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Introduction

Pioneering experiments with attosecond light pulses [1–6], based on high-
order harmonic generation (HHG) in noble gases [7, 8], have been revolution-
izing our view of fundamental atomic, molecular and solid state processes in
this time domain [9]. A key step in gas-HHG is the tunnel ionization of a
single atom and the return of the just liberated electron to its parent ion due
to the strong, linearly polarized femtosecond laser pulse driving this process
[10, 11]. Recent developments in attosecond physics revealed that the ac-
curate description of this single-atom emission is more important than ever,
especially for the correct interpretation of the experimental data obtained by
attosecond metrology.

Although an intuitive and very successful approximate analytical solution
[12] and many of its refinements exist [13], the most accurate description
of the single-atom response is given by the numerical solution of the time-
dependent Schrödinger equation (TDSE). The peculiarity of this problem is
due to the electric field strength of the laser pulse, which has its maximum
typically in the range of 0.05-0.1 atomic units, i.e. it enables the tunneling of
the electron through the time-dependent potential barrier formed by strongly
distorting the atomic potential, but this effect is weak during the whole pro-
cess. On the other hand, this small part of the wave function outside the
barrier extends to large distances and in fact this is the main contribution to
the time-dependent dipole moment, which is the source of the emitted radi-
ation. Thus, a very weak effect needs to be computed very accurately, and
these requirements get even more severe, if the model goes beyond the usu-
ally employed single-active-electron and dipole approximations.

For linearly polarized pulses, the main dynamics happens along the elec-
tric field of the laser pulse which underlies the success of some one-dimensional
(1D) approximations. These typically use various 1D model potentials to ac-
count for the behavior of the atomic system. However, the particular model
potential chosen heavily influences the 1D results and their comparison with
the true three-dimensional (3D) results is usually nontrivial. Therefore, a
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more elaborate connection between the 3D problem and its 1D model is nec-
essary to allow the 1D simulation of strong-field processes physically as cor-
rectly as possible.

Although strong-field ionization is widely used as a standard procedure
for high-order harmonic generation, it is very little known that this process
generates also quantum entanglement between the liberated electron and its
parent ion-core. Quantum entanglement is a fundamental feature of quan-
tum theory which enables strong correlations without classical counterpart
between constituents of a quantum system. Despite the fact that its discussion
dates back to the early days of quantum theory [14], the features of continuous
variable quantum entanglement [15] are still much less explored and utilized
than those of discrete variables systems. Entanglement between the fragments
of an atomic system due to a light-induced break-up process, like photoion-
ization and photodissociation, was studied by Fedorov and coworkers [16, 17]
in the framework of Gaussian states. However, this latter approach is not suit-
able to deal with the problem of quantum entanglement during the strong-field
ionization of an atom, which motivated us to perform an accurate numerical
investigation of the problem.

Objectives

We adopted the usual semiclassical description of the light-matter interaction
for the modeling of strong-field phenomena described in the Introduction,
making also use of the dipole approximation and choosing the length gauge
[18]. In dipole approximation, the spatial variations of the electromagnetic
field are neglected in the spatial domain of the atomic processes which is true
in the frequency range relevant for the phenomena treated in this thesis. We
aim to investigate the effects of a linearly polarized few- or single-cycle fem-
tosecond laser pulse, which has a near-infrared carrier frequency. Our moti-
vation is that this type of laser pulse is short enough to give a more complex
response than a simple plane wave. The form of the Hamiltonian suggests the
solution of the 3D time-dependent Schrödinger equation in cylindrical coor-
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dinates z and ρ , where the z-axis coincides with the polarization of the laser
pulse. The resulting time evolution preserves the magnetic quantum number
m and the initial axial symmetry of the wave function if given.

Our first objective was to construct a novel numerical method that is ca-
pable to compute the time propagation of the electron’s wave function by
solving this cylindrical TDSE with high-order accuracy, incorporating also
the singularity of the atomic Coulomb potential. Our aim was to construct an
algorithm that scales approximately linearly with the total number of spatial
gridpoints and that supports parallelization, whenever its possible.

