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Abstract

While there is a lot of data on interactive effects of eutrophication and warming, to

date, we lack data to generate reliable predictions concerning possible effects of

nutrient decrease and temperature increase on community composition and func-

tional responses. In recent years, a wide‐ranging trend of nutrient decrease (re‐olig-
otrophication) was reported for freshwater systems. Small lakes and ponds, in

particular, show rapid responses to anthropogenic pressures and became model sys-

tems to investigate single as well as synergistic effects of warming and fertilization

in situ and in experiments. Therefore, we set up an experiment to investigate the

single as well as the interactive effects of nutrient reduction and gradual tempera-

ture increase on a natural freshwater phytoplankton community, using an experi-

mental indoor mesocosm setup. Biomass production initially increased with warming

but decreased with nutrient depletion. If nutrient supply was constant, biomass

increased further, especially under warming conditions. Under low nutrient supply,

we found a sharp transition from initially positive effects of warming to negative

effects when resources became scarce. Warming reduced phytoplankton richness

and evenness, whereas nutrient reduction at ambient temperature had positive

effects on diversity. Our results indicate that temperature effects on freshwater sys-

tems will be altered by nutrient availability. These interactive effects of energy

increase and resource decrease have major impacts on biodiversity and ecosystem

function and thus need to be considered in environmental management plans.
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1 | INTRODUCTION

Anthropogenic actions cause numerous pressures and changes in

ecosystems worldwide (Millennium Ecosystem Assessment, 2005),

which endanger their stability (Ives & Carpenter, 2007) and therefore

eventually the goods and services these ecosystems provide for

humanity (Costanza et al., 1997; Rockström et al., 2009). Many of

these pressures—eutrophication (Schindler, 2006), loss of biodiver-

sity (Cardinale et al., 2012), climate change—are global phenomena

and affect all types of ecosystems (Rosenzweig et al., 2007; Walther

et al., 2002). Freshwater systems, such as ponds, are especially sus-

ceptible to environmental changes as they are comparably small and

variable in their morphology, and often undergo rapid changes in

biodiversity and ecosystem functions (Adrian et al., 2009; Wil-

liamson, Dodds, Kratz, & Palmer, 2008).

It remains uncertain to what extent changes in community com-

position directly translate into changes in ecosystem function.

Ecosystem functions, such as total biomass production, are calcu-

lated as the sum of all individual species performances combined
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(Nijs & Impens, 2000). Continuous levels of ecosystem function are

usually maintained through species asynchrony (Hautier et al., 2014),

but this may be disrupted through pulsed disturbances that synchro-

nize species patterns, or through extinctions that reduce the pool of

contributing species (Larsen, Williams, & Kremen, 2005). Not all spe-

cies contribute to all ecosystem functions equally (Hector & Bagchi,

2007; Lefcheck et al., 2015; Shurin, Clasen, Greig, Kratina, & Thomp-

son, 2012), so that the consequences of a reduction in biodiversity

depend both on the function and species in question. In general, the

maintenance of multiple functions (“functional integrity”) requires

higher diversity than any single ecosystem function alone (Gamfeldt

& Hillebrand, 2008; Hector & Bagchi, 2007; Isbell et al., 2011). As

an exemplary ecosystem function, we studied the change in resource

use efficiency (RUE, the amount of biomass per unit resource) in

relation to nutrient decrease and warming.

Increasing temperatures and changes in nutrient availability are

two of the most pervasive abiotic pressures of the last decades

(Pomati, Matthews, Jokela, Schildknecht, & Ibelings, 2012; Tadonléké,

2010). In aquatic ecosystems, warming influences biogeochemical

cycles and nutrient‐, oxygen‐, and CO2‐availability (O'Reilly, Alin, Plis-

nier, Cohen, & McKee, 2003). Mediated through these abiotic

responses, species’ physiology, and population dynamics are strongly

influenced by temperature (Cardinale, 2011; Striebel, Schabhüttl,

Hodapp, Hingsamer, & Hillebrand, 2016); consequently, warming is

poised to alter communities and whole ecosystems. Compared to

marine phytoplankton, most freshwater algae are adapted to higher

temperatures (10–30°C) (Butterwick, Heaney, & Talling, 2005), with

differences between species and taxa: optimal temperatures reported

for diatoms range between 5–25°C (Butterwick et al., 2005; Soulsby,

Houston, Montgomery, Surukip, & Takahashi, 1981), for cyanobacteria

between 25–30°C (Jöhnk et al., 2008; Lürling, Eshetu, Faassen, Kos-

ten, & Huszar, 2013), and for chlorophytes optimal temperatures

range up to 30°C (Butterwick et al., 2005). Although warming of

freshwater systems rarely exceeds the fundamental niche of phyto-

plankton, the different temperature optima of the various taxonomic

groups will induce changes in dominance toward better adapted spe-

cies (Kosten et al., 2012) at the expense of groups less competitive at

higher temperatures (Rosset, Lehmann, & Oertli, 2010).

