorophyta often significantly accounted for large portions of 

variance of bacterial and fungal alpha diversity. I also showed that the Chlorophyceae 

Bracteacoccus sp accounted for large portions of variance of bacteria, fungi and oomycetes. 

The importance of Bracteacoccus sp. will be further discussed in chapter 3.3.2. 
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These results open for discussion what has always been discussed only for water 

environments: what is the relationship between plants and algae? Are algae actively 

interacting with the plant or mainly with other microbes? Large knowledge has been 

acquired on the so-called phycosphere, and on its regulatory systems (Ramanan et al., 

2015a). The presence of a biofilm-based phycosphere in the leaf would open new fields of 

microbiological analysis. 

 

3.3.1 Phycosphere in the phyllosphere, microalgae shape microbial 

interactions by connecting to the key hubs, likely through biofilm 

It is consolidated knowledge that microalgae form biofilm in almost every surface they 

colonize (Ramanan et al., 2015a). It has been reported as well that such biofilms are created 

by algae generally by the secretion of the so-called EPS (Extracellular Polymeric 

Substances). However, their creation and maintenance can benefit of the contribution of 

several species of bacteria.  

An interesting study has demonstrated that beside biofilm formation, bacteria are also 

involved in algal colonisation, since algal growth seems to be enhanced in an environment 

already colonized by bacteria (Schnurr and Allen, 2015).  

These elements fit my findings on recovered algal diversity found on leaves. In fact, the 

leaf surface is likely to be colonized in first place by bacteria (Hassani et al., 2018), and 

hypothetically, an algal colonisation could be therefore facilitated. 

The habitat created within the biofilm is called often phycosphere. Numerous studies on 

phycosphere report the specie-specificity of the phycosphere itself. This means that each 

microalga is able to recruit differential bacterial or fungal species, mainly for trophic 

reasons (Ramanan et al., 2015a). However, certain classes of bacteria appear to be more 

recurrent in different phycospheres. The well-known ones belong to the class of 

Methylobacteriaceae, but also to Sphingomonadaceae, and Caulobacteraceae (Ramanan et 

al., 2015a). These last two families were represented in several nodes of the microbial 

network and directly engaged connections with the recovered algal nodes. 

In general bacteria-algal interaction has been proven to be tight in other environments, 

either by quorum sensing interference (Teplitski et al., 2016) or by mutualism (Ramanan 

et al., 2015b). A well described mutual interaction is one that takes place between 

microalgae, especially Trebouxiophyceae and the bacterial family of Rhodobacteraceae. 

An active exchange of nutrient and micronutrients between the two interactors has been 
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reported, mainly via the delivery of carbon from the algal side, usually in EPS form, 

receiving back from the bacterium micronutrient like cobalamin (vitamin B12) and auxin 

(IAA). This specific kind of mutualism has been observed mainly in freshwater 

environment and in biofilms (Ramanan et al., 2015b). 

This information is consistent with preliminary results not shown in this thesis. In fact, I 

found a trend of samples containing high levels of Rhodobacterales reads, being also 

abundant in Trebouxiophyceae 18s reads as well as algal chloroplastic 16S. Given these 

observations, I hypothesize that such a mutualism could occasionally occur also on 

terrestrial plants.  

These findings underpin the hypothesis not only of an active outer algal biofilm, but also 

of a possible endophytic phycosphere, in which selected bacteria taxa such as 

Methilobacter sp. and Sphingomonas sp., together with micro algae can have a key role in 

shaping microbiota diversity. 

3.3.2 Bracteacoccus sp may be the main player in the biofilm niche  

Among other microalgae, network analysis brought to my attention Bracteacoccus sp. 

which already displayed high betweenness centrality and was later found to be a key shaper 

of alpha diversity, of bacteria, fungi and oomycetes.  

The sequences assigned to Bracteacoccus sp. found in our data set most likely belong to 

Bracteacoccus occidentalis or Bracteacoccus bullatus. Possibily, multiple Bracteacoccus 

sp strains may be involved. 

Concerning the potential role of Bracteacoccus sp. in the microbial consortium, it is still 

difficult to hypothesize, since recent studies report it as very cosmopolitan microalgae  

(Lewis and McCourt, 2004), sometimes on the verge of being considered pathogen. In the 

past, it has been considered responsible for an algal blooming in the historical cave of 

Lascaux in France (Lefevre, 1974).  

Interestingly, two other species of Bracteacoccus sp. were found to be present in forest 

floor and forest litter, where its presence seems to vary accordingly to seasonality and soil 

horizon, however, most of its prerogatives remain unknown (Maltsev, 2013; Maltsev et al., 

2017). 

It is however likely that Bracteacoccus sp. could play a role in biofilm formation, similarly 

to other already investigated Chlorophyceae (Ramanan et al., 2016). A speculative 

hypothesis would be to consider it as the reservoir alga, which in determined condition is 
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able to rapidly reproduce and become the main biofilm developer, given its already 

mentioned ability to bloom in certain condition. 

Despite this lack of consolidated knowledge, it seems that Bracteacoccus sp. prefers to 

engage commensalistic interactions with bacteria and fungi, as the shown ANOVA 

underpins (fig 2.10).  It has been found to engage symbiosis especially with the species 

Rhizidium sp. (Picard et al., 2013) However, no reads assigned to Rhizidium sp. were found 

in my geographical sampling.  

In conclusion, I found that micro algae belonging to Chlorophyta have major impact on 

bacteria diversity as well as oomycetes diversity. A hypothesis on how they can act as 

modulators of diversity can be formed considering the formation of a biofilm. Biofilm 

development could possibly be supported by occasional mutualisms with the class of 

Rhodobacterales, or more likely with bacteria of the genus Sphingomonas and 

Methilobacterium, correlators of algae in the inferred network, and already known as “usual 

suspects” from previous studies (Vorholt, 2012). 

Another remarkable finding that I showed is the prominent correlation between green algae 

and fungal diversity. In nature, a peculiar symbiosis between plants and fungi – lichens -, 

has been studied over centuries. I argue that this symbiosis could occur also on A.thaliana, 

and have impact on the rest of microbes. 

 

3.4 The fungal connection: Lichens 

3.4.1 Lichens appear in both endophytic and epiphytic compartment, 

and they impact bacterial diversity on the leaf  

In order to support this hypothesis, I investigated whether or not lichens can be considered 

as key players in leaf microbiome and whether or not they have an impact on microbial 

diversity. In order to address the first question, I mined the geographical sampling data, 

looking for not only for lichenising fungi, but also for the corresponding phycobiont. As 

fungal class tester, I chose the order of Lecanorales, known to be composed eminently by 

lichenising fungi, engaging symbiosis mainly with members of Trebouxiophyceae family 

(Ahmadjian, 1967; Favero-Longo and Piervittori, 2010). As reported in paragraph 2.2.2, 

the overlap between Trebouxiophyceae 18S and Lecanorales ITS is almost in 98% of the 

samples. Moreover, I displayed that an overlap between Lecanorales and algal chloroplast 

16S is in more than 70% of the samples, underpinning the hypothesis of an active symbiosis 

between lichenising fungi and algae taking place on the leaf. It is likely that most of the 
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lichens found in this context live on the leaf surface. In fact, more than 70% of the 

lichenised samples are epiphytic (par 2.2.3). However, a marginal quantity of lichens can 

still be found endophytically in 12% of the samples, especially belonging to the genus 

Parmelia (see paragraph 2.2.3).  

In order to answer the second initial question about the importance of lichens on the rest of 

microbial consortia, I performed ANOVA on bacteria alpha diversity, keeping Lecanorales 

and algal chloroplast as partitioning variables. The reason for choosing bacteria as a target 

was due to the fact that it has been reported several times that bacteria are the kingdom that 

is majorly influenced by lichens within microbial consortia (Bates et al., 2011; Mushegian 

et al., 2011). 

The results shown in paragraph 2.2.3.1 clearly display that Lecanorales have a small but 

significant impact on bacterial diversity only when nested with the algal chloroplast 

variable (2.2%). The fact that this percentage is also nested with the compartment variable 

underpins the hypothesis that Lecanorales have impact on bacterial diversity only in a 

specific compartment, which is likely to be the epiphytic one, since it shows the highest 

Lecanorales abundance. This hypothesis would be in line with the literature, claiming that 

bacteria associated with lichens closely resemble the bacterial community of the leaf 

surface (Grube and Berg, 2009). Moreover, other studies highlight the tight associations 

between lichens and Alphaproteobacteria (Bates et al., 2011; Grube and Berg, 2009), very 

abundant in my  samples, and interestingly also with Methilobacterium sp.  (Grube et al., 

2009), which was one of the main hubs connecting with chlorophyte nodes in the network 

displayed in figure 2.7.  

