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Kurzzusammenfassung

Motivation: Zirkuläre Ribonukleinsäuren (circRNA) sind eine spezifische Gruppe von RNA, welche
einen kovalent geschlossenen Kreis bilden. Dieser Prozess wird als rückwärts-spleißen bezeichnet.
Bisher ist nicht viel über die funktionsweise von circRNAs bekannt. Für einige wenige circRNAs
wurden mögliche Funktionen als Schwamm für microRNAs (miRNA) oder RNA-bindende Proteine
(RBP) gezeigt. Außerdem können sie die Transkription ihres Wirts-Gens regulieren. Zirkuläre RNA
können anhand von chimären Sequenzen, welche die rückwärts gespleißte Verbindung überbrücken,
in rRNA-verdauten RNA-Seq Bibliotheken detektiert werden. Zur Zeit gibt es eine Vielfalt an un-
terschiedlichen Programmen, die circRNAs in RNA-Seq Daten identifizieren. Allerdings ist keines
der Programme in der Lage die circRNAs weiter zu characterisieren oder zusammenzufassen. Um
weiterführende Analysen an den entdeckten circRNAs durch führen zu können ist es unablässlich die
genaue Exon-Intron Struktur von circRNAs zu kennen. Vor kurzem wurden zwei neue Programme
veröffentlicht, die alternatives Spleißen in circRNAs beschreiben. In meiner Arbeit stelle ich FUCHS

und FUCHSdenovo vor um entdeckte circRNAs zusammenzufassen und die Exon-Intron Struktur
anhand von linearen Spleiß Signalen von chimären Sequenzen zu rekonstruieren.
Methoden: Zuerst habe ich drei der aktuellsten circRNA Identifikations Progamme miteinander
verglichen, um basierend auf den Ergebnissen des besten Programms eine Pipeline in Python zu
entwicklen. Diese Pipeline heißt FUCHS, kurz für "FUll CHaracterization of circular RNA using
RNA-Sequencing". Sie fasst circRNAs nach ihren Wirts-Genen zusammen, findet übersprungene
Exons, findet doppeltchimäre Sequenzen, generiert Abdeckungsprofile und fasst circRNAs basierend
auf ihrem Abdeckungsprofil zusammen. Das Anwenden von FUCHS auf einem Beispieldatensatz hat
gezeigt, dass annotierte Strukturen oft nicht ausreichen um die zirkulären Strukturen zu beschreiben.
Deswegen habe ich FUCHS erweitert. Das neue Programm heißt FUCHSdenovo , da es die Exon-Intron
Strukturen von circRNAs de novo rekonstruieren kann. Um die Funktionsweise beider Programme
vorzustellen, habe ich sie auf einem Beispieldatensatz bestehend aus Leber und Herz Proben von
jungen und alten Mäusen angewendet.
Ergebnisse: Im Vergleich von drei circRNA Identifikations Progammen (DCC, CIRI, and KNIFE),
hob sich DCC als schnellstes und präzisestes Program ab. Die Anwendung von FUCHS auf vier Maus
Proben zeigte, dass es weniger unterschiedliche circRNAs im Herzen als in der Leber gibt, diese
dafür aber in höherer Anzahl. Betrachtet man nur annotierte Exons, zeigt sich, dass die circRNAs im
Herzen länger sind als die in der Leber. Die durchschnittliche Länge der circRNAs beträgt 500 BP.
Aus den Abdeckungsprofilen habe ich geschlossen, dass die annotierten Exon-Intron Strukturen nicht
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immer mit den Exon-Intron Strukturen der circRNAs übereinstimmen. Ein Vergleich zwischen den
annotierten und den mit FUCHSdenovo rekonstruierten Strukturen zeigte einen Gewinn von 15 % an
zusätzlicher Information. Weiterhin hat FUCHSdenovo alternatives Spleißen in 8 - 10 % der circRNAs
finden können. Eine Analyse von differenziel angereicherten Motifen in den Introns um circRNAs
zeigte, dass die Introns um circRNAs mit alternativen Spleiß Isoformen gegenüber circRNAs ohne
alternativen Spleiß Isoformen mit FOXO Bindemotifen angereichert sind. Bindemotife für CPEB1
und HOX waren in Introns um circRNAs von multi-circRNA Genen gegenüber Introns um circRNAs
von single-circRNA Genen angereichert. Somit könnten sowohl FOXO als auch CPEB1 und HOX
eine Rolle in der Biogenese von circRNAs spielen. Eine miRNA und RBP Bindemotif Suche hat
gezeigt, dass Exons von circRNAs dichter mit Bindemotifen bestückt sind als Exons von linearen mR-
NAs. Daraus schließe ich, dass circRNAs eine weitere Ebene im Genregulationsnetzwerk darstellen
können, indem sie mit linearen mRNAs für die Bindung von miRNAs und RBPs konkurrieren.
Verfügbarkeit: https://github.com/dieterich-lab/FUCHS.git

https://github.com/dieterich-lab/FUCHS.git


Abstract

Motivation: Circular RNAs (circRNAs) are a special class of RNA forming a covalently closed loop
through a process called back-splicing. Not much is known about the function of circRNAs. Only
for a few well studied circRNAs, potential functions were shown, these include miRNA sponging,
RNA binding protein (RBP) sponging, and regulation of their host gene’s transcription. Circular
RNAs can be identified in rRNA depleted RNA-Sequencing by detecting chimeric reads, which span
a back-splice junction. A variety of circRNA detection tools exists but no tool is able to summarize
and characterize the identified circRNAs. To perform accurate downstream analyses after circRNA
detection, it is crucial to know the exact exon-intron structure of circRNAs. Recently, two tools were
published, which identify alternative splicing within circRNAs. Here, I am presenting FUCHS and
FUCHSdenovo to summarize circRNAs and reconstruct their exon-intron chain based on linear-splice
signals of back-splice junction anchored reads.
Methods: In this study, I compared three state of the art circRNA detection programs. Based on the
best tool, I developed a Python-based pipeline called FUCHS: FUll CHaracterization of circular RNA
using RNA-Sequencing. This pipeline summarizes circRNAs by their host genes, detects skipped
exons, finds double-breakpoint fragments, generates circle-wise coverage profiles, and clusters these
profiles. Running FUCHS on a mouse dataset indicated that annotated gene models are not always
suited to describe the circRNA’s exon-intron structure. Hence, I developed an additional module,
FUCHSdenovo , to reconstruct the exon-intron structure based on linear-splice signals of back-splice
junction anchored reads. To demonstrate how FUCHS and FUCHSdenovo perform, I ran both programs
on a dataset of young and old murine hearts and young and old murine livers.
Results: The comparison of three circRNA detection programs (DCC, CIRI, and KNIFE) indicated DCC

as the fastest and most accurate circRNA detection program. Running FUCHS on four mouse samples
revealed that heart circRNAs are less diverse but more abundant than liver circRNAs. Considering
only annotated exons, the average length of circRNAs was 500 BP. Heart circRNAs were longer
than liver circRNAs. From the obtained coverage profiles, I concluded that annotated gene models
were not always matching the exon-intron structure of circRNAs. A de novo reconstruction of the
inner circle structure using FUCHSdenovo showed a gain of information of 15 %. Furthermore,
FUCHSdenovo identified alternative splicing in 8 - 10 % of circRNAs. Performing a differential motif
enrichment analysis of the flanking introns of circRNAs with alternative splicing over circRNAs
without alternative splicing identified FOXO as a potential transcription factor driving alternative
splicing in circRNAs. Binding motifs for CPEB1 and HOX were enriched in the flanking introns of
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circRNAs from host genes expressing many circRNAs over circRNAs from host genes expressing
only one circRNA. To exemplify the value of the reconstructed circRNA models in downstream
analyses, I performed a miRNA seed search and RBP motif search. Comparing the seed density of
circRNAs and mRNAs showed that circRNAs were more densely populated with both, miRNA seeds
and RBP motifs. This suggests that circRNAs could form an additional layer in the gene-regulatory
network by competing with their host genes for miRNA or RBP binding.
Availability: https://github.com/dieterich-lab/FUCHS.git

https://github.com/dieterich-lab/FUCHS.git
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Chapter 1

Introduction

If deoxyribonucleic acid (DNA) is the blueprint to build most living organisms, than ribonucleic acid

(RNA) are partial copies of this blueprint which may be modified to fit the requirements of individual

cells without altering the DNA. RNAs are single stranded molecules transcribed from the DNA by

RNA polymerases. They consist of a ribose-phosphate backbone and four nitrogenous bases, adenine,

cytosine, guanine, and uracil. These single strand molecules may form hydrogen bonds between

adenine and uracil, cytosine and guanine, and guanine and uracil to form complex secondary and

tertiary structures [1].

Each RNA copy of the DNA can be modified. There are over 110 types of RNA modifications that can

affect the activity, localization and stability of the molecules. These modifications include methylation

of a single base pair or an hydrolytic deamination changing adenine into inosine [2, 3].

The RNAs which are being translated into proteins are called messenger RNAs (mRNA). Besides

this large class of coding RNAs there are several other classes of RNA performing different tasks.

These RNAs are classified by their purpose, localization, length, or structure. RNAs forming a major

component of the ribosome, the complex translating mRNA to proteins, are called ribosomal RNAs

(rRNA). RNAs binding single amino acids to transport them to the ribosomes are called transfer RNAs

(tRNA). Additionally, there are many regulatory RNAs such as very short RNAs called micro RNAs

(miRNAs) or very long RNAs called long non-coding RNAs (lncRNA). There are small interfering

RNAs (siRNA) playing a role in mRNA degradation [4]. There are small nucleolar RNAs (snoRNAs)

guiding RNA modifications [5]. All of these RNAs are well studied classes of RNA. In my thesis

I will focus on circular RNAs (circRNA), which are a unique class of RNA. Unlike all other linear
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RNAs they form a covalently closed loop. Through improved sequencing strategies, they recently

came back into the focus of molecular and computational biologists.

1.1 CircRNAs

Circular RNAs are a special class of RNA generally thought to be non-coding. In contrast to all other

spliced RNA classes, circular RNAs arise when a 3’ splice donor loops back to form a covalent bond

with an upstream 5’ splice acceptor instead of a linear downstream 5’ splice acceptor (see Figure 1.1).

Hence it is called a back-splicing event. Having neither a cap nor a poly-A tail, circular RNAs are

more stable than linear RNAs. The median half-life of circular RNAs ranges from 18-24 hours which

is a three fold increase compared to their linear equivalent (4-7.4 hours) [6]. Furthermore, circular

RNAs are RNAseR resistant and are not present in poly-A enriched RNA libraries. The majority of

circular RNAs are untranslated splice isoforms of protein coding genes which are called ’host genes’.

Until today, every living organism that has been studied in the context of circular RNAs, from yeast

and cell cultures to mice and monkeys, express circular RNAs [7].

Before I introduce my own work, I will give an introduction into the key features of circRNA history,

biogenesis, function, and biomarker potential.

Figure 1.1: CircRNA formation. The left-hand side of the figure shows the formation of a linear mRNA with
a 5’ cap and a 3’ poly-A tail. The right-hand side of the figure shows the formation of a circular RNA. It is a
covalently closed RNA molecule without a 5’ cap and poly-A tail. [modified from [8]]
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1.2 The short history of circRNAs

The first report on circular RNA molecules dates back to 1979 when Coca-Prados et al. [9] observed

circular RNA molecules in HeLa cells under an electron microscope (Figure 1.2). Their experiments

showed that the majority of circRNAs localizes to the cytoplasm.

Figure 1.2: Electron microscopy image. This is the first picture of circular RNAs visualized through electron
microscopy (modified from Coca-Prados et al. [9])

A decade later, Nigro et al. [10] noticed scrambled exons during an exhaustive study to further

characterize the structure of the tumor suppressor gene DCC. They observed that not all transcripts

followed a linear concatenation of exons but that a back splicing between a downstream 3’ splice

donor and an upstream 5’ splice acceptor occurred at an estimated rate of 1 in every 1000 linear

transcripts. They concluded that these transcripts were not trans-spliced because trans-splicing was

only observed in lower eukaryotes.

Cocquerelle et al. [11] identified scrambled exons in the human ETS-1 gene when comparing the

locus to the chicken c-ets-1 homologue. They performed PCR of both poly-A+ and poly-A− libraries

and detected scrambled exon transcripts only in the poly-A− fraction. They hypothesized that these

transcripts were of no biological relevance but suggested that studying these splicing events might

give further insights into the regulation of alternative splicing. Bailluel et al. [12] later revised this

statement saying that a functional role of circular RNAs could not be ruled out.

In 1993, Capel et al. [13] proved that the sex determining gene Sry expresses circular transcripts and

for the first time showed tissue-specific expression of circular RNAs. They confirmed that the circular

form of Sry located to the cytoplasm and was the dominant form over the linear form in adult testis,

whereas the linear form was more abundant during development. They concluded that the formation

of circular junctions could regulate the translation of Sry in adult testis.
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After 1993, other groups reported the presence of single genes capable of expressing scrambled exons

soon termed exon circles and finally circular RNA (circRNA).

Until the beginning of 2010, only a few groups explored the circular RNA landscape in different

organisms, but with recent changes and advances in standard transcriptomic analysis our knowledge

about circRNAs is expanding quickly.

1.3 Circular RNAs are regulated through different mechanisms

Ashwal-Fluss et al. [14] and Starke et al. [15] showed that circularization happens co-transcriptionally

and depends on the canonical splicing machinery, canonical splice sites, and intron sequences. They

concluded this from knockdown experiments, mutation of canonical splice sites, and mutation of

intron sequences.

Liang et al. [16] extended this concept by creating several ZKSCAN1 transcripts with variable lengths

of the flanking Alu repeats. Thus, they determined the minimal Alu sequence necessary in the flanking

introns to drive circularization. Furthermore, they cloned other exons in between these minimal Alu

sequences and validated the circularization of these exons. This research resulted in a commercially

available plasmid with the minimal Alu repeats and restriction enzyme sites to allow for the integration

of custom exons to be circularized. This has been tested in HeLa and Hu7 cells. It is yet unclear if

this vector generates circRNAs in other organisms or in vivo.

Apart from the general observation that reverse complementary matches (RCMs) in flanking introns

drive circularization, several RNA binding proteins (RBP) were indicated to influence circularization.

For example, the splicing factor muscleblind (MBNL1) correlates with the expression of circMBL

[17, 14]. In contrast to that, Conn et al. [18] and Ivanov et al. [19] pursued a more large scale

approach to identify factors associated with circularization.

Conn et al. [18] investigated the circRNA biogenesis during epithelial mesenchymal transition (EMT)

and identified Quaking (QKI) as the main driver for exon circularization using their circScreen

approach. CircScreen is a SMARCA5 gene construct modified to express GFP if exon 16 splices back

to exon 15 or mCherry if exon 16 splices forward to exon 17. They transfected HEK293T cells and

induced EMT via two siRNAs in independent experiments. They measured the nuclear fluorescence
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of 20 possible factors such as APOBEC3B, MBNL1, and NOVA1 but only QKI showed an effect on

the GFP levels. Strikingly, QKI itself was regulated during EMT. They found QKI binding motifs

in the flanking introns of circularized exons. Through dimerization of QKI, splice sites come into

close proximity so that the splice machinery is likely to circularize exons flanked by QKI motifs

(Figure 1.3 a). The same was observed when their circScreen reporter was cloned into four other

genes validating their observation that QKI drives circularization. However, the absence of an effect

of MBNL1 does not contradict previous observations by Ashwal-Fluss et al. [14]. It rather underlines

the complexity as well as potential specificity of circRNA expression.

Figure 1.3: Biogenesis of circRNA. The left-hand side of the figure shows how QKI binds to the flanking
introns. Through dimerization of QKI the splice sites are brought into close proximity and a circular RNA is
formed [18]. The right-hand side of the figure shows how RCMs cause the flanking introns to bind to each other,
bringing the splice sites into close proximity and a forming a circular RNA. ADAR causes double stranded
RNA editing, thus melting the hairpin structure. No circular RNA is formed [19].

Ivanov et al. [19] pursued a more computational, genome-wide approach. Blasting intron

sequences of C. elegans against each other revealed that introns flanking circularized exons are

significantly enriched for RCMs compared to random introns of equivalent length. Based on this

knowledge, Ivanov et al. designed a circularization score (H) and used this score to predict the

potential of introns to form circular RNAs. The predictions were validated on six high-scoring, ten

medium-scoring, and five low-scoring genes. Twelve out of 16 high- and medium-scoring genes

yielded circRNAs. To prove that RCMs were driving circularization, they knocked down the double

stranded RNA-editing protein ADAR, as well as the single strand RNA-editing protein APOBEC,

hypothesizing that ADAR would melt the hairpin structures formed by the RCMs using APOBEC as

negative control (Figure 1.3 b). Using siRNAs, they observed a stronger increase of selected circRNAs

upon ADAR knockdown compared to APOBEC and mock control.