The precise effects of warming will depend on interactive effects

with other factors, for example, pH or nutrient availability. Regarding

nutrient availability, an increase in temperature changes the physio-

logical requirements of phytoplankton toward lower phosphorus and

higher nitrogen content (Cotner, Makino, & Biddanda, 2006; Tose-

land et al., 2013; Yvon‐Durocher, Dossena, Trimmer, Woodward, &

Allen, 2015), potentially switching the system from P‐ to N‐limitation

(Gilbert, 2013). Most studies addressing the interaction between

warming and altered nutrient requirements focused on high nutrient

conditions, revealing synergistic effects of eutrophication and warm-

ing (Heino, Virkkala, & Toivonen, 2009; Moss et al., 2003; Rosset et

al., 2010). These nutrient–warming interactions may strongly differ in

oligotrophic systems, where temperature‐dependent nutrient

requirements are not easily met by availability. However, few studies

explicitly addressed warming effects under lowered nutrient

conditions (De Senerpont Domis, Van De Waal, Helmsing, Van Donk,

& Mooij, 2014; Velthuis et al., 2017).

Due to the widespread re‐oligotrophication of freshwater sys-

tems, the interaction between nutrient limitation and warming is of

increased importance (Jeppesen et al., 2005): Globally, eutrophica-

tion of freshwater systems has been identified as a severe ecological

and economic problem, initializing efforts to reduce nutrient (mainly

phosphorus) loading originating from washing detergents and agricul-

tural fertilizers. Targeted management strategies have been devised

and implemented in the 1970s and 1980s and efforts to avoid new

influx and to reduce already present nutrient loadings have been

successful. Consequently, phosphorous concentrations in many lakes

have declined immensely (Anneville, Gammeter, & Straile, 2005;

Pomati et al., 2012; Van Donk et al., 2008). This has, for example,

been well studied in Lake Biwa, Japan, for which both biotic and abi-

otic variables have been tracked over 32 years, showing an increase

in nutrient loading in the 1960s and 1970s, followed by a decline

during the 1980s, when management practices showed effect (Hsieh

et al., 2010; Tsai et al., 2014). High nutrient concentrations are often

characterized by high biomass production by few dominant species

(Borge et al., 2004), whereas re‐oligotrophication increases species

richness and community evenness (Pomati et al., 2012) coupled with

a decrease in autotrophic productivity or standing stocks (Finger,

Wuest, & Bossard, 2013; Verbeek et al., 2018).

Thus, in nutrient reduced systems, we expect different mecha-

nisms shaping the temperature—productivity relationship, partly

through direct physiological responses, partly through altered com-

munity composition and dominance in eutrophic and oligotrophic

systems, respectively.

To test the effects of oligotrophication and warming, as well as

their interaction, on the productivity and diversity of a natural phy-

toplankton community, we performed a controlled indoor mesocosm

experiment. Treatments were chosen based on a field study of small

farmland ponds in Belgium (Verbeek et al., 2018), which revealed a

strong decrease in nutrient loading over time (especially for phos-

phorus) with significant change in phyto‐ and zooplankton biomass

and composition. Using an indoor mesocosm facility comprising 12

so‐called Planktotrons (Gall et al., 2017), we manipulated tempera-

ture (either constant at 20°C or increasing by 2°C per week for a

total experiment duration of 7 weeks) and nutrient availability (either

ambient or gradually decreasing by 20% per week) in a factorial

design. The inoculum for the experiment was a natural phytoplank-

ton community from one of the ponds in Belgium. We used 20°C as

“ambient” treatment, as it was close to the ambient temperature at

the time of the experiment and is a common temperature for the

small farmland ponds particularly in early spring, partially due to their

low depth (Staehr & Sand‐Jensen, 2006) in the region where we

took the inoculum. We chose to increase the temperature by 2°C

weekly, as this allowed for changes in species abundance in response

to the temperature increase but avoided heat shocks. This reflects

natural conditions as field data show that temperatures in ponds can

increase by 2°C or more in the course of 1 week during spring (Ber-

ger et al., 2007; Huesemann et al., 2016). Phytoplankton species are
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able to acclimate to changes in water temperature in the timeframe

of a few generations (Coles & Jones, 2000; Staehr & Sand‐Jensen,
2006). While our final temperature of 32° is rarely achieved in tem-

perate ponds, it is nevertheless not completely outside of the tem-

perature range of some algae, in particular cyanobacteria or green

algae (which are the dominant group in our experimental commu-

nity), which can have their temperature optimum at 26°C, 35°C or in

some cases even higher (Coles & Jones, 2000; Yentsch, 1974). The

nutrient reduction was 20% per week in the oligotrophication treat-

ments, whereas the treatments with constant nutrient supply were

replenished with 20% of the original nutrient content weekly to

maintain constant nutrient conditions. These two nutrient scenarios

were chosen to provide a substantial, but not too rapid decrease in

nutrient availability for the oligotrophication treatment, and to

reflect semi‐continuous conditions by the regular exchange in med-

ium for the constant treatment.