Other possible associations involve the interplay between certain classes of bacteria such 

as phosphorus and nitrogen mobilising bacteria, reported to be associated with lichens 

(Grube and Berg, 2009; Lücking, 1999), and of fundamental importance in the leaf 

microbiome (Vorholt, 2012). 

These findings support the hypothesis of an active role of lichens within leaf microbiome 

of Arabidopsis thaliana and its relevant contribution in shaping leaf bacteria community.  

 

 



Discussion Chapter 3 Alfredo Mari 

 68 

3.4.2 The key role of lichens in the phyllosphere microbiome is likely 

dependent on microhabitat conditions and may involve different 

phycobionts. Host genotype is not directly involved 

Algae and lichenising fungi influence bacteria diversity in plants. However, few biological 

questions still remain to be tackled. For instance: is the genotype of the host relevant for 

colonisation? How much are the microhabitat conditions relevant for lichens to establish 

on the leaves? And how important is the leaf age for lichens colonisation? How could 

possibly lichens colonise the plant and interact with bacterial population? 

In order to address those, I analysed sequencing data from a common garden experiment 

including four different ecotypes (KsK, Col-0, Ws-0, Sf-2) sampled monthly from 

November till March over three years (see M&M). 

Results displayed in chapter 2.2.3.2 show that abundance fluctuations of Chlorophyta and 

Lecanorales follow different patterns over months with Chlorophyta having the highest 

abundance peak in November, while Lecanorales in December. Lecanorales distribution 

over years and Lecanorales overlap with algal chloroplastic DNA does not seem to follow 

a definite pattern in this experimental setup. Concerning ecotype instead, presence of 

Lecanorales seems to negatively correlate with the ecotype Ws-0. In fact, no Lecanorales 

reads were found on this ecotype. 

In order to address the factors which may co-determine Lecanorales impact on the leaf, I 

performed ANOVA on bacterial alpha diversity, considering among others: month 

variation, ecotype, and the presence of phycobiont as partitioning variables. As candidate 

phycobiont I chose Trebouxia sp. as indicated by numerous studies on the subject (Favero-

Longo and Piervittori, 2010). 

The results displayed in figure 2.15 and 2.16 depict the connection between Lecanorales 

and the genus Trebouxia to be weak in terms of co-occurrence itself, however significant 

in terms of effect size on bacteria diversity. 

This finding suggest that a bond between Lecanorales and Trebouxia may occur 

occasionally. However, in case this happens, they are able together to exert a remarkable 

impact on bacterial diversity. This circumstantial bond hypothesis is supported by the fact 

that Lecanorales can be coupled with phycobionts other than Trebouxia sp. In fact, some 

studies  (Rambold et al., 1998) found that Lecanorales engage symbiosis mainly with 

Trebouxiophyceae, but in few cases they can be involved also with Chlorophyceae, as well 

as Cyanobacteria.  
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Concerning time course, from alpha diversity analysis on common garden experiment, 

emerges high nestedness between Lecanorales accounted variation and month variation. 

This is in line with what is shown in figure 2.15 about monthly fluctuations of Lecanorales, 

and likely indicates that influence on bacteria community is correlated with Lecanorales 

abundance fluctuation over the months, (for instance the abundance peak in December).  

From the same analysis, it appears that ecotype does not nest with Lecanorales in shaping 

bacterial diversity. 

This indicates that the Lecanorales distribution over ecotype shown in figure 2.16 may be 

circumstantial. Overall, this result is in agreement with previous studies on foliicoulous 

lichens, showing that the plant host genotype has low and insignificant effect on lichens 

development and harbouring of beneficial bacteria (Lücking, 1999; Serusiaux, 1989).  

Regarding microhabitat impact on lichens, it seems clear that at least the compartment has 

massive effect on determining the presence of lichenising fungi and phycobionts (par 

2.2.3.1). Concerning environmental factors other than compartment, there can be noticed a 

remarkable adaptability (chapter 2.2.3.1) of the lichens found on the plant to different 

habitats and provinces. In fact, the tight link between bacterial diversity and lichenising 

fungi both in the geographical sampling and in the common garden experiment, suggests 

that lichens may be a crucial shaper for plant associated bacteria, conserved across 

differential provinces and biomes.  

By looking especially into the common garden experiment, there can be noticed that the 

previous ploughing and mulching of the soil prevents almost any neighbour plant or rocks 

to be close to the plant. This feature suggests that neighbouring plants or rocks may be of 

negligible importance for lichens establishment and underpins the possibility that lichen 

colonisation of the plant may be airborne (Tormo et al., 2001) or soilborne (Belnap et al., 

2001).  

If the presence of lichens seems to be a common phenomenon on A.thaliana, the minute 

distribution of the species across the plants seems not to be driven by the genotype of the 

plant host, but again, by microhabitat factors. The site specificity (and compartment 

specificity) of some genera like Parmelia sp., found only in Germany and Sweden (chapter 

2.2.3), supports this hypothesis. Further support comes on one hand from the concentration 

of Lecanorales abundance in german sites, especially in ERG and JUG and EY and on the 

other hand from the extreme scarcity of Lecanorales from Spanish locations (fig 2.13)  

The tight bond between habitat and lichenising fungi is further supported by numerous 

studies on lichens in general and foliicolous lichens as well (Bruun et al., 2006; Lücking, 
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1999; Rogers et al., 1994; Serusiaux, 1989). In these studies, the correlation between 

lichenising fungi and elevation was highlighted (Bruun et al., 2006). These findings would 

fit with the data shown with the already mentioned prevalence of Lecanorales in higher 

latitudes such as Germany and Sweden, and low abundance in Spanish locations, which are 

also consistently much higher in terms of elevation (see M&M, table 4.1).  

Another factor not to be neglected is the high sensitivity of lichens towards human pollution 

(Serusiaux, 1989). What one sees in the samples is a substantial absence of lichenising 

fungi in scenarios heavily modified by humans such as agricultural sites, however this is 

not true for urban sites, which conversely display high abundances of Lecanorales. Natural 

sites show almost equal number of samples in which Lecanorales are present or absent (fig 

2.13). 

In order to address the colonisation of the plant and possible mechanisms of interaction 

with bacteria, it has to be underlined that susceptibility to monthly variation, and especially 

the decreasing occurrence towards March, underpins an evolution of the lichen effect on 

bacteria on month basis, rather than on a year base. This is not common for lichen 

establishment, which usually requires years (Favero-Longo and Piervittori, 2010; 

Mushegian et al., 2011), and therefore underpins again the hypothesis of a circumstantial 

bond between lichenising fungi and phycobiont. In fact, it remains unclear whether or not 

the phycobiont and lichenising fungus would have the actual time to form a lichen structure, 

or would rather exert influence on bacteria diversity autonomously. Further conclusions on  

the time of colonisation and on leaf age influencing may be too preliminary to be proposed, 

and would need further experiments, even though, some studies propose an actual link 

between the two (Mushegian et al., 2011).  

These findings, together with the common garden data indicate for the first time that 

lichenising fungi and microalgae of the genus Trebouxia can have an important 

contribution in modulating leaf bacterial microbiome, especially by harbouring differential 

bacteria community, as it was already shown in previous studies on bark or rocks (Rogers, 

1988).  

This does not provide the actual evidence of a lichen symbiosis taking place on the leaf, 

however, my results support this hypothesis for two reasons mainly: (1) because the tight 

association between Active Trebouxiophyceae and lichenising fungi in bacteria shaping is 

conserved across the sites and the experiments, and (2) because the main natural bacterial 

partners of lichens are also found in my data (fig 2.7). It remains however unclear the 

mechanisms with which lichenising fungi and phycobiont are shaping bacterial diversity.  
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If a proper lichen colonisation is taking place on the leaf I propose that this may happen 

through the steering of microhabitat above all other features, and without the relevant 

contribution of the plant host genotype. The displayed results do not underpin a major role 

of neighbouring plants or rocks in acting as reservoir of lichens, but rather underpin an 

airborne or soilborne origin of lichen coloniser. No major conclusion can be inferred on 

plant age effect on lichen colonisation.  

In conclusion, this tight bond I showed between bacterial community and lichenising fungi 

can therefore provide great support in opening new fields in leaf microbiome research.  

 

3.5 Consumers and grazing: connected through different 

timing, Lobosa, Conosa, Ciliophora and Metazoa exert a 

striking effect on microbial assembly 
Phycobionts belonging to Chlorophyta, however, are just one of the 14 overlooked 

microbial eukaryote groups present among the assigned taxonomy of the recovered OTUs. 

Many others, with completely different feeding habits like heterotrophs deserve attention, 

since their crucial role in actively shaping microbiome and specifically root microbiome. 