6 Introduction

A more recent study by Zhang et al. [20] showed that the speed of Polymerase II (Pol II) is correlated

with circRNA expression. This study shows that the transcription elongation rate (TER) of genes

yielding circRNAs is significantly higher than in non-circularized genes. Thus, it is hypothesized

that a fast elongation rate favors circRNA formation by allowing flanking introns to form hairpin

structures through the aforementioned mechanisms (Quaking, MBNL, RCMs). To test this hypothesis,

the relative expression of selected circRNAs was measured in E1126G and R749H mutants, causing

increased TER and decreased TER respectively. Indeed, faster Pol II led to an increase in relative

circRNA expression. This increase was not observed in the slower Pol II mutant.

In summary, circRNA biogenesis depends on various factors highlighting the potential to be specif-

ically regulated in different tissues and during different processes. Most strikingly, these different

mechanisms have one element in common; they all show that the splice donor and acceptor are

brought into close proximity to form a back-splice junction.

1.4 Functional circRNA studies are scarce

Although the existence of circRNAs has been known for more than three decades, we are still at the

beginning of circRNA research, thus not much is known about their function. Only for a few well-

researched circRNAs such as CDR1-AS and MBNL a function has been described. In a study on the

regulation of cerebellar degeneration-related protein 1 (CDR1) by miR-671 CDR1-AS was identified

as a circular anti-sense transcript of CDR1 [21]. Hansen et al. showed that CDR1-AS is a direct

target of miR-671 leading to the cleavage of the circle structure. Furthermore, they showed a positive

correlation of the expression levels of CDR1 and CDR1-AS. Two years later, two independent studies

revealed that CDR1-AS harbors over 70 miR-7 seeds, thus concluding that CDR1-AS has regulatory

roles acting as a miR-7 sponge [22, 23]. After showing that CDR1-AS and miR-7 co-localize in the

cytoplasm, Hansen et al. [21] measured the response of known miR-7 targets, SCNA, EGFR, and

IRS2, to miR-7 expression with CDR1-AS and without CDR1-AS. Indeed, in the presence of the

circRNA miR-7 targets responded less efficiently than in cell lines without CDR1-AS.

Memczak et al. [23] used a different approach to show the sponging potential of CDR1-AS. They

performed an AGO-PARCLIP [24, 25], and observed a strong signal of CDR1 anti sense reads, while
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PARCLIP control RBPs yielded virtually no CDR1 anti sense reads. Furthermore, they showed that a

miR-7 knockdown had a similar phenotype in zebrafish brain as CDR1-AS expression in zebrafish

brain, a transcript absent in wild type zebrafish. These findings demonstrated that CDR1-AS acts as a

miR-7 sponge. The current hypothesis is that CDR1-AS binds miR-7. Then the complex localizes to

the cytoplasm where, upon a miR-671 induced cleavage of the circRNA, the miRNAs are released.

Till today this is the only known circular miRNA sponge. However, this indicates that there could be

other circRNAs sponging miRNAs.

The circulatization of the second and third exon of the splicing factor muscleblind (MBL) was first

discovered by Housely et al. in 2006 [17] but only a decade later Ashwal-Fluss et al. [14] showed

that circMBL harbors binding sites for the RBP MBL/MBNL1. The binding of MBL to circMBL is

potentially responsible for gene regulation by competition between circular and linear splicing.

The lack of functional experiments for circRNAs shows that the field of circRNA research is still at

its beginning.

Figure 1.4: Known functions of circular RNA. This figure shows an overview of the currently known
functions of circRNAs. There are circRNAs in the cytoplasm possibly acting as miRNA and RBP sponge
or shuttle platform. CircRNAs in the neucleus can contain a intron sequences which have been indicated
to regulate the transcription of their host genes. An mRNA trap arises if the circularized exons contain the
translation start site (TSS), thus the mRNA loses its TSS or may need to use an alternative TSS if possible. [26]
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1.5 CircRNAs are linked to cancer and other diseases

Recently, many cancer studies focused on the expression of circular RNAs in cancerous versus

normal cells. Though they do not provide any functional or mechanistic insights to how circRNAs

are involved in cancer formation, these studies indicate that circRNAs may be used as biomarkers.

Wang et al. [27] showed a significant correlation of hsa_circ_001988 with colorectal cancer in 31

matched tumor/normal pairs. Predicting colorectal cancer based on hsa_circ_001988 levels achieved

a specificity of 68 % and a sensitivity of 73 %. In a similar study Li et al. [28] predicted gastric

cancer based on hsa_circ_002059 levels with a specificity of 62 % and a sensitivity of 81 %. In both

studies the effect size was small (see Figure 1.5 a and b), raising the question of how reliable it is to

use circRNAs as biomarkers.

A genome-wide association study of small nucleotide polymorphisms (SNPs) for atherosclerosis risk

revealed polymorphisms on chromosome 9p21.3 [29]. One of the four identified causal variants in

this locus leads to an increase in circular ANRIL, a linear long non-coding RNA shown to regulate the

tumor suppressor gene INK4/ARF. The authors hypothesized that ANRIL loses its regulatory capacity

when it is circularized, thus increasing the risk for atherosclerotic vascular disease.

A small study on miR-7 sponge CDR1-AS in patients with sporadic Alzheimer’s disease showed

that CDR1-AS is significantly downregulated in patients compared to healthy individuals [30]

(Figure 1.5c). The authours hypothesized that the absence of CDR1-AS leads to an increase of

free miR-7 which downregulates known Alzheimer’s disease associated genes such as UBE2A.

All these studies, whether they indicate circRNAs as risk factors or as biomarkers, show the number

and the complexity of processes circRNAs are likely to be involved in.

a) b) c)

Figure 1.5: CircRNA expression as biomarker. a) hsa_circ_001988 in colorectal cancer [27].
b) hsa_circ_002059 in gastric cancer [28]. c) CDR1-AS in Alzheimer’s disease [30].
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1.6 My contribution

In the second chapter of my thesis, I will discuss how circRNAs are detected using RNA-Seq

comparing three circRNA detection programs, including DCC which was developed in the Dieterich

lab by Jun Cheng [31] and which is maintained by Dr. Tobias Jakobi. Subsequently, I will use DCC

to detect circRNAs in murine heart and liver samples. In the third chapter, I will focus on my own

program FUCHS [32], a pipeline to further characterize the inner structure of circular RNAs. I will

use this pipeline to describe the circRNAs found in the mouse samples. In the fourth chapter, I will

introduce the additional module FUCHSdenovo which reconstructs the exon-intron structure based on

intron signals and annotation. Again, I will demonstrate the use of the de novo chain reconstruction

on the murine circRNAs. In the fifth chapter, I will use the output of my program to show how this

information could be used to perform sequence based miRNA seed analysis or functional enrichment

analysis. After summarizing my work on circular RNAs, I will finish my thesis by highlighting my

work on the potential of the African turquoise killifish to study circRNAs in ageing.

In summary, my work presents a new pipeline to further characterize the inner structure of circular

RNAs, a comprehensive analysis of the circular RNA landscape in murine heart and liver, as well as

an initial analysis of the circular RNA landscape in ageing African turquoise killifish.





Chapter 2

CircRNA detection using RNA-Seq

2.1 Introduction

As next generation sequencing techniques became cheaper, scientists started to sequence whole

transcriptomes and not only mature mRNA (rRNA depletion and poly-A enrichment). Sequencing

the whole transcriptome revealed many chimerically spliced reads, which were initially filtered out

as misaligned reads. A thorough analysis of these chimerically mapped reads led to the discovery

of a plethora of genes forming circular RNAs [33]. Since then, developers of mapping programs

recognized the abundance of circular RNAs and improved their algorithms to enhance the alignment

of chimeric reads. This opened the door to the systematic investigation of circRNAs in different

organisms. The first publications on transcriptome-wide circRNA expression used custom scripts to

filter and quantify chimeric reads. These custom scripts were based on identifying back-spliced reads

as depicted in Figure 2.1 [8, 34].

The need for standardized circRNA detection programs grew rapidly. In 2015 and early 2016, several

circRNA detection programs were published (see Table 2.1). The main difference between these

detection programs is that they facilitate the annotation of chimeric reads written by different mapping

programs as there is no standard representation of chimeric reads yet.

In the following chapter, I will first compare three of the most recent circRNA detection programs

(see Table 2.1 CIRI, KNIFE, and DCC) and then use the best detection tool to detect circular RNA in a

new mouse dataset.
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GU AG GU AGGU AG

Linear spliced reads (l)

Circle spliced reads (c)

pre-RNA junction spanning reads (p)

pre-RNA reads or linear or circRNA reads

Reads cover back-splicing junction from both sites (n)

c = n - l - p
Host gene expression = (l+p)/2
ratio = 2c/(l+p)

Figure 2.1: Read assignment and counting. Reads spanning the back-splice junction (c) are shown in green.
The coverage of a host gene is measured by averageing the number of reads spanning the flanking introns;
linear-spliced reads (l) and exon-intron reads (p) are summed and averaged over both flanking introns. (Adapted
from [31])

Table 2.1: State of the art circRNA detection tools

Tool Function Mapper Year Reference
find_circ circRNA detection Bowtie [35] 2013 Memczack et al. [23]
segemehl circRNA detection segemehl [36] 2014 Hoffmann et al. [36]
CIRCexplorer circRNA detection Bowtie [35] 2014 Zhang et al. [37]
circRNA_finder circRNA detection STAR [38] 2014 Westholm et al. [34]
CIRI circRNA detection BWA [39] 2015 Gao et al. [40]
KNIFE circRNA detection Bowtie [35] 2015 Szabo et al. [41]
DCC/CircTest circRNA detection and STAR [38] 2016 Cheng et al. [31]

differential expression

2.2 Benchmarking circRNA detection tools

DCC was developed in the Dieterich Lab by Jun Cheng. Though I was not involved in the development

of the program, I performed the benchmarking of the program. I compared DCC to CIRI and KNIFE

on two datasets. This analysis was published as a supplement of the DCC publication [31].

2.2.1 Data

The first dataset used for benchmarking was a mouse dataset [31]. A matched RNaseR+ and RNaseR−

sample pair was sequenced with 2 x 100 BP long reads on an Illumina HiSeq2500 (see Table 2.2).

The reads were mapped to the mouse genome assembly GRCm38 using the ENSEMBL release 79

genome annotation.

The second dataset was a HeLa cell culture dataset that was released with the CIRI publication [40].
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Two technical replicates of each RNaseR+ and RNaseR− were sequenced with 2 x 100 BP long reads

on an Illumina HiSeq2000 (see Table 2.2).1

Table 2.2: Benchmarking data

Species Library-prep Experiment Platform Acccession
BALB/c mouse ScriptSeq v2 Epicentre RNaseR− Illumina HiSeq2500 SRX1165561
BALB/c mouse ScriptSeq v2 Epicentre RNaseR+ Illumina HiSeq2500 SRX1175091
HeLa Illumina TrueSeq RNaseR− Illumina HiSeq2000 SRR1637089
HeLa Illumina TrueSeq RNaseR− Illumina HiSeq2000 SRR1637090
HeLa Illumina TrueSeq RNaseR+ Illumina HiSeq2000 SRR1637085
HeLa Illumina TrueSeq RNaseR+ Illumina HiSeq2000 SRR1637086

2.2.2 Methods

CircRNAs were first detected in RNaseR− samples and then validated in matched RNaseR+ samples.

Comparing matched samples created an advantage over comparing independent samples; it reduced

errors due to biological variance. If a circle was expressed in one tissue, it would be present in both

libraries of matched samples, however not in two independent samples. The CircleSeq protocol [33]

provided a gold standard. It involves one step in which one rRNA depleted library is split into two

libraries but only one fraction is further treated with RNaseR. Thus, false positive circRNAs were

circRNAs which were present only in the RNaseR− and not the RNaseR+ sample.

Program calls

In the following section I will list all command line calls that were executed for this benchmarking.

All samples were subjects of the same sequence of program calls.

DCC

To detect circRNAs using DCC, flexbar [42] was used to trim the adapters and poor quality bases

(Phred score ≤ 20). Trimmed reads were aligned using STAR [38]. For paired-end data, the reads of

each mate were mapped independently and jointly in one run. DCC uses selected STAR output files to

detect back-splice junctions, i.e. Chimeric.junction.out, SJ.out.tab, Aligned.sortedByCoord.out.bam.

1Sample information was confirmed through personal communication with Yuan Gao, first author of CIRI.
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Additionally, it requires a reference sequence. Providing annotation files allowed DCC to simultane-

ously filter and annotate circRNA candidates. Since DCC reports the strand of circRNAs, it is important

to declare the library’s strandedness with the -ss/-N flag, indicating that the data is second strand, or

unstranded respectively. This flag was only used for the mouse data. CircRNAs from HeLa data were

detected without setting either flag as they were sequenced with a first strand RNA-Seq protocol. A

detailed list of parameters for flexbar, STAR, and DCC is outlined below.

# Trimming

flexbar -n 4 -r [Sample]_R1.fastq.gz -p [Sample]_R2.fastq.gz

-t [Sample] -f sanger -u 5 -m 20 -z GZ -q 20 -as AGATCGGAAGAGC

# Mapping

STAR --runThreadN 10 --genomeDir [Genome]

--outSAMtype BAM SortedByCoordinate

--readFilesIn [Sample]_R1.fastq.gz [Sample]_R2.fastq.gz

--readFilesCommand zcat --outFileNamePrefix [Sample]

--outSJfilterOverhangMin 15 15 15 15 --alignSJoverhangMin 15

--alignSJDBoverhangMin 15 --seedSearchStartLmax 70

--outFilterMultimapNmax 2 --outFilterScoreMin 1

--outFilterMatchNmin 1 --outFilterMismatchNmax 2

--chimSegmentMin 15 --chimScoreMin 15

--chimScoreSeparation 10 --chimJunctionOverhangMin 15

--alignTranscriptsPerReadNmax 50000

# CircRNA detection

DCC @sample_sheet -mt1 @mate1 -mt2 @mate2 -D -an [Annotation].gtf

-R [Repeats].gtf -M -Nr 2 1 -fg -temp -ss -F -Pi -L 20
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CIRI

The version of CIRI (v1.2) used for this benchmarking required all reads to have the same length.

Hence, flexbar was used with -m 100 and -k 100 to guarantee that all reads were 100 BP long.

Reads were mapped using BWA [39] with the parameters suggested in the CIRI tutorial, which were

optimized for circle detection using CIRI. CIRI uses SAM files produced by BWA as well as a reference

FASTA and an annotation in GTF format. The -U 3 option was used for CIRI to discard all multi

mapping reads. A detailed list of parameters for flexbar, bwa mem, and CIRI is outlined below.

# Trimming

flexbar -n 4 -r [Sample]_R1.fastq.gz -p [Sample]_R2.fastq.gz

-t [Sample] -f sanger -u 5 -m 100 -k 100 -z GZ

# Mapping

bwa mem -P -T 19 -t 18 -B 3 [Genome.index] [Sample]_R1.fastq.gz

[Sample]_R2.fastq.gz > [Sample].sam

# CircRNA detection

perl CIRI_v1.2.pl -U 3 -I [Sample].sam -O [Sample].minusU.ciri

-F [Genome].fa -A [Annotation].gtf -P -high

KNIFE

The KNIFE manual recommended trimming of the adapters and removing poor quality bases.

Again, flexbar was used with the same parameters as for DCC. KNIFE was installed for SLURM

[43] and the pipeline ran with the suggested parameters setting the splice junction overhang

to 13 and the mode to sam. The user was required to run KNIFE twice to detect and quan-

tify all back-splice junctions. findCircularRNA.sh started the mapping with Bowtie [35]

as well as the circle detection. A script to perform an additional filtering step to filter for

circRNAs with p_predicted ≥ 0.9 (posterior probability) was implemented and candidates from
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the [sample]_report.txt and unaligned_[sample]_denovo_report.txt were merged. A detailed list of

parameters for flexbar and KNIFE is outlined below.