Throughout the experiment, we monitored community composi-

tion, biomass, and resource use efficiency of the community to test

the following hypotheses:

H1: Increasing temperatures and nutrient reduction

have interactive effects on algal biomass production.

We expect an initial increase in biomass as nutrient

supply is high, with the rate of increase being higher

at a higher temperature (Figure 1). After the initial

growth phase, the control (constant nutrient, no

warming) will progress to carrying capacity, whereas

the oligotrophication treatment without warming will

show decreasing biomass with progressing nutrient

loss. For the warming treatments, we expect signifi-

cant temperature × nutrient interactions: as soon as

warming exceeds threshold temperatures, biomass

production potentially declines, with the onset of the

decline being earlier with lowered nutrient availability.

Thus, we expect a change in the sign of the warming

effect over time from an increase in the initial bio-

mass production rate compared to the control (posi-

tive effects of warming with high nutrient availability)

to a decrease under progressing oligotrophication

(negative effects of warming with nutrient defi-

ciency).H2: Algal resource use efficiency (RUE = bio-

mass production per unit resource available) will

increase with oligotrophication which is expected to

directly reduce excess nutrient supply and indirectly

increase RUE by increasing biodiversity (Filstrup, Hille-

brand, Heathcote, Harpole, & Downing, 2014; Ptacnik,

Solimini, et al., 2008). Consequently, we also expect

algal C:nutrient ratios to be altered by both olig-

otrophication (altered supply of N and P) and temper-

ature (altered demand for N and P).H3: As the system

is isolated without immigration, the initial diversity of

the phytoplankton assemblage will be reduced over

time in all treatments (Figure 1). We expect more

rapid competitive dominance and exclusion with

warming in the closed settings of our experiment

(Hillebrand, Burgmer, & Biermann, 2012) leading to

reduced species richness and evenness (Figure 1).

Reversing the predictions from eutrophication scenar-

ios (Hillebrand et al., 2007), reduced nutrient condi-

tions will show higher diversity (species richness and

evenness) than the nutrient constant controls. We

expect a significant nutrient × temperature interac-

tion, as we foresee that reduced nutrient supply miti-

gates the negative effect of warming on coexistence.

2 | MATERIALS AND METHODS

2.1 | Experimental setup

The experiment was conducted in 12 custom‐tailored, stainless steel

indoor‐mesocosms, the so‐called Planktotrons located at the Institute

for Chemistry and Biology of the Marine Environment (ICBM) in Wil-

helmshaven, Germany (Gall et al., 2017). These tanks are 1.2 m high

and have an inner diameter of 0.8 m, resulting in a volume of 600 L.

Built‐in rotors with silicon lips at the side, top, and bottom, gently

rotate in the Planktotrons, to prevent wall growth during the experi-

ment. To ensure homogeneous phytoplankton distribution as well as

F IGURE 1 Expected dynamics over
time for biomass, richness, and evenness
of the phytoplankton community for the
different treatments, temperature
manipulation and changes in nutrient
concentrations (full factorial design 2 × 2
temperature × nutrients)
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equal nutrient conditions throughout the water column, the meso-

cosms were manually mixed daily using a disk according to Striebel,

Kirchmaier, and Hingsamer (2013).

The 2 × 2 factorial design was run in three replicates each: Two

nutrient conditions, “constant nutrient concentrations” and “decreas-
ing nutrient concentrations,” and two temperature treatments, “am-

bient temperature” and “increasing temperature,” resulted in a total

of 12 experimental units. Treatments with “constant nutrient con-

centrations” were refilled after sampling (20% exchange per week)

with a medium including the initial nutrient concentrations. Treat-

ments with “decreasing nutrient concentrations” were refilled with

purified water, resulting in stepwise decreasing nutrient conditions.

Temperature was kept constant at 20°C for “ambient temperature”
treatments during the whole experiment (see Gall et al., 2017 for

technical details), while for “increasing temperature” conditions the

temperature was raised weekly after each sampling by 2°C (up to a

maximum of 32°C during the last week of the experiment). The

Planktotrons were filled with an artificial phytoplankton growth med-

ium, according to the WC medium (Anderson, 2005), but with

reduced nutrient concentrations resembling the nutrient conditions

in the pond, the inoculum originated from (see below and Supporting

Information Table S1). The pH was kept constant to avoid confound-

ing effects (mean 7.7 ± 0.37 SD) by adding TES buffer to the med-

ium. Light conditions were kept constant during the experiment

using a custom‐tailored setup of LED lights. The intensity supplied at

the water surface of the Planktotrons was 660 μmol pho-

tons m−2 s−1 with 16:8 light‐dark intervals.

