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Abstract

1. A resampling of 38 small farmland ponds in Belgium after 10 years revealed a

high temporal species turnover for both phytoplankton and zooplankton commu-

nities, associated with substantial changes in abiotic factors, especially a reduc-

tion in total phosphorus concentration.

2. Across ponds, phytoplankton biomass decreased while evenness and richness

increased between the samplings in 2003 and 2013. By contrast, the zooplank-

ton assemblage was characterised by lower biomass, richness and evenness in

2013. Ponds experiencing larger environmental change showed stronger changes

in phytoplankton richness and evenness.

3. Resource use efficiency (RUE) of zooplankton increased with greater environ-

mental change and zooplankton evenness, which points to a switch towards spe-

cies with higher RUE or greater variety in food sources in higher trophic levels.

4. As ponds are important habitats for freshwater biodiversity and ecosystems ser-

vices, the strong but predictable species turnover and the opposing effects of

environmental change on different trophic levels need to be embedded in con-

servation and management plans.

K E YWORD S

biodiversity, community dynamics, eutrophication, species turnover, trophic levels
Bundesministerium f€ur Bildung und

Forschung; Conselho Nacional de

Desenvolvimento Cient�ıfico e Tecnol�ogico,

Grant/Award Number: 245629/2012-2,

245968/2012-1

1 | INTRODUCTION

Among freshwater systems, small lakes and ponds (<1 hectare) pro-

vide important ecosystem services such as fish production, water

regulation, recreational use and intrinsic aesthetical value (Millenium

Ecosystem Assessment, 2010). From a conservation perspective,

these small waterbodies function as hotspots of biodiversity, with a

high diversity of phyto- and zooplankton, invertebrate and plant

species (C�er�eghino, Boix, Cauchie, Martens, & Oertli, 2014; Declerck

et al., 2005; Scheffer et al., 2006; Williams et al., 2004). At the land-

scape scale, sufficiently large ponds or clusters of ponds are also

important habitats for larger organisms, for example birds, amphib-

ians and mammals (Redfern, Grant, Gaylard, & Getz, 2005). Thereby,

small ponds contribute strongly to regional (gamma) diversity (Wil-

liams et al., 2004).

At the same time, small freshwater habitats are prone to environ-

mental change as they are influenced by both local and regional

changes in environmental conditions, including human impact, such*Laura Verbeek and Matthias Vanhamel should be considered joint first author.
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as eutrophication or pollution. They are highly susceptible to

changes of the surrounding land use, changes in regional climate

(temperature, rainfall) or other, more localised changes (C�er�eghino,

Biggs, Oertli, & Declerck, 2008; Declerck et al., 2006). Therefore,

ponds are ideal natural systems to study biodiversity and ecosystem

processes in a global change context, because their small size, rela-

tive simplicity and often isolated nature in a terrestrial matrix makes

observational studies feasible (De Meester et al., 2005). Ponds have

been used as empirical examples for nonlinear compositional and

functional responses to environmental change, where a small change

in an abiotic driver may cause a cascade of intensifying effects. This

may lead to regime shifts, which are defined as the sudden shift of

the whole ecosystem from one stable state (e.g. clear-water state in

ponds) to a different stable state (e.g. turbid water state) (Scheffer,

Hosper, Meijer, Moss, & Jeppesen, 1993; Scheffer & Carpenter,

2003). Ponds allow us to monitor compositional and functional

changes in ecosystems in response to environmental stressors

(Adrian et al., 2009; Tranvik et al., 2009) as well as the interaction

between altered species composition and ecosystem structure and

processes.

Whether a change in function is directly linked to a change in

composition depends on the correlation between “response” and “ef-

fect” traits. A response trait (e.g. temperature tolerance) causes the

change in composition with environmental change (e.g. warming),

while an effect trait mediates biotic ecosystem processes (e.g. phos-

phorus uptake and growth rates, grazing rates) (Hillebrand & Mat-

thiessen, 2009; Suding et al., 2008; Violle et al., 2007). If response

and effect traits are strongly correlated, the stability of functional

parameters will be linked to the stability of community composition,

and vice versa, if ecosystem functions feedback into coexistence.

Mineralisation rates, for example, influence the resource supply,

which decides how many species can locally coexist (see Cardinale,

Bennett, Nelson, & Gross, 2009). Alternatively, altered species com-

position can buffer against functional change, as the community

composition adapts to the altered conditions while functions remain

relatively constant. Species turnover between functionally redundant

species can provide such a functional insurance effect (Cottingham,

Brown, & Lennon, 2001; Yachi & Loreau, 1999).

Most studies on the response to environmental change focus on

single aspects of the response or the effect framework, often relying

on single trophic groups or few variables reflecting compositional or

functional change. There is, however, ample evidence that responses

to environmental change differ between trophic groups and results

are sensitive to the different diversity metrics used. Autotrophs

show positive or negative trends in richness with fertilisation,

depending, for example, on ecosystem type, but higher nutrient

availability almost always leads to lower evenness (higher domi-

nance) (Hillebrand, Bennett, & Cadotte, 2008; Hillebrand et al.,

2007). By contrast, consumer diversity might not react in the same

way as primary producer diversity to changes in nutrient supply

(Mittelbach et al., 2001; Striebel, Singer, Stibor, & Andersen, 2012).

Recently, the use of turnover metrics in addition to simple univariate

measures of diversity such as richness or evenness has been strongly

encouraged, as the latter underestimate the extend of compositional

change (Dornelas et al., 2014; Hillebrand et al., 2017).

