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This study presents a multi-proxy record from Lake Kotokel in the Baikal region at decadal-to-multidecadal
resolution and provides a reconstruction of terrestrial and aquatic environments in the area during a 2000-year
interval of globally harsh climate often referred to as the LastGlacialMaximum (LGM). The studied lake is situated
near the eastern shoreline of Lake Baikal, in a climatically sensitive zone that hosts boreal taiga and cold deciduous
forests, coldsteppeassociations typical fornorthernMongolia, andmountain tundravegetation.Theresultsprovidea
detailedpictureof theperiod in focus, indicating (i) adriestphase (c.24.0–23.4 cal. kaBP)with lowprecipitation,high
summer evaporation, and low lake levels, (ii) a transitional interval of unstable conditions (c. 23.4–22.6 cal. ka BP),
and (iii) aphase (c. 22.6–22.0 cal. kaBP) of relatively highprecipitation (andmoisture availability) and relatively high
lake levels. One hotly debated issue in late Quaternary research is regional summer thermal conditions during the
LGM. Our chironomid-based reconstruction suggests at least 3.5 °C higher than present summer temperatures
between c. 22.6 and 22.0 cal. ka BP, which are well in line with warmer and wetter conditions in the North Atlantic
region inferred fromGreenland ice-cores. Overall, it appears that environments in central Eurasia during the LGM
were affected by much colder than present winter temperatures and higher than present summer temperatures,
although the effects of temperature oscillations were strongly influenced by changes in humidity.
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Nowadays, extreme weather and rapid climate change
are common topics discussed at all levels, i.e. scientifi-
cally, politically, and publicly (IPCC 2014). Compar-
isons with former climatic extremes are frequently
employed in discussions aiming to address the stabil-
ity/instability of regional environments and degree of
environmental/human adaptation to climatic extremes
at regional to global levels. The current study focuses on
the interval between 24 and 22 cal. kaBP,which has been
attested as one of the coldest and driest, although
climatically unstable intervals of the late Quaternary
(Lisiecki & Raymo 2005; Svensson et al. 2008).

The Baikal Region belongs to Siberia – a vast area of
northern Eurasia with sparse human population, great
variety of landscapes, extreme continental climate, the
world’s largest boreal forest belt, extensive permafrost
(Alpat’ev et al. 1976), and a long history free from large
continental ice sheets (Svendsen et al. 2004). Thismakes
it an important region for palaeoenvironmental and
earth system modelling studies (e.g. Kaplan et al. 2003;
Melles et al. 2012; Schulz & Paul 2015), which provide a
valuable contribution to the current knowledge on
ecosystem development under extreme climate conditions

and facilitating future predictions and conservation
strategies (Petit et al. 2008).

In recent decades, the palaeoenvironmental commu-
nity working in different parts of Siberia has paid special
attention to the coldest interval of the late Quaternary
covering the time frame from c. 26.5 to 19 cal. ka BP
(Clark et al. 2009) – the LastGlacialMaximum (LGM) –
and its impact on the plant and animal communities (e.g.
Guthrie 2001; Kienast et al. 2005;Willerslev et al. 2014),
human populations (e.g. Dolukhanov et al. 2002; Fiedel
& Kuzmin 2007), and regional climate, hydrology and
geomorphology of the surrounding landscapes (e.g.
Karabanov et al. 2004; Mangerud et al. 2008; Ganopol-
ski et al. 2010; Kostrova et al. 2014). Despite significant
progress in different study fields during recent years, the
scarcity of high-resolution and well-dated LGM records
remains a major obstacle for reliable environmental
reconstructions in Siberia.

M€uller et al. (2014) presented a detailed pollen record
from Lake Kotokel in the Baikal region of Siberia
(Fig. 1A), which covers the interval c. 27–19 cal. ka BP
with an average temporal resolution of about 40 years.
Their results suggest that cold steppe or/and herbaceous
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tundra vegetation dominated in the study area through
the entire analysed interval. In contrast to the relatively
stable regional vegetation, the local environmental indi-
cators, such as pollen of littoral plants and algae colonies,
advocated for a greater sensitivityof the lake ecosystem to
decadal- and century-scale climate variability (e.g. Shala
et al. 2017). These findings encouraged researchers to
continue investigating the remaining sediment usingother
proxies in an attempt to trace the climate variability in the
study area.

In the current study, we present results of a multi-
disciplinary studyofLakeKotokel sediments covering the
interval 24–22 cal. ka BP. Newly obtained chironomid,
ostracod, isotope, and geochemical records are discussed
together with published environmental reconstructions
derived frompollen and diatom records (Bezrukova et al.
2010; Kostrova et al. 2014;M€uller et al. 2014) in order to
explore the response of terrestrial vegetation and lake
ecosystem to climate changes. In a final step, our results
are compared with published LGM records from the
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Fig. 1. Aseriesofmaps showing (A) themain topographic andhydrological features of theLakeBaikal region in southernSiberia, basedon theShuttle
RadarTopographyMission (SRTM)v4.1 data (Jarvis et al. 2008), and locationof the studyarea aroundLakeKotokel (detailed inB); (B) the vicinityof
LakeKotokeland locationof thesedimentarycoresKTK2,KTK10,andCHM3(blackdots)discussed inthetext;and(C)moderntreecoverdistribution
based on theAdvancedVeryHighResolutionRadiometer (AVHRR) dataset (DeFries et al. 2000).
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Baikal region and more distant regions of the Northern
Hemisphere.