A natural spring phytoplankton community from a eutrophic

pond near Leuven in Belgium (Langerode Vijver, 50°49′44.1″N 4°38′
21.9″E), prefiltered using a 20 μm mesh screen to remove zooplank-

ton, was used as inoculum. We focused on phytoplankton as the

only trophic level because it is more likely to be affected by interac-

tive effects of temperature and resource supply.

A total of 20 μm mesh size was chosen after pre‐experiments

showed that larger mesh size did not remove all zooplankton, but

20 μm caused no notable change in phytoplankton community com-

position based on microscopic determination. The exchanged amount

of water was weekly controlled for zooplankton and was free of

grazers throughout the entire experiment. All Planktotrons were

inoculated with the same initial phytoplankton community and same

nutrient conditions and started with equal temperature conditions

(20°C). The experiment was conducted for 44 days in total.

2.2 | Sampling and analyses

In vivo chlorophyll a concentrations were measured daily after mix-

ing the Planktotrons using a handheld fluorometer (TURNER

DESIGNS, AquaFluor™). Water temperature and light intensity were

logged continuously in three Planktotrons using data loggers (Onset

HOBO Pendant® data logger). All other parameters were measured

weekly in association with the 20% medium renewal in each of the

Planktotrons. Samples were taken after mixing the Planktotrons (ac-

cording to Striebel et al., 2013) with disks (one specific disk per

Planktotron to avoid contamination) to ensure a homogeneous con-

tribution within the water column. Water was removed from the top

of the water column using beakers and the volume removed was

determined and controlled by weighing the water. Samples for nutri-

ent and pigment analyses and phytoplankton determination were

bottled and processed immediately. Total phosphorus (TP) concen-

trations of samples were quantified by persulfate digestion followed

by molybdate reaction (Wetzel & Likens, 2000). Samples for particu-

late organic carbon (POC), nitrogen (PON), and particulate organic

phosphorus (POP) were filtered onto precombusted and acid‐washed

glass‐fiber GFC (Whatman) filters. Filters were stored at −80°C until

analysis. The CN elemental composition was measured with a CHN

analyzer (Thermo, Flash EA 1112) and POP by molybdate reaction

after sulfuric acid digestion (Wetzel & Likens, 2000).

Phytoplankton samples for microscopic counts were fixed with 1%

Lugol's iodine and counted using an inverted Leica DMIL LED micro-

scope at 200× and 400× magnification (Utermöhl, 1958). Phytoplank-

ton was counted up to at least 400 cells in total and cell volumes were

calculated after approximation to the nearest geometric standard solid

(Hillebrand, Dürselen, Kirschtel, Pollingher, & Zohary, 1999). Biovol-

ume proportions of species were used to calculate Pielou's Evenness

(Pielou, 1966), additionally, we used richness as diversity estimate.

2.3 | Data analysis

Particulate organic carbon (measured through combustion, see above)

and chlorophyll a (measured in vivo with a fluorometer) as different

proxies for phytoplankton biomass were highly correlated (C~Chl,

r = 0.69, p < 0.0001), so we restricted our analysis to chlorophyll.

We used the nlme package in R to analyze our data. Using the

Planktotron identity as a random variable, we performed an analysis

separating the fixed effects of temperature and nutrient treatments

(and their interaction) from the within‐unit analysis of time and

time × treatment effects. We used time as a categorical variable to

allow for nonlinear dynamics within the Planktotrons.

Separate Linear Mixed Models (LMMs) were conducted for phy-

toplankton chlorophyll a concentration, total biovolume, evenness,

and richness. For phytoplankton, we also measured particulate nutri-

ents (C:N as well as C:P, molar ratios). Correlations between

resource use efficiency and diversity (species richness and Pielou's

evenness) were assessed through ANOVAs of the final sampling day.

In addition, we used resource use efficiency (RUE) (Filstrup et al.,

2014; Ptacnik, Solimini, et al., 2008) as a proxy for ecosystem func-

tion to track the functional change in relation or reaction to species

change. RUE was defined as unit biomass production in chlorophyll a

(μg/L) per unit total phosphorus (μg/L).