Likewise, the measurement of functional changes has moved from

simple measures of standing stock to the somewhat more process-

related resource use efficiency (RUE) as the ratio of biomass (or bio-

mass production) per unit available resource (Hillebrand & Matthies-

sen, 2009; Ptacnik et al., 2008; Reiss, Bridle, Montoya, & Woodward,

2009). RUE thus reflects the availability of resources as well as the

resource requirements of individual species and is a direct measure of

the transfer of organic material and energy through a food web (Elser

et al., 2000). For example, Filstrup, Hillebrand, Heathcote, Harpole,

and Downing (2014) showed in an analysis across >100 lakes in Iowa

how phytoplankton RUE (biomass of primary producers scaled to

resource availability) decreased with evenness and temporal species

turnover, whereas RUE at the zooplankton level (biomass of zooplank-

ton scaled to biomass of primary producers) was maximised at high

algal evenness and temporal turnover.

Despite such examples, the simultaneous assessment of the tem-

poral changes in environment, species composition, biodiversity and

function is rare. Only a simultaneous assessment of abiotic and biotic

parameters allows addressing links between environmental, composi-

tional and functional change. In 2013, we resampled 38 Belgian

ponds 10 years after a first sampling campaign in 2003. In designing

the study, we did not make any assumptions on whether the ponds

showed linear or nonlinear temporal trends between the two sam-

pling years, nor did we assume that the 2 years are representative

for different time periods. However, we assumed—and found—that

the large number of ponds provided us with a sample covering differ-

ent magnitudes in the relative change in environmental conditions.

In the 2003 campaign, ponds were selected representing differ-

ent land-use intensities at the local scale (De Bie et al., 2012). This

hierarchically structured sampling avoided regional bias, for example

regarding the intensity of agricultural use. Comparability between

sampling years was optimised by adopting the original sampling and

analysis protocol from 2003 also in 2013, and by species identifica-

tion and abundance assessment that avoids potential artefacts (see

Methods). We used this unique data set to simultaneously quantify

changes in environmental conditions (temperature, pH, conductivity,

N- and P-concentrations, fish presence/absence, vegetation cover

and pond morphology), species composition and ecosystem function

(here: RUE). As we addressed two trophic levels, phyto- and zoo-

plankton, we were able to test the following hypotheses:

H1: The magnitude of compositional change (richness

and evenness) correlates positively to the magnitude of

environmental change (total change overall abiotic vari-

ables), that is with greater environmental change comes

greater compositional change.

H2: The magnitude of functional change increases with

larger environmental change (H2a), but correlates not or

negatively (redundancy) or positively (loss of functionally

important species) with compositional turnover (H2b).
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We use RUE of both phyto- and zooplankton as our

focal function, which we relate to the magnitude of

change in the environment and community composition.

For phytoplankton, this is the biomass per unit resource

and for the zooplankton biomass per unit algae.

H3: Responses to environmental change in terms of

composition and function differ across trophic levels.

This difference can comprise the sign and the magnitude

of the response, as well as which abiotic variable drives

the response at different levels. For example, we expect

that the phytoplankton communities primarily respond

to changes in resource levels, whereas zooplankton com-

munities are more indirectly affected via changes in phy-

toplankton.

2 | MATERIAL AND METHODS

2.1 | Rationale

Addressing hypotheses H1 to H3 requires a broad set of local habitats

which have undergone different magnitudes of change in abiotic con-

ditions. We took advantage from the MANSCAPE project (De Bie

et al., 2012; Declerck et al., 2006), which sampled ponds throughout

Belgium once in summer 2003 (between July and September) to deter-

mine the effects of local land use (approximately within 100 m radius,

see Declerck et al. (2006)) on the ecological state of small farmland

ponds. Declerck et al. (2006) aimed at an as evenly as possible distri-

bution of ponds throughout Belgium to cover regional variation in

environmental settings. Ponds were grouped according to three levels

of intensity of land agricultural use: intensive agriculture (cropland),

extensive agriculture (pastures) or no agriculture (natural surroundings,

e.g. in conservation areas) as assessed in the immediate surroundings

of the ponds. In 2013, we resampled 38 ponds (Appendix S1) from the

original selection of ponds from MANSCAPE. We have no information

on how the ponds changed in between the samples, but assumed that

each of the pond had changed in abiotic conditions as a consequence

of temporal trends from 2003 to 2013 and unique differences

between sampling years and timing. The different magnitude of envi-

ronmental change across the 38 ponds was then used as driver to

analyse response magnitudes in composition (H1) and function (H2)

and the difference in response between trophic levels (H3).

2.2 | Sampling procedure 2013

The ponds (n = 38) were resampled following the protocol of Declerck

et al. (2006) for the same set of local environmental variables during

summer 2013 (June–September). Pond depth was measured at the

centre of each pond using a graduated stick, whereas pond surface

area was assessed by measuring two perpendicular diameters and

approximating pond shape. Water transparency was quantified in the

field with a Snell’s tube (Louette & De Meester, 2005). Water

temperature, pH, daytime oxygen concentration and conductivity

were measured in situ using a HACH HQ30D digital multimeter (Hach

NV, Mechelen, Belgium). Chl-a was used as proxy for phytoplankton

biomass and was measured in vivo using a TURNER handheld fluorom-

eter (Turner Designs, U.S.A.). Chl-a is the key photosynthesis pigment

in phytoplankton and therefore often used as a proxy of phytoplank-

ton biomass. To ensure that it was suitable in this case, we correlated

particulate organic carbon with Chl-a measurements and obtained

r = .6 (p < .0001), which is why we consider it appropriate to continue

with Chl-a. The percentage of pond surface area covered with aquatic

vegetation was visually estimated.

Depth-integrated water samples were collected in the open water

from the middle of the largest open water patch of each pond using a

tube sampler (length 1.5 m; diameter 75 mm). A beaker (1 L) was used

instead of a tube sampler in very shallow ponds (<20 cm). The col-

lected water was filtered over a 2 mm sieve to remove larger debris.