Lake setting and modern environments

Kotokel (latitude 52°470N, longitude 108°070E, altitude
458 m a.s.l.) is a freshwater lake situated 2 km east of
Lake Baikal (Fig. 1B). The lake has an inflow from 15 to
20 streams and small rivers and anoutflow toLakeBaikal
(Kostrova et al. 2013). With a surface area of about
69 km2 and a catchment area of about 187 km2 (Zhang
et al. 2013), it provides excellent conditions for pollen
accumulation and preservation and for pollen-based
reconstructionsof local to regionalvegetationandclimate
(Tarasov et al. 2009). A relatively short water residence
time of about 7 years (Shichi et al. 2009) in association
with a high abundance of diatoms, particularly in the
Holocene sediment layers (Bezrukova et al. 2010; Fedo-
tov et al. 2012), also makes Lake Kotokel sediments
suitable for diatom analysis and diatom-based oxygen
isotope studies (Kostrova et al. 2013, 2014). Pilot studies
have also revealed the potential of the lake sediments for
chironomid and ostracod analyses (Fedotov et al. 2012;
M€uller et al. 2014).

Lake Kotokel is located in a climatically sensitive bio-
geographical zone (Alpat’ev et al. 1976), which is com-
prised of species from boreal forest, steppe, and alpine
tundra vegetation (Galaziy 1993). The climate is conti-
nental with long, cold winters and short, hot summers
(Alpat’evet al.1976).Theclimaterecord fromthenearby
Cheremukhovo station documents a mean January tem-
peratureof�19.5 °C,mean July temperatureof 15.4 °C,
annual precipitation of about 400 mm, and 181 days
withsnowcovernearthe lake(Galaziy1993).Almosthalf
of theannualprecipitationfalls inJulyandAugustduring
increased southeastern cyclonic activity along theMon-
golian branch of the Polar front, whereas between late
autumn and early spring cold and sunny and generally
dry weather associated with the stationary Siberian
anticyclone predominates (Lydolph 1977; Kurita et al.
2004).

Modern vegetation along the eastern coast of Lake
Baikal is mainly composed of boreal coniferous and
deciduous forests (Fig. 1C) consisting of Scots pine, larch,
and birch trees, with some admixture of aspen and
shrubby alder (Galaziy 1993). Boreal evergreen conifers,
including Siberian pine, fir, and spruce occupy the moist
slopes of the Ulan-Burgasy Ridge, while alpine tundra
communities with pine, alder and birch shrubs, grasses
and sedges grow at altitudes above 1800 m (Molozhnikov
1986; Galaziy 1993). While tundra occupies large areas
north and northeast of Lake Baikal, steppe vegetation is
widespread on Baikal’s largest island Olkhon and in the
depressions along the Selenga River (Fig. 1C).

Bathymetric mapping and a geophysical survey per-
formed inMay2011 (Zhanget al.2013) revealedamaximal
measured water depth of about 12 m in the northern part

between the islandand the lake shore (Fig. 1B); however, the
southern part of the lake, with an almost flat bottom, water
depths of 3–4 m, and an up to 50-m-thick undisturbed
sediment layer was suggested as the most promising for
palaeoecological research. The first short sediment cores
were recovered in this part of Lake Kotokel and results of
coarse-resolution pollen and algal analysis were used for
palaeoenvironmental interpretations (Korde 1968; Vipper
1968). Since then, several multi-disciplinary research teams
have performed coring in the central part of the southern
sub-basin and inCheremushkaBog south of the lake reach-
ing back to the LGM interval (e.g. Shichi et al. 2009;
Bezrukova et al. 2010; M€uller et al. 2014).

Data and methods

Analysed core material and revisited published records

The LakeKotokel sediments used for the environmental
reconstructions and accompanying discussion in the
current paper were obtained from the cores KTK2
(Bezrukova et al. 2010) andKTK10 (M€uller et al. 2014)
collected from the southern sub-basin (Fig. 1B) at a
depth of about 3.5 m in August 2005 and July 2010,
respectively. The coring sites are located about 1.8 km
from the nearest shoreline and only a few metres apart
from each other. A Livingston-type piston-corer of 7.5
cmdiameterwas applied to the upper and softer biogenic
sediment and a 4.6-cm-diameter corer was used to
penetrate the lower, more compact layers (Shichi et al.
2009; M€uller et al. 2014). The focus interval 24–22 cal.
ka BP in both cores consists of about 60 cmof dark-grey
slightly laminated silty clay, with coarse-grained sand
particles more abundant in the lower half of this unit
(M€uller et al. 2014). Remains of ostracods and chirono-
mids were recognized in the LGM sediment, but not
analysed in M€uller et al. (2014).