# Trimming

flexbar -n 4 -r [Sample]_R1.fastq.gz -p [Sample]_R2.fastq.gz

-t [Sample] -f sanger -u 5 -m 20 -z GZ -q 20 -as AGATCGGAAGAGC

# KNIFE first run

sh findCircularRNA.sh [Read/directory] [Output/folder]

[Sample] 13 sam_[organism]_large

# KNIFE second run

sh findCircularRNA.sh [Read/directory] [Output/folder]

[Sample] 13 sam_[organism]_large_unaligned

Evaluation parameters

I evaluated all programs’ performances based on runtime, precision, agreement, and quantification

agreement.

Runtime

The runtime was estimated on the mouse dataset as proof of principle. All programs tested in this

benchmark used different read aligner: DCC used STAR, CIRI used BWA and KNIFE used Bowtie2.

This is why the runtime was measured on both, the read alignment and circRNA detection step. To

better understand the difference in runtime, Figure 2.2 stratifies the runtime by process. All programs

were executed in identical compute environments (Intel Xeon CPU E5-4640 0 @ 2.40GHz, 256 GB

RAM, 64 cores).
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Precision of circRNA detection

To estimate the precision of each tool I calculated the false discovery rate by detecting circRNAs in

RNaseR− samples and then validating these candidates in the RNaseR+ treated samples. CircRNAs

that could not be validated with the RNaseR+ samples were classified as false positives.

For STAR/DCC and BWA/CIRI the precision was also evaluated on single-end versus paired-end

sequencing strategies. This was done by performing an analysis where the paired reads of the mouse

data were uncoupled to simulate single-end libraries. I compared these single-end runs to the standard

paired-end runs.

Agreement

Besides the precision, the agreement between the programs on the circRNA candidates was evaluated

as well. The agreement was measured on the reported back-splice junction coordinates as well as the

expression level of each commonly identified back-splice junction.

2.2.3 Results and discussion

STAR/DCC is the fastest circRNA detection program

Comparing the runtime, the combination of DCC and STAR emerged as the fastest circle detection

pipeline. The combination of STAR and DCC ran fastest in both cases (RNaseR+/−; Figure 2.2), while

CIRI was the slowest circle detection program even though BWA performed similarly to STAR. CIRI’s

runtime was strongly affected by the number of candidate circles (RNaseR+: ∼ 10,000 circRNAs;

RNaseR−: ∼ 2,500 circRNAs) and KNIFE’s runtime depended most on the number of input reads

(RNaseR+: 19,960,612 reads; RNaseR−: 29,157,170 reads). DCC benefited from STAR’s short runtime

and made the most effective use of the alignment method’s output. Thus, it was the fastest method

regardless of the number of input reads, or the number of candidate circles.

STAR/DCC is the most precise circRNA detection program

Evaluating the precision of DCC, CIRI, and KNIFE on the mouse dataset showed that DCC was the most

precise method with an FDR of 3 %. DCC also detected the highest number of true positives. CIRI



18 CircRNA detection using RNA-Seq

BWA/CIRI KNIFE STAR/DCC

RNaseR −

tim
e 

in
 m

in
ut

es
0

50
10

0
15

0
20

0
25

0
30

0
35

0

21 96 24

128
29

10

∑= 149
∑= 125

∑= 34

circRNA detection
mapping

BWA/CIRI KNIFE STAR/DCC

RNaseR +

tim
e 

in
 m

in
ut

es
0

50
10

0
15

0
20

0
25

0
30

0
35

0

27 67 22

311

20

40

∑= 338

∑= 87
∑= 63

circRNA detection
mapping

a) b)

Figure 2.2: Runtime of benchmarkin the mouse dataset. a) shows the runtime on the RNaseR+ sample
with more circRNAs than the RNaseR− sample. CIRI performed exceptionally long compared to KNIFE and
DCC. b) shows the runtime on the RNaseR− sample with more reads than the RNaseR+ sample. For this sample
DCC was approximately four times as fast as CIRI and KNIFE
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Figure 2.3: Precision a) Precision of benchmarking the mouse dataset. DCC is the most precise detection tool
with an FDR of 3 % b) Precision of benchmarking the HeLa dataset. DCC is the most precise detection tool
again. The large amount of false positives are likely to result from varying library sizes (SRR1636985: 13.3 mio
reads; SRR1636986: 23.5 mio reads; SRR1637089: 45 mio reads; SRR1637090 35.7 mio reads). c) Comparing
the precision of running the samples as paired-end or single-end shows that DCC is more precise than CIRI and
that considering the paired information is superior to single-end reads.

performed reasonably well and the previously reported precision was confirmed [40]. KNIFE had the

lowest precision of them all.

All three methods performed worse on the HeLa dataset compared to the mouse dataset. While DCC

and CIRI were similarly precise, KNIFE identified 6013 circRNA candidates, which could not be

validated in the matched RNaseR treated sample. The most likely reason for the poor performance

was not the detection within the RNaseR− set but the varying sequence depth (SRR1636985: 13.3

mio reads; SRR1636986: 23.5 mio reads; SRR1637089: 45 mio reads; SRR1637090 35.7 mio reads).
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Thus, the number of circRNAs was influenced by the sequencing depth and library protocol such that

the precision of all programs could have been underestimated. Nevertheless, DCC is the most precise,

even though it detects fewer circRNAs than CIRI within this dataset.

Comparing paired-end vs. single-end runs demonstrated that paired-end data had a higher precision

while detecting similar amounts of true positive circRNAs. When using DCC the difference between

single-end and paired-end data was negligible but when using CIRI the precision decreased by 16 %

when omitting the mate information.

On average, BWA/CIRI attribute more reads to back-splice junctions than other programs

Figure 2.4 shows that all methods agree on a large set of true positive circRNAs with DCC and CIRI

sharing the largest amount of true positive circRNAs. Furthermore, to investigate DCC’s quantification

of circRNAs compared to the other programs, Figure 2.5 contrasts the reads per junction detected

with program X and Y for each pairwise comparison. On average, STAR/DCC assigned fewer reads to

a back-splice junction than BWA/CIRI (Figure 2.5a and d). Comparing STAR/DCC to Bowtie2/KNIFE

did not reveal an evident bias (Figure 2.5b and e).

KNIFE CIRI

DCC

KNIFE CIRI

DCC

a) b)

Figure 2.4: Agreement of the methods. Comparing only the true positive circRNAs shows that the programs
do not agree well on the identified circRNAs. a) Mouse dataset b) HeLa dataset
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Figure 2.5: Comparison of junction quantification. Comparing the number of reads assigned to a junction
by different programs. BWA (CIRI) assignes more reads to a junction than the other programs to the same
junctions. a-c) Mouse dataset d-f) HeLa dataset

2.2.4 Conclusions

Based on the parameters I used to evaluate the performance and quality of the programs it became

evident that DCC outperformed both CIRI and KNIFE in runtime and precision. While DCC and CIRI

performed similarly well, it is questionable if KNIFE should be used for circRNA detection at all. The

main difference between DCC and CIRI was that they used different mapping algorithms to detect

circRNAs. CIRI is best to use when searching for all possible circRNAs accepting that 10-40 % of

these will likely be false positives. DCC should be used when searching for highly confident circRNAs

accepting that some circRNAs will be missed.
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2.3 Comprehensive circRNA study on long reads

Due to the low abundance of circular RNA compared to linear RNA, a large amount of circular RNAs

is potentially overlooked when detecting circRNAs from rRNA depleted samples. Hence, for the

remainder of my thesis I will be working on rRNA depleted, RNaseR treated libraries from mouse.

First, I will describe the general circRNA landscape in these samples and then I will use this dataset

to demonstrate the usage of the pipeline I developed.

2.3.1 Data

To discover the full spectrum of the circular RNA diversity in murine heart and liver, two heart and two

liver samples were enriched for circular RNA molecules by RNaseR treatment. They were sequenced

with paired-end, 250 BP long reads on an Illumina HiSeq2500 to increase the chance of sequencing

back-splice junctions. In the following section, I will highlight the results of detecting circular RNA

in these samples using DCC, as it was shown to have the best performance during the benchmarking.

Table 2.3 provides an overview of the samples used throughout the rest of the thesis.

Table 2.3: Long reads mouse data

Sample Tissue Age Strain Experiment Accession
Y_HE Heart 10 months C57BL/6 RNaseR+ SRX2504989
O_HE Heart 27 months C57BL/6 RNaseR+ SRX2504987
Y_LI Liver 10 months C57BL/6 RNaseR+ SRX2504990
O_LI Liver 27 months C57BL/6 RNaseR+ SRX2504988

2.3.2 Methods

Read Trimming: flexbar

Only STARlong is able to map reads longer than 249 base pairs for one end. However, STARlong is

not capable of mapping chimeric reads. Hence, the reads were mapped using STARshort. Therefore,

all reads had to be trimmed to 249 base pairs using flexbar version 2.5 with the following parameters.

flexbar -n 4 -r sample_R1.fastq.gz -p sample_R2.fastq.gz

-t sample -f sanger -u 50 -k 249 -z GZ
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Read Mapping: STAR

All RNA-Seq reads were mapped using STARshort version 2.5.1b to the mouse genome, GRCm38

(mm10), using the Ensembl release 79 reference annotation. As mentioned before, DCC requires

paired-end reads to be mapped as paired-end reads and as single-end reads. In this case, only the

unmapped reads were mapped as single-end reads. All three runs were performed using the same

parameters.

STAR --readFilesCommand zcat --runThreadN 18

--genomeDir [genome] --outSAMtype BAM SortedByCoordinate

--readFilesIn [sample]_1.fastq.gz ([sample]_2.fastq.gz)

--outFileNamePrefix [sample] --quantMode GeneCounts

--genomeLoad NoSharedMemory --outReadsUnmapped Fastx

--outSJfilterOverhangMin 15 15 15 15 --alignSJoverhangMin 15

--alignSJDBoverhangMin 10 --outFilterMultimapNmax 20

--outFilterScoreMin 1 --outFilterMismatchNmax 999

--outFilterMismatchNoverLmax 0.05 --outFilterMatchNminOverLread 0.7

--alignIntronMin 20 --alignIntronMax 1000000

--alignMatesGapMax 1000000 --chimSegmentMin 15 --chimScoreMin 15

--chimScoreSeparation 10 --chimJunctionOverhangMin 15

--twopassMode Basic --alignSoftClipAtReferenceEnds No

--outSAMattributes NH HI AS nM NM MD jM jI XS

--sjdbGTFfile [annotation].gtf

CircRNA Detection: DCC

CircRNA candidates were detected using DCC version 0.4.4 with the Ensembl annotation release 79.

CircRNAs were detected with a threshold of at least two reads in at least two samples.

DCC @samplesheet -T 18 -ss -D -an GRCm38.79.clean.gtf -Pi

-mt1 @mate1 -mt2 @mate2 -F -M -R GRCm38.79.repeats.clean.gtf

-Nr 2 2 -fg -G -B @samplebam -A GRCm38.dna.toplevel.fa
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Functional annotation: GOrilla

To obtain a first impression in which processes circRNAs could be involved in, I performed a gene

ontology (GO) enrichment analysis using GOrilla [44]. Essentially, GOrilla first assigns the

relevant GO terms to each gene. Next, it calculates an enrichment score for each GO term to compare

the proportion of target genes in the GO term over the proportion of background genes in the GO term

as visualized in Figure 2.6. Then, p-values are calculated based on a hyper geometric model and are

corrected for multiple-hypothesis testing using the Benjamini-Hochberg method [44].

N

B
n

b

N: total number of genes 

B: total number of genes associated 
    with a specific GO term

n: number of genes in the target set

b: number of target genes associated
    with a specific GO term

Enrichment =
b/n

B/N

Figure 2.6: GO enrichment score E. Schematic view of how the GO enrichment score is calculated.

Genes expressing circRNAs in both samples of either heart or liver tissue were compared against

all genes that were expressed in at least one sample of the respective tissue. Furthermore, I compared

host genes of circRNAs expressed in all samples against genes that were expressed in at least one

sample.

2.3.3 Results and discussion

RNaseR treatment digests linear RNA from their free 3’ end. Since circular RNAs do not have a

free 3’ end the exo-nuclease digests circular RNAs at a much slower rate. Therefore, the treatment

has to be administered carefully. If the treatment is not long enough, many of the linear RNAs are not

completely digested. If the treatment is too long, the circRNAs are degraded as well. The following

section will highlight the results obtained from RNaseR treated libraries.
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RNaseR treatment enriches for circular RNA

Mapping these long reads in the described two-step approach (1. all reads as paired-end; 2. all

unmapped reads as single-end) resulted in an 85 % mapping rate in both heart samples and a 60 %

mapping rate in both liver samples. The proportion of chimerically mapped reads ranged from 10 %

in the young liver to 20 % in the old liver. However, these numbers were not reflected in the circRNA

diversity and abundance, where both liver samples had similar amounts of detected circRNAs on

all confidence levels (support of at least 2, 4, or 10 reads). Overall, the heart had fewer circRNAs

detected but the number of high confident circRNAs (≥ 10 supporting reads) exceeded the number

of high confident circRNAs in liver by two to three times. This was also reflected by the number of

reads per back-splice junction in Figure 2.7c. The median number of reads per junction in heart was

three times as high as in liver, thus the heart had a less diverse circRNA landscape. However, these

circRNAs were more abundant.
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Figure 2.7: Summary statistics a) Mapping statistics; the barplot is additive but the numbers noted on in the
bars are summarized appropriately. b) Circle diversity; the barplot is additive and the numbers in the bars
represent the summarized number of junctions with at least x reads supporting the circular junction. c) Circle
abundance; boxplot summarizes the number of reads supporting each identified circular RNA

Core circRNA are indicated in regulation of metabolic processes

In contrast to Figure 2.7, where the circRNA landscape is viewed for each sample individually, Figure

2.8 compares the circRNA landscape between samples. This comparison shows different circRNAs

expressed in the young and old heart while the same circRNAs are expressed in the young and old

liver. The heart had a core set of 1218 circRNAs. Comparing the host genes of these circRNAs
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to all expressed genes in a GO enrichment analysis revealed that their host genes were enriched

for lipid modification (q = 0.006). The liver had a core set of 1986 circRNAs. A GO enrichment

of these core circRNAs indicated that the host genes of these circRNAs were enriched for cellular

catabolic processes (q = 7.60e−06). Both core sets were enriched for various metabolic processes,

such as regulation of macromolecule metabolic processes (q = 1.82e−13) and regulation of primary

metabolic processes (q = 4.80e−12, see Table 2.4 for details).

The four way Venn diagram, comparing all samples at once, shows the young samples sharing 1366

circRNAs and the old samples sharing 1042 circRNAs. This suggests that the sample O_HE is the

limiting factor in the analysis. However, it remains elusive whether the circRNA diversity truly

decreases with age in the heart and remains stable in the liver. It could also be an effect that was only

seen in the analysed samples, as one sample for each time point and tissue is not appropriate for any

statistics.

Y_HE O_HE

Y_LI O_LIyoung

old

young

old

Figure 2.8: Agreement of samples. Heart samples only share 1218 circRNAs. Ninety percent of the circRNAs
are shared between young and old liver. Comparing all samples reveals a set of 662 core circRNAs shared
among all circRNAs. The sum of the green encirclement corresponds to the amount of circRNAs shared
between the young samples (1366). The sum of the blue encirclement corresponds to the amount of circRNAs
shared between old samples (1042).
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Table 2.4: GO enrichment of genes expressing circRNAs

Enriched in GO Term FDR Enrichement
Both regulation of macromolecule metabolic process 1.82e-13 1.36

regulation of metabolic process 2.16e-13 1.34
regulation of cellular metabolic process 4.41e-12 1.33
regulation of primary metabolic process 4.80e-12 1.34
biological regulation 4.90e-12 1.19
regulation of biological process 1.49e-11 1.20
cellular macromolecule metabolic process 9.20e-11 1.30
regulation of cellular process 8.18e-11 1.20
regulation of nitrogen compound metabolic process 1.06e-10 1.39
cellular process 2.68e-10 1.13

Heart lipid modification 0.00638 2.47
negative regulation of epithelial cell proliferation 0.00684 2.71
glial cell differentiation 0.01900 3.23
response to radiation 0.02180 1.84
regulation of neurotransmitter secretion 0.02430 3.53

Liver cellular catabolic process 7.60e-06 1.57
positive regulation of RNA biosynthetic process 6.84e-05 1.50
positive regulation of nitrogen compound metabolic process 8.60e-05 1.42
positive regulation of transcription, DNA-templated 1.26e-04 1.48
positive regulation of nucleic acid-templated transcription 1.24e-04 1.48

2.3.4 Conclusions and outlook

With the combination of RNaseR treatment and long reads (2 x 250 BP), this new dataset provides a

powerful resource to study the circular RNA landscape. An analysis of the estimated circRNA length,

including only annotated exons, revealed that heart circRNAs were 100 BP longer than liver circRNA

(520 BP vs 433 BP).