Subsamples were subsequently taken for further analysis of nutrient

concentrations (50 ml) and suspended solids (1 L) in the laboratory.

These samples were kept cool and in the dark until arriving at the labo-

ratory. The amount of suspended solids was determined gravimetri-

cally in the laboratory by filtering a known volume of pond water on

preweighted GF/F filters (Whatman, GE Healthcare, U.K.). Samples for

nutrient analysis were frozen at �20°C until measurement of total

concentrations of nitrogen and phosphorus on a Technicon Auto-Ana-

lyzer II (Technicon, Tarrytown, NY, U.S.A.) after persulphate digestion

(Grasshoff, Kremling, & Ehrhardt, 2007). An additional subsample

(250 ml) was taken and fixed with Lugol’s iodine solution for later

determination of phytoplankton community composition.

The zooplankton community was sampled by collecting an addi-

tional depth-integrated water sample by pooling water from four dif-

ferent locations in the pond using a tube sampler. This water sample

was filtered over a 4 mm sieve to remove plant material and other

larger debris, and 40 L was subsequently poured through a conical

zooplankton net (64 lm mesh size). Zooplankton community samples

were collected in 50-ml vials and preserved with 4 ml of 37% sugar-

saturated formalin.

The presence/absence of fish was determined in each pond by

point abundance sampling (see De Bie et al., 2012) with an electric

fishing device suitable to also catch relative small fish (body size: 5–

12 cm).

2.3 | Response variables

Phytoplankton community composition was assessed as abundance

data of cell counts according to the Uterm€ohl technique (Uterm€ohl,

1958) via identification to the species level, when possible. To avoid

differences simply based on different people counting the samples

for 2003 and 2013, respectively, we grouped all phytoplankton

counts back to the genus level for data-analysis. Using genus rich-

ness has been successfully implemented as a reliable taxonomic res-

olution in other large-scale comparisons of biodiversity in

phytoplankton (Ptacnik et al., 2008). We used genus richness as a

measure of the number of taxa, and Pielou’s J (Pielou, 1966) as a
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measure of evenness. Additionally, we quantified genus turnover

between the two sampling years with two metrics, the Jaccard index

based on presence–absence data and the Bray–Curtis index that

takes relative abundances into account (Bray & Curtis, 1957; Jaccard,

1912; Oksanen et al., 2013).

Zooplankton individuals were counted using an Olympus ZSX12

stereomicroscope (Olympus Belgium SA/NV, Belgium). For each sam-

ple, 300 individuals were counted except for when a new species was

found in the last 100 individuals, in which case counting was contin-

ued up to 400 individuals. Cladocerans were identified up to species

level for Daphnia, Alona, Pleuroxus, Scapholeberis and Simocephalus and

to genus level for Chydorus and Ceriodaphnia using (Fl€ossner, 2000).

Ostracods were counted as a group and copepods were classified into

nauplius larvae, calanoids or cyclopoids. Counts were standardised to

density per litre. To obtain biomass data, 15 randomly selected ani-

mals for each species in each pond were measured to determine aver-

age body size and later transformed to biomass per litre (lg/L) using a

conversion factor table constructed from literature (Bottrell, 1976;

Dumont, Van de Velde, & Dumont, 1975). We did not consider the

very small zooplankton such as rotifers and ciliates, but instead

focused on crustacean zooplankton, because biomass-wise and in

terms of grazing they are dominant in these systems (at least in late

spring and summer). Pielou’s J (Pielou, 1966) and species richness

were calculated as measures of biodiversity, Jaccard and Bray–Curtis

dissimilarities as measures of species turnover.

The functional change in phytoplankton and zooplankton was

calculated as the change in RUE (Filstrup et al., 2014; Ptacnik et al.,

2008). For phytoplankton (RUEPP), RUE was calculated as unit Chl-a

(lg/L) per unit phosphorus (lg/L); for zooplankton, it was calculated

as unit dry weight (lg/L) per unit Chl-a (lg/L) (corresponding to a

transfer efficiency, RUEZP). RUE is a dimensionless ratio indicating

the transfer efficiency of mineral resources into phytoplankton bio-

mass or of algal prey biomass into zooplankton biomass. We used

total phosphorus (TP) as the basis for RUEPP given the importance

of phosphorus limitation in most freshwater systems (Sterner, 2008).

It should be noted that RUE is not equivalent to the rate of biomass

production as it relies on an estimate of standing stock, but it pre-

sents a ratio between the realised (biomass) to the potential (avail-

able resource) productivity and has been proven highly successful in

analyses of diversity-function relationships (Ptacnik et al., 2008).

To quantify the magnitude of change between samplings, we used

log response ratios for all individual environmental variables, biodiver-

sity measures (richness and evenness) and functions as log response

ratios, LR = ln(X2013/X2003). Here, X denotes any of the above-men-

tioned response variables, as measured in 2003 and 2013. A positive

LR indicates an increase in the given variable, while a negative LR indi-

cates a decrease. A significant t test of the LR against 0 indicates an

overall negative or positive change across all ponds.

To quantify the overall abiotic change, we used nine morphomet-

ric and environmental factors (depth, surface area, temperature, pH,

conductivity, TP, total nitrogen [TN], percentage of vegetation cover,

fish presence/absence, see Appendix S2) for a standardised principal

component analysis (PCA). Three ponds had missing values and were

excluded from the analysis, reducing N to 35. We quantified the

overall environmental change (DistENV) in individual ponds then as

the standardised Euclidean distance between PCA positions in 2003

and 2013.