The pollen analysis results and the age model based on
11 AMS radiocarbon measurements performed in the
Poznan Radiocarbon Laboratory (Poland) allowed dat-
ing and robust correlation of the LGM sediment in the
two cores (see M€uller et al. 2014 for further details). The
linear interpolationmodel (M€uller et al. 2014) applied for
the 2000-year interval discussed in the current study is
supportedby the twoboundary radiocarbondates 18 410
�100 14C a BP (Poz-40944) and 20 120�90 14C a BP
(Poz-52847). Their 95% confidence intervals obtained
after calibration with the IntCal13 calibration curve
(Reimer et al. 2013) using the OXCAL v4.3 software
package (Bronk Ramsey 1995) are 22 490–21 970 cal. a
BP and 24 440–23 930 cal. a BP, respectively. The higher
resolution analyses with an average temporal resolution
of 30 to 60 years were all performed on the KTK10 core
sediment.

In the current study, some of the previously published
records were revisited and used in the re-analysis and/or
in the discussion of the aquatic vs. terrestrial proxies. For
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this purpose, we extracted results of the total inorganic
carbon (TIC) and total organic carbon (TOC) determi-
nations from the larger dataset representing the c. 27–
19 cal. ka BP interval in the KTK10 core (M€uller et al.
2014).

We also used results of pollen and non-pollen paly-
nomorph (NPP) identification in the62 samples fromthe
KTK10 core record representing the 24–22 cal. ka BP
interval discussed in the current study. These samples
were microscopically analysed by M€uller et al. (2014).
Wealso refer to theirworkfor thedetailsofpalynomorph
extraction and identification and for the relevant refer-
ences.

Analysed proxies

Carbon and nitrogen determinations. – Thirty-two sam-
ples– each representing1-cm-thick sediment layer and taken
in 2-cm steps – were analysed for carbon and nitrogen
quantification. In the current work, we measured total
nitrogen (TN) from the same samples that were analysed for
TIC and TOC inM€uller et al. (2014).

TN was analysed with a LECO Truspec Macro ele-
mental analyser. For the detection of TC and TIC refer to
M€uller et al. (2014). Powdered samples of up to 200 mg
wereweighed into tin foil and the encapsulatedsamplewas
dropped into the primary furnace (950 °C) and flushed
with pure oxygen for combustion. The sample aliquot
gases were swept through hot copper (700 °C) to remove
oxygen and changeNOx toN, andLecosorb (NaOH) and
Anhydrone (Mg(ClO4)2) to remove carbon dioxide and
water. A thermal conductivity detector was used to deter-
mine nitrogen. Calibration standard soils (LECO 502-
309; 1.05�0.03% nitrogen; LECO 502-308; 0.29�0.022%
nitrogen) were used (RSD < 2%). The C/N ratio was
calculated as the element mole ration of TOC (M€uller
et al. 2014) and TN.

Ostracods. – For thecurrent study,ostracodswerehand-
picked from the KTK10 core sediment dated to 24–
22 cal. ka BP. Ostracod shells were rarely intact, thus
hampering precise taxonomic identification of speci-
mens. Nevertheless, valves ofCytherissa cf. lacustris and
the subfamilyCandoninaewere securely identified using
a stereomicroscope and scanning electron microscope
facilities at the FU Berlin (see Kossler (2010) for the
methodological approach and references). The ostracod
taxonomy is based on relevant species descriptions
following the taxonomy inMeisch (2000). In the current
work, the ostracod shells were used for stable isotope
analyses, as described below.

Chironomids. – Sediment samples from the interval cov-
ering 24–22 cal. ka BP in the KTK10 core were analysed
for head capsules of chironomids (non-biting midges). All
available samples (each representing a 1-cm-thick layer of
sediment accumulated during 30–35 years) were treated

for subfossil chironomid analysis following standard
procedures outlined in Walker (2001) and Brooks et al.
(2007). Sediments were deflocculated in 10% KOH at
75 °C for 10–15 min andwashed through a 125-lmmesh
sieve. Chironomid head capsuleswere picked out from the
sieve residue in a Bogorov counting tray under a stereomi-
croscope at 20–409 magnification, dehydrated in 100%
ethanol, and permanently mounted ventral side up on
microscope slides using Euparal� as a mounting medium.
As recommended by Heiri & Lotter (2001), at least 50
(mean = 82) chironomid head capsules were counted and
identified in each sample in order to provide a represen-
tative count for quantitative analyses. Two samples (83.5
and 99.5 cm) are an exception, as they contained only 25–
29 head capsules.

The chironomid remains were identified to genus or
species-group morphotypes under a compound micro-
scope at 200–4009magnification following identification
keys by Brooks et al. (2007) and Andersen et al. (2013).
Nomenclature of species-group morphotypes followed
Brooks et al. (2007) with the exception for the genus
Propsilocerus. The Propsilocerus lacustris species group
represented by the two species P. lacustris and P. para-
doxuswithEuropeanandAsian distributions, respectively
(Makarchenko &Makarchenko 2009), can be split easily
into two species morphotypes within subfossil material
using the descriptions in Sæther & Wang (1996) for both
species, and Larocque-Tobler (2014) for European P. la-
custris (described as Propsilocerus) from Polish lakes and
Petrova et al. (2003) for Asian P. paradoxus from Lake
Kenon in southern Siberia. The mentum of Propsilocerus
lacustris-type has four median teeth subequal in size and
the first lateral teeth are larger than the second ones
(Larocque-Tobler 2014). In contrast, the Propsilocerus
paradoxus-typementumhas amedian portionwith two to
three small median teeth and one larger lateral pair and
first lateral teeth that are distinctly shorter than the second
ones (Petrova et al. 2003; Fig. 2).