All data were analyzed with R (R Development Core Team & R

Core Team, 2013) using the packages vegan (Oksanen et al., 2013),

MASS (Venables & Ripley, 2002), lattice (Sarkar, 2008), ez (Lawrence,

2015), ggplot2 (Wickham, 2009), plyr (Wickham, 2011), reshape (Wick-

ham, 2007), psych (Revelle, 2013), lsr (Navarro, 2015), nlme (Pinheiro,

Bates, DebRoy, Sarkar, & R Core Team, 2018), multcomp (Hothorn,

Bretz, & Westfall, 2008), and RColorBrewer (Neuwirth, 2014).
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3 | RESULTS

3.1 | Treatment effects on algal biomass

Warming and nutrient depletion both had significant effects on algal

biomass (significant temperature and nutrient main effects between

subjects, LMM, Table 1). Chlorophyll a concentrations increased in

all treatments within the first half of the experiment (Figure 2a).

Especially in combination with warming, Chlorophyll a concentrations

increased further under constant nutrient concentrations. By con-

trast, biomass declined after 3 weeks in the nutrient depletion treat-

ments, down to chlorophyll a concentrations even lower than the

initial concentrations (Figure 2a). Reflected by a significant

time × temperature × nutrients interaction (LMM, Table 1), the initial

positive effect of warming on biomass production turned later into a

negative warming effect in the oligotrophication treatment, which

resulted in a reduction in biomass below the level reached in the

control and a hump‐shaped distribution of algae biomass over time.

3.2 | Treatment effects on resource use efficiency
(RUE)

RUE changed significantly over time during the experiment (LMM,

significant effect of “time,” Table 1). Treatment effects were charac-

terized by a significant positive main effect of temperature between

subjects and significant within‐subject interactions of tempera-

ture × time as well as nutrient × time (Figure 2b, LMM, Table 1).

While the resource use efficiency increased during the whole experi-

mental period under high nutrient conditions, it followed a hump‐
shaped pattern when decreasing nutrient concentrations and warm-

ing interacted (Figure 2b). Initially, RUE for warmed, nutrient‐reduced
mesocosm was higher than for any other treatment combination

(though not significantly so) but decreased below the levels of both

the control and the warming treatment with progressing nutrient

depletion. At the end of the experiment, maximum RUE was

obtained under warmed, constant nutrient conditions.

We did not find any significant effects on C:N ratios throughout

the experiment. C:P ratios significantly increased over time in all

treatments (main effect of time, LMM, Table 1, Figure 2c, d), reflect-

ing the incorporation of initially available nutrients in new production

of biomass. Significant main effects of nutrients and significant inter-

actions between nutrients × time and nutrients × warming reflected

that the C:P stoichiometry of phytoplankton was strongly tied to

nutrient supply (Table 1). At day 44, C:P was more than twofold

higher in the nutrient‐depleted treatments compared to the nutrient

constant treatments (Figure 2). Temperature effects on C:P depen-

dent on nutrient supply (significant nutrients × temperature), with

warming increasing C:P in nutrient‐depleted mesocosms.

3.3 | Treatment effects on phytoplankton
biodiversity and composition

In all treatments, we observed a decrease in species richness over

time (LMM: significant effect of time, Table 1). This decrease was

most pronounced in treatments where temperature was increased

(Figure 2e), reflected by a significant temperature main effect and

time × temperature interaction (LMM, Table 1). After an initial

increase in the first 2 weeks of the experiment, evenness consis-

tently decreased with increasing temperature, but remained high in

the interaction treatment until the end of the experiment (Figure 2f).

Consequently, temperature was both a significant main effect and a

significant interactive effect with time for evenness in the LMM

(Table 1). Nutrient effects on evenness were not significant (Table 1).

We additionally tested if treatment‐mediated effects on resource

use efficiency were related to phytoplankton biodiversity at the end

of the experiment, however, this was not the case (ANOVA, RUE vs.

richness: p = 0.595; RUE vs. Pielou's evenness: p = 0.129).

By the end of the experiment, chlorophyte and cyanobacteria

species dominated the communities, compared to a more balanced

community at the start of the experiment (Figure 3). The species

composition at the end of the experiment was highly dominated by

a single species (Scenedesmus ecornis) in the gradually warmed treat-

ments, while the abundances were more evenly distributed in the

constant temperature treatments. This insight into species composi-

tion explains the strong decline in evenness in the warmed

TABLE 1 Linear Mixed Models, transformations to ensure homogeneity of variance are given in the table. The table gives F‐values for each
test and denotes the p‐values in brackets. Effects significant at p < 0.05 are highlighted in bold

Factor dfN dfD Chl RUE C:P C:N Richness Evenness

Transformation None None Log None None None

Between subjects

Temp 1 8 15.03 (0.005) 8.64 (0.019) 0.98 (0.35) 0.09 (0.764) 9.60 (0.015) 34.59 (<0.001)

Nut 1 8 23.79 (0.001) 0.95 (0.358) 27.83 (<0.001) 0.31 (0.764) 3.92 (0.083) 3.25 (0.109)

Temp × nut 1 8 0.02 (0.893) 2.19 (0.177) 9.65 (0.015) 0.35 (0.570) 3.59 (0.095) 0.23 (0.641)