2.4 | Statistical analysis

With variation partitioning based on standardised redundancy analy-

sis (RDA), we estimated the amount of variation in the abiotic envi-

ronment that can be explained by differences among years (2003

versus 2013) and variation among ponds (“Pond Identity”). Variation

partitioning was also applied to analyse compositional variation in

phytoplankton and zooplankton communities. These analyses were

based on distance-based RDA (dbRDA). For each plankton group, we

performed analyses using two distance metrics, that is Bray–Curtis

distance using relative abundance data and Jaccard distance using

presence–absence data. Significance tests of the standardised RDA

on environmental variables and dbRDAs on community data were all

based on 999 random permutations following a split-plot design,

with ponds being whole plots and year-specific data within ponds

being split plots. Whole plots were permuted randomly. Split plots

were permuted randomly but restricted to the within-pond level.

We tested our hypotheses at a general level by correlating Dis-

tENV, our measure of total environmental change (Euclidean dis-

tance), to the different measures of compositional change (Bray–

Curtis and Jaccard dissimilarities, LR richness, LR evenness) for both

trophic levels (phytoplankton and zooplankton). A significant correla-

tion would support hypothesis H1. Likewise, we tested for signifi-

cant correlations between DistENV and measures of functional

change (LR RUEPP and LR RUEZP) for H2a, whereas the correlation

between compositional and functional change tested H2b. Any dif-

ference in the presence or direction of a relationship between

phyto- and zooplankton would support H3.

At a more resolved level, we tested for the identity of the envi-

ronmental variables associated with the changes in biotic composi-

tion. We used linear models with the change in abiotic

environmental variables (as LR) as predictors and each of the mea-

sures of biodiversity change as response variables (LR of richness

and evenness as well as both measures of species turnover). In addi-

tion to the nine variables included in the PCA, we also added the

biomass change in both trophic levels as predictors. The initial full

model thus comprised 11 variables (Table 1) and was then reduced

using the Akaike information criterion (package MASS in R) to

derive the most parsimonious model (Burnham & Anderson, 2002).

As compositional dissimilarity between years is not a directional

variable, GLM (general linear models) were run with absolute log

response ratios (independent of sign) as predictors of Bray–Curtis

and Jaccard dissimilarities.

We added a sensitivity analysis after finding substantial environ-

mental and compositional changes between 2003 and 2013. This

poses the question whether the ponds in 2013 exhibit qualitatively

different limnological patterns than in 2003, which would indicate a

systematic bias in the data. Therefore, we provided Pearson
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correlation coefficients between variables across the two samplings,

which indicate—if significant—that the overall data set follows the

same patterns.

All analyses were done in R (R Development Core Team & R

Core Team 2013), using the packages psych (Revelle, 2013), vegan

(Oksanen et al., 2013), MASS (Venables & Ripley, 2002), ggbiplot,

ggplot2 (Wickham, 2009), ggmap (Kahle & Wickham, 2013), devtools,

grid (R Development Core Team & R Core Team 2013) and gridExtra

(Auguie, 2012).

3 | RESULTS

3.1 | Basic patterns of environmental change in the
ponds between 2003 and 2013

Local environmental conditions differed strongly between ponds, but

also significantly within ponds between years as was shown by

applying variation partitioning analysis based on standardised RDA.

“Year” significantly explained 5.3% (p < .001) of the variation in envi-

ronmental variables, whereas “Pond Identity” explained 30%

(p < .001). The latter indicates that the selection of ponds was suc-

cessful as they spanned the intended broad gradients in environmen-

tal conditions. The significant amount of variation explained by time

indicates that the ponds underwent substantial environmental

change, which allows addressing our hypotheses.

Our sensitivity analysis showed that across ponds and years, the

biotic and abiotic variables followed well-known and consistent limno-

logical patterns (Table 1, Figure 1). Phytoplankton biomass (Chl-a)

increased with increasing TP as well as with conductivity, pH and

nitrogen. Half of the ponds contained fish in 2003 (18/35). The overall

reduction in fish presence in 2013 (�50%) did not lead to a change in

zooplankton biomass, but the expected cascading increase in

phytoplankton biomass was found (Table 1) (Borer et al., 2005; Shurin

et al., 2002). Phytoplankton biomass was further negatively correlated

with total vegetation cover and pond depth (Table 1). Phytoplankton

diversity declined with increasing TN (only richness) and increasing TP

(both richness and evenness) and thus also with increasing standing

biomass (Table 1, Figure 1). Higher genus richness was found in dee-

per ponds, higher evenness in ponds with larger vegetation cover.

Zooplankton biomass and diversity indices did not significantly corre-

late to TP (Figure 1), but higher zooplankton richness appeared in lar-

ger ponds (surface area) and higher zooplankton evenness in ponds

with higher amounts of phytoplankton biomass.

3.2 | Overview of changes within the ponds
between 2003 and 2013

The overall amount of abiotic change and its variation was substantial

across the 38 ponds (Appendix S3). A few variables showed consistent

trends reflected by significant differences in LR from 0: TP signifi-

cantly declined, whereas the depth and area of the ponds increased.

Other variables showed substantial variation between ponds, but no

consistent overall trend: LR for TN or conductivity indicated positive

and negative changes by factor a 0.5–2, and the fish presence was

strongly reduced in 2013 (Appendix S3). Consequently, biotic vari-

ables showed even stronger magnitudes and variation in change

between samplings. Phytoplankton biomass significantly declined

(LR < 0), whereas phytoplankton genus richness increased between

the sampled years (LR > 0) (Appendix S3). Zooplankton biomass

tended to decline between 2003 and 2013, but not generally across

all ponds. Zooplankton evenness and RUE at both trophic levels

showed broad variation in relative change (Appendix S3).