It is in fact consolidated and reported multiple times their role in selectively grazing 

bacteria and other eukaryotes (Krome et al., 2010).  

It is well known that grazers can shape microbial diversity by triggering microbiome 

fluctuations that in some cases can be considered as proper microbial successions 

(Bonkowski, 2004). In this paragraph, I am willing to tackle this subject, starting from the 

following biological questions: which overlooked microbial eukaryotes group has the 

major impact on microbial diversity? Do microbial successions actually take place on the 

leaf? And how are heterotrophic organisms involved?  

I tackled these questions starting from the first: narrowing my research to the ones that 

seem to hold higher impact on microbial diversity, as described in chapter 2.2.1: Lobosa, 

Ciliophora and Metazoa, which explain significant parts of diversity of Bacteria and Fungi. 

A relevant role of amoeboid organisms (Lobosa, Ciliophora) in shaping bacterial diversity 

is not new, and actually was inferred in previous publications, even though it was 

discovered only in fresh waters and soil (Fiz-Palacios et al., 2013; Heger et al., 2013; Smith 

and Wilkinson, 2007). To the best of my knowledge, this is the first time that a relevance 

of Lobosa and Ciliophora within the phyllosphere microbiome is reported. The absence of 
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representatives of Lobosa and Ciliophora (typically low abundant) in the inferred network 

(Mahé et al., 2017), can be explained by the abundance bias typical of network analysis 

(Faust and Raes, 2012), confirmed by the presence of the much more abundant Metazoa. 

Network inferring and alpha diversity analysis underpinned a first level role of these three 

groups on the phyllosphere. However, both network analysis and ANOVA displayed 

respectively in par 2.1.4.1 and 2.2.1 are not able to indicate what role is held by the plant 

itself in the whole leaf scenario, nor they are able to give more information on the 

abundance dynamics over time. 

I therefore investigated this biological question by performing the common garden 

experiment whose results are displayed in paragraph 2.3. As just mentioned for the 

geographical sampling, amoeboid organisms (Lobosa, Ciliophora) have a striking impact 

especially on bacteria community. What is remarkable from the common garden 

experiment (in figure 2.19)  is a confirmation of what was shown for the alpha diversity 

analysis on geographical sampling, with Lobosa and Ciliophora having significant impact 

on bacterial diversity. Secondly, it is important to highlight that month variation is the 

major factor impacting bacteria diversity. Ecotype does not shape any part of variance, 

unless coupled with month. Lack of ecotype effect on plant microbial assembly was already 

argued in root studies, first in 2012 (Bulgarelli et al., 2012), and afterwards confirmed in 

2014 (Schlaeppi et al., 2014). 

Apparently, this is also the case for amoeboid organisms, which have differential patterns 

over months, but their distribution across genotypes is largely quantitative (fig 2.19). In 

fact, none of the four A.thaliana ecotypes tested showed differential overlooked microbial 

eukaryotes composition in general (supplementary figure 5).  

This tight connection with month variation and lack of bond with ecotype would suggest 

that the lifestyle of these heterotrophs, is shaped by biotic interaction (microhabitat), rather 

than by province patterns. This hypothesis would be confirmed by recent studies which 

identified a latitudinal effect on amoebas only on very large scale such as comparisons 

between southern and northern hemisphere (Smith and Wilkinson, 2007). In all the other 

cases, biotic interactions and microhabitat factors seem to be the most important driver of 

amoeboid organism diversity (Heger et al., 2013). Furthermore, there have been studies on 

water distribution networks, as well as on meat processing plants (Vaerewijck et al., 2008), 

which found populations of Lobosa and Ciliophora strikingly similar to the ones depicted 

in this study, supporting the hypothesis of a large distribution potential, shaped afterwards 

by microhabitat factors, e.g the availability of the substrate. (Grigulis et al., 2013; Heger et 
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al., 2013; Schipper et al., 2001). According to the ANOVA shown in figure 2.19, these 

microhabitat factors should evolve on a monthly basis, contributing in developing a 

microbial succession.  

3.5.1 Predator and prey revisited: when the prey can become a 

symbiont 

Since month variation was found to be the major driver of bacterial diversity, I argued if 

also Lobosa, Ciliophora and Metazoa were following a similar pattern over the months.  

Results shown in paragraph 2.3.1 display a different distribution over time of Lobosa, 

Ciliophora and Metazoa, the first two having an occurrence peak in November and a steep 

descent immediately after. Metazoa instead seem to increase their occurrence just 

coincidentally to Lobosa and Ciliophora descent, in December. This descent is unlikely to 

be due to dramatic environmental changes since we did not register any of them through 

temperature and precipitation measurement taken on site daily (see M&M). Moreover, a 

major environmental change should have had similar effects across diverse kingdoms. I 

found otherwise. In fact, other groups of less influential heterotrophs follow different 

abundance patterns over time, such as Cercozoa (supplementary figure 6). It is therefore 

more likely, that these two events (Ciliophora and Lobosa in steep descent, Metazoa in 

arousal) could be linked together. The enhanced presence of Nematoda in December, 

decreasing progressively later (fig 2.20), could support the hypothesis of a voracious 

grazing on Lobosa and Ciliophora by Nematoda, known to feed prominently on ciliates and 

amoebas (Griffiths, 1994). This hypothesis however remains speculative, since no 

statistical test was performed on such co-occurrence. Alternatively, such inverse trend 

could be due to some major change within biotic interactions, possibly involving bacteria 

community.  

In fact, it is consolidated knowledge that bacteria are not just food source for amoeboid 

organisms but occasionally they can be endosymbionts, or even parasites. One case is for 

example Legionella sp., or Chlamydia sp. (Scheid, 2014), which can multiply inside the 

phagolysosomes of species like Acanthamoeba castellani or D. discoideum (Cosson and 

Soldati, 2008). It is known that amoeboid organisms are sensitive to bacteria quorum 

sensing (Hilbi et al., 2007), and therefore susceptible to bacterial community fluctuations. 

The month fluctuation of bacteria population may be correlated to the steep descent of 

amoeboid abundance in December, even though Bacteria fluctuations over months are 

largely quantitative. However, this hypothesis may be considered with caution. 
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Many studies in the past years have underpinned the importance of the interplay between 

amoeboid organisms and bacteria, specifically considering the taxonomic group of 

Cercozoa (Bass et al., 2005; Bonkowski, 2004; Hess and Melkonian, 2013). Aside few 

studies performed in controlled conditions (Flues et al., 2018), poor knowledge has been 

achieved concerning their ecological importance across the leaf environment. 

3.5.2 Cercozoa: the big absent 

Within the displayed results, I found a relevant impact held by Cercozoa only on bacterial 

alpha-diversity (fig 2.11). However, their contribution in alpha diversity partitioning 

remains unclear, especially concerning compartment allocation. Many studies have tackled 

the question whether or not Cercozoa have an impact on bacterial community, or in general 

what could be their role in microbiota consortia. A number of them (Flues et al., 2018; 

Krome et al., 2009; Ploch et al., 2016) claim the actual primacy of Cercozoa as principal 

microbial eukaryotes present in the soil and able to shape microbial diversity in the soil. 

This finding remains undisputed. However, on the leaves, the studies conducted so far were 

eminently focused on Cercozoa, by explicitly targeting ITS instead of 18S (Bass et al., 

2005). This approach, which does not clear the primer bias from amplicon sequencing, 

gives a more detailed but very narrow scenario, that would hardly encompass enough 

variables or microorganisms necessary to draw major conclusions. Furthermore, other 

studies claiming the relevance of Cercozoa also on the leaves, had much less coverage in 

terms of biomes and latitude, compared to this study (Sapp Melanie et al., 2018).  

As a conclusion, I showed that heterotrophic organisms belonging to Lobosa, Ciliophora 

and Metazoa have relevant but differential impact on established microbial communities in 

natural environments, mainly related to microhabitat and not to province distribution.  

Having investigated groups which are typically low abundant (Ciliophora, Lobosa), opens 

the field to the question of how much the impact of the overall discussed microbial 

eukaryotes is affected by the abundance of the single organisms. There is controversial 

evidence that low abundance taxa may have the same or even more impact on microbial 

assemblies (Hol et al., 2010).  

 

3.6 Rare taxa guarantee microbiome resilience, however, they 

only have effect if taken together 
The ecological importance of low abundant taxa in microbiology has been documented 

multiple times mainly concerning bacteria (Fuhrman, 2009; Martiny et al., 2006). 
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Regarding plant-microbe interactions, it has been recently reported that plant roots are able 

to selectively recruit beneficial bacterial taxa which are low abundant in the soil, but 

become prosperous inside the root structure itself(Saleem et al., 2016). Such microbiome 

assembly is crucial for plant health maintenance(Berendsen et al., 2012). Given these 

findings, I wanted to further investigate the role of rare overlooked microbial eukaryotes 

within microbial assembly. I hypothesized a significant role of rare overlooked microbial 

eukaryotes in bacterial, fungal and oomycetal diversity.  