Ostracod-based d18O and d13C measurements. – Two
ostracod taxa were extracted from altogether 36 sediment
samples andwereprepared for stableoxygen isotope (d18O)
and stable carbon isotope (d13C) analyses following the
cleaning procedure described inKeatings et al. (2006). The
stable isotope measurements of ostracod calcite were
performed on a FINNIGAN MAT253 IRMS interfaced
with an automated carbonate preparation device (KIEL
IV) at the Deutsches GeoForschungsZentrum (GFZ)
Potsdam. From each sample, about two valves of
Cytherissa cf. lacustris or five of Candoninae (correspond-
ing to 30–60 lg) were transferred into sample vials. In the
KIELIVdevice, sampleswereautomaticallydissolvedwith
103%H3PO4 at 72 °Cand the isotopic compositionvalues
were measured on the released and cryogenically purified
CO2. The isotope ratios are expressed in delta per mil
notation (d, &) relative to VPDB and calibrated with
IAEA standards NBS19 and NBS18. Replicated analysis
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of NBS19 yielded 1r standard deviations of 0.04& for
d13C and 0.06& for d18O.

Quantitative approaches

Numerical analyses. – All numerical analyses presented
in the current study were undertaken on pollen and
chironomid taxa occurring in at least one sample with a
relative abundance of more than 2%. Stratigraphical
diagrams, showing the relative abundance of each taxon
by sample depth and modelled age (cal. ka BP), were
produced using TGView/Tilia (Grimm 2004) and C2
(Juggins 2007). To facilitate discussion of the strati-
graphical record, the pollen and chironomid stratigra-
phies were subdivided into assemblage zones with the
technique of optimal partitioning using sum-of-squares
criteria (Birks & Gordon 1985) and the number of
statistically significant zones was determined with the
broken stick model (Bennett 1996), using the software
package Psimpoll 4.27 (Bennett 2009). In order to
summarize and estimate major trends in the pollen and
chironomid assemblages through time, a detrended cor-
respondence analysis (DCA) was applied to the bios-
tratigraphical data to measure the gradient length of the
first axis. The first DCAaxis lengthswere 0.6 and 2.3 SD
units for the pollen and chironomid assemblages, respec-
tively, suggesting that a linear responsemodelandhencea
principal components analysis (PCA) are appropriate for
analysing both datasets. All ordinations were accom-
plished with the program CANOCO 5.0 (ter Braak &
�Smilauer 2012) and statistically significant PCA axes
were identified by comparison with a broken stick model
(Bennett 1996) using the program BSTICK (J. M. Line
and H. J. B. Birks, unpublished).

Analysis of causal relationship between environmental
variability and chironomid dynamics. – The oxygen iso-
tope records of diatoms from Lake Kotokel (Kostrova
et al. 2014) indicate that the lake acted as a closed-basin
hydrological systemandeffectivemoisturewasoneof the
key factors controlling processes in the lake during the

last glacial. Taking into account that most relationships
in nature are inherently nonlinear (e.g. Hilbert 2002;
Burkett et al. 2005), nonlinear structural equationmod-
elling (SEM;Grace 2006) employing classic (composite-
based) and factor-based partial least squares (PLS)
algorithms were used to explore multivariate causal
relationships (paths) between the chironomid assem-
blage structureandwater-level fluctuations,asa function
of air temperature and effective moisture (precipitation
minus evaporation).TheSEMmethoddiffers fromother
modelling approaches as it tests the direct and indirect
effects on pre-assumed causal relationships (Fan et al.
2016). The PLS algorithm is particularly useful when
predictor variables are highly correlated (Wold et al.
2001). Inorder to test and separate thedirect and indirect
effects of water-level changes on the chironomid assem-
blages, the model fitted for the lake included three
predictor latent variables (or drivers), ‘Water Level’,
‘Lake Productivity’, ‘Lake Sediments’, and the criterion
latent variable (or response) ‘ChironomidAssemblages’.
‘LakeProductivity’ and ‘Lake Sediments’were included
as intermediate variables. The d18O values of ostracods
and thepollen-inferredannualprecipitationwereusedas
predictors (or indicators) of ‘Water Level’. The d13C
values of ostracods were used as a predictor (or an
indicator) of ‘Lake Productivity’. All d18O and d13C
values ofC. cf. lacustriswere corrected for Candoninae.
TheC/Nratio andTIC in the lake sedimentswere used as
predictors (or indicators) of ‘Lake Sediments’. The
relative abundances of chironomid taxawere included in
the modelling as metrics (or indicators) of ‘Chironomid
Assemblages’.TheSEManalysiswas implementedusing
the software package WarpPLS 5.0 and the Warp3 in-
ner model algorithm (Kock 2015). As recommended by
Kock (2015), the goodness of fit of the model with the
data was assessed using average path coefficient (APC),
average R-squared (ARS), average adjusted R-squared
(AARS), and twoquality indices: averageblock variance
inflation factor (AVIF) and average full collinearity VIF
(AFVIF). The statistical significance of path coefficients
(ß) was estimated through jackknifing.