Community composition was almost entirely changed between

2003 and 2013 (Figure 2). In almost all ponds, the identity-based

TABLE 1 Summary of basic limnological relationships across years (2003 and 2013 sampling campaign) in the Belgian farmland ponds. The
table gives overall Pearson correlation coefficients of the pooled data of both years and significance levels between measures of biotic
variables (phytoplankton biomass, genus richness and evenness as well as zooplankton biomass, species richness and evenness) and nine
environmental variables (as presented in Appendix S1) and the biomasses of both trophic levels. Chl-a and zooplankton biomass were log-
transformed. Significance levels are ***p < .001, **p < .01 and *p < .05. N = 76 for all correlations, except for zooplankton evenness (N = 71).
The graphs in Figure 1 depict the data for each year separately. Significant correlations are shown in bold for easier identification

TP TN Temp Cond pH Area Depth Veget Fish Chl-a ZPbiom

Phytoplankton

Chl-a 0.44*** 0.27* 0.05 0.45*** 0.42*** �0.07 �0.22 �0.27* 0.30** n.a. �0.07

Richness �0.27* �0.09* 0.05 �0.20 �0.05 0.17 0.28* �0.04 �0.02 �0.25* 0.06

Evenness �0.21 �0.10 �0.08 �0.26* �0.15 0.05 0.08 0.25* �0.15 �0.39*** 0.00

TP TN Temp Cond pH Area Depth Veget Fish PP Rich PP Even

RUEPP �0.22 0.05 �0.21 �0.13 �0.06 0.31** �0.07 �0.05 0.04 �0.17 �0.27*

Zooplankton

Biomass �0.12 0.00 �0.07 �0.16 �0.04 0.07 �0.14 �0.16 0.11 �0.07 n.a.

Richness �0.03 �0.05 �0.01 �0.07 �0.04 0.25* 0.06 �0.01 0.18 �0.05 �0.05

Evenness �0.24 �0.12 �0.12 �0.16 �0.11 �0.07 0.11 0.13 �0.19 �0.32** 0.05

TP TN Temp Cond pH Area Depth Veget Fish ZP Rich ZP Even

RUEZP �0.07 0.07 0.06 0.03 0.16 0.03 0.01 �0.17 0.14 �0.02 0.11
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Jaccard indices were >0.8 for both trophic levels, whereas the domi-

nance-based Bray–Curtis indices were >0.6 for phytoplankton and

mostly >0.4 for zooplankton. There was no significant correlation in

the species turnover between the two trophic groups for either

measure of dissimilarity, such that the magnitude of changes in

phytoplankton composition and zooplankton composition were

independent. When using Bray–Curtis distances, 9% of the composi-

tional variation in phytoplankton communities was due to systematic

differences between Years (variation partitioning based on dbRDA,

p < .001), whereas no variation could significantly be explained by

Pond Identity (results remained similar when using the Jaccard dis-

tance: Year: R2 adjusted: 4.2%; p < .001; Pond Identity: R2 adjusted:

F IGURE 1 Algal and zooplankton biomass, richness and evenness correlated with total phosphorus (TP). Only the relationships between
Chl-a and phytoplankton genus richness with TP are significant (Table 2). Grey dots refer to results of the 2013 sampling campaign, black
symbols to the results of the 2003 sampling campaign. Lines indicate significant relationships
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0.1%; p > .05). For zooplankton, using Bray–Curtis distances, Year

and Pond Identity explained 2.5% and 9.2% of zooplankton composi-

tional variation, respectively (both p < .01), whereas less variance was

explained for Jaccard distances (Year 1.3%; p < .05 and Pond Identity

3%; p < .1).

3.3 | Correlation between environmental change
and the change in biodiversity and species
composition

The first component of the standardised PCA performed on the

combined environmental data of both years represents a nutrient

gradient, alongside changes in conductivity, pH and fish presence.

The second component is closely associated with variation in pond

surface area (Figure 3, for details, see Appendix S2). Larger ponds

tended to have less vegetation cover and deeper ponds seemed to

be colder. The average change in environmental conditions between

2003 and 2013 and its variance indicated that a strong reduction in

TP (LR < 0, dependent t test, p < .01) was opposed by increasing

pond area (LR > 0, dependent t test, p < .01) and depth (LR > 0,

dependent t test, p < .05) (Appendix S3).

The overall magnitude of change in environmental conditions (Dis-

tENV) was not significantly correlated to the measures of compositional

turnover in phytoplankton or zooplankton (all correlations p > .27 for

Bray–Curtis or Jaccard dissimilarity for both levels). For LR richness

and LR evenness (Figure 4), only the change in phytoplankton even-

ness significantly increased with increasing environmental distance

(r = .44, p = .008, N = 35), which encompassed a switch from positive

to negative changes when the environmental variables changed more

drastically. Although the correlation was not significant, the other LR

for phyto- and zooplankton diversity measures also tended to be more

positive in ponds with more substantial environmental change.

In the more resolved analyses, using the different environmental

variables, we found that these could explain 17%–56% of the variance

in biodiversity change across ponds (Table 2). Most substantial com-

positional changes were associated with the change in phytoplankton

biomass: a stronger decrease in Chl-a concentration over time (more

negative LR) was significantly related to a stronger increase (more pos-

itive LR) in phytoplankton evenness and richness, but to a decrease

(negative LR) in zooplankton evenness (Figure 4, no relationship for

zooplankton richness). Zooplankton evenness and richness increased

more over time (positive LR) when TP decreased more, and zooplank-

ton richness also increased more if zooplankton biomass decreased

more (Table 2, see Appendix S4). Phytoplankton richness tended to

increase more with a stronger increase in pH and TN (Appendix S4).

Species turnover in phytoplankton was affected mainly by changes in

morphometry, with larger changes in area (larger absolute LR) leading

to almost full species turnover (Bray–Curtis). Species turnover in zoo-

plankton was correlated positively to zooplankton biomass (Table 1),

and increased, albeit non-significant, when changes in vegetation

cover and TN were more pronounced (Table 1, Appendix S5).