In our earlier work [A1], we modeled a single-active-electron atom as
a two-body system in one spatial dimension, using the Dirac-delta potential
as the atomic model potential. We verified a strong correlation between the
shape of the laser pulse and the oscillations of the quantum entanglement,
most importantly, the local maxima of the quantum entanglement coincide
with the zero crossings of the laser electric field. A straightforward question
is, whether such correlations are also present in the strong-field ionization of
a real atom? In accordance with this, our second objective was the analysis of
the quantum entanglement properties of a single-electron atom in 3D under
strong-field ionization as also mentioned in the Introduction. In this descrip-
tion we modeled a single-electron atom as an interacting two-body system of
the electron (e) and the ion-core (c) subsystems. Even though the numeri-
cal solution can be carried out, the computational cost of calculating the true
electron – ion-core entanglement is prohibitive. We aimed to give an approx-
imate solution for this problem by a directionally separable approximation,
and this way to gain insight also into the intricacies and the structure of the
pair correlations between the electron’s and ion-core’s coordinates ze−zc and
xe− xc.

Our third objective was to find a one-dimensional quantum mechanical
model that is capable of providing quantitatively good agreement with the
true 3D solution of strong-field processes, reduced to the z axis. The one-
dimensional description should use only the z Cartesian coordinate, with the
very same laser electric field term in the time-dependent Schrödinger equa-
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tion as in 3D, but the atomic potential should be replaced with a suitable
time-independent V 1D

0,M(z) atomic model potential. We aimed to derive an an-
alytic form for this model potential based on a clear physical principle, and
to compare it to well-known existing model potentials like e.g. the 1D soft-
core Coulomb model potential V 1D

Sc (z) =−1/
√

z2 +2 . We also aimed to test
the improved model potential rigorously, focusing especially on the particular
system’s strong-field ionization features.

Methods

For the numerical solution of the time-dependent Schrödinger equation, we
use a combination of various methods. For the spatial derivatives, we use
the high-order finite difference formulation [19] with equal grid spacing ∆z,
∆ρ in cylindrical coordinates. For the time evolution algorithm, we per-
form steps in small time intervals ∆t using the short-time approximation of
the time evolution operator e−i∆tHk with the second-order effective Hamil-
tonian H(2)

k at the kth time step. We also utilize the second-order Padé-

approximation of the exponential operator e−i∆tH(2)
k , which is the usual Crank-

Nicolson method [20]. The latter is an implicit method, which means that
it involves the solution of a systems of linear equations at every time step,
the coefficient matrix of which includes the spatially discretized Hamilto-
nian matrix. The great advantage of this method is that it also allows us to
incorporate any boundary condition into the implicit equations, thus allow-
ing high-order spatial accuracy for a wide variety of problems. For gaining
the speed that we need, we also utilize the split-operator methods [21]: by
splitting the effective Hamiltonian as H(2)

k = HA +HB , these methods fac-
torize the above exponential operator into parts that are easy to solve. The
most famous of this formula is the second-order accurate symmetric split-
ting U2(t +∆t, t) ≈ e−i ∆t

2 HBe−i∆tHA e−i ∆t
2 HB . The main advantage is that we

can achieve linear scaling with the number of gridpoints (if we split kinetic
energy terms in the Hamiltonian directionwise). The disadvantage is that it
is not possible to split the Hamiltonian operator this way, if it is singular or
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“very sharp” at a gridpoint. The final relevant splitting method is of Bandrauk
and Shen [22], they give a formulation how it is possible to achieve high-order
∆t convergence by performing a series of back-and-forth substeps with any
properly constructed second-order accurate short-time evolution operator.