Evaluating the sequence length of read pairs that span the back-splice junction revealed that the length

of chimeric reads spanned a wide range from 17 BP to 249 BPs. This could be explained by the way

chimeric reads are saved in an alignment file. They are split at the back-splice junction and are saved

as two fragments. Only the mates that do not span the back-splice junction remain intact, i.e have a

fragment length of 249 BP.

Evaluating the insert size (see Figure 2.9 for details) revealed that the insert length in heart ranged

from shorter 200 BP inserts to long 600 BP inserts, while inserts in liver were much shorter, ranging

from 300 BP to 400 BP. Again, the large amount of inserts shorter than 50 BP could be explained by

the fragmentation of the read during the chimerical read mapping.
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Correlating the circle length and insert size (Figure 2.10), it became evident that this dataset could

provide a powerful resource to fully capture short circles. Thus, the exon-intron structure of short

circular RNAs could be fully reconstructed, and the exon-intron structure of medium length circular

RNAs could be partially reconstructed. This new knowledge would have many implications for further

analyses such as the validation of circRNAs, the overexpression, or knockdown of circRNAs. More

importantly, it could provide the possibility to perform more accurate computational analysis, such as

miRNA seed and RBP motif enrichment.

Adapter

Insert

Read 1

Read 2

3'
5' 3'

5'

Inner distance

Insert size

Fragment length

Figure 2.9: Schematic view of the insert size. Paired-end RNA-Seq library characteristics are described by
their inner distance between the two reads, insert size (inner distance + sequenced reads without adapter), and
fragment length (length of the sequenced fragments including adapters)
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Figure 2.10: Overview of the circRNA and library characteristics.



Chapter 3

Towards full circular RNA

characterization using sequencing data –

FUCHS

3.1 Introduction

Alternative splicing (AS) is a well known and documented phenomenon in linear mRNAs, but

understudied in circRNAs. The major problem studying AS in circular RNA is to reliably discern

alternative splicing isoforms from circRNAs to those from mRNAs. Studying alternative splicing

in circular RNAs could lead to crucial implications for validation and deciphering the function of

circRNAs.

Implications for Validation

Circular junctions can be validated by performing a polymerase chain reaction (PCR) using outward

facing primers. If the gene of interest forms only one circRNA, the PCR will have one specific band.

If on the other hand the gene of interest forms several different circRNAs, a smear or several bands

will be formed ( see Figure 3.1 for details). Not knowing how many circRNAs are expressed by a
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gene can greatly influence the validation process. Some candidates could be miss classified as false

positives due to smears or seemingly unspecific bands.

Gel 
after 
PCR

Exon

Intron

Outward facing primer

BSJ of interest

Other BSJ

Ladder

Figure 3.1: Problems for circRNA validation by running a gel electrophoresis. A shematic view of a host
gene expressing several different circRNAs. These circRNAs could be low abundant circRNAs and thus not
detected by RNA sequencing. Trying to validate the only detected back-splice junction (portrayed in blue) with
PCR and gel electrophoresis would lead to several bands on the gel, thus might be falsely dismissed as false
positive.

Deciphering the function of circRNAs

The knowledge about genes that express more than one circRNA, especially internal AS isoforms,

can be used in computational functional analysis of circRNAs. A motif search in flanking introns of

frequently circularized exons compared to less frequently circularized exons might lead to unknown

RNA binding proteins or transcription factors (TF) responsible for the circle formation. Performing a

miRNA seed search on frequently circularized exons over less frequently circularized exons might

provide an indication if there is a purpose for the frequent circularization of one exon. If there is one

exon which is highly enriched for miRNA seeds, maybe it does not matter which other exons are

included in the circRNA.

3.1.1 State of the art programs

The circRNA detection tools, mentioned in chapter 2, are only able to discern circRNAs if they do not

share the same back-splice junction. Two of these programs recently published upgrades in which

they attempt to identify alternatively spliced isoforms in circRNAs.
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CIRCexplorer2

CIRCexplorer2, by the Yang lab at the Shanghai Institutes for Biological Sciences, adapts several

measurements implemented for alternative splicing in linear RNAs. These are PSU, percent splice-site

usage, to identify alternative 3’ and 5’ splice sites; PSI, percent spliced in, to identify skipped exons;

and PIR, percent intron retention, to identify retained introns (see Figure 3.2a). All these measures are

calculated based on polyA− and/or polyA−/RNaseR+ libraries, assuming that all linear RNAs were

degraded using RNAseR treatment. Comparing circular isoforms to their linear cognates (AS detected

from polyA+ libraries) they identify the predominant form (circular or linear) of each isoform.

A possible drawback is that they make assumptions about the efficiency of the library preparation

protocols which is accepted not to be 100 % efficient, meaning that there will be circular RNA

in the polyA+ fraction and linear RNAs in the polyA−/RNaseR+ libraries. Furthermore, to detect

circRNAs using this tool requires RNA-Seq of at least polyA− as well as polyA+ sequencing. As

we only generated RNaseR+ libraries, this program is not suited to study AS in circRNAs in the

aforementioned mouse dataset.

CIRI-AS

The developers of CIRI, one of the programs benchmarked in the chapter 2, recently developed a

program to identify alternative splicing within circRNAs. Contrary to CIRCexplorer2, they require

only one sample to detect alternative splicing and support RNaseR+ as well as RNaseR− libraries.

First, circRNAs are identified by finding back-splice junction reads using CIRI. Second, forward-

splice junctions are analyzed within these back-spliced read pairs using CIRI-AS. For circRNAs

without forward-spliced reads, CIRI-AS estimates the internal structure based on linear reads. The

forward-spliced junctions are then sorted and all possible routes from one anchor of the back-splice

junction to the other anchor are noted (see Figure 3.2b). After filtering, the remaining routes between

the same anchors are classified into four categories: alternative 5’ splice site (A5SS), alternative

3’ splice site (A3SS), exon skipping (ES), and intron retention (IR). They found ES to be the most

prominent alternative splice form, while intron retention accounted for only 1% of alternatively spliced

events (see Figure 3.2c).
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a) b)

c)

Figure 3.2: State of the art programs on alternative splicing in circRNAs. a) CIRCexplorer2 classifies
alternative splicing into four categories and calculates specific scores for each (modified from [45]). b) Shematic
view of the approach taken by CIRI-AS to identify alternative splicing in circRNAs. c) CIRI-AS also classifies
alternative splicing into four categories and shows the distribution of each type of alternative splicing among
highly abundant circRNAs (> 20 BSJ reads). b and c are modified from [46].

FUCHS

When I started working on circRNA, most computational prediction pipelines used RNA-Seq reads

only to identify back-splicing events. My pipeline FUCHS: FUll CHaracterization of circular RNA

using RNA-Sequencing; extends this concept by considering all RNA-Seq information from long

reads (typically > 150 bp), to further expand our understanding of possible roles of circular RNAs.

I took a similar approach as in CIRI-AS, but using STAR/DCC results as I previously showed that it

outperforms BWA/CIRI.

Besides alternative splicing in circRNAs, by running FUCHS, the user will also learn more about the

exon coverage, the amount of double-breakpoint fragments, and the different circular isoforms arising

from one host-gene. This new knowledge will enable the user to perform differential motif enrichment

and miRNA seed analysis to determine potential regulators during circRNA biogenesis. FUCHS is an

easy-to-use Python based pipeline that contributes with new aspects to the field of circRNA research.
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3.2 The pipeline

A flow diagram of the main steps executed by FUCHS is visualized in Figure 3.3. FUCHS is a tool

designed as a Python pipeline to address several questions after circRNA candidates were identified.

The following section will discuss the different features of FUCHS.

CircRNA
detection

Chimeric Read
Extraction

Coverage
Profiling

Alternative
Splicing

Mate Pair
Information

Cluster
Circles

Illustrate
Coverage
Profiles

[sample]/
[s].coverage_pictures/
[s].coverage_profiles/
[s].alternative_splicing.txt
[s].exon_counts.[bed/txt]
[s].logfile.[date_time]
[s].mate_status.txt
[s].skipped_exons.[bed/txt]

Mapping

[sample]_1.fastq
[sample]_2.fastq

FUCHS

Summarizing
Isoforms

Figure 3.3: Schematic view of the FUCHS workflow. The black boxes represent input and output files. The
gray boxes represent steps that any user has to perform before running FUCHS. The light blue boxes are steps
which are started by running FUCHS. The arrows represent dependencies between the steps. The logo represents
a fox on a circRNA (credits Logo: Anne Ammerstorfer)
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3.2.1 Input data

To run FUCHS, the user has to first map sequencing reads and detect circRNAs, for example using

STAR to map the reads and DCC to detect the circRNAs as described in chapter 2.3.

The pipeline requires only three input files. First, a tab-separated list of circles, where the first column

contains circleIDs and the second column contains a comma separated list of names of reads spanning

the chimeric junction (see Table 3.1). Second, a BAM or SAM file containing all chimerically mapped

reads, which may also contain linearly mapped and unmapped reads (see Table 3.2). Third, a BED

formatted annotation file (see Table 3.3) to identify skipped exons and describe the exon-usage. If

circRNAs were detected by DCC, the first file is not needed. FUCHS is able to extract all necessary

information from the Chimeric.junction.out files produced by STAR and CircRNACount produced by

DCC.

Table 3.1: Input circID file

CircID Read names

5:92030983|92033757 SN863:53528,SN863:23096,SN863:76567,...

6:39357400|39367766 SN863:76194,SN863:62105,SN863:96141,...

7:41611676|41613251 SN863:93309,SN863:69105,SN863:97405,...

. . . . . .

Table 3.2: Input BAM file

Read name FLAG Chr Start MAPQ CIGAR . . . breakpoints

. . .
SN863:76567 16 5 92030983 3 54S146M1995N49M . . . jI:B:i,92031129,92033123

SN863:76567 272 5 92033715 3 11S43M195S . . . jI:B:i,-1

SN863:76567 0 5 92030983 3 44S146M1995N48M11S . . . jI:B:i,92031129,92033123

SN863:76567 256 5 92033715 3 1S43M205S . . . jI:B:i,-1

. . .
SN863:96141 16 6 39357400 3 76S84M2466N89M . . . jI:B:i,39357484,39359949

SN863:96141 272 6 39367691 3 76M173S . . . jI:B:i,-1

SN863:96141 0 6 39367000 3 47M597N123M79S . . . jI:B:i,39367047,39367643

SN863:96141 256 6 39357400 3 170S79M . . . jI:B:i,-1

. . .
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Table 3.3: Input reference gene model

Chr Start End Name Score Strand

. . .
5 92024935 92025024 ENSMUST00000069937_cds_6 0 -

5 92030982 92031128 ENSMUST00000069937_cds_7 0 -

5 92033123 92033236 ENSMUST00000069937_cds_8 0 -

5 92033578 92033757 ENSMUST00000069937_cds_9 0 -

5 92037167 92037362 ENSMUST00000069937_cds_10 0 -

. . .
6 39354976 39355122 ENSMUST00000090243_cds_9 0 -

6 39357399 39357483 ENSMUST00000090243_cds_10 0 -

6 39359949 39360042 ENSMUST00000090243_cds_11 0 -

6 39364502 39364611 ENSMUST00000090243_cds_12 0 -

6 39366888 39366977 ENSMUST00000090243_cds_13 0 -

. . .

If circRNAs were detected using STAR and DCC, the user should merge reads from the chimeric

alignment files using the following commands.

samtools view -Sb -o mate.1.bam mate1.Chimeric.out.sam

samtools view -Sb -o mate.2.bam mate2.Chimeric.out.sam

samtools view -Sb -o full.bam Chimeric.out.sam

samtools sort -o mate.1.sorted.bam mate.1.bam

samtools sort -o mate.2.sorted.bam mate.2.bam

samtools sort -o full.sorted.bam full.bam

samtools merge sample.bam mate.1.sorted.bam mate.2.sorted.bam full.sorted.bam

3.2.2 Running the pipeline

Once the input is prepared, all steps of FUCHS are started with one of the commands outlined below.

# with STAR/DCC

FUCHS -r [NUM] -q [NUM] -s [CHAR] -p [ensembl|refseq] -e [NUM]

-T [tmp/folder] -D CircRNACount -J Chimeric.out.junction

-F mate1.Chimeric.out.junction -R mate2.Chimeric.out.junction.fixed

-B sample.bam -A [annotation].bed -O [FUCHS/output] -N [sample_name]
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# if circID file is present

FUCHS -r [NUM] -q [NUM] -s [CHAR] -p [ensembl|refseq] -e [NUM]

-T [tmp/folder] -C circID -B sample.bam -A [annotation].bed

-O [FUCHS/output] -N [sample_name]

Where -r sets the read support threshold for circRNAs to be considered in the analysis. -q

sets the quality threshold of these reads, e.g. if a circRNA has ten reads with MAPQ = 1 and only

one read with MAPQ = 3, the circRNA would not be considered; while a circRNA with two reads

and MAPQ = 3 will be considered for further analysis. The number of reads is counted as number

of unique read names. -s, -p, and -e are important to correctly parse the gene name and exon

index from the annotation file. -s indicates the character by which the name string is separated. -p

indicates if the gene name comprises of only the first field as in ENSEMBL annotation or the first two

fields as in RefSeq annotation. -e specifies the field listing the exon index. For example, to parse

ENSMUST00000132064_cds_10_0_chr1_8624779_r parameters need to be set as the following:

-p ensembl, -s _, and -e 2; to parse NM_012102_exon_10_0_chr1_8365812_r parameters need

to be set as the following: -p refseq, -s _, and -e 3.

All steps of the pipeline can also be run individually by importing and creating objects of the classes

as I will describe in the following sections.

3.2.3 Extracting chimeric reads: extract_reads.py

It is often a good practice to verify the alignments of predicted circRNAs as a first quality assessment

of the data before proceeding with the downstream analysis. The identification of chimerically mapped

reads by eye is nearly impossible because these reads are mixed with linearly mapped reads or other

circRNAs originating from the same locus. Therefore, FUCHS starts by separating chimerically mapped

reads into individual BAM files such that one BAM file contains only chimeric reads which span the

same back-splice junction (see Figure 3.4). The script extract_reads.py requires a list of circRNAs

with affiliated reads and a BAM file containing at least all chimeric reads as well as a folder path and

sample name for the circle BAM files to be written to. The list of all chimeric reads is loaded into

Python, the BAM file is loaded using pysam, and all chimeric reads, which are in the list of chimeric
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reads, are saved. For each circRNA, which is passing a user defined threshold of at least r reads

with a mapping quality of at least q, the chimeric reads are written into a BAM file. The file name is

defined as follows:[chr]_[circle start]_[circle end]_[♯ of reads]reads.bam. All BAM

files are then sorted and indexed using pysam. Besides the improved visibility of chimeric reads in

the genome browser, parallelizing downstream steps becomes straightforward, thus enhancing the

performance of FUCHS.

The user can also run extract chimeric reads within Python by creating an object of class

extract_reads:

import extract_reads as extract_reads

er = extract_reads.extract_reads(cutoff_reads, cutoff_mapq,

circles, bamfile, outfolder, sample, tmp_folder)

er.run()

Figure 3.4: Chimeric read extraction in FUCHS. On the left-hand side of the figure is the alignment file of
all reads. It is impossible to see which reads belong to which circRNA. The extract_reads method extracts
chimeric reads and seperates them into individual BAM files as pictured on the right-hand side of the figure.

3.2.4 Alternative Splicing: detect_skipped_exons.py

Alternative splicing is a well known mechanism to increase the complexity of the transcriptome.

Alternative splicing could also increase the diversity in the circular RNA landscape. Knowing all

AS events within one circRNA can be crucial when validating circRNA by qPCR or deciphering

potential functions of circRNA. The script detect_skipped_exons.py identifies skipped exons in

FUCHS. It requires a circle BAM file and a gene model BED file as input. First, all linear introns

are identified from the chimerically split reads. Subsequently, the intron coordinates are intersected

with annotated exons using pybedtools.intersect(). Any exon that overlaps with an intron is
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considered as a skipped exon candidate. To evaluate if the candidate exon is an alternatively skipped

exon, it is intersected with the circle BAM file and the number of reads aligning to this exon are

counted. If there is at least one read aligning to the candidate skipped exon, it is reported in the

[sample].skipped_exons.[txt/bed] file with the ratio of reads aligning to the skipped exons vs. reads

skipping the exon. The text file also lists all reads skipping the candidate exon to better trace the

signal.