A B

Fig. 2. Photomicrographsof larvalmentaof thechironomidPropsilocerusparadoxus fromtheLakeKotokel sedimentcore: (A) thewholementum
and (B) the left lateral and median portions of the mentum.
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Proxy records and interpretations

Sediment geochemistry

The TIC, TOC, and TN values show only minor
fluctuations throughout the investigated section. How-
ever, with respect to theTICvalues and theC/N ratios two
distinct zones, KTK-Gh-1 and KTK-Gh-2, have been
identified (Fig. 3).

After c. 24 cal. ka BP (Zone KTK-Gh-1) the TIC
shows values around the mean of 1.14% with highest
values of up to 2%at c. 22.7 cal. kaBP.TheTOCcontent
varies between 2.0 and 4.1% (median 3.18%). The TN
values parallel TOC and show values around 0.36% that
are near the median of all analyses. Accordingly, the
mean of the C/N ratio is 10 – but in peaks, ratios up to 13
are reached: threedistinct peaks areobservedat c.23.7, c.
23.2 and c. 22.7 cal. ka BP.

After c. 22.5 cal. ka BP (Zone KTK-Gh-2) the TIC
values decrease slightly and are below 1% (average
0.52%). TOC shows similar values as below and varies
between 2.5 and 4.18%. The TN values show relatively
constant values of around 0.4%and accordingly theC/N
ratio is lower and averages around 9.5 without showing
major changes.

Organic matter can be distinguished as originating
from aquatic or land sources by its C/N ratio (Meyers &
Ishiwatari 1995). The C/N ratio varies between 8 and 13,
whichare typical values for lacustrine sediments (Meyers
& Teranes 2001). This suggests that the TOC mainly
originates from lake algae, which commonly exhibit C/N
ratios between 4 and 10, whereas vascular land plants
(including aquatic macrophytes growing in the littoral
zone) usually have C/N ratios of 20 and greater (Meyers

&Teranes 2001).Thepeaks in theC/N ratiomay reflect a
slightly increased contribution of aquatic macrophytes
and/or terrestrial organic matter into the lake due to
intensified erosion and/or higherwater influx from in the
catchment.

Terrestrial pollen and NPPs

In the current study, 11 taxa (out of the 38 taxa identified
byM€uller et al. 2014) that exceed the 2% level in at least
one sample were analysed using the broken-stick model.
Based on this re-analysis the pollen record (Fig. 4) was
partitioned into four statistically significant zones.

In the pollen assemblages of Zone KTK-Po-1 to Zone
KTK-Po-4 (Fig. 4) herbaceous taxa absolutely predomi-
nate,whereasnoneof the tree/highshrubtaxaexceed the2%
threshold, suggesting a virtually treeless LGM landscape.
Themost abundant pollen taxa are Poaceae,Artemisia, and
Cyperaceae, followed by Asteraceae, Caryophyllaceae, and
Ranunculaceae, all representative of steppe and herbaceous
tundra vegetation in the Lake Baikal region (Bezrukova
et al. 2010; M€uller et al. 2014).

The pollen assemblages of Zone KTK-Po-1 (c. 24.0–
23.7 cal. kaBP) andZoneKTK-Po-3 (c. 23.3–22.4 cal. ka
BP) reveal the relatively lowpercentagesofRanunculaceae
and the relatively high contributions of Artemisia. A
pronounced feature of Zone KTK-Po-2 (c. 23.7–23.3 cal.
cal. ka BP) is a threefold increase in the proportion of
Ranunculaceae (buttercup or crowfoot family) pollen. A
second, although less pronounced peakof Ranunculaceae
appears inZoneKTK-Po-4 (c.22.4–22.0 cal. kaBP)and is
accompanied by the lowest content of Artemisia pollen,
almost complete disappearance of Brassicaceae, the high-
est proportions of Caryophyllaceae and Asteraceae, and
relatively high percentages of Poaceae and Cyperaceae.
The Ranunculaceae pollen probably represent littoral/
meadowvegetation.Anumberof interpretations involving
various representativesof theRanunculaceae familynative
to marshes, fens, and wetlands and flourishing in a
landscape inundatedwith snow-melt waters (e.g. regional
native Caltha palustris and Ranunculus reptans) can be
suggested (M€uller et al. 2014). Littoral pioneer vegeta-
tion communities with Ranunculaceae species occupy
erosive soils in the range of fluctuating water levels at
shores of shallow lakes and regularly inundated depres-
sions (Hilbig 1995; Dierßen & Dierßen 1996). The plant
macrofossil record (Kienast et al. 2005) suggests they
were a characteristic component of the LGM vegetation
mosaic in eastern Siberia.

The PCA ordination applied to the pollen record pro-
duces two statistically significant axes (Fig. 4). These two
axes together explain 71% of the total variance in the
pollen assemblages. The first axis clearly separates Zone
KTK-Po-4 (c. 22.4–22.0 cal. ka BP), characterized by the
low abundance of dryness-adapted Artemisia, from all
other samples. Such a distribution of the assemblages
along PCAaxis 1 suggests that this axis can be interpreted
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to mainly reflect an atmospheric precipitation gradient in
the study area. Theweaker second axis is driven largely by
the proportion of Ranunculaceae, reflecting an extension
of shallow-water and wet meadow biotopes.