Deriving the formulas of the numerical method is hardly enough to de-
termine its actual accuracy, rigorous testing is necessary in most cases. Our
method of testing the spatial discretization involves computing the eigenen-
ergy of the ground state and at least one excited state of known problems
and comparing these values to other accurate numerical or analytical solu-
tions. By changing the discretization parameter ∆z (or ∆ρ) we can determine
the convergence order of the discretization scheme. These are straightfor-
ward typically for systems that have an analytic solution, like the harmonic
oscillator and (most importantly) the Coulomb problem. However, analyti-
cal solution is not available for most of the time-dependent problems, thus
we compare the results to a converged numerical solution that has orders of
smaller numerical errors than the setup that we are investigating. The most
straightforward method is to compare time-dependent mean values of these
two solutions, which is an efficient way of error determination dependent on
∆t, but it can be also used to test the spatial accuracy with a given ∆z (and
∆ρ) in these situations.

The problem of the interacting two-body quantum system, consisting of
the electron (e) and the ion-core (c) as subsystems, is conventionally solved
by transforming the system into the center-of-mass reference frame, where
the wave function becomes separable in center-of-mass and relative coordi-
nates. We describe the center-of-mass part as a free localized Gaussian wave
packet, and the relative part involves the strong-field simulations of the rela-
tive particle with coordinates z, ρ . The form of governing Schrödinger equa-
tion is not changed, only the particle mass is replaced by the reduced mass.
During the calculations of physical quantities we also also utilize axial sym-
metry around z axis, which means that dynamics is the same in the x and y

directions for each particle.
For the quantification of the quantum entanglement between the electron
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and ion-core motion, the usual way requires the density matrix of either the
electron or the ion-core by performing partial trace of the other degrees of
freedom, assuming the whole quantum system is in pure state. Then the lack
of purity of the density matrices is an indicator of quantum entanglement,
and can be quantified by calculating the Neumann entropy – amongst other
types of quantum entropies – of either subsystem’s density matrix. If we
can perform this at every time instant we can see the time-dependent entropy
dynamics of two particles’ entanglement, which is unfortunately a feasible
computation in one dimension only. In three dimensions, this type of bipar-
tite approach can be applied to the cylindrical relative coordinates z, ρ , by
performing the partial trace on one of these coordinates, which gives interest-
ing information about the directional nonseparability of the strong-field pro-
cess. However, the composite system of these two particles has six degrees of
freedom in 3D, which implies a more complex correlation structure between
their individual coordinates ze− zc and xe− xc. We investigated the nature
of these correlations using recent results of quantum information theory [23].
One can quantify these directional pair correlations generally using the so-
called S(e : c, t) quantum mutual entropy, and investigate the behavior using
the S(e|c, t) or S(c|e, t) quantum conditional entropies, which latter character-
ize the remaining entropy of one subsystem if the other one is measured. In
the classical limit these two satisfy the relations in classical information the-
ory, however quantum entanglement introduces nonclassical values to them.

For the low-dimensional modeling of an atom, we used the elements of
the density functional theory [24]. We derived our model potential in anal-
ogy with the the exact calculation of the Kohn-Sham potential of a helium
atom with a single Kohn-Sham orbital: knowing the correct reduced (single-
particle) density one can invert the Schrödinger equation to determine the
Kohn-Sham potential which ensures that the resulting Hamiltonian’s ground
state has the correct reduced density. In this way one can model the ground
state of the system physically as accurately as it is possible with a single or-
bital.
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Scientific results

In the following, I present a brief summary of my new scientific results dis-
cussed in the thesis which are collected in five thesis points. The publications
connected to my statements are listed at the end of this booklet and cited in
each title.

T1. The hybrid splitting algorithm for the solution of the
three-dimensional time-dependent Schrödinger equation with
Coulomb singularities [P1]

To treat the Coulomb singularities in the 3D Schrödinger equation using
cylindrical coordinates, I derived the formula of the boundary condition of
the Coulomb potential in the axially symmetric case, which is a Robin type
boundary condition at the ρ = 0 axis. I also gave the discretized formulation
of this boundary condition using one-sided finite difference formulas.

Based on the 4th-order finite difference discretization of the Hamiltonian
in the Crank-Nicolson method, I created the method of hybrid splitting. This
uses partial directional splitting of the short-time evolution operator based on
the splitting of H(2)

k =HA+HB both according to spatial directions and spatial
domains: the HA near ρ = 0 is left intact to retain spatial numerical accuracy
near the boundary, while in the outer domain (ρ & 1) the z-component of the
kinetic energy is moved into HB.