Within subjects

Time 5 40 28.68 (<0.001) 38.14 (<0.001) 21.01 (<0.001) 1.62 (0.176) 28.92 (<0.001) 8.09 (<0.001)

Time × temp 5 40 6.67 (<0.001) 3.81 (0.006) 0.39 (0.848) 0.44 (0.819) 10.79 (<0.001) 7.11 (<0.001)

Time × nut 5 40 41.34 (<0.001) 6.17 (<0.001) 7.45 (<0.001) 1.26 (0.300) 1.25 (0.306) 1.07 (0.391)

Time × nut × temp 5 40 4.04 (0.005) 0.92 (0.480) 1.64 (0.17) 0.22 (0.953) 0.05 (0.998) 1.65 (0.170)
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treatments and the 50% reduction in species richness at the end of

the experiment, compared to the ambient temperature treatments.

At ambient temperature with constant nutrients, Gonium pectorale

dominated together with S. ecornis, whereas at ambient temperature

and nutrient depletion, Pteromonas angulosa and Achroonema lentum

contributed the largest proportion of biovolume (Figure 3).

4 | DISCUSSION

4.1 | Temperature and nutrient effects on biomass
(hypothesis H1)

At the beginning of the experiment, biomass increased in all treat-

ments reflecting the initial availability of light and nutrient. This ini-

tial increase was faster at increasing temperatures than at ambient

temperature (Figure 2a), which reflects the positive effects of sub-

lethal temperature increases on biochemical reactions and metabo-

lism (Gillooly, Brown, West, Savage, & Charnov, 2001). After

3 weeks, strong nutrient effects and nutrient × temperature interac-

tions became apparent: in treatments with constant nutrient supply,

biomass increased further during the whole experimental period (Fig-

ure 2a), whereas biomass decreased in the oligotrophication treat-

ments during the second half of the experiment (Figure 2a). This

corresponds to the expected relationship between realized produc-

tion and resource availability (Gruner et al., 2008; Leibold, 1999). A

further reduction in phytoplankton biomass under prolonged phases

of oligotrophication can be expected in aquatic ecosystems. The

trends in our experiment thus coincide with summer field observa-

tions in Belgian ponds over a 10‐year sampling period (Verbeek et

al., 2018), where nutrient availability in the investigated lakes

F IGURE 2 Phytoplankton community
dynamics during the experiment.
Chlorophyll a concentration (μg/L) (A),
resource use efficiency (RUE) (B), molar
seston C:P (C) and C:N ratios (D), species
richness (E) and Pielou's evenness (F) over
the duration of the experiment in days.
The different treatments are differentiated
through both shape and coloration:
ambient temperature and constant
nutrients as light gray dots, ambient
temperature, and oligotrophication as gray
squares, increased temperature and
constant nutrients as charcoal diamonds
and temperature increase with
oligotrophication as black triangles. Data
points mark sampling days and are shown
as averages of the three replicates
including error bars (SE). For C:P ratios one
outlier has been excluded and two outliers
for C:N ratios
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decreased between 2003 and 2013 (from 1.97 ± 3.29 mg/L TP to

0.49 ± 0.82 mg/L), which was mirrored by a 71.5% decrease in phy-

toplankton biomass over the same period.

Most importantly, however, we found a clear interaction of

warming and oligotrophication effects on algal biomass. At constant

nutrient supply, temperature effects mediated between fast (warm-

ing) and a slow (ambient temperature) increase in biomass in the sec-

ond half of the experiment, whereas at reduced nutrient supply,

warming led to a substantial decrease in biomass by 50% in the sec-

ond half of the experiment (Figure 2). Our study shows that warming

enhances biomass production if nutrients are abundant, but a lack of

nutrient supply might result in detrimental temperature effects. We

suppose that warming is connected to enhance nutrient require-

ments associated with faster growth and if these demands cannot

be met, biomass production is impaired.

This interaction between nutrient availability and temperature

regime strongly points to an interdependency of energy and matter

metabolism in the phytoplankton, as enhanced energy supply can

only be converted into higher biomass production if essential

resources are available. Namely through an increase in temperature,

physiological processes such as photosynthesis, respiration, and pro-

tein synthesis are sped up as the rate of biochemical reactions

increases. Without a sufficient supply of nutrients, the resulting

increased demand for resources to maintain these processes and

build necessary molecules and structures cannot be met. This points

toward the fundamental links between fluxes of energy and materi-

als in organisms based on the kinetics and elemental compositions of

subcellular structures and processes (Allen & Gillooly, 2009). These

energy and matter links are well investigated for light versus nutrient

effects (Sterner, Elser, Fee, Guildford, & Chrzanowski, 1997; Urabe &

Sterner, 1996), but less so for temperature and nutrients. On a larger

spatial and temporal scale, our results are reflected by a time series

of Lake Biwa (Hsieh et al., 2010; Tsai et al., 2014). While our experi-

ment can help to reveal the mechanistic background of changes, nat-

ural systems are usually subjected to more than two pressures.