I then specifically targeted overlooked microbial eukaryotes classified as 10th percentile of 

the overall abundance, and irrespectively of the taxonomic assignment. Following this 

procedure, I selected a pool of organisms belonging to the subphyla of Conosa, Lobosa, 

Chlorophyta, Metazoa, Dynophyta, Ochrophyta, Cercozoa, Ciliophora.  

I then analyzed the overall impact of rare taxa, alone and in combination with one another, 

respectively on bacterial, fungal and oomycetal alpha diversity.  

The results displayed in paragraph 2.4 clearly indicate that the considered rare taxa lead to 

an increased alpha diversity among bacterial samples, uniquely in the endophytic 

compartment. Taken together they account for 15% of bacterial variation, however 

interestingly no single taxonomic group of rare taxa is able to harbour any significant shift 

alone. On fungal diversity, no clear conclusion can be generalized, given the low number 

of samples taken into consideration. On oomycetal diversity, despite the significant 

accounted percentage of variation, no clear trend triggered by rare taxa is visible. 

These findings show for the first time that low abundant overlooked microbial eukaryotes 

can be essential for the actual shaping of bacterial diversity. Moreover, this seems not to 

be an effect due to a specific taxon, but actually on the co-occurrence of all the screened 

low abundant taxa together. This feature of a pool of organisms which together influence 

the dynamics of an entire population, has already been reviewed within bacterial 

communities (Fuhrman, 2009; Lynch and Neufeld, 2015).  

My findings indicate that overlooked microbial eukaryote rare taxa pool is correlated to an 

increased alpha diversity among bacteria. This impact may be crucial for community 

resilience after perturbation since it is known that a higher alpha diversity is a key factor 

promoting community resilience (Elmqvist Thomas et al., 2003; Lozupone et al., 2012).  

In fact, already in previous studies, low abundant bacteria were linked to the promotion of 

community resilience (Ainsworth et al., 2015; Fuhrman, 2009; Lynch and Neufeld, 2015; 

Shade et al., 2014; Sogin et al., 2006). 
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These findings would underpin the extension of this hypothesis also to overlooked 

microbial eukaryotes.  

Further data on time series and experiments on synthetic communities are required in order 

to test the provided hypothesis. Until then, my proposal has to be taken with caution. 

3.7 Conclusions and further perspectives 
In this thesis work I aimed to explore one side of plant-microbe interactions often 

neglected: the one regarding what I addressed as “overlooked” microbial eukaryotes. 

Colloquially also known as “protists”, these organisms have never been thoroughly and 

broadly investigated in the terrestrial environment, specifically in association with the plant 

host (Hassani et al., 2018). 

I hypothesized that overlooked microbial eukaryotes have an active and top-level role in 

shaping microbial community and thereby indirectly have remarkable effects on plant 

health. 

Specifically I aimed to tackle: 

• The role of primary producers (microalgae) 

• The role of selected consumers (amoeboid organisms) 

• The role of rare taxa 

In order to accomplish it, I designed the experimental setup including latitudinal sampling 

on natural A.thaliana populations across 15 locations in Europe. I combined it with a 

common garden experiment in order to disentangle over time microbial successions on 

different ecotypes of A. thaliana. The deployment of high throughput methods such as 

amplicon sequencing, coupled with the development of new techniques like the one of the 

“blocking oligos”, allowed me to recover unprecedented data to be investigated. By using 

and improving network analysis, as well as other supporting statistics, I confirmed my 

initial hypothesis that overlooked microbial eukaryotes are key factors involved in shaping 

other microbe diversity. Their distribution is shaped by microhabitat factors, as well as by 

latitudinal variables. Certainly, the host is an active shaper and recruiter of overlooked 

microbial eukaryote diversity, as the striking divergence between endophytic and epiphytic 

compartment suggests. However, this role may be better appreciable in a context of host 

species or genera comparison (Schlaeppi et al., 2014), while remains marginal in the 

context of ecotypes, as the displayed data indicate (par 2.2.3.2; 2.3.1).  
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This study is the first one providing evidence of an active role of microproducers 

(chlorophyta) in shaping microbial diversity in the phyllosphere in both compartments: 

epiphytic and endophytic. 

I propose that this role manifest itself through the link with lichens, and as well through the 

constitution of biofilm. Further conclusions would need an experimental confirmation, 

however, one option would be to start especially from one promising candidate: 

Bracteacoccus sp. 

Overlooked microbial eukaryotes manifest their effect on microbiota composition also 

through micropredators, with taxonomic groups such as Conosa, Lobosa and Ciliophora. 

Here for the first time they are revealed to be a key interactor shaping bacterial and fungal 

diversity, together with higher organisms from the Metazoa kingdom. (fig 3.1) 

Finally, I showed that low abundant overlooked microbial eukaryotes are also key players 

in microbial assembly, likely to be crucial in determining the resilience of microbial 

community and therefore granting stability to the who

 
	Figure	3.1	The	illustrated	microbe-microbe	interaction	after	the	inclusion	of	overlooked	microbial	eukaryotes.	Summary	
of	the	findings,	by	cross	comparison	of	alpha	diversity	results	between	the	two	experiments:	geographical	sampling:	blue	
bubble,	and	common	garden	experiment	(orange	bubble).	

	

le microbiome. 
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These results taken together indicate that for a full comprehension of plant-microbe 

interactions, overlooked microbial eukaryotes cannot be ignored any more, as they can 

account for variation that until now remained unexplained. 

Ultimately, this study opens several new fields and perspectives on plant microbiome and 

ecology studies on terrestrial environments, unravelling a hidden world which is worth 

paying attention to 
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4 Materials and Methods 
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Table	4.1	:	GPS	coordinates	and	climatic	variables	belonging	to	each	site.	
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4.1 Materials 

4.1.1 Sites coordinates and features  

Detailed informations of the investigated sites are listed in table 4.1, including 

environmental variables, collected through meteorological stations in nearest proximity of 

the sites (C. Alonso-Blanco, J. Ågren, F. Roux, personal communication). Plants were 

sampled during early flowering time, respectively March in France and Germany, April in 

Spain, May in Sweden. Monitoring of the populations and on field assistance was provided 

for France, Spain, Germany, and Sweden, respectively by Fabrice Roux, Carlos Alonso-

Blanco, Detlef Weigel, Jon Ågren   

4.1.2 Plant materials 

Plants used for the performed experiments were of the following ecotypes of A.thaliana:  

-Keskwick-1 (KSK) 

-Wassilewskija-0 (Ws-0)  

-San Feliu-2 (Sf-2) 

-Columbia – 0 (Col-0)  

A.thaliana DNA for blocking oligos testing was extracted following the protocol described 

in (Agler et al., 2016a) from Ws-0 leaves  
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4.1.3 Microbiological material 

 

 

 

The microbial strains used in this study are listed in table 4.2 

4.1.4 Chemicals 

NMAS medium: 

Stock1 

NaCl   12g 

MgSO4  x 7H2O 0.4g 

CaCl2 x 6H2O  0.6g 

H2O   500 ml 

Stock2 

Na2HPO4  14.2g 

KH2PO4  13.6g 

H2O   500 ml 

 

NMAS: water solution of stock1 (0.5%), and stock2 (0.5%) Autoclave. 