3.4 | Correlation between environmental change
and the change in RUE

The magnitude of change in RUE was significantly correlated to the

measure for overall environmental change (DistENV) for zooplankton

(Pearson correlation, p < .01), but not for phytoplankton. Breaking

down the analysis for single environmental variables, we found that

RUEZP was not significantly correlated with any of the environmental

variables, whereas RUEPP was significantly positively correlated with

surface area (p < .01) (Table 1).

3.5 | Correlation between compositional change
and the change in RUE

Neither the change in RUEPP nor in RUEZP was significantly related

to measures of compositional turnover (Jaccard or Bray–Curtis, Fig-

ure 6). The correlations between LR RUE and LR richness and even-

ness were not significant for phytoplankton, but for zooplankton, the

correlation between LR RUEZP and LR evennessZP was negative and

highly significant (p < .001) while the correlation between LR RUEZP

and LR richness was marginally non-significant (p < .07).

4 | DISCUSSION

Comparing data across ponds and between the sampling years 2003

and 2013 revealed a substantial spatial and temporal variation in abi-

otic variables, biotic composition, biomass and ecosystem function. It

also revealed consistent correlations among variables that are well

established in limnological literature, such as positive correlations of

phytoplankton biomass to nutrient loading (P and N) (De Senerpont

Domis, Van De Waal, Helmsing, Van Donk, & Mooij, 2014; Hessen,

Faafeng, Brettum, & Andersen, 2006) and fish presence (Drenner,

F IGURE 2 Dissimilarities of the zooplankton and phytoplankton
communities of the individual ponds, based on the Bray–Curtis
(black dots) and the Jaccard method (grey dots)
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F IGURE 3 Standardised principal
component analysis of the environmental
conditions of all ponds. Black dots indicate
ponds in 2003, triangles in 2013.
PmgL = total phosphorus in mg/L,
NmgL = total nitrogen in mg/L,
Conductivity = conductivity in lS/cm,
VegPerc = percentage of surface area
covered by vegetation, depth = max. depth
in metre, Temp = temperature in °C,
FishPA = fish presence/absence, pH = pH,
Surface_Area = surface area in m2

F IGURE 4 Change in species richness
and evenness between 2013 and 2003
(expressed as log ratio; 0 = no change) in
correlation to the environmental distance
(measured as Euclidean Distance between
2013 and 2003) in the respective ponds.
Significant correlations (p < .05) are
indicated with a trendline
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Gallo, Baca, & Smith, 1998; Drenner, Threlkeld, Smith, Mummert, &

Cantrell, 1989), as well as negative correlations between the presence

of macrophyte vegetation and phytoplankton biomass (Declerck, Van-

derstukken, Pals, Muylaert, & De Meester, 2007). More eutrophied

ponds harboured less diverse and less even phyto- and zooplankton

assemblages (compare Declerck et al., 2007; Jeppesen, Jensen, Son-

dergaard, Lauridsen, & Landkildehus, 2000; Leibold, 1999). By con-

trast, deeper and larger ponds showed higher phyto- and zooplankton

richness as predicted by species-area curves (Preston, 1960). The con-

sistency of these patterns across samplings allows us to focus on the

main questions regarding the relationship between the relative magni-

tude of change in the environment, the biota and the functions of

these pond ecosystems between samplings. As we do not have infor-

mation for the years between 2013 and 2003, our focus is on the rela-

tive magnitude of change (using multivariate techniques and log

response ratios) between years. Irrespective of whether these changes

reflect long-term temporal trends or only differences between these

particular years, the overall qualitative consistency in the relationships

between environmental variables and aspects of community biomass

and biodiversity allows to discuss the differences in responses to the

magnitude of environmental change.

4.1 | H1: A more intense change in environmental
conditions over time leads to more intense changes
in biotic composition

The ponds differed in their individual environmental conditions (re-

sponsible for 30% of variance in variance partitioning), but also

showed substantial change in environmental conditions over time (5%

of variance). On average, TP was reduced by more than 70% between

the sampling years 2003 and 2013, although most ponds were still in

the eutrophic range (30–100 lg/L TP, Lampert & Sommer, 2007).

Conversely, we observed no notable changes in the availability of

nitrogen. This pattern is superficially congruent with a large-scale

European trend in decreased nutrient loads through eutrophication

mediation measures (Hartwich, Martin-Creuzburg, Rothhaupt, &

Wacker, 2012; Lindegren, Blenckner, & Stenseth, 2012; Pomati, Mat-

thews, Jokela, Schildknecht, & Ibelings, 2012). However, the observed

differences might also reflect inter-annual variation in weather condi-

tions, most notably different precipitation levels. Indeed, during 2003

the ponds experienced an exceptionally dry summer, which resulted in

partial drying, as is indicated by an average 32% reduction in depth

and a 62% reduction in surface area compared to 2013. This evapora-

tion probably also resulted in the concentration of nutrients and may

explain the higher P-content in 2003 compared to 2013. As TP

decreased and TN remained unchanged during the considered period,

the N:P ratio showed on average an increase. TP, depth, and surface

area were the only significant environmental changes. An explanation

why P-levels decreased while N-levels remained stable could be that

nitrogen is more mobile than phosphorus and more easily washed

from the sediment into the waterbodies (Pe~nuelas, Sardans, Rivas-

ubach, & Janssens, 2012; Pe~nuelas et al., 2013; Sardans, Rivas-Ubach,

& Pe~nuelas, 2012).