Ideally, experiments such as this should include data on the commu-

nity change within the natural system the inoculum was taken from,

so that it might be possible to distinguish to which extend the com-

munity was shaped by other environmental factors. Another aspect

of natural systems not reflected in this experiment is the possibility

for new species to immigrate and the subsequent turnover in species

composition.

4.2 | Treatment effects on ecosystem function,
RUE, and stoichiometry (H2)

We found greater resource use efficiency (RUE) with higher nutrient

availability or temperature increase but no significant interactive

effect, which is mostly in agreement with findings by De Senerpont

Domis et al. (2014). In opposition to our results, some other studies

have found that resource use efficiency would increase with lower

nutrient availability (Bridgham, Pastor, Mcclaugherty, & Richardson,

1995; Vitousek, 1982), but this might be due to different community

composition and species‐specific RUE.

F IGURE 3 Change in relative species abundance in percent in the four treatments over time. Replicates were pooled and only species with
at least 1% contribution at any one time are shown. Numbers are based on biovolume [Colour figure can be viewed at wileyonlinelibrary.com]
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The opposing direction of the two pressures also explains the

hump‐shaped temporal dynamics of biomass production and RUE. It

is possible that biomass and RUE would have declined even further,

below the levels of the oligotrophic control over the next weeks,

because the temperature stress had also diminished species richness.

This increases the probability that the community had lost produc-

tive and/or efficient species as well as any buffering capacities of

rare species (Corcoran & Boeing, 2012). Without the chance to

regain species through regional diversity by immigration (Hillebrand,

Soininen, & Snoeijs, 2010), an isolated ecosystem is severely chan-

ged and destabilized through the two pressures (Hillebrand et al.,

2012). Our results of the interaction treatment could be an indica-

tion that ecosystem functions are destabilized in a major way

through the interaction of both stressors.

We found a very strong increase in C:P ratios as well as a slight

increase in C:N ratios in all treatments, with a significantly higher

increase in C:nutrient ratios in the oligotrophication treatments. C:nu-

trient ratios, in general, have been shown to increase with decreasing

nutrient supply (Bridgham et al., 1995; Moreno & Martiny, 2018;

Vitousek, 1982) leading to lower food quality of primary producers,

the basis of a food web. This can for example be caused by a decrease

in nutrient levels in relation to biomass produced at higher metabolic

rates at higher temperatures, or by a limitation of nutrient supply, such

as phosphorus (Cross, Hood, Benstead, Huryn, & Nelson, 2015). The

effects of oligotrophication will therefore become more severe with

increasing temperature. Given that oligotrophication is increasingly a

phenomenon freshwater systems worldwide (Hsieh et al., 2010;

Pomati et al., 2012), this has strong implications for higher trophic

levels. Most herbivores are more constrained in their nutrient

demands than phytoplankton and higher C:nutrient ratios mean lower

food quality for the grazers. With lower food quality, the gross growth

efficiency of the grazers decreases, leading to less biomass at higher

trophic levels. This pattern is relevant in both aquatic and terrestrial

systems (Elser et al., 2000). For the C:N ratio specifically, changes can

mostly be explained by temperature effects: an increase in tempera-

ture increases the nitrogen‐demand in the cells through, for example,

higher protein assembly, but because carbon content increases simul-

taneously through higher biomass production, the C:N ratio remains

comparably constant (Cotner et al., 2006). The interaction between

lower N‐supply and higher productivity then leads to the highest C:N

ratios being found in the interaction treatment where both mecha-

nisms occur simultaneously. The effects were, however, not strong

enough to be significant.

For the P‐content of the cells, however, oligotrophication had

stronger effects than temperature changes in our experiment. As

phosphorous is considered to be the main limiting nutrient in many

freshwater systems (but see Elser et al., 2007), the limitation

becomes more severe with ongoing oligotrophication. Other studies,

such as Van Donk et al. (2008) have found similar patterns of

increasing C:P ratios with decreasing resource availability. This trend

continues upward into higher trophic levels, as higher organisms

often have higher P‐demand (e.g. for skeletal structures) and less

possibility of stoichiometric flexibility (Elser et al., 2000).