The NPP diagram (Fig. 5) shows three most represen-
tative taxawithpercentages exceeding the 2% level inmore
than one sample. ThePediastrum curve demonstrates four
distinct minima (40–45%) and four maxima (75–85%)
during the study interval. Green algae representing this
genus are often found in freshwaterbodies,mostly shallow
and rich in organic matter. Therefore, Pediastrum fluctu-
ations may indicate changing water depth, with a deepest
phase occurring after c. 22.5 cal. ka BP, in line with the
lowest contents ofArtemisia pollen. Prior to this date, the
Pediastrum percentages are in good correspondence with
the changes in the C/N ratio (Fig. 3), supporting our
interpretation.Relatively lowproportionsofBotryococcus
and Glomus spores are recorded between c. 24.0 and
22.6 cal. ka BP. A distinct increase in the proportion of
Glomus (up to 5–10%) at c. 22.4–22.0 cal. ka BP corre-
spondswellwith the uppermost pollen zone,which reveals
the second peak in Ranunculaceae. Spores of this fungus,
which occurs in a variety of host plants, including a
number of herbaceous plant families, are reported to be
especially abundant in late glacial environments with
highly eroded soils (Demske et al. 2016).

Ostracods and ostracod-based isotope records

Valves ofCytherissa cf. lacustris and the subfamily Can-
doninae show almost continuous presence throughout
the analysed interval (Fig. 6). Candoninae is present in
the lower part of the record and disappears at c. 22.4 cal.
ka BP. An interval between c. 22.6 and 22.4 cal. ka BP
reveals an overlapping occurrence of Candoninae and
C. cf. lacustris. The latter taxon alone represents the
uppermost part of the record.

Cytherissa lacustris is a benthic ostracod with a
parthenogenetic mode of reproduction and Holarctic
distribution. The ecological field studies characterize this
species as being restricted to oligotrophic lakes where
water temperatures do not exceed 18 °C. Nevertheless, in
laboratory experiments the temperature limit of this taxon
was found tobewider, up to 20 °C(seeNewrkla (1985) for
a summary and references). Palaeolimnological studies in
alpine lakes showed that the onset of eutrophication, and
coupled changes in the sediment structure, which make
locomotion difficult (Powell 1976), coincide with the
disappearance of C. lacustris (L€offler 1969). In order to
avoid these unsuitable conditions, amongst others
decreasing oxygen supply, the ostracods have to migrate
to the littoral zone, where they are restricted to temper-
atures below 18–20 °C (L€offler 1971). Candona candida
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and C. lacustris are abundant taxa in the extreme conti-
nental climate of Yakutia, where they tolerate significant
variations in salinity and temperature (Kienast et al.
2011). Study of the ostracod assemblage at Attersee,
Austria, demonstrated that Candona sp. outnumbers
C. lacustris in the littoral shallower zone, whereas C. la-
custris is at its maximum density at higher depths with a
temperature range of 5–15 °C (Newrkla 1985). Substitu-
tion of Candoninae by C. cf. lacustris in the KTK10 core
sediment could, therefore, reflect an increase in water
depth after c. 22.6 cal. ka BP.

The results of the stable isotope analyses show that the
d13C values range between �4 and +4& and the d18O
values between �11 and �4& for both Candoninae and
C. cf. lacustris from c. 24 to 22 cal. ka BP (Fig. 6). In
general, carbon isotopes in ostracod calcite are in equi-
librium with dissolved inorganic carbon (DIC) contents
(von Grafenstein et al. 1999) and reflect water tempera-
ture, pHandproductivity in thehabitat of different species
(Decrouy et al. 2011). The stable isotope d13C values of

Candoninae range from+0.6 to+4&,whileC. cf. lacustris
shows lighter values varying between �4 and 0&. The
difference between the mean values of the two taxa is
about 4&. Candoninae shells with d13C values of about
+4& indicate depletion in 12C and consequently enriched
DIC, inducing eutrophication and leading to enhanced
phytoplankton biomass and primary production, and
increased turbidity. The lighter d13C values of C. cf.
lacustris may indicate individuals that occupied deeper
water habitats, with high bioavailability of lighter carbon
released from decomposing organic matter.

Thed18Ovalueof lakecarbonates ismainly influenced
by the oxygen isotopic composition of precipitation and
river runoff, temperature, and evaporation. In hydrolog-
icallyclosed lakesd13Candd18Ovaluesoften co-varydue
to evaporation (Leng & Marshall 2004). Today, Lake
Kotokel is an open lake system, but the oxygen isotopes
in carbonate shells from the KTK10 recordmainly seem
to be affected by evaporation and suggest that the lake
acted as a closed-basin hydrological system under rela-
tivelydryand cool conditions between c. 24and22 cal. ka
BP. In the lower part of the record,Candoninaevalves are
characterized by heavier mean d18O values of �6.1&
before c. 23.2 cal. ka BP, while they show lighter d18O
values of about�8.6& in the upper part, after c. 22.9 cal.
kaBP, equal to a shift of+2.5&. Candoninaedisappear at
c. 22.4 cal. ka BP, but their overlapping occurrence with
C. cf. lacustris between c. 22.6 and 22.4 cal. ka BP
reflects the similarity of the d18O values of these two
taxa. During this time-span, the mean d18O values are
�8.9 and �10.1& for Candoninae and C. cf. lacustris,
respectively, and the difference between these taxa corre-
sponds to the ‘vital effect’ of about 1& inferred by von
Grafenstein et al. (1999).