I created an optimized algorithm to solve the special block pentadiagonal
system of linear equations that is provided by the Crank-Nicolson approxima-
tion of the central exponential operator e−i∆tHA . This algorithm reduces the
computation costs by N2

ρ where Nρ is the number of the discretization points
along the ρ direction.

I verified that the discretization scheme is 4th-order accurate in spatial
steps ∆z and ∆ρ by computing the eigenvalues of the Coulomb and the har-
monic oscillator Hamiltonians. Using the time-dependent analytic solution
of the forced harmonic oscillator, I verified that the hybrid splitting method
is ∆t2 accurate, and that it can be successfully combined with the 4th-order
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approximation of the evolution operator to become ∆t4 accurate in temporal
steps.

T2. Quantification of the electron – ion-core quantum entan-
glement during strong-field ionization [P2]

I showed that the computation of the Neumann entropy in a 3D simulation
of strong-field ionization of the electron – ion-core system is not feasible
due to the prohibitively large numerical load of the problem. Therefore, I
created the following procedure to characterize the quantum entanglement of
the electron – ion-core system in a 3D strong-field simulation.

First I reduced the 3D dynamics along spatial directions (parallel and per-
pendicular to the polarization of the laser pulse) by partial tracing of the re-
spective density matrices. Then I performed the transformation in each direc-
tion to electron and ion-core coordinates and reduced these density matrices
to single-particle density matrices by tracing over the respective particle co-
ordinates. Using known relations of quantum entropies, I showed that the
type of the correlation between the same coordinates of these two particles in
each direction is dominantly quantum entanglement. I quantified this direc-
tionwise quantum entanglement via the average directional mutual entropy. I
verified that the time evolution of the average mutual entropy along the po-
larization direction is very similar to that of the exact quantum entanglement
entropy obtained by my former 1D model simulations.

Using these density matrices as building blocks, I approximated the quan-
tum state of the 3D electron – ion-core system by the product of the spatially
reduced two-particle density matrices, in accordance with my experience that
the strong-field dynamics along the above spatial directions is weakly cou-
pled.

Based on this, I defined the approximate entanglement entropy of the 3D
electron – ion-core system by adding up the directional average mutual en-
tropies individually, which thus can be efficiently computed based on the en-
tropies of the building block density matrices. I showed via simulations that
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this approximated entanglement entropy satisfies the strong subadditivity re-
lation, which is an analytic property of the exact entanglement entropy.

T3. Features of the electron – ion-core quantum entangle-
ment during strong-field ionization [P2]

Since the spatially reduced subsystems described in T2 are in mixed states,
their correlations are more complicated than pure state entanglement, thus I
identified the physical meaning of the several kinds of entropies involved in
the above procedure and I made the following observations.

I analyzed the entanglement entropy relations in each of the directions
specified in T2 and I found that their local maxima almost coincide with
the zero crossings of the electric field of the laser pulse. The entanglement
along the directions parallel and perpendicular to the laser polarization are
very similar to each other if the process stays in the tunnel ionization regime.
However, in the over-the-barrier ionization regime, I found entropy increase
along the parallel direction but a surprising entropy decrease in the perpendic-
ular directions which causes also the total electron – ion-core entanglement
entropy to decrease.

I investigated the dependence of these proposed measures of entangle-
ment dynamics on the strength and the carrier-envelope phase of the driving
laser pulse. I found many features of quantum entropies that do not depend
on these parameters, like the electron – ion-core entanglement has local max-
ima always near the zero crossings of the laser pulse. I found that while the
intensity of the field governs the dynamics as a whole, the carrier-envelope
phase changes the subcycle dynamics of the strong-field ionization.

T4. One-dimensional density-based model potentials: com-
parison of the 1D and 3D results [P3]

I derived the analytic formula of a 1D atomic model potential that by
definition has the same ground state probability density as the probability
density of the 3D Coulomb problem integrated over ρ . I determined that
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through asymptotics this 1D system preserves the 3D ground state energy if
the source 3D problem has a long-range Coulomb form. The density-based
potential consists of a 1D regularized Coulomb potential plus a kinetic energy
correction.