4.3 | Temperature and nutrient effects on species
richness and evenness (H3)

Being disconnected from the regional species pool, initial species

richness could only decline over time. While we see some loss of

species in all treatments, the treatments with ambient temperature

had continuously higher species richness than those with increased

temperature (Figure 2e), and species loss was much stronger in the

treatments with increased temperature. One explanation would be

stronger interspecies competition for the limiting resources. Follow-

ing this, we would expect faster competitive exclusion (Hillebrand,

2011; Hillebrand et al., 2012). Unless there is a possibility of new

species immigrating into an ecosystem from a larger, regional meta-

community system, local extirpation means that many rare species

are permanently lost, which endangers ecosystem function, goods,

and services (Jain et al., 2014; Lyons, Brigham, Traut, & Schwartz,

2005; Mouillot et al., 2013). If the system were part of a metacom-

munity, this would lead to higher turnover, but as we worked in

closed systems the effect was merely species loss. It has been

shown that low evenness and a strong dominance of single species

and general loss of more rare species is correlated (Hillebrand,

2011). With continuing oligotrophication, there was less possibility

of any one species out‐competing all other species to the point of

extinction, as it was unlikely that any one species could realize its

full growth potential. Instead, there was strong competition for the

limited available nutrients in a more balanced community in terms of

abundance. Our results show the inverse effect of fertilization stud-

ies such as Ptacnik, Solimini, et al. (2008) or Gamfeldt and Hillebrand

(2008)—instead of increasing nutrients resulting in decreasing even-

ness, we see an increase in evenness with decreasing nutrient load-

ings (Figure 2e).

In the treatments with increasing temperature, the decrease in

species richness could be caused through only a few species being

able to cope with the high temperature, as generally, the optimal tem-

perature for phytoplankton is between 10–20°C (Butterwick et al.,

2005; Jöhnk et al., 2008). However, even the highest temperatures

reached in the experiment are unlikely to have been lethal for entire

populations. Instead, species that were too far out of their optimal

range to compete and went locally extinct. Hence, the best‐adapted
species could come to dominate the community (Jensen, Jeppesen,

Olrik, & Kristensen, 1994). This is supported by the community com-

position at the end of the experiment, as we found especially green

algae dominating the warmed treatment which are considered to be

better adapted to higher temperatures than for example diatoms

(which are more abundant in the control). Following Litchman et al.

(2015), this can be considered as a result of shifts in trait distribution.

It may even become a global pattern with climate change, which

favors species with wider temperature ranges or higher temperature

optima, such as green algae and cyanobacteria species.

Although there was a trend toward higher RUE with lower diver-

sity (data not shown) which is opposed to trends found in other stud-

ies, for example (Ptacnik, Lepistö, et al., 2008; Striebel et al., 2009), we

did not see a significant change in resource use efficiency. Instead, we

VERBEEK ET AL. | 4539



found high levels of biomass in the treatments with finally very low

species numbers. This is in agreement with results from a study of 131

lakes (Filstrup et al., 2014), which shows a strongly negative relation-

ship between community evenness and resource use efficiency. The

reason might either be a sampling effect: fast‐growing species adapted

to high temperature were present and dominated the system, hence

also the low evenness (Hillebrand et al., 2007, 2012), or an effect of

selection: the species with the greatest competitive strength under

the increasing stress conditions is also the one with highest resource

use efficiency. This would result in both low evenness and high bio-

mass production based on very little resources. More often, a decrease

in diversity has been associated with a general decrease in ecosystem

functionality as soon as more than a single function is considered

(Gamfeldt, Hillebrand, & Jonsson, 2008; Gamfeldt et al., 2013; Mouil-

lot et al., 2013). To maintain a number of ecosystem functions multiple

species with different traits are necessary (Hector & Bagchi, 2007;

Mouillot et al., 2013). However, to achieve high levels of a single func-

tion it is not necessary to have a large number of species (Moss,

2000). Regarding management practices, our results raise the question

whether a decrease in nutrient input will be beneficial to desired

ecosystem states such as high diversity. If a pond has been in a

eutrophic state for long periods of time, the community is adapted to

the high nutrient levels and (re) oligotrophication would act as a stres-

sor, changing community composition and ecosystem functions. If dis-

persal from other diverse communities is limited, the change in abiotic

environment is likely to decrease diversity and productivity of the orig-

inal community, even more so with globally increasing temperatures.

Our experiment revealed an interdependency of the effects of

warming and nutrient availability on phytoplankton biomass. The initial

positive effects of temperature increase on biomass production

remained positive if enough resources were available, but turned neg-

ative under decreasing nutrient supply through oligotrophication. This

led to hump‐shaped temporal patterns in biomass production, resource

use efficiency and strong decreases in diversity measures. Oligotrophi-

cation allowed for a more even, species‐rich community while increas-

ing temperature stress resulted in a significant reduction in species

richness and evenness. Particularly with ongoing problems like high

global extinction rates, eutrophication, and climate change, it is neces-

sary to understand what stabilizes an ecosystem and to find out which

factors are the most important ones to assure the desired functions

(e.g. conservation vs. high productivity, Moss, 2000).
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