Table 3.4 shows an example output of the script detect_skipped_exons.py which may be executed

individually within Python by creating an object of class detect_skipped_exons:

import detect_skipped_exons as skipped_exons

se = skipped_exons.detect_skipped_exons(outfolder, sample,

bedfile, tmp_folder, platform)

se.run()

Table 3.4: sample.skipped_exons.txt

circle_id transcript_id skipped_exon intron read_names splice exon

reads reads

2_92214049_92230724 ENSMUST162146 2:92230637-92230724 (2,92228482,92230658) SN863:80759,.. 7 32

7_89955531_89962361 ENSMUST107234 7:89956254-89956413 (7,89955605,89956343) SN863:5259,.. 2 4

3.2.5 Isoform Summary: detect_splicing_variants.py

To better evaluate the differences in circRNA diversity between samples, one needs to know how

many circRNAs are expressed by one host gene and in what relationship they are to each other. To

summarize circRNAs based on their host gene, the script detect_splicing_variants.py requires

the following input files: a list of circRNA coordinates and an annotation file. The program generates

a host gene based table classifying circRNAs from the same host gene into four different categories:

same_start, same_end, overlapping and within (see Figure 3.5 for a graphical representation of

circRNA relationships).

To summarize only the isoforms within Python the user may create an object of class

detect_splicing_variants:
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import detect_splicing_variants as splicing_variants

sv = splicing_variants.detect_splicing_variants(split_character,

platform, circles, bedfile, outfolder, sample, tmp_folder)

sv.run()

Table 3.5 illustrates and example output table of detect_splicing_variants.py.

Table 3.5: sample.alternative_splicing.txt

Transcript circles same_start same_end overlapping within

ENSMUST22222 circ_1,circ_2 circ_1|circ_2, . . .

ENSMUST98519 circ_1,circ_2 . . . circ_1|circ_2,

ENSMUST42561 circ_1 . . . .

ENSMUST93769 circ_1,circ_2,circ_3 circ_1|circ_2, circ_2|circ_3, . .

Types of circRNA 
isoforms 

Same Start

Same End

Overlapping

Within

Skipped Exon

Figure 3.5: Isoforms of circRNAs from one host gene. Graphical representation of possible relation-
ships between two circRNAs. Same start, same end, overlapping and within are counted by the method
detect_splicing_vairants. Skipped exons are detected by the method detect_skipped_exons.

3.2.6 Mate-pair Information: get_mate_information.py

Back-spliced junctions may originate from other events besides circulatization. Events such as trans-

splicing and tandem duplication also result in back-splice junctions. Assuming that circular RNAs are

still intact during the cDNA synthesis the reverse transcriptase could continue to transcribe around the

whole circRNA possibly synthesizing the back-splice junction twice (see Figure 3.6). These rolling

circles have been observed by Matsumoto et al. and You et al. [47, 48]. Thus, double-breakpoint

fragments could indirectly validate the circularization of the sequenced exons. Based on the circle

BAM files, the script get_mate_information.py counts how often only one mate of a read pair

spans the back-splice junction, and how often both mates of the read pair span the back-splice junction.
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The output is a tab-separated table indicating the number of single and double-breakpoint fragments

as well as the minimum circle length (shortest possible transcript) and maximum circle length (longest

possible transcript, or circRNA length from start to end, if no annotation overlaps the circRNA

coordinates) because rolling circles are only possible if the circle length is shorter than the synthesized

fragment length.

The user may execute this step within python by generating an object of class

get_mate_information:

import get_mate_information as mateinformation

mi = mateinformation.mate_information(platform, split_character,

bedfile, outfolder, sample, tmp_folder)

mi.run()

Table 3.6 shows an example output produced when running get_mate_information.

Table 3.6: sample.mate_status.txt

circle_id transcript_ids num_ min_ max_ single double undefined

reads length length

10_108240105_108251008 ENSMUST070663 4 757 757 1 3 0

10_117692582_117695068 ENSMUST105263,ENSMUST020408 12 90 319 1 11 0

10_120947204_120952255 ENSMUST119093,ENSMUST119944 22 172 172 0 22 0

600 BP 600 BP

Read 1

Read 2

Read 1

Read 2

F1 F2

BSJ BSJ

a) b)

Figure 3.6: Double-breakpoint fragments. Images of two scenarios of how double-breakpoint fragments
may originate from circular RNA. The fragment on the left-hand side results from a rolling circle amplification
spanning the back-splice junction twice. Reads originating from this fragment both span the chimeric junction,
but on different locations on the fragment. The fragment on the right-hand side is shorter than on the left.
Reads originating from this fragment overlap in the middle, thus both reads span the chimeric junction, but it is
actually the same location on the fragment. In RNA-Seq data it is impossible to distinguish the two cases.
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3.2.7 Coverage Profiling: get_coverage_profile.py, make_coverage_picture.R,

and summarized_coverage_profiles.R

The coverage profile of a circRNA is important for many reasons. Because all reads considered as

circular RNAs are anchored at the back-splice junction, a typical profile of a circRNA will be an

inverted bell shape with high coverage around the circle junction boundaries and a low or no coverage

in the middle, i.e. opposite the back-splice junction. Thus, the coverage profile can indicate how much

of a circRNA can be reconstructed (no gap in the coverage profile indicates that the structure of the

circRNA can be fully reconstructed). An uneven coverage profile might indicate a bias in sequencing,

alignment, or annotation and this circRNA should be investigated further to ensure that it is a true

circRNA. The script get_coverage_profile.py uses the coverage function from pybedtools to

generate a position-wise as well as an exon-wise coverage profile based on the circle BAM files and

the annotation BED file.

Table 3.7 is an example of the position-wise coverage profile. Each profile is written to a separate file

while the exon-wise coverage profiles are written into one BED formatted table to get an overview of

the exon coverage (see Table 3.8). The user may generate coverage profiles directly from separated

circle BAM files by creating an object of class get_coverage_profile:

import get_coverage_profile as coverage_profile

sv = coverage_profile.get_coverage_profile(exon_index, split_character,

platform, bedfile, outfolder, sample, tmp_folder)

sv.run()

Table 3.7: Position-wise coverage track

exon relative_pos_in_circle relative_pos_in_exon coverage

8 1 1 14

8 2 2 14

8 3 3 14

8 4 4 14

. . .

Based on the position-wise coverage profiles the R script make_coverage_picture.R generates

a graphical interpretation of the coverage. The profiles are smoothed and exons are indicated by

different colors. The graphs are saved as PNGs such that the user may easily view them side by side
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Table 3.8: Exon-wise coverage track

sample circle_id transcript_id other_ids exon_id chr

start end strand exon_length unique_reads

fragments number+ number-

old_heart 1:160700712-160702460 ENSMUST28049 ENSMUST28049 11 1

160700711 160700878 - 167 50

100 50 50

old_heart 1:160700712-160702460 ENSMUST28049 ENSMUST28049 12 1

160702357 160702460 - 103 50

100 50 50

old_heart 9:59394878-59405855 ENSMUST171975 ENSMUST171975,ENSMUST165322 1 9

59394877 59394990 - 113 2

2 0 2

or scan through them to evaluate the quality and coverage of the circRNAs. The user may generate

coverage pictures by executing the R script:

make_coverage_picture.R [sample].coverage_profiles/circle.BAM

[sample].coverage_pictures/

A second R script (summarized_coverage_profiles.R) summarizes all circRNA coverage

profiles. After normalizing by length, the circRNAs are clustered based on their coverage profile

similarities. The clustering is implemented on different sets of circRNAs; once on all circRNAs to

obtain a general overview and once on circRNAs shorter than 500 BP, on circRNAs between 500 to

1000 BP, and circRNAs longer than 1000 BP to avoid biasing the clustering to only cluster circRNAs

by their length. K-means from the R package amap is implemented as method for the clustering. The

number of cluster starts is chosen based on the following rule: if a set contains two or fewer circRNAs,

no clustering is performed. If a set contains three to nine circRNAs, k = 2. If a set contains between

ten and 20 circRNAs, k = 3. If a set contains 20 to 100 circRNAs, k = 4. If a set contains more than

100 circRNAs, the number of clusters is determined by k = round
(
♯ circRNAs

20

)
. Independent of

the size of the sets, the maximum number of clusters chosen is ten. Running the script requires a

set of input coverage profiles, which are read into R from a user specified input folder, and results

in tab separated tables (see Table 3.9) indicating the cluster a circRNA belongs to as well as tables

(see Table 3.10) indicating the cluster means. The user may only cluster the circRNAs based on the

coverage profiles by executing the R script:

summarized_coverage_profiles.R [sample].coverage_profiles/
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Table 3.9: cluster_association.all_circles.tsv

circle_id length cluster_id

10_108240105_108251008 442 8

10_12436281_12455564 202 1

10_128207298_128208667 229 6

Table 3.10: cluster_means.all_circles.tsv

X1 X2 X3

1 5.61 5.40 4.80

2 8.25 8.25 8.5

3 1.86 1.90 1.96

...

3.2.8 Output data

Running the whole pipeline results in three folders and seven files in the specified output folder.

Table 3.11 provides an overview over the whole output obtained by running FUCHS in the described

way.

Table 3.11: Output files

File Script Reference

[sample] extract_reads.py

[s].coverage_pictures make_coverage_picture.R

[s].coverage_profiles get_coverage_profile.py

[s].alternative_splicing.txt detect_splicing_variants.py Table 3.5
[s].exon_counts.[bed|txt] get_coverage_profile.py Table 3.8
[s].logfile.[date_time] FUCHS

[s].mate_status.txt get_mate_information.py Table 3.6
[s].skipped_exons.[bed|txt] detect_skipped_exons.py Table 3.4

3.3 Results and discussion

Alternative splicing and isoform summary

FUCHS ran on a subset of circRNAs detected by DCC based on the read threshold of at least two reads

having a mapping quality of at least 2 (-r 2 -q 2). Figure 3.7a illustrates the number of circRNAs

per sample, categorized by length, that were analysed. It appears that though, DCC detected more

circRNAs in both liver samples than in both heart samples (compare Figure 2.7), there were more

circRNAs that did not pass the threshold in liver than in heart (∼ 300 in liver vs. ∼ 30 in heart).

Summarizing these circRNAs by host genes revealed that the majority (∼ 60 %) of host genes

expressed only one circRNA. CircRNAs that originated from the same host gene often shared either
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the 5’ splice site or the 3’ splice site. The remaining three relationship categories were less frequent

(3-7 %, see Figure 3.7c and Table 3.12). For host genes expressing more than two circRNAs each

pairwise comparison was categorized. For example, if there were four circRNAs from the same host

gene, three were using the same 5’ splice site, and the fourth was sharing the 3’ splice site with one of

the other three this host gene would contribute one count to the ’same start’ category and one count to

the ’same end’ category.

Same Start

Same End
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Overlapping
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Figure 3.7: Isoform summary. a) Number of circRNAs analyzed with FUCHS in each sample stratified by
the length of the circRNAs. The circle length was estimated based on the annotated gene model. b) Possible
relationships between two circRNAs from one host gene. c) Proportion of relationshipts between two circRNAs
from one host gene across all samples (see Table 3.12).

Table 3.12: Isoform summary

Y_HE O_HE Y_LI O_LI
single 1019 920 1125 1143
same start 223 170 256 263
same end 235 173 279 284
overlapping 114 69 139 132
within 58 52 71 81
skipped exon 106 61 73 65

Number of circRNAs per host gene correlates with host genes genomic length

More than 50 % of host genes harbored only one circRNA. Based on combinatoric possibilities I

expected that the number of exons (i.e. number of splice sites) would correlate best with the number of

circRNAs. However, calculating the Spearman rank-correlation coefficient revealed that the number

of circRNAs correlated best with the genomic length and only second best with the number of exons

(rS = 0.25 vs. rS = 0.17). The transcriptome length had little influence on the number of circRNAs



3.3 Results and discussion 45

expressed by one host gene (rS = 0.13). This suggests that the intron’s lengths are of importance for

circularization. If the intron’s and exon’s characteristics were equally contributing to the number

of circRNAs one host gene can express, the correlation between the number of circRNAs and the

genomic length as well as the transcriptomic length should be similarly high. Indeed when only

taking the length of introns (genomic length - transcriptomic length) into consideration, the correlation

increased to rS = 0.27. This indicates that longer introns are beneficial for producing more circRNAs.

Previously circRNAs had only been viewed individually, where it was shown that long flanking

introns drive circularization (over other introns) [34]. Here I indicate that of all host genes expressing

circRNAs the ones with the longer introns give rise to more circRNAs that other host genes.
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Figure 3.8: Correlation of number of circRNAs per host gene. a) Number of circRNAs per host gene for
each sample. The majority of host genes expresses only one circRNA. b) Scatter plot comparing the genomic
length of the host gene on the x-axis and the number of circRNAs expressed by the host gene on the y-axis. c)
Number of exons annotated in the host gene on the x-axis and the number of circRNAs expressed by the host
gene on the y-axis. d) Transcriptomic length (only exons) of the host gene on the x-axis and the number of
circRNAs expressed by the host gene on the y-axis.

Mate pair information

The method get_mate_information provided information about the proportion of double-

breakpoint fragments as well as an estimate about the minimal and maximal length of the circRNA.

There was no significant difference in circle length when using the Wilcoxon test to compare young

and old samples of the same tissue. However, when comparing heart circRNAs to liver circRNAs,

heart circRNAs were significantly longer than liver circRNAs (p < 2.2e−16).
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Based on the difference in circRNA length I expected that the proportion of double-breakpoint frag-

ments would be higher in liver, assuming that short circRNAs could by fully captured during cDNA

synthesis. Indeed, as visualized in Figure 3.9b, the proportion of double-breakpoint fragments was

higher in liver than in heart.

A strong negative correlation (r = −0.96) between the circle length and the proportion of double-

breakpoint fragments emerged when comparing the median circle length with the median proportion

of double-breakpoint fragments as demonstrated in Figure 3.9c. However, it remains unclear if

measuring the proportion of double-breakpoint fragments can really be used to identify false positive

circRNAs as double-breakpoint fragments could also result from back-splice junctions spanning

fragments shorter than the read length (see Figure 3.6). Nevertheless, some extremely short circRNAs

showed single reads which actually span the back-splice junction twice. Unfortunately, these reads

were not reported as such because current mapping algorithms are unable to map these reads correctly

as they only allow for one chimeric junction per read.
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Coverage profiling

Figure 3.10 illustrates the average coverage profiles of all circRNAs grouped into three groups based

on their length. As expected, short circRNAs were well covered with reads over the entire length. The

longer a circRNA became, the wider the region with low or no support increases. This was true for all

samples. Noticeably, though the gap grew wider in all samples, the junction coverage increased in the

heart samples but not in the liver samples. This could mean that longer heart circRNAs were more

abundant than shorter heart circRNAs.

Coverage profile clustering

Clustering all circRNAs based on their length-normalized coverage profile mainly separated all

circRNAs by their different length (see Figure 3.11a and b). Cluster 3, 4, 7, and 9 indicated an

unbalanced back-splice junction support. Cluster 4 and 7 only differ by the width of the gap, the same

applied for cluster 3 and 9. This was explained by the length of their members. CircRNAs of cluster 3

and 4 were longer than those of cluster 7 and 9, while there was no difference between 3 and 4, 7 and

9 respectively.

By grouping circRNAs based on their length first and performing the clustering on the separated

groups afterwards, a clustering solely by length was avoided as depicted with the box plots in Figure

3.11e, h, and k, thus suspicious circRNAs were more noticeable. I expect that the inner structure of

circRNAs belonging to clusters 8 and 10 of short circRNAs, 8 and 9 of medium length circRNAs, and

cluster 1 and 2 of long circRNAs will not match the annotated gene model rather than having a truly

unbalanced junction support. This suggests that it may be worthwhile to describe the exon-intron

chain in an unbiased way.
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Figure 3.10: Coverage profiling results for each sample
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Figure 3.11: Example of the clustering by coverage profiles (Young Heart)
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3.4 Conclusions and outlook

In summary, FUCHS is a new pipeline to summarize several aspects of the circRNA landscape and

library characteristics. Summarizing circRNAs by host genes revealed that 40 % of host genes

expressed more than one circular isoform. Analysing the proportion of double-breakpoint fragments

unfolded a strong negative correlation between the median proportion of double-breakpoint fragments

and the median circle length. Coverage profiling and clustering by coverage profiles informed about

the characteristic distribution of reads around the circular RNA if only back-splice anchored reads

were considered.