 

Strain Isolation from Growing 

medium 

Origin/Collector 

Albugo laibachii Nc-

14 

A.thaliana Ws-0 \ Norwich-UK/Group Kemen 

Albugo candida Nc-

2 

A.thaliana Ws-0 \ Norwich-UK/Group Kemen 

Vannella sp., A.thaliana in EY site NMAS Tübingen-DE/Group Kemen 

Cercomonas 

braziliensis, 

A.thaliana in EY site NMAS Tübingen-DE/Group Kemen 

Saccharomyces 

boulardii 

Perenterol-Forte PDA Perenterol® 

Sphingomonas sp., A.thaliana Ws-0 plants/infected 

by A.laibachii 

LB Cologne-MPIPZ/Group Kemen 

Bacillus sp. A.thaliana Ws-0 plants/infected 

by A.laibachii 

LB Cologne-MPIPZ/Group Kemen 

Microthamnion 

kuetzingianum 

Scotland freshwaters 3N-

BBM+V 

Bigelow labs US 

Table	4.2	:	Microbiological	material	used	in	the	present	studies.	
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DNA extraction buffer: 

Tris pH 8.0 (2M)        0.25ml 

NaCl (5M)         0.40ml 

EDTA (Ethylenediaminetetraacetic acid) (0.5 M)   40µl 

SDS (Sodiumdodecilsulfate) (10 %)     500µl 

H2O         up to 10ml 

Proteinase K (20 mg/ml)   Add 5 µl to 1 ml buffer just before usage 

Lysozyme      Add 1mg to 1ml buffer just before usage 

 

3N-BBM+V: 

first we created the following stock solutions, each one diluted in 100 ml distilled water: 

NaNO3   7.5g 

CaCl2 x 2 H2O  0.25g 

MgSO4 x 7H2O  0.75g 

K2HPO4 x 3H2O  0.75g 

KH2PO4   1.75 g 

NaCl   0.25g 

Trace element solution:  following compounds in 100ml 

FeCl3 x 6 H2O   9.7mg 

MnCl2 x 4 H2O  4.1mg 

ZnCl2    0.5mg 

CoCl2 x 6 H2O   0.2mg 

Na2MoO4 x 2 H2O  0.4mg 

 

Thiaminhydrochloride (vitamin B1)    0.12g    

Cyanocobalamin (vitamin B12)    0.1g 

  

3N-BBM+V: water solution 1% concentrated of stock solutions 1 to 6, 0.6%concentrated 

for stock 7. Afterwards the medium was autoclaved prior to add stock 8 and 9, each one 

with a concentration in the final medium of 0.1%.  

Stocks 8 and 9 were sterilized through filter sterilization, using nitrocellulose filters with 

pores ø 5µm (Whatman- Merck, Darmstadt, DE). 
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4.2 Methods 

4.2.1 Common garden experiment setup 

The, experiment was performed at the MPIPZ ground (N Coord. 50° 57' 21.56" E Coord. 

6° 51' 40.20"). Sowing, planting sampling, DNA extraction and library preparation was 

performed by Samuel Kroll. To include genetic host variability, 4 global A. thaliana 

genotypes were used (Ws-0, Col-0, Ksk-1 and Sf-2). Genotypes were chosen based on their 

variation in susceptibility towards A. laibachii and ability to survive within the field 

conditions (Agler et al., 2016a). Seeds were surface sterilized and stored in 0.1% Agarose 

for one-week prior sowing at 4°C. Seeds were then pipetted on jiffy’s, which had been 

soaked in water prior usage and kept under short day conditions (10 h light, 14 h darkness, 

23/20 °C, 60% humidity) for two weeks in the greenhouse. 

4.2.2 Sampling procedure 

Within the latitudinal sampling, for each sampling site, Albugo sp. infected and Albugo sp. 

uninfected samples were collected, and among those, whole leaf and endophytic sample 

types were collected as follows: 

Using sterilized tweezers, the whole leaf samples were roughly cleaned from dirt, inserted 

into 2mL tubes, and stored immediately in dry ice, later at -80 ºC until further usage. The 

endophytic samples instead underwent surface sterilization. 

For each of the types three to four replicates were collected.  Each replicate is made of a 

single Arabidopsis thaliana rosette in case the diameter of the rosette was found to be equal 

or below 3 cm, in case of higher diameter, few single leaves from the rosette were taken. 

For each site presenting Albugo sp. infection, there were collected from a minimum of 12 

to a maximum of 16 samples, depending on the availability of plants. In the sites not 

presenting Albugo sp. infection, 6 to 8 uninfected samples were collected, half whole leaf 

and half endophytes. Across the years 2015, 2016, 2017, and across all the 15 sites, a total 

of 397 samples were collected. 

Concerning common garden experiment, only whole leaf samples were collected. 

Additional root endophytic samples and rhizoplane samples were collected by Paloma 

Duran and processed as following: total DNA was extracted from root episphere and root 

endosphere samples (four technical replicates) from three natural sites, using the 

FastDNA® SPIN Kit 

for Soil (MP Biomedicals, Solon, USA) following the manufacturer’s instructions. Samples 

were homogenized in the Lysis Matrix E tubes using the Precellys®24 tissue lyzer (Bertin 
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Technologies, Montigny-le-Bretonneux, France) at 6,200 rotations per second for 30 

seconds. DNA samples were eluted in 60 µl nucleases-free water a and used for bacterial, 

fungal, oomycetal and overlooked microbial eukaryotes community profiling. For details 

of each sample, please consult the file Mapfile_geographical_sampling.xlsx and 

Mapfile_Common_garden.xlsx at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M&M 

 

4.2.2.1 Surface sterilisation 

On the site of collection endophytic samples were processed in order to remove the 

epiphytic fraction. Using sterilized tweezers each replicate was first inserted into 15mL 

tube (Corning Incorporated, USA), then washed with the following reagents: 

• sterile milliQ water ~7mL for 15 sec 

• 70% ethanol (Carl Roth, Karlsruhe, DE) ~7mL for 15 sec 

• 2% bleach (Carl Roth, Karlsruhe, DE) ~10mL for 20 sec 

• sterile milliQ water ~10mL for 25 sec (this step was repeated three times) 

At the end of the process, samples are stored in dry ice, and later at -80ºC, until usage. 

4.2.3 Sequencing design 

In order to accomplish the sequencing, for bacteria, fungi and oomycetes, I used the 

barcodes primers reported in (Agler et al., 2016a). For overlooked microbial eukaryotes I 

first selected two pairs of primers based on the achievements of (Hadziavdic et al., 2014). 

The choice was justified by the ability of the primer to amplify the broadest possible range 

of organisms. From this publication were chosen both the 18S V4 (F566: 5’-

CAGCAGCCGCGGTAATTCC-3’; R1200: 5’-CCCGTGTTGAGTCAAATTAAGC-3’ ) and 

18S V9 (F1422: 5’-ATAACAGGTCTGTGATGCCC-3’; R1797: 5’-

TGATCCTTCTGCAGGTTCACCTAC-3’) primer. 

 

4.2.3.1 Barcodes design 

For Bacteria, Fungi and Oomycetes, the barcodes used where the same reported in (Agler 

et al., 2016c). For 18S, the barcodes (forward or reverse) were formed by concatenating the 

following sequences: 

• Illumina adapter (P5 or P7) 

• Index 
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• Linker 

• Primer (forward or reverse) 

The Illumina adapter P5 was used for forward barcode design, and P7 for reverse primer 

design. In total 1 forward barcode and 50 reverse barcodes were produced. Each of them  

shows the same sequence in all parts except for the 12 bp index, this one different in each 

barcode (Schirmer et al., 2015). The linker was composed by a random 13bp dna sequence, 

and analysed for possible hairpins or self/paired untargeted amplifications. Final linker was 

chosen based on the lowest possible self-pairing and pair-pairing score calculated via 

DNAStar software (Madison, Wisconsin, USA) 

Finally, the whole new barcode sequence was finalized by concatenating the primer 

separately, forward and reverse. 

Sequencing primers were obtained by the reverse complement sequence of the primer 

sequence.  

Further information and complete sequences of primer and barcode sequences may be 

found within the file named Illumina_barcodes.xlsx at the following path: 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Oligos 

  

4.2.3.2 Blocking oligos design 

In order to design blocking oligos, I first amplified the sequences 18SV4 and 18SV9 

primers from A. thaliana  and Albugo laibachii., using the aforementioned primers. 

After cloning in E.coli DH5a (PJet kit, Thermo Fisher, following the instruction of the 

manufacturer), sanger sequencing was performed in order to obtain the sequence of the 

fragment. 

Generation of sequential oligos given the 18S sequence of the targets was performed as 

reported in(Agler et al., 2016c). Further testing and choice of the most efficient oligo is 

described in chapter 2.1. Sequences of the blocking oligos are reported in table 4.3 
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4.2.3.2.1 Mock community qPCR experiment 

In order to test the efficiency of blocking oligos I built two backbone mock communities, 

one in which was present Albugo laibachii, therefore named Infected mock, and another 

without Albugo laibachii, therefore named Uninfected mock. 

Composition of the two backbone mock communities is reported in table 4.3 
 Uninfected mock Infected mock 

Specie Final 

concentration 

Percentage Final 

concentration 

Percentage 

A.thaliana (Ws-0) 9.6 ng/µl 97% 8.6 ng/µl 87% 

Bacillus sp. 0.15 ng/µl 1.5% 0.15 ng/µl 1.5% 

Sphingomonas sp. 0.15 ng/µl 1.5% 0.15 ng/µl 1.5% 

Albugo laibachii - - 1 ng/µl 10% 

These backbone mocks, uninfected and infected were splitted in four equal aliquots, in each 

of them a different percentage of Saccharomyces boulardii gDNA was then added, 

corresponding respectively: 

-	1%,	equal	to	0.1	ng/µl		
-	0.1%	equal	to	0.01	ng/µl	
-	0.01%	equal	to	0.001	ng/µl	

 - 0.001% equal to 0.0001 ng/µl 

The communities were analysed through qPCR using the primers SACf and SACr and the 

blocking oligos Gc002-Gc003, and Gc010-Gc012, respectively targeting A.thaliana and 

Albugo sp.. displayed in table 4.4. 