Most likely, the decrease in TP and change in N:P ratio observed

between 2003 and 2013 caused the large reductions in phytoplank-

ton (>75%) and zooplankton biomass (>17%) and the corresponding

changes in community composition. Still, the extent of turnover was

still surprisingly high. Between 2003 and 2013, we observed 63%–

99% dissimilarity in phyto- and 42%–99% dissimilarity in zooplank-

ton when including dominance aspects. Even on a presence–absence

basis, on average 76% of the phytoplankton genera and 61% of the

zooplankton species were replaced. Time accounted for only 9% of

the total variation in composition, even though turnover at the indi-

vidual pond level as very high. This reflects a large turnover also in

space. As temporal turnover requires the presence of additional spe-

cies in the species pool, the large spatial dissimilarity might explain

why such strong turnover was possible.

By adjusting the level of identification to genus level in the phyto-

plankton and in some of the cladoceran genera, we avoided artefacts

of different taxonomic identification by different experts in 2003 and

2013. The high compositional turnover observed here is thus a valid

indicator of the high variability of small waterbodies (Scheffer et al.,

2006). It is their size in particular that makes these ponds sensitive to

environmental change in their immediate neighbourhood (Oertli et al.,

2002): smaller size means less inertia so that even small changes in

local environmental variables, such as nutrient load, can already pro-

foundly affect these pond ecosystems (Heino, Virkkala, & Toivonen,

2009; Rosset, Lehmann, & Oertli, 2010). This sensitivity was proposed

to make pond systems vulnerable to disturbances and, ultimately, to

regime shifts (Scheffer, 1989; Scheffer & Van Nes, 2007), but lacking

data on intermediate years we were not able to test this explicitly.

Change in phytoplankton diversity increased with greater envi-

ronmental change (calculated as Euclidean distance, that is a mea-

sure that combines all abiotic factors considered into one value of

change), partly accepting H1. No such pattern could be found for

zooplankton (see below). Furthermore, the species turnover rates of

both trophic levels did not correlate, partly refuting H1. The increase

in phytoplankton richness with greater environmental change sug-

gested that phytoplankton diversity benefited strongly from olig-

otrophication and area increase between 2003 and 2013, which

were the key aspects of environmental change. The reduction in

Chl-a (phytoplankton biomass) was the best predictor for increasing

evenness of phytoplankton. A reduction in evenness with increased

biomass is a very common finding for autotrophs in all ecosystems

such that our results are in line with expectations from experimental

studies on fertilisation (Hillebrand et al., 2007), especially given the

high values of TP we have in the ponds studied (range 0.005–

18.16 mg/L, mean value 1.26 mg/L). The reduction in nutrient con-

centrations resulted in increased phytoplankton richness as well,

potentially because less dominance of highly productive species

allowed more species to coexist due to the absence of strong com-

petitive exclusion (Jeppesen et al., 2005; Pomati et al., 2012).

Opposed to phytoplankton, zooplankton diversity (richness and

evenness) reacted negatively to nutrient decreases. Zooplankton

evenness increased with higher Chl-a (food quantity) availability, but

decreased with zooplankton biomass, which reflects a shift in
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composition from a more diverse community of smaller species

towards fewer and larger species with greater resource require-

ments.

4.2 | H2a: The magnitude of functional change
increases with larger environmental change

Overall, the change in RUE across all ponds showed great variation.

Phytoplankton is not homoeostatic, that is can vary in its stoichiom-

etry dependent on the availability of resources in the environment

to a certain degree (Sterner & Elser, 2002). Given this, we would

have expected an increase in RUE following oligotrophication, as the

same amount of biomass could have been produced on a lower

amount of phosphorous. However, neither total environmental

change nor community turnover had a significant effect in phyto-

plankton RUE. The recorded lack of change coincided with a

decrease in Chl-a together with a decrease in phosphorus (Figure 1).

4.3 | H2b: The magnitude of functional change
correlates negatively (redundancy) or positively (loss
of functionally important species) with compositional
turnover

Following the positive relationship between RUE and diversity found

for phytoplankton (Ptacnik et al., 2008), we would have expected an

increase in RUE with the increase in phytoplankton richness but

could not find any significant correlation between the two mea-

sures. However, it has also been shown that there is a strong

inverse relationship between evenness and phytoplankton biomass

and RUE (Filstrup et al., 2014; Hodapp, Meier, Muijsers, Badewien,

& Hillebrand, 2015; Lehtinen, Tamminen, Ptacnik, & Andersen,

2017). In this study, we found a significant positive relationship

between phytoplankton evenness and total environmental change

(Figure 5), which could therefore be the underlying cause why the

RUE did not change significantly with nutrient supply. With a

simultaneous decrease in biomass production and resource availabil-

ity, RUE should not vary much, even if the two factors from which

the ratio is calculated are affected by different mechanisms. In this

case, the potential increase in RUE with oligotrophication was

counteracted by a decrease with increasing phytoplankton even-

ness.

The change in RUE of zooplankton was not related to species

turnover but increased significantly with greater environmental

change (Figure 6), indicating strong environmental effects on higher

trophic levels. Given that nutrient limitation for phytoplankton also

reduces its food quality for zooplankton (Elser, Hayakawa, &

Urabe, 2001), the fact that nevertheless RUE did not decrease

indicates a shift towards species with higher efficiency. Based on

findings by Gliwicz (1990) that show higher growth rates of larger-

bodied zooplankton at low food concentrations, we would expect

an increase in RUE with decrease in resource availability (in this

case Chl-a).

F IGURE 5 Log response ratios (LR) of
richness and evenness for the
phytoplankton and zooplankton
communities plotted against the log
response ratio of Chl-a as a measure for
change in productivity. Significant (p < .05)
correlations are indicated with a trendline.
Negative LR mean that the values were
higher in 2003 than in 2013 (overall
decrease), and positive values mean values
were higher in 2013 than in 2003 (overall
increase)
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As most ponds tended to decrease in phytoplankton biomass

(Appendix S2), the change in zooplankton RUEmight have been caused

by a compositional shift towards larger species. Indeed, we found a

shift from communities mainly dominated by Bosmina and Chydorus

species to ones with greater abundances of Alona, Daphnia and Simo-

cephalus with oligrotrophication, although Bosmina was still the most

abundant, which makes them highly relevant to ecosystem function

performance (Winfree, Fox, Williams, Reilly, & Cariveau, 2015).