As shown in Figure 3.6, double-breakpoint fragments can originate from short overlapping reads or

very long reads, which capture the whole circle and span the chimeric junction twice. I believe that

with the correct library preparation double-breakpoint fragments may be used to indirectly validate

circularization. First, the cDNA library would need to be synthesized before fragmentation of the

library to allow for rolling circles. Second, a size selection would be necessary in order to sequence

only fragments that are longer than twice the desired read length to avoid that reads overlap. Provided

these library preparation steps, double-breakpoint fragments may only arise from long fragments,

rolling around the circRNA at least twice.

Initially, I hypothesized that a coverage profile deviating from the norm would indicate another

origin for the back-splice junction different from circularization such as trans-splicing or genomic

rearrangement. However, the more likely reason for such a coverage profile is that the exon-intron

structure of the circRNA did not match the annotated gene model as the coverage was only observed

for annotated exons.

My conclusion is that FUCHS summarizes the circRNA landscape well but the detection of alternative

splicing within the same back-splice junction is limited to annotated exons. In the next chapter, I will

describe an additional method that attempts to overcome FUCHS’s limitations to detect novel spliced

isoforms by reconstructing the exon intron structure based on intron signals from back-splice junction

anchored reads.



Chapter 4

De novo circle structure reconstruction

based on intron signals – FUCHSdenovo

4.1 Introduction

As described in the previous chapter, identifying inner circle structures based on annotation has the

disadvantage that only annotated transcripts can be identified. The individual coverage profiles of

circRNAs indicated that annotated gene model were not always suitable for representing the circle

structures. Furthermore, alternative splicing events were underestimated as only annotated exons could

be identified as skipped. For this reason I developed an additional program called FUCHSdenovo .

FUCHSdenovo loads the separated circRNA BAM files generated using FUCHS and extracts the linear

intron signals of back-splice junction anchored read pairs. First, the introns are connected into an

intron chain. Second, exons are assumed to be in between two introns and then refined using the

circRNA’s coverage track. For circRNAs which are not fully covered, the exon-intron structure

is inferred based on the provided annotation. This chapter will describe these steps in detail. To

exemplify the functionality and results gained by running FUCHSdenovo I will run the program

on the previously mentioned murine heart and liver samples. Lastly, I will compare the results of

FUCHSdenovo and CIRI-AS to evaluate their performances.
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4.2 Methods

Connect introns

In standard SAM or BAM files introns are indicated as N in the CIGAR string

and the exact location of the intron start and end are saved in an extra field,

jI:B:i,position,position[,position,position]. The breakpoint positions always come

in pairs. FUCHSdenovo uses pysam to parse the intron positions and saves them into a dictionary with

the genomic coordinates as key and the reads spanning the respective intron as value. Once all reads

are examined and all introns are noted, the introns are sorted by their coordinates.

Afterwards, the intron chain reconstruction phase starts. An empty dictionary is

created to save all transcripts. This dictionary is initialized with one transcript

t[0] : [(Chrcircle, Startcircle - 1, Startcircle)] to denote the start of all transcripts.

Then, using a for loop to iterate through all transcripts trying to add the current intron to each

transcript. The intron is chained to an existing transcript if the start of the current intron is bigger

than the end of the transcript’s last intron. If the current intron could not be chained to any existing

transcript, a copy of all transcripts without their last intron is generated and the current intron is

chained to suitable transcripts. Once all introns are connected, the circle end is added to all transcripts

as [(Chrcircle, Endcircle + 1, Endcircle + 2)] to close all transcripts (see Figure 4.1a).

Infer exons

Exons are inferred using the transcript dictionary with all introns connected as transcripts. Iterating

through all transcripts, exons are assumed to exist in between two neighboring introns such that

exon coordinates are: [(Chrcircle, Endintron[i], Startintron[i+1] - 1)]. Exons are written

to the transcript dictionary, into the slot ’exons’, with their coordinates as key and their average

coverage as value. The average coverage is calculated based on the coverage track obtained with

pybedtools.coverage().

Creating exons in this naive way could result in long, false exons as indicated by the exon in red in

Figure 4.1b. For example, if there were regions where no read aligned to, then there could not be an
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intron signal which can be use for chaining. Therefore, the split coverage track is used to split and cut

any exon with zeros in the coverage track as shown in Figure 4.1b.

Introns = { , , , }

I1

Transcripts = { 0 : [ , ] ; 1 : [ , ] }

S E
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I3
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1 : [ , , ] }

S E
I1

I2

I3
I4

S I1

S I2

...

I4

I4

I3

Transcripts = { 0 : [ , , , , ] ;
1 : [ , , , ] }

S I1

S I2

I4

I4

I3 E

E

T0[exons] : E1 E2 E3 E5E4

T0[coverage] :

Annotation : E3 E4 E7E6E5

T0[exons] :

E3 E5E4T0[exons] : E1 E2 E6

S EI1 I3 I4T0[introns] :

T0[exons] : E1 E2 E3 E4

T0[coverage] :
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Figure 4.1: FUCHSdenovo . a) Algorithm used to connect introns into transcripts. Light blue boxes represent
the input and output of the method. Gray box represents the method. S and E represent the start and end
coordinates of the circRNA. I1-I4 represent the forward-splice signals of back-splice junction anchored reads.
The pseudo code represents Python based dictionaries and lists. b) Exon infering. The representation is the
same as in the previous picture. E1-E4 represent exons. The red box labelled E3 represents a region of the
circRNA which is not supported by reads. The horizontal dashed lines are only for orientation. c) Using
annotated gene models to infer the intron exon structure of unsupported regions.

Infer structure in unsupported regions

If an annotation file was provided, FUCHSdenovo infers the exon-intron structure in unsupported

regions based on annotated exons using pybedtools.intersect(). Any identified exon is added

to all transcripts with an average coverage of zero. This could result in overlapping exons if there

are multiple annotated transcripts from different gene models. Therefore, exons are merged if

they overlapped or if they were direct neighbors. Exons are considered to be direct neighbors if

Endexon[i] + 1 == Startexon[i+1]. The joining of exons stops once no exon overlaps another exon

resulting in a gene model as exemplified in Figure 4.1c.
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Handling of circRNAs without intron signals

There are two ways in which circRNAs may not have intron signals. First, the circRNA could be

comprised of only one exon. Thus, there are no introns present. Second, it could be a long circRNA

and only the first and last exons are supported by reads. Thus, no intron spanning reads are present in

the circle BAM file. To report these circRNAs as accurately as possible, FUCHSdenovo evaluates the

coverage track of these circRNAs. If there are no zeros in the coverage track, the circRNA is written

as a single exon circRNA. If there is a break in the coverage track, i.e. a continuous sequence of zeros,

the structure is inferred as described in the previous subsection.

Write gene models

All reconstructed transcripts are written into two BED files. One exon-wise table in BED6 format (see

Table 4.1 for more details) and one transcript-wise table in BED12 format (see Table 4.2 for more

details).

Table 4.1: BED6

Chr Start End Name Score Strand

10 128207298 128207390 10:128207298-128208667|0|0,1 17 .

10 128207538 128207622 10:128207298-128208667|1|0 6 .

10 128207560 128207622 10:128207298-128208667|2|1 6 .

10 128208590 128208667 10:128207298-128208667|3|0,1 18 .

10 21299178 21299243 10:21299178-21307779|0|0 4 .

10 21304529 21304643 10:21299178-21307779|1|0 4 .

10 21307584 21307779 10:21299178-21307779|2|0 5 .

10 123163593 123163654 10:123163593-123181800|0|0 2 .

10 123168226 123168372 10:123163593-123181800|1|0 0 .

10 123171099 123171226 10:123163593-123181800|2|0 0 .

10 123181672 123181800 10:123163593-123181800|3|0 1 .

Table 4.2: BED12

Chr Start End Name Score Strand ThickStart

ThickEnd Color NumberOfExons ExonLength RelativeExonStart

10 128207298 128208667 10:128207298-128208667|0|1.0 4 . 128207298

128208667 255,0,0 3 92,84,77 0,240,1292

10 128207298 128208667 10:128207298-128208667|1|1.0 5 . 128207298

128208667 255,0,0 3 92,62,77 0,262,1292

10 21299178 21307779 10:21299178-21307779|0|1.0 4 . 21299178

21307779 255,0,0 3 65,114,195 0,5351,8406

10 123163593 123181800 10:123163593-123181800|0|0.263 1 . 123163593

123181800 255,0,0 4 61,146,127,128 0,4633,7506,18079
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4.3 Results and discussion

De novo reconstruction reveals more internal alternative splicing

With FUCHSdenovo , the number of host genes harboring circRNAs with different internal structures

doubled to 8-10 % (compare Figure 3.7 and 4.2). This is concordant with previous findings presented

in [46]. CIRI-AS predicted 5-10 % of all circRNAs to be alternatively spliced and 12-20 % of highly

abundant (≥ 20 BSJ reads) circRNAs to be alternatively spliced. Classifying these internal structures

into four categories (AEU: alternative exon usage; A5SS: alternative 5’ splice site; A3SS: alternative

3’ splice site; and IR: intron retention) showed that for all samples the first three events were equally

common, with 32 % (+/- 5 %) on average. Intron retention is the least observed alternative splicing

event.
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Figure 4.2: Host gene summary FUCHSdenovo . a) Same data as in Figure 3.7 adjusted for the number
of alternatively spliced circRNAs identified with FUCHSdenovo . b) Four types of how a circRNA can be
alternatively spliced. A combination of these splicing events is possible as well. c) Distribution of different
alternative splicing events across the samples. The colors match the colors in b.

Alternative spliced isoforms are tissue specific

Figure 4.3 illustrates an alternative exon usage within the circRNA 5:135121506-135124017 of the

transcription factor MLXIPL. The circRNA consists of five annotated exons. Additionally, there was

one isoform skipping the fourth exon. While one isoform was common among all samples, the other

isoform was not annotated and was only present in the liver samples but not in the heart samples. This

indicates, that alternatively spliced circRNAs are tissue specific and not random miss-splicings or
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miss-alignments. This was supported by the numbers of alternatively spliced circRNAs present in

both samples of one tissue. The number of tissue-specific AS circRNAs were higher than the number

of AS circRNAs present in all samples (see Figure 4.3).

Young Heart

5:135121506-135124017|0|1.0 

Reference

MLXIPL

Old Heart

5:135121506-135124017|0|0.26 

Young Liver

5:135121506-135124017|1|1.0 

5:135121506-135124017|0|1.0 

Old Liver

5:135121506-135124017|1|1.0 

5:135121506-135124017|0|1.0 

a) b)

c)

Figure 4.3: Internal circRNA structures. a) Exon-intron chains of two alternatively spliced circRNAs in the
MLXIPL locus. Overlapping circRNA annotations were removed to enhance visibility of the alternative exon
usage in circRNA 5:135121506-135124017. b) Venn diagram of the alternatively spliced isoforms present in
one, two, three, or four samples. c) Venn diagram is a subset of the Venn diagram shown in b. Alternative
splicing was only detected in circRNAs shared among all samples. Although circRNAs are present in all
samples they are not always alternatively spliced in all samples.

Gain of more than 15% new information over previous approach

I examined the amount of information gained in order to show that reconstructing the exon-intron chain

using intron signals first, and completing the circle structure using annotated features second, has an

advantage over defining the circle structure using only annotated features. Exons were classified into

four categories. If the circularized exons (circExon) were matching exactly to annotated exons (+/- 5

BP), they were classified as annotated exons. If circExons were not overlapping annotated exons, they

were classified as completely new exons. If circExons were longer than the annotated exon, they were

classified as partially new exons. If circExons were transcribed in the anti sense direction, they were

classified as anti-sense exons. Figure 4.4a summarizes all categories as a graphical representation.
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Figure 4.4: Gain of information over previous approach. a) Four classes that circRNA exons were classified
as to compare the inferred structure to annotated gene models. b) Distribution of classes from a. The distrubtion
is is equal over all samples with 85 % of exons matching fully to annotated exons and approximately 5 % of
completely new, partially new, or anti-sense exons. c) Gain of information on a base level. Only not annotated
bases were counted according to the class of their respective exon.

Evaluating the gain on an exon level revealed an even distribution of all categories across all

samples with ∼ 85 % of exons matching annotated features and ∼ 5% of all other categories (see

Figure 4.4b). When the resolution was increased to investigate how many bases this gain of information

corresponded to the proportion of bases of exons exactly matching with annotated features decreased

by 30 %. The proportion of new bases of partially annotated exons increased to 20 % on average.

This is explained by alternative 5’ and 3’ splice site usage. The proportion of bases of completely new

exons was highest in young liver and lowest in young heart. Considering that the proportion of new

exons was equal in both samples it indicated that these new exons were shorter in heart than in liver

(compare Figure 4.4b and c). The gain of 15 % on exon level and > 40 % on base level shows that to

study the function of circRNAs in silico, the de novo reconstruction of circRNAs is crucial in order to

reliably detect miRNA seeds or RBP motifs in circularized sequences.
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4.4 Comparison to CIRI-AS

Running CIRI-AS

CIRI-AS is the only other program that is able to detect alternatively spliced isoforms in circRNAs

using the same raw data as FUCHSdenovo . To run CIRI-AS one needs to detect circRNAs using CIRI

first. Since its publication, CIRI was improved to use multi threading and to process reads of different

length. However, CIRI-AS is neither able to use multi threading nor able to process reads of different

length. Therefore, all reads were trimmed and filtered to 249 BP resulting in a loss of ∼ 65 % of

base pairs. The following commands were used to detect alternative splicing in both heart and liver

samples using CIRI-AS:

# Trimming

flexbar -n 4 -r [sample]_R1.fastq.gz -p [sample]_R2.fastq.gz

-t trimmed/[sample] -f sanger -u 50 -k 249 -m 249 -z GZ

# Aligning

bwa mem -P -T 19 -t 18 -B 3 bwa/GRCm38.79 trimmed/[sample]_1.fastq.gz

trimmed/[sample]_2.fastq.gz > [sample].sam

# Detecting circRNAs

perl CIRI_v2.0.5.pl -I [sample].sam -O CIRI/[sample].ciri

-F GRCm38.dna.toplevel.fa -A GRCm38.79.gtf

-G CIRI/[sample].ciri.log -high -U 3 -T 8

# Detecting alternative splicing in circRNAs

perl CIRI_v2.0.5.pl -S [sample].sam -C CIRI/[sample].ciri

-O CIRI/[sample].ciri_as. -F GRCm38.dna.toplevel.fa

-A GRCm38.79.gtf -G CIRI/[sample].ciri_as.log
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Evaluation parameters

Due to the lack of gold standards or positive controls, I compared FUCHSdenovo and CIRI-AS only

quantitatively by the circRNAs each programs detected as alternatively spliced. First, I compared the

overlap of circRNAs used as input for FUCHSdenovo and CIRI-AS, since both detection programs

are only able to identify AS in previously detected circRNAs. Sample-wise four way Venn diagrams

allow to evaluate how many circRNAs were identified as alternatively spliced by both programs,

how many alternatively spliced circRNAs were overlooked by each program although the circRNA

was detected, and how many alternatively spliced circRNAs were lost because of the difference in

circRNA detection between DCC and CIRI.

Furthermore, I evaluated the runtime and the memory consumption of FUCHSdenovo and CIRI-AS

on equal computing environments.

FUCHSdenovo and CIRI perform similarly well

First, comparing DCC and CIRI shows that half of the circRNAs detected by DCC were also detected

by CIRI while two thirds of circRNAs detected by CIRI were detected by DCC (Figure 4.5a and b).

Of the circRNAs used to detect alternative splicing CIRI-AS identified a similar proportion of

alternatively spliced circRNAs in all samples (∼ 8 %). Nevertheless, since CIRI detected fewer

circRNAs than DCC, the total number of alternatively spliced circRNAs was larger with FUCHSdenovo

than CIRI-AS (avg. 133 vs. avg. 101).

Examining the concordance of alternatively spliced circRNAs per sample showed that FUCHSdenovo

and CIRI-AS only agree on less than half of the alternatively spliced circRNAs. CIRI-AS failed to

find the majority of circRNAs although CIRI detected the respective circRNA. However, without a

positive control it remains elusive if these circRNAs are false positives identified by FUCHSdenovo or

false negatives not identified by CIRI-AS.