Oligos sequences for mock community experiment 

ID Sequence (5’-3’) 

G013 (SACf) AACCTTGAGTCCTTGTG 

G014 (SACr) AATACGCCTGCTTTG 

Gc002  TTGTCCCTTCGGTCGGCGATACGCTCCTGGTCTTA 

Gc003  GTGCCAGCGGAGTCCTATAAGCAACATCCGCTGAT 

Gc010  TGGATTTCTGATTCGAGCGTCCGGTCCGCTTCTTTTAGGA 

Gc012  CGGTGCTGACAAGGTCATTTAAAGTAAACGACTGCCAATC 

Table	4.3	:	Composition	of	the	mock	community.	

Table	4.4	:	primers	and	blocking	oligos	sequences:	G013-014:	qPCR	primers	for	S.boulardi.	Gc002-

003:	blocking	oligos,	Fwd	and	Rev	respectively	for	A.thaliana.	Gc010-012:	blocking	oligos,	Fwd	and	

Rev	respectively,	for	A.laibachii	
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Each sample, (8 in total) was divided in two and underwent endpoint PCR respectively, 

with (w) or without (w/o) blocking oligos. Each mix contained: 4µl of 5x NEB buffer, 0.4 

µl dNTPs (µM), 0.4 µl SACf (10µM), 0.4 µl SACr (10µM), 0.1 µl of Phusion Taq 

polymerase. In the mix containing oligos (w), also 0.65 µl of each blocking oligo 

(Gc002,Gc003,Gc010,Gc012) was added.  Therefore, the quantity of nuclease free water 

was 11.2 µl in the mix with blocking oligos (w) and 13.8 µl in the mix without oligos (w/o). 

The mix, was afterwards added with the template and set into a PCR cycler (Eppendorf, 

Hamburg, DE) , the following protocol was used: 95 ºC for 3 min, followed by 35 cycles 

of 95 ºC for 30 sec, 55 ºC for 30 sec, 72 ºC for 1 min, then 72 ºC for 5 min. 

The amplified samples were then aliquoted in 10µl and cleaned from free dNTPs and 

primers. An enzymatic cleanup was performed by adding the following mix: Antarctic 

Phosphatase 0.5µl, Exonuclease I 0.5 µl, Antarctic phosphatase buffer: 1.22 µl, (New 

England Laboratories, Ipswich, Massachussets, USA) incubated for 30 min at 37 ºC, 

followed by a step at 85 ºC for 15 min.  

With the cleaned up samples was then performed a qPCR using the S.boulardii 18S internal 

primers SACf and SACr listed in table 4.4. qPCR was prepared in 96 well plates, using 

Sybr Mix as amplification kit  (Bio-Rad, Hercules, California, US). The mix, per sample, 

included 1.05 µl of DNA template, 6 µl of primer mix (Fwd and Rev primer, nuclease free 

water) concentrated 240nM, 8.4 µl of Sybr Mix. Each amplification was carried in three 

technical replicates. As negative control I included nuclease free water, as positive control 

pure S.boulardii DNA, 50 ng/µl concentrated. S. boulardii DNA was extracted as reported 

in par 4.2.3.3 

The protocol used for qPCR in termocycler (Bio-Rad, Hercules, California, US) was the 

following: 95 ºC for 3 min, followed by 35 cycles of 95 ºC for 10 sec, 55 ºC for 30 sec, 72 

ºC for 30 sec, fluorescence measuring (488nm). At the end of the protocol, melting 

temperature of the fragments was measured by measuring fluorescence after increments of 

0.5 ºC, starting from 55 ºC, ending at 95 ºC.  

There was no fragment among the samples presenting a melting curve different from the 

positive control. The negative control showed no amplification in none of the three 

replicates. Results of this experiments are showed in paragraph 2.1.1 
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4.2.3.3 DNA extraction 

Extraction of DNA took place as follows: circa 100 mg of frozen samples were first ground 

in 2 ml eppendorf tubes (Eppendorf, Hamburg, DE)  using autoclaved plastic pestles. 

Afterwards, 600 µl of extraction buffer, the sample was shaken for 30sec and then 

incubated at 37 ºC for 45 minutes. 0.2mg of acid washed quarz beads of respectively 0.5 

and 0.1 mm diameter (Carl Roth, Karlsruhe, DE) were added to the sample, and beaten in 

Precellys24 (Bertin technologies, France) using the protocol stated in Agler et al., 2016a. 

Afterwards 4 µl of RNAse A 50 µg/mL was added and the whole sample incubated for 

further 45 min at 37 ºC.  

The sample was then washed once with 650 µl of Phenol/Chloroform/Isoamylalcohol  the 

supernatant was then transferred and further washed with Chloroform/Isoamylalcohol 24:1. 

Afterwards 40 µl of Sodium Acetate 3M was added, together with 1500 µl of 100% Ethanol 

(Carl Roth, Karlsruhe, DE). After delicate inversion, the sample was stored overnight at -

20ºC. Ultimately it was centrifuged at maximum speed for 45 min and washed two times 

with 70% ethanol. The pellet was finally re-suspended in 30µl of Tris HCl ph8 10mM and 

incubated with a water solution of Cheelex 20% (Bio-Rad, Hercules, California, US) for 

30 min at room temperature. 

After centrifugation, the supernatant was recovered and stored at -20ºC till usage. 

4.2.3.4 Library preparation 

Library preparation had the goal to amplify the selected regions (Bacteria 16S V3 &V5, 

Fungal ITS1 & ITS2, Oomycetes ITS1 & ITS2 and overlooked microbial eukaryotes 18S 

V4 & V9). Prior to library preparation, a test endpoint PCR with bacteria BV5 primers (see 

Agler et al., 2016b) was performed in order to discriminate samples poorly purified or 

contaminated by PCR inhibitors. In that case, the sample was further cleaned with 

Chloroform/Isoamylalcohol 24:1, precipitated with ethanol and then cleaned with Cheelex 

as described in the paragraph above. The sample was afterwards diluted with Tris HCl 

10mM to reach the concentration of 50 ng/µl, and with it was performed the first PCR step.  

In the first step PCR, blocking oligos for each primer set were inserted as described in Agler 

et al., 2016.  Each reaction was composed by: Q5 High-GC buffer: 3.85µl, Q5 5x buffer: 

3.85µl, dNTPs(10µM): 0.45µl, Q5 Enzyme: 0.2µl, Primers(10µM) (Fwd & Rev,  

(BV3/BV5/FITS2/Ftrad/OITS2/Otrad/PV4/PV9): 0.16µl, Blocking oligos (10µM): 0.5µl. 

Since for overlooked microbial eukaryotes I inserted two pairs of oligos, one for Albugo 

sp., and one for A.thaliana, the added nuclease free water was 9.83µl for bacteria, fungal 
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and oomycete mix, whereas for overlooked microbial eukaryotes I added 8.83µl. 1µl 

(~50ng) of the sample template was added to the reaction. Each reaction was carried in 

three technical replicates. The protocol used in the termocycler (Eppendorf, Hamburg, DE)   

was: 95ºC for 40 sec, followed by 10 cycles of 95ºC for 35 sec, 55ºC for 45 sec, 72ºC for 

15 sec, 72ºC for 2 min. 

Afterwards the three replicates were combined, mixed, and an aliquot of 10µl was taken 

and subjected to enzymatic clean-up with Antarctic phosphatase and Exonuclease I as 

described in paragraph 4.2.3.2.1. The second step PCR was carried in a single replicate. 

One single reaction included: Q5 High-GC buffer: 10µl, Q5 5x buffer: 10µl, dNTPs(10µM): 

1µl, Q5 Enzyme: 0.5µl, Barcoded Primers(10µM) (Fwd & Rev,  

(BV3/BV5/FITS2/Ftrad/OITS2/Otrad/PV4/PV9): 0.83µl, nuclease free water: 26.34µl. To 

each reaction was added 0.67µl of the cleaned-up 1st step PCR product. 

The protocol used in the thermocycler was:  95ºC for 40 sec, followed by 25 cycles of 95ºC 

for 35 sec, 55ºC for 45 sec, 72ºC for 15 sec, 72ºC for 2 min. 

The barcoded amplicons were then cleaned using Ampure XP beads purification. 50µl of 

barcoded amplicon was added with 40µl of magnetic beads solution, shaken 5 min at 700 

rpm at room temperature, then washed twice with 200µl of 80% ethanol, dried, and then 

resuspended in 25µl of TrisHCl 10mM. 