Both, the increase in evenness and therefore niche partitioning

and the shift towards larger species, an overall increase in RUE of

zooplankton was expected (Ye, Chang, Garc�ıa-Comas, Gong, &

Hsieh, 2013). In terms of biomass, there was strong increase in bio-

mass of Daphnia, similar to the shift in abundance (Appendix S6).

Both these changes were mainly driven by larger populations of

Daphnia magna and Daphnia longispina (data not shown), which is

relevant given the size differences in Daphnia species and therefore

differences in growth rates and RUE (Tessier, Leibold, & Tsao, 2000).

The shift towards higher evenness and larger species ultimately

points to a more top-down controlled community of plankton (Gia-

nuca, Pantel, & De Meester, 2016; Ye et al., 2013), as opposed to a

highly eutrophic, bottom-up controlled one.

Possibly due to the very high variation between the different

ponds investigated, we did not find any correlation between zoo-

plankton RUE and community change (both dissimilarity measures,

Figure 6). The increase in both evenness and RUE could also be due

to complimentary resource niches (Norberg, 2000). Another possibil-

ity would be that high zooplankton RUE was maintained by subsidy

from the consumption of alternative food sources, such as detritus

or bacteria, to achieve the necessary ratio of consumed nutrients,

but such a subsidy effect would be more likely the case with

increasing eutrophication, not oligotrophication. Unfortunately, we

have no data to disentangle these alternatives.

4.4 | H3: Responses to environmental change in
terms of composition and function differ across
trophic levels

The two trophic levels investigated reacted differently to the overall

change in the environmental factors (accepting H3). While the change

in phytoplankton evenness significantly correlated with total environ-

mental change, we could not find any such pattern for the zooplank-

ton community. Neither species richness nor evenness changes in

F IGURE 6 Change in resource use
efficiency of phytoplankton (PP) and
zooplankton (ZP) (measured as log
response ratio, LR RUE PP or LR RUE ZP,
respectively) related to environmental
distance (measured as Euclidean distance),
Bray–Curtis and Jaccard dissimilarity.
Significant (p < .05) correlations are
indicated with a trendline
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zooplankton had any directional trend that could be related to the

overall environmental change. This reflects the fact that the main

changes in the ponds showed opposite effects on the change in even-

ness for zooplankton (Table 1): zooplankton evenness increased over

time when phytoplankton biomass increased or stayed constant (Fig-

ure 4), but zooplankton evenness decreased if TP and zooplankton

biomass stayed high (Appendix S3). Thus, the most important aspect

of environmental change, the decrease in TP, had countercurrent

effects on zooplankton diversity. Related to the overall decrease in

nutrient concentrations across ponds (negative LR TP), we observed a

decrease in biomass through primary production (negative LR Chl-a),

and this decrease in prey biomass might have triggered a decrease in

zooplankton diversity through limited resource availability (Table 1).

The observed inverse effects (increased phytoplankton biomass

decreases phytoplankton richness and evenness, but increases zoo-

plankton evenness) can be explained as the result of competitive dom-

inance associated with biomass production at both levels. Similarly,

Declerck et al. (2005) found in their pond assessment that different

trophic groups, including phyto- and zooplankton, react differently or

even opposing to single environmental gradients such as TP. Phyto-

plankton evenness was low at high Chl-a concentrations, but in turn,

higher primary production can increase zooplankton biomass (McCau-

ley & Kalff, 1996) and diversity as predicted by, for example, the spe-

cies-energy theory (Brown, Gillooly, Allen, Savage, & West, 2004).

Corroborating this idea, Declerck et al. (2007) found that increasing

phosphorus loads and an increase in phytoplankton biomass lead to a

decline in zooplankton richness, as the best-suited predator became

dominant. In both cases, an increase in biomass comes with a decrease

in diversity of the respective trophic level.

5 | CONCLUSIONS

Even though there are pronounced local differences between the

individual ponds, we were able to show overarching patterns of

change and response across two sampling campaigns separated by a

decade. There was a strong environmental change regarding nutrient

content and morphometry, which can be driven by long-term trends

or differences in precipitation. Irrespective of the source of environ-

mental change, we found that changes in environmental characteris-

tics translate into changes in plankton communities. Strong

reductions in TP resulted in strong biomass decrease at both trophic

levels, and in a strong increase in phytoplankton richness and even-

ness. The consequences for zooplankton richness and evenness were

mixed, reflecting countercurrent effects of prey biomass reduction

and zooplankton biomass reduction. There was a nearly complete

species turnover in both phyto- and zooplankton in most ponds.

However, the change in RUE was overall slightly positive, which indi-

cates a shift towards more efficient species in the light of oligotrophi-

cation (phytoplankton), while zooplankton evenness decreased with

lower food quantity.

Our results point to strong effects of variation in year-specific

weather conditions, which might become more severe according to

climate change predictions (Rosenzweig et al., 2007), in particular

regarding precipitation (Trenberth, 2011). While much scientific

investigation focuses on eutrophication, with increasing success in

management efforts to reduce anthropogenic input of phosphorus

and nitrogen, it has also become necessary to consider the effects of

oligotrophication on plankton communities and higher trophic levels.

The opposing trends for zooplankton and phytoplankton communi-

ties indicate that environmental changes act as different stressors

for different trophic levels. There is a need for more insight on how

the interactive effects of weather conditions and nutrient concentra-

tions impact year-to-year variation in the functioning of aquatic sys-

tems.
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