Evaluating the runtime and memory consumption showed that FUCHSdenovo was faster on all

evaluated samples but CIRI-AS was slightly more memory efficient. Because FUCHSdenovo is able

to use multi threading the runtime and memory demand can be tailored to the users requirements, i.e.

trading off runtime for less memory.
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Figure 4.5: Comparison of FUCHSdenovo and CIRI-AS. a) Stacked bar plot representing the number of
circRNAs detected by DCC, CIRI, or both detection programs in each sample. b) Venn diagram of the
overall overlap of circRNAs detected by DCC and CIRI. c) Overview of the estimated proportion of circRNAs
FUCHSdenovo or CIRI-AS predict as alternatively spliced. The number above each bar represents the total
number of alternatively spliced circRNAs. Both programs predict the proportion of alternatively spliced
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alternatively spliced circRNAs for each sample. The overlap was performed on the circRNA coordinates. The
outer two circles represent all circRNAs while the inner two circles represent the circRNAs with alternative
splicing.
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Figure 4.6: Runtime and memory consumption. a) Maximum memory and time that was consumed by each
program for each sample. Both programs ran in the same computing environment. b-c) Memory consumption
over time. While FUCHSdenovo reaches its maximum memory within the first minute CIRI-AS memory
consumption increases in two steps.
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4.5 Conclusions

FUCHSdenovo is superior to the previous get_coverage_profile.py and

detect_skipped_exons.py. It identifies twice as many alternative splicing events in circRNAs

sharing the same back-splice junction. Evaluating the gain of information when running FUCHSdenovo

revealed a gain of 15 % on exon level and > 40 % on base pair level over using annotated gene

models to define the inner structure of circRNAs.

Classifying these alternative splicing events into different categories uncovered that AEU, A5SS,

and A3SS were equally common. Intron retention is the least abundant alternatively spliced isoform.

These results differ from previous reports where AEU was the most common AS isoform [46].

Comparing FUCHSdenovo and CIRI-AS showed that both programs predicted an equal proportion

of circRNAs to be alternatively spliced. On one hand, FUCHSdenovo detected more circRNAs

as alternatively spliced in CIRI-detected circRNAs. On the other hand, CIRI-AS predicted less

circRNAs as alternatively spliced in DCC-detected circRNAs. Furthermore, FUCHSdenovo is faster

due to its ability to distribute the reconstruction of different circRNAs onto multiple threads while

being comparably memory efficient as CIRI-AS.

Because FUCHSdenovo reports the circle structure as BED6 and BED12 files, a feature lacking in

CIRI-AS, the output of FUCHSdenovo can directly be used to view the circle structures in a genome

browser or to obtain the FASTA sequence to perform further computational analysis. In the following

chapter I will describe a selection of these computational analyses that aim to decipher the function

and biogenesis of circRNAs.





Chapter 5

Downstream analyses based on

reconstructed circRNA structures

5.1 Introduction

Running FUCHS summarizes circRNAs by their host genes. Running FUCHSdenovo additionally

yields a more accurate circle structure than could be obtained using only annotated gene models.

In the following chapter I will highlight possible computational downstream analyses that can be

performed using the output of FUCHS and FUCHSdenovo .

5.2 Methods

FASTA file generation

As previously discussed, FASTA files can be generated from BED files using bedtools getfasta.

If a BED12 file is provided, bedtools is able to extract and concatenate the blocks of sequences

into one transcript using the -split flag. Using the -s flag ensures that sequences are obtained with

respect to their strand, i.e. for features on the reverse strand the reverse complement will be extracted.

The FASTA sequences were generated with the following command:
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bedtools getfasta -fi GRCm38.dna.toplevel.fa

-bed [sample]_exon_chain_inferred_12.strand_specific.bed

-fo [sample].fa -split -s

Host transcripts were filtered from an annotation file and transformed from BED6 to BED12

files in order to use the same bedtools getfasta parameters. Host transcripts and circRNAs

were rearranged into one FASTA file per host gene containing all sequences of circRNAs and host

transcripts belonging to that gene.

RBP motif and miRNA seed searches

To investigate whether any circRNAs could be targets of miRNA or RBPs, I performed a motif search

on the previously described FASTA files using FIMO [49], a program integrated in the MEME suite1. In

order to exploit the server’s computing power, whole motif databases were scanned against gene-wise

FASTA files containing circRNA and host transcript sequences, which were associated with the same

gene as opposed to one FASTA file containing all sequences. Known miRNA seeds were downloaded

from TargetScan2 and transformed into a MEME-like motif database. For known RBP motifs, the MEME

database ‘uniprobe_mouse.meme’3 was downloaded from the MEME suite. FIMO version 4.11.2 was

used to compare these databases to the target sequences using the following command:

fimo -v 1 --thresh 0.0001 --norc -- oc [sample]/[gene]/

[database].meme [sample]/[gene].fa

The identified seed hits were merged into one table. p-values were corrected for multiple-

hypothesis testing using the R function p.adjust(method = 'fdr'). Hits with an FDR > 0.01

were removed from further analysis.

To test whether circRNAs were more densely populated with miRNA seeds or RBP motifs, the number

of hits per transcript was divided by the length of the corresponding FASTA sequence.

To identify meaningful circRNA-miRNA or circRNA-RBP pairs, the number of seeds was summarized

by circRNA and miRNA, RBP respectively. p-values for circRNA-miRNA or circRNA-RBP pairs
1http://meme-suite.org/
2http://www.targetscan.org/mmu_71/mmu_71_data_download/miR_Family_Info.txt.zip
3http://meme-suite.org/meme-software/Databases/motifs/motif_databases.12.15.tgz

http://meme-suite.org/
http://www.targetscan.org/mmu_71/mmu_71_data_download/miR_Family_Info.txt.zip
http://meme-suite.org/meme-software/Databases/motifs/motif_databases.12.15.tgz
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were calculated by permuting each motif in both databases 1000 times, as previously described by

Guo et al. [50]. RBP motifs were complex enough to guarantee 1000 unique permutations of each

motif; however, the majority of miRNA seed motifs gave rise to fewer than 1000 unique motifs.

Therefore, the maximum number of unique permutations was used to calculate the p-value for each

circRNA-miRNA pair.

GO enrichment

To gain insights into which functions or processes certain circRNAs could play a role in, GO

enrichment analyses were performed on different sets of host genes (Table 5.1). The enrichment was

performed using the web interface of GOrilla4 choosing M. musculus as organism and providing a

target and background gene list. All three GO categories were analysed setting the p-value threshold

to report enriched GO terms to 0.001.

Table 5.1: GO enrichment input sets

Target set Background set Question
Host genes expressing All host genes Are genes that express multiple circRNAs
more than one circRNA important for a specific process

compared to all host genes?
Host genes of circRNAs All host genes What are possible biological reasons
with alternatively for alternative splicing?
spliced isoforms
Host genes of circRNAs All expressed genes What are possible consequences if
enriched for miRNA seeds circRNAs were to compete for miRNAs?
Host genes of circRNAs All expressed genes What are possible consequences if
enriched for RBP motifs circRNAs were to compete for RBPs?

Motif search in flanking introns

It is known that flanking introns are an essential factor driving circularization. Here I wanted to

investigate if there were any motifs differentially enriched between circRNAs of certain characteristics.

I generated FASTA files of the flanking introns. The sequences comprised of 500, 2000, or 5000 BP

upstream of the splice donor or downstream of the splice acceptor of each back-splice junction. The

flanking introns of circRNA groups of interest (see Table 5.2) were used as the target set, while

4http://cbl-gorilla.cs.technion.ac.il/

http://cbl-gorilla.cs.technion.ac.il/
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those of other circRNAs were grouped into a background set. A differential-enrichment analysis was

performed between the target and background set to ascertain if there were any motifs associated with

the circRNAs of interest.

These enrichment analyses were performed using DREME [51], which compares the frequency of motif

hits between two sets of sequences using Fisher’s exact test:

dreme -v 1 -oc [set]_[size] -dna -p [set]_[size]_targets.fasta

-n [set]_[size]_background.fasta -norc -e 0.05 -eps

Table 5.2: Overview over the sets of flanking introns that were compared using DREME

Name Target Background
Host-gene-wise all circRNAs from host genes that all circRNAs from host genes

express multiple circRNAs that only express one circRNA
Splice-site-wise only flanking introns of splice site flanking introns of splice sites

which were used more than once which were only used once
Isoform-wise circRNAs that show alternative circRNAs that only have one

splicing exon-intron chain

5.3 Results and discussion

miRNA seed search

Comparing the total density of miRNA seeds in circRNAs to that in their host transcripts revealed that

the overall seed density in the former was higher than in the latter (see Figure 5.1a). The seed density

was higher in circRNAs expressed in liver than those expressed in cardiac cells, while the density

of seeds in host transcripts did not differ in these tissues. This could indicate a possible general

sponge function. Some circRNAs were not only more densely populated with miRNA seeds but

harbored more seeds than their host gene when considering the average over all transcripts (see Figure

5.1b). This could be explained by alternative splice site or exon usage in circRNAs as described

previously (Chapter 4.3). The histogram in Figure 5.1c shows that most circRNAs only harbored two

to three miRNA seeds of a given miRNA. One notable exception was circRNA 15:3388648-3551685

containing 18 seeds for miRNA-29-3p. The circRNA originated from the growth hormone receptor
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(GHR) locus. Nevertheless, I could not identify any circRNA as specifically enriched as CDR1-AS,

which harbors 70 seeds for miR-7 [22, 23].
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Figure 5.1: Results of the miRNA seed search. a) Overall density of miRNA seeds in either host transcripts
or circRNAs for each sample. Only seeds with a q-value ≤ 0.01 were considered for this analysis. CircRNAs
are significantly more densely populated with miRNA seeds than host transcripts (p ≤ 2.2e-16). b) Number of
seeds in host genes (averaged over all transcripts) vs. the number of seeds in circRNAs. The gray dashed line
serves as orientation (y = x). c) Overview of significant circRNA-miRNA pairs. p-values were calculated by
permutation for each specific circRNA-miRNA pair. The histogram shows only significant pairs (q ≤ 0.05).

RBP motif search

The results of the RBP motif search were similar to those of the miRNA seed search: the total motif

density was significantly increased in circRNAs over their host transcripts (see Figure 5.2a), and the

average number of motifs over all samples of a single RBP ranged from two to three. The strongest

motif enrichment was observed in circRNA 16:17671545-17674658 of the mediator complex subunit

15 (MED15) gene, which contained nine binding sites for ASCL2 (see 5.2c).
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Figure 5.2: Results of the RBP motif search. a) Overall density of RBP motifs in either host transcripts or
circRNAs for each sample. Only motifs with a q-value ≤ 0.01 were considered for this analysis. CircRNAs are
significantly more densely populated with RBP motifs than host transcripts (p ≤ 2.2e-16). b) Number of motifs
in host genes (averaged over all transcripts) vs. the number of motifs in circRNAs. The gray dashed line serves
as orientation (y = x). c) Overview of significant circRNA-RBP pairs. p-values were calculated by permutation
for each specific circRNA-RBP pair. The histogram shows only significant pairs (q ≤ 0.05).

GO enrichment

In Chapter 2, GO enrichment was performed on circRNAs expressed in liver, heart, or both against

all expressed genes, in order to investigate which GO terms are enriched in circRNA host genes.

Here, I investigated which GO terms host genes expressing multiple circRNAs and host genes

expressing alternatively spliced circRNAs were enriched for. Furthermore, I tested host genes of the

top ten percent of miRNA seeds or RBP motifs enriched circRNAs to gain information of potential

consequences in case circRNAs competed with their host genes for miRNA or RBP binding. Table

5.3 shows the results of all performed GO enrichments. The class of host genes bearing multiple

circRNAs was enriched for various regulatory processes, including regulation of metabolic processes

and microtuble cytoskeleton organizations. Host genes of alternatively spliced circRNAs were not

enriched for specific GO terms.

miRNA seeds and RBP motifs were enriched in circRNAs whose host genes were involved in various

regulatory and metabolic processes such as organic substance metabolic process and regulation of

biological processes. These results indicate that circRNAs could buffer regulatory processes by

competing for miRNA and RBP binding.
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Table 5.3: GO enrichment

Enriched in GO Term FDR E
Multi circRNA regulation of cellular process 2.84E-2 1.12
host genes regulation of macromolecule metabolic process 1.25E-1 1.17
(601 genes) regulation of biological process 1.49E-1 1.10

regulation of metabolic process 2.29E-1 1.14
biological regulation 2.05E-1 1.09
regulation of microtubule cytoskeleton organization 2.71E-1 2.13
regulation of cellular metabolic process 2.61E-1 1.14
positive regulation of molecular function 2.33E-1 1.34
regulation of primary metabolic process 2.91E-1 1.14
animal organ morphogenesis 2.66E-1 1.62
regulation of cellular macromolecule biosynthetic process 2.82E-1 1.19
regulation of macromolecule biosynthetic process 3.83E-1 1.18
negative regulation of MAPK cascade 3.79E-1 1.97
plasma membrane organization 4.15E-1 1.87

Enriched in
AS circRNAs
(248 genes)
Enriched in top cellular metabolic process 1.25E-17 1.64
10 % miRNA seed regulation of biological process 3.26E-11 1.31
enriched circRNA primary metabolic process 1.67E-16 1.60
(396 genes) organic substance metabolic process 3.99E-16 1.57

cellular component organization 7.60E-13 1.67
Enriched in top regulation of RNA metabolic process 6.78E-2 2.70
10 % RBP motif cellular component organization or biogenesis 2.96E-2 2.38
enriched circRNA developmental process 5.82E-2 2.13
(47 genes) biological regulation 5.90E-2 1.54

cellular process 1.21E-1 1.40
GO terms reported with p < 0.001, 1624/2828 background genes
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Flanking introns

Performing a differential motif enrichment analysis of binding motifs in the flanking introns revealed

several motifs enriched in different regions (0-500, 0-2000, and 0-5000 BP of the flanking intron) of

circRNAs of interest (see Figure 5.3 host-gene-wise). A comparison of these motifs against known

motifs using TOMTOM [52] revealed three interesting matches, CPEB1, HOX, and FOXO.

The motifs matching to the cytoplasmic polyadenylation element binding protein (CPEB1) were

enriched in the flanking introns of circRNAs from host genes yielding multiple circRNAs (see Figure

5.3). CPEB1 has been shown to influence alternative processing of its target genes and has been

indicated in chronic liver disease [53]. It could also be involved in alternative circRNA formation in

liver.

The motifs matching to members of the homeotic gene family (HOX) were also enriched in the flanking

introns of circRNAs from host genes yielding multiple circRNAs. HOX genes are transcription factors

active during in development [54, 55]. It is possible that HOX is responsible for the transcription of

circularized exons, thus making exon circularization more efficient. To my knowledge, neither HOX

nor CPEB1 have been indicated to play a role in circle formation, yet.

Interestingly, the immediate surroundings of alternatively spliced circRNAs revealed a positive matche

for FOXO3. This motif is also matching to FOXO1, FOXO6, and FOXO4. Forkhead box class O

(FOXO) proteins are transcription factors regulating several developmental processes, including cell

growth, proliferation and differentiation [56–58]. They have also been linked to longevity [59]. FOXO

proteins have not previously been implicated in circularization, however, the circRNA of FOXO3 has

been linked to cardiac senescence [60].
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Figure 5.3: Differentially enriched motifs. Differentially enriched motifs in the flanking introns of different
groups of circRNAs. Only the top three motifs for each analysis are shown here.
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5.4 Conclusions

The analysis performed in this chapter demonstrated potential downstream analyses that can be

performed based on the circRNA structures reconstructed by FUCHSdenovo . The BED6 and BED12

files produced by FUCHSdenovo can be used to acquire the FASTA sequences. Using bedtools

getfasta to obtain the FASTA sequence either exon-wise with the BED6 file or the complete circle

structure with the BED12 file. These sequences can then be used to find miRNA seeds and RBP

motifs. Other sequence based analyses such as differential enrichment analysis of identified motifs

are also possible.

The miRNA seed and RBP motif search showed that circRNAs are more densely populated with

seeds/motifs than their full-length host transcripts. This suggest that circRNAs could constitute

another layer of regulation by competing with their host genes for miRNA or RBP binding. However,

I could not identify a circRNA with a clear sponging function like that of CDR1-AS [22, 23].

Using the information gained by running FUCHS to perform a GO enrichment on host genes expressing

many circRNAs over host genes expressing only one circRNA revealed that these host genes are

enriched in regulatory processes.

Performing differential motif-enrichment analysis between the flanking introns of circRNAs from

multi- and single-circRNA host genes yielded two protein families, HOX and CPEB1, that could

potentially be involved in circRNA formation. Furthermore, flanking introns of alternatively spliced

circRNAs carry a FOXO motif. These protein families have not previously been linked to circle

formation, but pose interesting targets of future investigations to help understand the circRNA

biogenesis.



Chapter 6

Summary and conclusions

In my thesis, I benchmarked three state of the art circRNA detection programs and showed that DCC is

the most accurate and fastest circRNA detection program. CIRI performed second best while KNIFE

ranked third.