4.2.3.5 Pooling and Sequencing 

Libraries were then quantified using PicoGreen (ThermoFischer, Waltham, Massachusetts, 

USA) following the indications of the manufacturer, concentration was calculated using a 

standard curve set with known concentrations of Salmon Sperm DNA(Invitrogen, 

Waltham, Massachusetts, USA), and evaluated reliable only when R2 score of the curve 

was higher or equal to 0.98.  

Libraries quantified in this manner where pooled together, aiming to pool 8 pmol for each 

library. Pooled libraries were cleaned using Ampure XP beads as described in paragraph 

4.2.3.2.1, and re-suspended in one tenth of the original volume of Tris HCl 10mM (total 

200 µl). Quality assessment and eventual presence of contamination was assessed through 

bioanalyzer (Agilent, Santa Clara, California, US). Bands composing the pool were 

compared with standard libraries chosen random from the not pooled ones. Bioanalyzer 

curves and bands can be observed in supplementary figures at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Libraries. 
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Final concentration of the pooled libraries was finally assessed through Qbit (Promega, 

Fitchburg, Wisconsin, US) following the indications of the manufacturer. Due to the fact 

that only 50 barcoded primers per locus were available, each Miseq run could contain a 

maximum of 50 libraries per run. In total 8 runs were performed. We used Illumina MiSeq 

to sequence the libraries, loading the machine as described in Agler et al., 2016. 

4.2.4 Reads processing 

All 8 runs were yielding reads for 8 GB per run or more. Raw reads, both forward and 

reverse, as well as index reads were checked for quality of the basecalling through FastQC 

(Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. 

Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc): all runs 

displaying an average Phred score(Schirmer et al., 2015) per read lower than 30 or more 

than 2 N bases per read were discarded and re-sequenced. Raw reads and FastQC profiles 

for consultation are available upon request. 

4.2.4.1 OTU clustering pipeline 

Each run was processed in order to remove the adapter sequence, pair forward and reverse 

read, then demultiplexed and clustered in OTUs with 0.97 confidence as described in Agler 

et al., 2016. Regarding bacteria (BV3-BV5), fungi (FITS2, Ftrad), and oomycetes 

(OITS2,Otrad), I applied the downstream steps of the presented pipeline described in Agler 

et al., 2016. Regarding overlooked microbial eukaryotes, I performed the taxonomy 

assignment by modifying the pipeline presented in Agler et al., 2016. I created two 

reference databases, respectively one for the 18S V4 and one for V9 region, based on in 

silico PCR on the original Pr2 database (Guillou et al., 2013).  

Here follows a summary of the database preparation: 

• Isolate from the PR2 database the V4-5 and V8-9 regions 

• Cluster OTUs from the resulting two databases 

• Pick up representative sequences from the two databases 

• Format the two new databases in order to avoid mismatches and mistakes in 

downstream analyses, this included: 

• Removal of empty lines 

• Removal of empty spaces 

• Removal of sequences with degenerated bases 
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The reference databases obtained in this manner are available upon request. Through these 

new databases, I then performed a parallelized taxonomy assignment using the qiime 

platform (Caporaso et al., 2010). 

4.2.4.2 OTU table filtering and rarefaction 

In order to create the final OTUtable I crafted the perl script OTU_tab_gen.pl available at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Scripts . In short, 

from the otu mapfile and the taxonomy assignments the script: 

Created a native otu table 

Discarded the otus present in less than 2 samples and abundant less than 50 reads 

Divided the tables in one containing only endophytes and the other containing only whole 

leaf samples 

Resulting tables were processed through the perl script OTU_filter_pipe.pl, available  at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Scripts , which in 

short was performing: 

A cross filtering between the otus present in whole leaf tables but not in the endophytic 

tables, this way producing an epiphytic only otu table, containing only obligate epiphytes. 

Merging respectively endophytes (root and leaf) and epiphytes (root and leaf) in two 

separate tables 

Filtering the untargeted taxa.  

Concerning rarefaction, I screened the number of reads per samples through BIOM tool 

set, available at www.biom-format.org choosing as rarefaction thresholds the ones stated 

in table 4.5 

After rarefaction, tables have been merged by marker and stored for further usage. 

Primer set Compartment Rarefaction threshold  

BV3-(bacteria) Endophyte 4415 reads 

BV5-(bacteria) Epiphyte 504 reads 

FITS2-(fungi) Endophyte 2052 reads 

Ftrad-(fungi) Epiphyte 1033 reads 

OITS2-(oomycetes) Endophyte 5309 reads 

Otrad-(oomycetes) Epiphyte 309 reads 

PV4-(microbial eukaryotes) Endophyte 3055 reads 

PV9-(microbial eukaryotes) Epiphyte 412 reads 

Table	4.5	:	rarefaction	thresholds	chosen	for	each	marker/compartment	
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For all downstream analysis, only the following loci were chosen: 

- BV5	
- FITS2	
- OITS2	
- PV4	

This choice was made after considering the 

substantial overlap in terms of taxa found by each 

couple of regions, as stated in (Agler et al., 2016a). 

Regarding the choice between PV4 and PV9, I found 

there a s well a prominent overlap, as stated in figure 

4.1. In this case, the discrimination was made towards 

the sequence which has been reported to have major 

taxa resolution(Hadziavdic et al., 2014). 

4.2.5 Network inferring and comparing 

Network analysis were obtained through inferring of 

microbial network using the platform CoNET (Faust and Raes, 2016).  

4.2.5.1 CoNET and inferring pipeline 

In order to infer the network displayed in figure 2.7 and 2.8, the Co-Net pipeline was used 

in the command line form, and embedded in a sequential script (Co_Net_Embedder.pl), 

available at https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Scripts 

. Most of the parameters used were set as default in the three embedded Java subscripts, as 

suggested by (http://psbweb05.psb.ugent.be/conet/microbialnetworks/conet_new.php) and 

by the developer, (Karoline Faust, personal communication). 

The parameters left to the customization of the user were only the abundance filter 

threshold - minimal number of reads to take in consideration to represent an OTU as a node 

–and the guessing parameter –The number of edges to be considered in the automatic 

distance metrics thresholds- (Karoline Faust, 2017). For the figure 2.7, filterparameter and 

guessingparameter were respectively set at 20 and 1000, for the figure 2.8 at 10 and 300.  

4.2.5.2 Network comparing pipeline 

The network comparing pipeline is coded in the script Network_comparison.pl available at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Scripts The 

conceptual workflow of the pipeline is the following: 

Extraction of the chosen edge score out of the network table (/Subscript: Extractor.R) 

Figure	 4.1	 :	 Class	 overlap	 between	

18S	 V4	 region	 (blue)	 and	 18S	 V9	

region	(orange)	
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Formation of the distance matrices based on the edge scores of the two networks 

(/Subscript: matrix_maker_weight.R) 

Mantel correlogram and Mantel test between being perfomed from the two distance 

matrices. (compare_distance_matrices.py - QIIME) 

Dissection of the results of the correlogram and tracking of the nodes composing the single 

classes (/Subscript: zweite.R and Backtracker.R) 

The pipeline offers the possibility to extract two variables from the network table: edge 

betweenness and edge weight. For the purpose of this thesis only edge weight variable has 

been used. Further variables can be implemented easily. 

4.2.6 Overlooked microbial eukaryotes presence/absence assessment and 

rare taxa evaluation 

Within the results sections, it has been made large use of analysis of samples containing or 

not containing a certain taxonomic group. This labelling according to presence of certain 

taxa is visible in the mapfiles 

(https://github.com/AlfredoMari/chetproject0001tree/master/M%26M). This labelling was 

achieved through the script map_adder.R available at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Scripts. 

In short, the script performed for each sample the sum of the reads assigned to the chosen 

taxonomic group, if this sum was positive or equal to 0, the sample was labelled 

accordingly, respectively as X_taxa_present or X_taxa_absent. Concerning rare taxa, a 

modification of the mentioned script was used. The modification first selected the species 

whose abundance sum was equal or below the 10th percentile. Presence or absence of those 

species was then assessed in the same manner of the script Variable_partitioner.R at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Scripts. 

4.2.7 Phylogenetic tree construction 

The construction of the phylogenetic trees was taxonomy based and achieved as described 

in (Agler et al., 2016b) 

4.2.8 Alpha diversity calculation 

Alpha diversity was calculated using the script alpha_diversity.py (QIIME(Caporaso et al., 

2010)), using as metric the Chao1 index. 
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4.2.9 Statistical Methods 

Statistical tests used for this study were performed through R programming language.  

4.2.9.1 ANOVA 

ANOVA (was performed through the function aov and anova within the vegan  package 

(Oksanen et al., 2018). A baseline ANOVA performing script can be found under 

ANOVA_baseline.R at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Scripts. 