I realized that the regularized Coulomb potential part of the density-based
model potential suggests the value of 1

2 Z for the effective ion-core charge
in 1D. Based on this, I proposed improved formulas of the 1D soft-core
Coulomb potential and the 1D regularized Coulomb potential by applying the
effective charge 1

2 Z while maintaining that their ground state energies equal
to that of the 3D Coulomb problem.

I showed by direct comparison of simulation results of typical time-de-
pendent strong-field processes, driven by a linearly polarized near-infrared
laser pulse, that both these new and the proposed improved 1D model poten-
tials exhibit an impressive enhancement in the accuracy of the low frequency
response of typical strong-field processes by capturing the essence of the real
3D dynamics. These tests also showed that the best model potential quantita-
tively is the improved soft-core Coulomb potential.

I also computed the dipole power spectrum in a wide variety of cases
and I observed that the structure of the spectra based on the density-based
and improved 1D model potentials is remarkably similar to those based on
the 3D simulations. The match of the corresponding spectral phases is also
very good, especially in the higher frequency range, which is of fundamental
importance for the generation of isolated attosecond pulses. I gave a simple
frequency-dependent scaling function that proved to be capable to convert the
1D spectra to the corresponding 3D spectra in all of the tested cases, thus it
enables to compute the dipole power spectra via 1D simulations.
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T5. Improved numerical method of constructing discrete
model potentials in one dimension: improved simulation ac-
curacy [P3]

I suggested a formula to acquire an improved discretized representation
of 1D model potentials, based on the potential’s ground state and ground state
energy, by inverting the discretized time-independent Schrödinger equation.
The resulting discretized potentials have the numerically exact ground state
and ground state energy. I showed that if the exact 1D potential is not differ-
entiable at some spatial point (e.g. like a regularized 1D Coulomb potential)
then the resulting discretized Hamiltonian is still ∆z4 accurate, if the finite dif-
ference formulas of the partial derivatives is also at least ∆z4 accurate, even
during simulations of strong-field ionization phenomena.

I showed that the application of this method is possible also for the 1D
Dirac-delta potential. The same inversion formula as above gives a nonsingu-
lar discretized model potential. I tested the results using convergence tests of
strong-field simulations, the numerical errors at ∆z = 0.2 were comparable to
the correct method used in [A1]. I came to the conclusion that this nonsingu-
lar method of discretization converges to the true solution, and it shows ∆z2

numerical accuracy.
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Publications

Refereed research papers related to the thesis:

[P1] Szilárd Majorosi and Attila Czirják. Fourth order real space solver
for the time-dependent Schrödinger equation with singular Coulomb
potential. Computer Physics Communications, 208: 9–28, 2016;
doi:10.1016/j.cpc.2016.07.006.

[P2] Szilárd Majorosi, Mihály G. Benedict, and Attila Czirják. Quantum en-
tanglement in strong-field ionization. Physical Review A, 96(4): 043412,
2017; doi: 10.1103/PhysRevA.96.043412.

[P3] Szilárd Majorosi, Mihály G. Benedict, and Attila Czirják. Improved
one-dimensional model potentials for strong-field simulations. Physi-

cal Review A, 98(2): 023401, 2018; doi: 10.1103/PhysRevA.98.023401.

Additional refereed research papers and conference proceedings:

[A1] Attila Czirják, Szilárd Majorosi, Judit Kovács, and Mihály G. Benedict.
Emergence of oscillations in quantum entanglement during rescatter-
ing. Physica Scripta, 2013(T153): 014013, 2013. doi:10.1088/0031-
8949/2013/T153/014013.

[A2] Attila Czirják, Szilárd Majorosi, Judit Kovács, and Mihály G. Benedict.
Build-up of quantum entanglement during rescattering. In AIP Confer-

ence Proceedings, 1462(1): 88-91. AIP, 2012; doi: 10.1063/1.4736766.
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