Ostracods from the lowest part of the record show
significantly heavier d18Omean values of around �6&
with high variation (ranging between�8.6 and�3.8&),
suggesting enhanced evaporation and lake-level changes
due to cooler and dryer conditions from c. 24.0 to
23.2 cal. ka BP. Comparison with the GISP2 potassium
ion record (Mayewski et al. 1997) indicates avery strong
Siberian high during this time. Evidence for substantially
cooler than present conditions in the Northern Hemi-
sphere was also found in the NGRIP d18O record
(Svensson et al. 2008). The lighter oxygen isotope values
(d18Omean = �8.6&) of both taxa from the upper part of
theKTK10record, lowerK+contents intheGISPice-core,
and heavier d18O values in the NGRIP ice-core coincide
with lower evaporation, a weaker Siberian high, and
warmer than before conditions after c. 23.2 cal. ka BP.

Chironomids and causal relationship with environmental
variability

In total, 13 chironomid taxawere identified in the analysed
sediment samples and eight of these have abundances >2%
in at least one sample (Fig. 7). Rare taxa (abundance <2%)
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are Constempellina-Thienemanniola, Corynocera ambigua-
type, Glyptotendipes, and Polypedilum nubifer-type. The
chironomid record was partitioned into three statistically
significant zones (Fig. 7).

Zone KTK-Ch-1 (c. 24.0–23.4 cal. ka BP) is domi-
natedbyChironomusanthracinus-type (50–100%),which
is usually associated with relatively shallow-water habi-
tats of lakes (Nazarova et al. 2011; Luoto 2012). The
relative abundances of Sergentia coracina-type, which
prefers deep-water habitats of cold lakes (Pankratova
1983), donot exceed4%.Most likely, a low lake standdue
todecreased effectivemoisture induced by relatively cool
and dry climatic conditions occurred during this period.

Zone KTK-Ch-2 (c. 23.4–22.5 cal. ka BP) reveals
relatively high values of Chironomus anthracinus-type
(between 35 and 88%), although a decrease down to 25%
occurswithin theupperpartof thezone.At thebeginning
of this zone, the typicaldeep-water inhabitantTanytarsus
lugens-type (Hofmann 1988; Nazarova et al. 2011)
appears and becomes co-dominant (up to 58%) with
C. anthracinus-type. The chironomidS. coracina-type is
present sporadically (up to 8%) through the lower and
middle parts of the zone.Microtendipes pedellus-type, a
taxon that is commonly associated with littoral habitats
and indicative of moderate to warm temperatures
(Brodersen & Lindegaard 1997), appears for the first
time in the record at abundances of 2–6%. A sudden
increase in T. lugens-type suggests a rapid lake-level rise
as a result of a climatic shift towardswetter conditions at
the beginning of this period. Under a warming climate,
enhanced lake productivity may have strengthened the
oxygen consumption in the sediments. This interpreta-
tion is supported by the sporadic appearances of the

sediment-dwelling, deep-water inhabitant Propsilocerus
paradoxus that is, aswell as otherPropsilocerus species, a
good indicator of hypertrophic conditions in lakes
(Petrova et al. 2003; Kornij�ow &Halkiewicz 2007).

Zone KTK-Ch-3 (c. 22.5–22.0 cal. ka BP) displays
a strong change in assemblages: a distinct increase in
P. paradoxus-type (up to 40%) andProcladius (up to 12%),
dominance of T. lugens-type (49–75%), as well as the
disappearance of C. anthracinus-type. The high abun-
dance of P. paradoxus-type, an indicator of hypertrophic
conditions, togetherwiththepresenceofProcladius, ataxon
indicative of high lake productivity (Brodersen & Quinlan
2006) and tolerant of low oxygen levels (Brodersen et al.
2004), may suggest an increase in lake productivity and
sediment oxygen depletion following organic enrichment.
The dominance of T. lugens-type, a taxon living on the
sediment surface and intolerant of low oxygen levels,
suggests that the concentrations of dissolved oxygen in the
water remain high duringmost of the year.Most likely, this
period corresponds to the onset of relatively warmer and
wetter conditions, when the rate of precipitation exceeded
the rate of evaporation, resulting in increased effective
moisture and a relatively highstand of the lake. Unfortu-
nately,P.paradoxus-type is notpresent in anyof the existing
chironomid–climate calibration datasets. However, a
detailed analysis of the P. paradoxus life cycle in another
lakeoftheBaikalregion(i.e.LakeKenon;360 kmsoutheast
ofLakeKotokel) has provided evidence that the emergence
of the adults begins when the bottom water temperature
reaches 13–16 °C, and the hatching of larvae from eggs
starts when the water temperature reaches 19–21 °C
(Petrova et al. 2003). Therefore, most likely, the lake
remained unstratified and bottom water temperatures
reached at least 19 °C in summer.