For all the different ANOVAs, this baseline script was adapted from time to time including 

the different required variables. 

4.2.9.2 Wilcoxon/Mann-Whitney test and PCoA 

Wilcoxon-Mann Whitney test was performed through the R base function wilcox.test . 

Principal Component Analysis was performed through the capscale function within vegan 

package. The code producing supplementary videos 1 to 4 is available in 

PCoA_3d_movie.R at 

https://github.com/AlfredoMari/chetproject0001/tree/master/M%26M/Scripts. 

4.2.9.3 Graphical interfaces 

Plots and videos were achieved through the R package ggplot2 (Wickham et al., 2016), rgl, 

(Adler et al., 2018), and for the supplementary videos, magick (Ooms, 2018).  

 

4.3 Epiphytic sugar experiment 

4.3.1 Plant growth and leaf wash 

A. thaliana seeds were stratified on moist soil (Einheitserde type A240, Stender, Germany) 

for seven days at 4 °C in darkness, before transfer into growth chambers with short day 

conditions (10 h light, 14 h darkness, 23/20 °C, 60 % humidity). After three weeks, 

seedlings were singularised and grown for three weeks further. After six weeks plants were 

used for experiments.  

M.kuetingianum was cultured in 3N-BBM+V for 7 days, centrifuged for 5 minutes at 1200 

rpm, the supernatant discarded and substituted with autoclaved solution of MgCl2, 10mM. 

Washed cells were adjusted to reach 2x104 cells/ml. 

Algal suspension was sprayed on the plants in the quantity of circa 1mL per plant using an 

airbrush gun (Conrad, Hirschau, DE). Control plants were sprayed with autoclaved MgCl2 

10mM. 
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Both test and control were sprayed on 54 single plants. Afterwards, plants were put back 

in growth chambers, following the same growing conditions mentioned above, inside a 

transparent plastic bag in order to conserve a higher moisture. 

The bags were removed 3 days after. After four more days (total of one week of post-

spraying growth), plants were ready for the leaf wash. 

During the leaf wash, leaves were detached from the rosette, put in 50 ml tubes (Cornig 

Incorporated, USA) filled with 20mL autoclaved water, inserted in the tube in groups of 10 

leaves, and then shaken for circa 5-10 sec. The liquid was retained and the procedure was 

repeated till all leaves had been washed. 

The solution was then concentrated via speed-vac (Concentrator plus, Eppendorf, 

Hamburg, DE) and then resuspended in 500 µl. Leaf wash obtained in this manner was then 

analysed via enzymatic assay.  

4.3.2 Enzymatic assay 

The measurement of glucose, fructose, and sucrose, was performed as described in 

(Velterop and Vos, 2001) using transparent 96 well plate (Corning Incorporated, USA) 

filled separately with leaf washes from the control and the test, as well as sugar standards 

of glucose, sucrose, fructose, in the concentration of 10mM. all the reactions were carried 

in the volume of 50 µl, reading each well with set absorbance of 340 nm. 
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8 Curriculum Vitae 
Alfredo Mari 

PERSONAL DETAILS 
Full Name: Alfredo Mari 
Tel.: (+49) 0221 5062 347 
Email: mari@mpipz.mpg.de 
LinkedIn: www.linkedin.com/in/alfredomari/ 
 
SKILLS AND COMPETENCES 

Rapid adaptability to new projects and methods  
Leadership and human management skills  
Systematic and detailed working methodology 
Competence in analyzing large data sets, familiarity with current statistical methods  
Languages: fluent in English and Italian, advanced in German, basic in French 
IT: fluent in R, Perl, Unix, Office, Cytoscape, Adobe Illustrator, basic user: Python, Adobe 
Photoshop. 

 
PROFESSIONAL CAREER 
PhD Fellow at Max Planck Institute for Plant Breeding Research (Köln, Germany)  
11/2014 – present 

Aim to discover and reconstruct the role of microbial eukaryotes within plant leaf microbiome.  
A project in collaboration with university of Madrid (ES), Uppsala (SWE), Toulouse(FR), 
Tübingen (DE). Thesis focus: Reconstruction of microbial networks and study on the impact 
of stochastic variables. 

ACCOMPLISHMENTS:  
Coordination and management of international academic collaboration 
Environmental study design and organization 
Supervision of bachelor students and student helpers, both theoretical and practical 
Development and implementation of new methods for Next Generation Sequencing data 
analysis, including application of graph theory and deployment of respective data visualization 
tools 
Development of data processing pipelines with a reproducibility-oriented and human-error-
minimizing focus 

 
Leader of Visions in Science 2016 Organising Committee 01/2016-09/2016 : 

Organized a multidisciplinary scientific conference in Berlin sponsored by Max Planck Society  
ACCOMPLISHMENTS:  
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Result-oriented coordination of a team of eight people including scheduling, work assignment, 
conflict management. 
Coordination of 2nd Max Planck Career Fair, including sponsorship seeking, budget handling 
and efficient networking. 

 
Master Intern at University of Turin (Turin, Italy) 12/2013-10/2014 

Aimed to disentangle the tradeoff between pathogenesis and symbiosis between plants and 
fungi. Thesis title: “Characterization of LORE1 Lotus japonicus transposonic mutants in 
mycorrhizal phenotype, an insight into the early stage of arbuscular mycorrhizal symbiosis”. 

ACCOMPLISHMENTS:  
Basic handling of medium size datasets (microarray data), including basic statistical analysis, 
mainly univariate. 
Supervision of two student helpers in practical basic laboratory analysis 

 
Intern at Cornell University –  Boyce Thompson Institute (Ithaca, NY, USA) 
09/2012-01/2013 

Aimed to gain experience in new fields of plant biology such as epigenetics. 
ACCOMPLISHMENTS: 

Development of efficient workflows and systematic processing of large sample sets, from 
collection until lab analysis. 

 
Bachelor Intern at University of Turin (Turin, Italy) 01/2012-04/2012  

Aimed to clarify the cellular localization of water-channel proteins (aquaporins) within plant-
fungus symbiosis, thesis title: “Cellular Localization and characterization of LjNIP, 
overexpressed aquaporin in G.margarita mycorrhized roots” 

ACCOMPLISHMENTS:  
Learning and deployment of multiple lab techniques in a result-oriented project, including laser 
microscopy and laser micro-dissection 

 
ACHIEVEMENTS AND CERTIFICATES 

Ko Shimamoto Travel Award, participation in Molecular Plant Microbe Interaction conference 
2016, (Portland,OR-USA) 
2nd prize best science slam, Center of Advanced European Studies and Research, 

Bonn 2015 
Scuola Superiore Sant’Anna (Pisa, Italy) Student Scholarship – 2009/2014 

 
PUBLICATIONS 

“Early Lotus japonicus root transcriptomics responses to symbiotic and pathogenic exudates” 
M. Giovannetti, A. Mari, M. Novero & Paola Bonfante Frontiers in plant science June 2015 
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Agler, M.T., Mari, A., Almario J., Dombrovski, N., Hacquard, S. & Kemen, E.M. (2018) 
Accurate systems biology-based analyses in multi-kingdom microbiome studies by 
overhauling amplicon sequencing and data analysis; Methods in Ecology and Evolution. 
In revision 

 
 

EDUCATION 
Master degree in Molecular and Industrial Biotechnology, University of Pisa, Pisa, Italy 
(22/10/14) 
Bachelor degree in Agro-Industrial Biotechnology, University of Pisa, Pisa, Italy (12/07/2014) 
Bachelor degree in Agricultural sciences and Biotechnology, Scuola Superiore Sant’Anna, Italy 
(25/10/2013) 
Abitur, “Liceo Classico Statale Lorenzo Costa”, La Spezia, Italy (14/07/2009) 
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9 Affidavit / Eidesstaatliche Erklärung  

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die 
benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit − 
einschließlich Tabellen, Karten und Abbildungen − , die anderen Werken im Wortlaut oder 
dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht 
habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung 
vorgelegen hat; dass sie − abgesehen von unten angegebenen Teilpublikationen − noch 
nicht veröffentlicht worden ist, sowie, dass ich eine solche Veröffentlichung vor Abschluss 
des Promotionsverfahrens nicht vornehmen werde.  

Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte 
Dissertation ist von Prof. Dr. Gunther Döhlemann betreut worden.  

Ich versichere, dass ich alle Angaben wahrheitsgemäß nach bestem Wissen und Gewissen 
gemacht habe und verpflichte mich, jedmögliche, die obigen Angaben betreffenden 
Veränderungen, dem Dekanat unverzüglich mitzuteilen  

Köln, 28.05.2018  

       __________________________ 

       Alfredo Mari 

 