In chapter 3, I introduced my own tool to summarize and characterize circRNAs identified by DCC. My

program is called FUCHS, short for FUll CHaracterization of circular RNA using RNA-Sequencing.

FUCHS identifies host genes expressing several circRNAs, detects exon skipping of annotated exons,

calculates the proportion of double breakpoint reads, and generates circle coverage profiles. The

circle coverage profiles indicated that the annotated gene models were not always suited to represent

the circle’s exon-intron structure. Therefore, I extended FUCHS by a new module which I called

FUCHSdenovo . FUCHSdenovo reconstructs the exon-intron structure; first, by chaining together

linear intron signals of back-splice junction anchored read pairs. Second, if an annotation is provided,

it infers the exon structure of unsupported regions based on annotated gene models.

Throughout the thesis I used a sample dataset of two murine hearts (young and old) and two murine

livers (young and old) (see Table 2.3). The libraries were enriched for circular RNAs using RNaseR

treatment and sequenced with 250 BP paired-end reads in order to fully capture as many circRNAs

as possible. These samples were aligned using STAR. Their circRNAs were detected using DCC.

Identified circRNAs were summarized and characterized using FUCHS and their circle structure was

defined using FUCHSdenovo . Because there was only one library per tissue and time point it was only

possible to describe the circRNA landscape quantitatively. The analysis showed that heart samples
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were less diverse but expressed circRNAs were more abundant than in liver. A GO enrichment

indicated that genes expressing circRNAs were enriched for metabolic regulation. Comparing the

length of circRNAs revealed that the circRNAs in heart were longer than in liver. The summary of

circRNAs by host genes revealed that circRNAs from the same host gene often shared the same 5’ or

3’ splice site. Alternative splicing of circRNAs sharing the same back-splice junction occurred in

5-10 % of all circRNAs. Alternative 5’ or 3’ splice site usage and alternative exon usage were equally

abundant while intron retention was the least prevalent ( < 10 %) alternative splice isoform.

Using bedtools to obtain the FASTA sequences of the reconstructed circRNA structures allowed

to perform sequence based analysis such as scanning for miRNA seeds or RBP motifs. CircRNAs

in heart and liver were more densely populated with miRNA seeds and RBP motifs than their host

genes. However, no outstanding circRNA – miRNA/circRNA – RBP pair such as CDR1-AS – miR-7

could be found. My results indicate that circRNAs provide an additional layer for the regulation of

transcript expression as they are likely to compete with their host genes for miRNA and RBP binding.

A differential motif analysis of the flanking introns revealed that CPEB1 and HOX could be involved

in circRNA formation from host genes resulting in multiple circRNAs while FOXO proteins may be

involved in the formation of alternatively spliced circRNAs.

Essentially, this work introduces a new tool, FUCHS, to study the circRNA landscape of curated

organisms. The additional module, FUCHSdenovo , provides the foundation for further sequence based

computational analysis.



Chapter 7

Outlook: circRNAs in the African

turqoise killifish

7.1 Introduction

CircRNAs in ageing

The function of most circRNAs remains elusive. Enuka et al. [6] stimulated MCF10A cells with the

epidermal growth factor (EGF) to investigate if circRNAs are involved in highly dynamic signalling

cascades. They observed the expression of mRNAs, miRNAs, and circRNAs before stimulation and

up to four hours after stimulation. While the expression of many mRNAs as well as miRNAs changed

dramatically, the expression of circRNAs remained stable during and after the stimulation. This result,

together with the long half life of circRNAs, led Enuka et al. to the hypothesis that circRNAs are

not involved in signal cascades of fast and dynamic processes, but rather long-term processes such as

differentiation and cell ageing.

This hypothesis is supported by work from You et al. [48]. First, they identified brain as the tissue

with the highest circRNA expression in mice and later followed the expression of circRNAs during

the development of mouse hippocampi. In total, 224 circRNAs displayed a differential expression

pattern during development (181 were up-regulated, whereas 43 were down-regulated). The genes

encompassing these 181 up-regulated circRNAs were over-represented for pathways involved in
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synaptic function. This led You et al. to hypothesise that circRNAs are involved in synaptic

development and synaptic plasticity.

These studies imply that circRNAs could play a role during ageing. While Westholm at el. [34]

showed that the overall expression of circRNAs in the nervous system of D. melanogaster increases

during age, no study has investigated the function of circRNAs during ageing in vertebrate models,

yet.

CircRNAs in the brain

Several studies comparing different tissues showed that brain samples were significantly enriched

with circular RNAs, not only with respect to abundance, but also with respect to diversity [34, 48, 61].

One of the first studies that indicated an enrichment of circRNAs in the central nervous system

(CNS) over other tissues was performed by Westholm et al. [34]. More than 100 libraries were

sequenced from different developmental stages and tissues from fruit fly. A GO enrichment analysis

showed that circular RNA expressing genes were enriched for development, signalling and neural

function. More importantly, neural function was also increased during development before the CNS

was formed. Westholm et al. observed an increase of overall circular expression in ageing flies, but

did not speculate if this increase was due to accumulation or specific regulation and suggested, that

although this increase of circular RNAs may be incidental it may still be of biological relevance.

A more recent study investigated the circRNA expression in porcine embryonic brain development

as the first circRNA study on large mammals [62]. Contrary to the mouse and fly studies mentioned

before, they found a steady increase of the relative amount of circRNAs until day sixty of embryonic

development followed by a dramatic decrease from E60 to E80, flattening out until the day of birth

(E115). The most enriched pathways of host genes expressing circular RNA of > 0.15 RPM at

E60 are Wnt signalling, axon guidance, and TGF-beta signalling. Other observations including that

circRNA flanking introns are longer correspond to previous studies.
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a) b) c)

Figure 7.1: CircRNAs are highly enriched in brain samples. a) circRNA expression in different mouse
tissues [48]. b) circRNA expression in fruit fly heads [34]. c) circRNA expression in porcine brain [62].

A new model organism for ageing

The traditional model organisms to study ageing are C. elegans and D. melanogaster; they have

the advantages of a short life cycle, high number of offspring, and relatively low maintenance cost.

Furthermore, numerous genetic tools and lines are available to study gene function during ageing.

Other model organisms include D. rerio and M. musculus. They are more closely related to humans

than C. elegans or D. melanogaster, but their life span is too long for experimental manipulations.

Recently, a new model organism has been introduced to the ageing research. The African turquoise

killifish has the advantage of being a vertebrate with a much shorter life span than mice and zebrafish

(compare Fig. 7.2), while showing symptoms of ageing phenotypes also found in humans. These

include loss of pigmentation, reduction of locomotor activity, and neurodegeneration [63, 64].

Using this new model, I investigated the circRNA landscape during the life of the African turquoise

killifish, and established the over-expression of circRNA candidates in the fish to study the function

of circRNAs in vivo.

Here I am presenting the results of twelve killifish samples from a pilot RNA-Seq.
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Figure 7.2: Model organisms for ageing research. The x-axis is in years. In ageing research short lived
invertebrates or longer lived vertebrates are used for experiments due to the lack of a short lived vertebrate
model. The African turquoise killifish fills this gap as a extremely short lived vertebrate. The bottom right map
shows the natural habitat of the African turquoise killifish. This figure was taken from [65].

7.2 Methods

Data

Samples of young, adult and old fish were obtained (Fig. 7.3). Two replicates for each time point

from brain and muscle were sequenced with 100 BP single-end reads of rRNA-depleted RNA-Seq

libraries to test if circRNAs were expressed in the killifish (see Table 7.2 for details).

Figure 7.3: Sampling time points. Overview of the three sampling time points that were taken for this analysis.
Fish were sampled at 3.5 weeks (before sexual maturation); 8.5 weeks (at the peak of sexual maturation); 14
weeks (median life span). Samples, pictures and lifespan curve were provided by Dr. Yumi Kim.
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Table 7.1: Sample Information

Sample name Tissue Age [w] Strain Replicates Library
Y_muscle_1-2 muscle 3.5 killifish (GRZ-AD) 2 100 BP SE ribo-
YA_muscle_1-2 muscle 8.5 killifish (GRZ-AD) 2 100 BP SE ribo-
O_muscle_1-2 muscle 14.0 killifish (GRZ-AD) 2 100 BP SE ribo-
Y_brain_1-2 brain 3.5 killifish (GRZ-AD) 2 100 BP SE ribo-
YA_brain_1-2 brain 8.5 killifish (GRZ-AD) 2 100 BP SE ribo-
O_brain_1-2 brain 14.0 killifish (GRZ-AD) 2 100 BP SE ribo-

Tissue-specific circRNA expression

To describe the circRNA landscape in different tissues, I calculated the diversity as the number of

different circRNAs expressed in a given tissue. I used the R package VennDiagram to overlap the

circRNA coordinates and to group the circRNAs into three groups: muscle-specific, brain-specific,

and core circRNAs.

Conservation

To identify circRNAs that may play a role in human cells, I searched for conserved circRNAs. I

downloaded the circRNA annotation tables of human and mice from circbase1 [66] and overlapped

the gene lists based on the names of genes expressing circRNAs in either human, mouse, or killifish.

GO enrichment

To obtain a first impression of the function genes expressing circRNAs in either brain or muscle I

performed a GO enrichment analysis using the online platform GOrilla [44]. I mapped the killifish

gene names to human gene names, and ran the enrichment analysis using a human reference database.

For tissue specific circRNAs I used all the genes expressed in the given tissue as background list and

the circRNA host genes as target list.

Temporal clustering

Besides the tissue specificity, I was interested in the temporal behaviour of the circRNA expres-

sion. I performed a clustering of the circRNAs on their expression patterns using the R package

1http://circbase.org/

http://circbase.org/


80 Outlook: circRNAs in the African turqoise killifish

amap’s kmeans algorithm with the following parameters: Kmeans(ratio, centers = 8, method

= 'correlation', iter.max = 20, nstart = 8). This way I was able to easily identify clus-

ters of circRNAs showing an increase or decrease with age relative to their host gene.

Candidate validation

To validate back-splice junctions using qPCR, candidate circRNAs were selected based on their

temporal expression (increasing with age) and conservation across species. Outward facing primers

pairs were designed around the back-splice junction to quantify the circRNA expression. Additional

primer pairs were designed from one side of the back-splice junction to the next exon on the linear

transcript to quantify the host gene expression.

Candidate overexpression

Based on the temporal expression, conservation, validation by qPCR, and biological relevance candi-

date genes were selected for overexpression in vivo. Target exons were cloned into the pcDNA3.1(+)

circRNA miniVector ([16], Fig. 7.4). This vector harbors specific Alu repeats on both ends of the

customizable region to facilitate exon circularization. This vector was cloned into the Tol2-killifish

vector [67] and injected during the one-cell stage of the fish embryo.
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Figure 7.4: pcDNA3.1(+) circRNA miniVector Map. Exons were cloned into this vector to circularize the
desired exons. The enzyme sites of ClaI and SacII were used in this experiment.

7.3 Results and discussion

CircRNA landscape in the ageing killifish

The analysis of the pilot data shows that the killifish brain exhibits a greater variety of circRNAs

than muscle. This is in agreement with previous findings that the circRNA diversity is greater in

the brain of flies and mice compared to other tissues [34, 48]. Genes expressing circRNAs in the

brain were enriched for functions of the nervous system, while genes expressing circRNAs in the

muscle were enriched for muscle functions (Fig. 7.6). A core set of 422 circRNAs was expressed

at all ages (see Figure 7.5b). Additional 203 circRNAs were expressed in both adult and old fish.

Only few circRNAs were age-specific. A comparison with human and mouse circRNAs revealed that

approximately 13 % of the killifish genes expressing circRNAs also expressed circRNAs in human
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and mice (see Figure 7.5c). These 93 genes are of particular interest as they might reveal a common

mechanism of circRNAs shared by vertebrates.
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Figure 7.5: Results of the pilot study. a-b) Overlap of circRNAs expressed in different tissues or at different
age time points. c) Conservation across species: Same host genes across different species that are able to
express circular RNAs
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Figure 7.6: Go enrichment of brain and muscle specific circRNAs. GO terms enriched in host genes
expressing circRNA in either a) brain or b) muscle.
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Selected circRNAs increase expression with age

As shown in Figure 7.5a only a minor proportion of circRNAs was truly age specific. Hence, it

was of great interest whether the expression of the common circRNAs remained stable throughout

life or if there are circRNAs whose expression changed during ageing. Therefore, I normalized the

circRNA expression with their host gene’s expression and clustered the circRNAs based on their

relative expression patterns. The k-means clustering showed clusters in which the relative circRNA

abundance increased most from young to adult fish, indicating involvement in development (compare

Fig. 7.7 Cluster 1), while 253 circRNAs increased most from adult to old fish, suggesting a possible

role during ageing (compare Fig. 7.7 Cluster 2 and 8).

Figure 7.7: Temporal Clustering. Cluster median of the relative circRNA expression for young, adult and
old samples. Blue represents the median over all brain circRNAs. Red represents the median over all muscle
circRNAs. The errorbars represent the 25th and 75th quantile.
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Validation

Thirty-seven circRNAs were selected for validation using qPCR based on the circRNAs’ expression

patterns (increasing with age), and conservation. qPCR primers were designed to obtain PCR products

representing the circRNA junction. Seventeen of these circRNAs were confirmed with high confidence,

while only a few could be dismissed due to lack of PCR products. The remaining circRNAs showed

a smeared melting curve and it could not be determined if the back-splice junction existed or not.

As mentioned in chapter 3.1, a smeared melting cure might indicate overlapping circRNAs. Thus,

these circRNAs can neither be confirmed nor disregarded as false positives. Treating the samples with

RNaseR would be more reliable to validate circRNAs. If the primers also yielded PCR products in

the RNAseR treated samples the circRNA would be confirmed.

Over-expression strategy

Four (IGF1R, ROBO2, PLCB1, and XPO7) of these 17 highly confident circRNAs were selected for

over-expression. They were chosen based on their conservation, their temporal expression pattern in

RNA-Seq, their validated temporal expression pattern using qPCR (Fig. 7.8), and biological relevance.

The primers were designed for cDNA libraries to only capture the exons for circularization (Fig.

7.9). After using Sanger sequencing to validate the sequence, the PCR products were cloned into

the pcDNA3.1(+) circRNA miniVector (Fig. 7.4). The plasmids containing the inserts were cloned

into the killifish Tol2 vector, and injected into the killifish embryos during the one-cell stage. Seven

days after injection, RNA was extracted from the embryos. Currently, the libraries are being prepared

for validation with qPCR. If the pcDNA3.1(+) circRNA miniVector is sufficient to form the desired

circRNAs, it would be an indirect proof that the mechanism for exon circularization is conserved

across species.
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SacIIClaI

IGF1R

PLCB1

ROBO2
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Figure 7.9: Cloning strategy and target regions for circRNA over expression IGF1R, ROBO2, PLCB1,
and XPO7 circRNAs were selected to be cloned into the pcDNA3.1(+) circRNA miniVector. The upper picture
shows a schematic view of the experimental design by Liang et al. [16]. The second line shows a schematic
view of the circRNA miniVector cloning site. The enzyme sites for ClaI and SacII were used to cut and paste
the exons of IGF1R, ROBO2, PLCB1, and XPO7. The whole gene models of these genes are listed underneath.
The blue boxes highlight the circRNA exons chosen for cloning.
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7.4 Conclusions

With this pilot study I showed that the killifish is a good model organism to study circRNAs during

ageing. Running FUCHS and FUCHSdenovo on a new dataset of long reads (Table 7.2) will give the

opportunity study the circRNA landscape in the ageing killifish in much more detail. The study

would benefit from running FUCHSdenovo as killifish is not as well annotated as the mouse or human

genome. Thus performing sequence based computational analysis would only be meaningful after

reconstructing the exon-intron model from long reads.

Table 7.2: Sample sheet 2

Sample name Tissue Age [w] Strain Replicates Library
Y_muscle_1-2 muscle 3.5 killifish (GRZ-AD) 2 250 BP PE ribo-
YA_muscle_1-2 muscle 8.5 killifish (GRZ-AD) 2 250 BP PE ribo-
O_muscle_1-2 muscle 14.0 killifish (GRZ-AD) 2 250 BP PE ribo-
Y_ brain_ 1-3 brain 3.5 killifish (GRZ-AD) 3 250 BP PE ribo-
YA_ brain_ 1-3 brain 8.5 killifish (GRZ-AD) 3 250 BP PE ribo-
O_ brain_ 1-3 brain 14.0 killifish (GRZ-AD) 3 250 BP PE ribo-
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