The PCA ordination applied to the chironomid stratig-
raphy produces only one statistically significant axis that
explains more than 82% of the total variance in the
chironomid data (Fig. 7). Taking into account the habitat
preferences of chironomid taxa and the structural changes
in the assemblages along the first PCA axis, this axis is
interpreted to mainly reflect a water-level gradient. Over
time, the PCA1 scores shifted to positive values, indi-
cating a lake-level rise, which was associated with the
replacement ofC. anthracinus-type by T. lugens-type and
P. paradoxus-type.

The results of the SEM analysis showed that 53% of
the variance in the chironomid assemblages of Lake
Kotokel can be explained by the predictor variables,
such as Water Level, Lake Productivity, and Lake
Sediments (Fig. 8). The pathway between Water Level
and Lake Productivity was much stronger (ß = �0.51,
p < 0.01) than those between Water Level and Lake
Sediments (ß = 0.29, p < 0.01) or betweenWater Level
and Chironomid Assemblages (ß = �0.24, p < 0.01).
The pathway between Lake Sediments and Chirono-
mid Assemblages was stronger (ß = �0.42, p < 0.01)
than those between Lake Productivity andChironomid
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Assemblages (ß = 0.32, p < 0.01) or between Lake Pro-
ductivity and Lake Sediments (ß = �0.32, p < 0.01).
The results suggest that lake-level changes, as a func-
tion of air temperature and effective moisture, were the
factor that most strongly and directly affected pelagic
productivity of the lake. The direct effects of lake-level
changes on the chironomid assemblages were weaker
than their indirect effects mediated through processes
impacting the lake pelagic productivity and sediment
characteristics. These findings agree with those of Hof-
mann (1998), who suggested that water-level changes
produce weak direct effects on invertebrate assemblages.

Discussion

The aquatic vs. terrestrial proxy records of the LGM
environments from Lake Kotokel

In this section, newly obtained chironomid, ostracod,
isotope, and geochemical records derived from the mul-

tidecadal sedimentary archive of LakeKotokel are used in
concertwith the published environmental reconstructions
in order to explore the terrestrial vegetation and lake
ecosystem responses to climate changes during the time
interval 24–22 cal. ka BP.

The interpretations based on the published results of
pollen analyses (Shichi et al. 2009; Bezrukova et al. 2010;
M€uller et al. 2014) suggest that herbaceous vegetation
dominated in the studyarea aroundLakeKotokel through
the entire analysed interval. This qualitative interpretation
is supported by quantitative vegetation reconstructions
using the pollen-based method of ‘biomization’ (Prentice
et al. 1996). Indeed, the ‘biomization’ approach applied to
the KTK2 (Bezrukova et al. 2010) and KTK10 (M€uller
et al. 2014) pollen records demonstrates that the cold
steppe biome had the highest scores, followed by the
tundra biome (Fig. 9A). The minor fluctuations in the
calculated biome scores were interpreted as evidence of
general stabilityof the regional vegetation cover during the
LGM (M€uller et al. 2014). This interpretation, however,
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does not resolve the question of whether the reconstructed
vegetation cover stability is a function of stable LGM
climate or if it can be explained by a greater tolerance of
herbaceous plants and biomes to LGM climate fluctua-
tions.Modelling experiments suggest that both cold steppe
and herbaceous tundra can tolerate a wide range of
temperatures under relatively dry arctic to boreal climates
(Kaplan et al. 2003), thus indicating a need to search for
other, more sensitive indicators. Variable contents of semi-
aquatic/wetmeadowplant (i.e.Ranunculaceae) pollen and
green algae (i.e. Pediastrum) colonies in the KTK10 core
(Figs 4, 5; M€uller et al. 2014) also advocate for a greater
sensitivity of the lake ecosystem to shorter-term climate
variability.

In earlier studies, the peaks in Ranunculaceae were
interpreted in terms of a much shorter than present
distance between the KTK10 coring site and the palaeo-
shoreline, reflecting a smaller area of the lake and the
generally drier-than-present LGM climate (Zhang et al.
2013; M€uller et al. 2014). Another proposed interpreta-
tion involved short-term episodeswith higher soil erosion
(M€uller et al. 2014). This hypothesis mainly relies on the
increase in coarse-grained sand particles that parallels the
high Ranunculaceae pollen percentages at c. 23.7–23.3
cal. ka BP. The relatively high percentages ofGlomus at c.
22.4–22.0 cal. ka BP (Fig. 5) might also point to inten-
sified soil erosion (M€uller et al. 2014).

A third scenario is proposed here, which can be
tested with the newly obtained ostracod and chi-

ronomid data. This scenario implies that the peaks in
Ranunculaceae pollen point to periods of substantial
lake-level fluctuations. As a rule, fluctuating water
levels increase the area of shoreline wetlands, whereas
any stabilization of water levels reduces this area
(Keddy & Reznicek 1986; Mortsch 1998). The
relative abundance of Ranunculaceae pollen, repre-
senting near-shore semi-aquatic/wet habitats, may
therefore reflect the wetland ecosystem responses to
lake-level fluctuations. The first short-term appear-
ance of deeper-water T. lugens-type in the chirono-
mid record around 23.7 cal. ka BP (Fig. 7) and a
distinct peak in the C/N ratio (Fig. 3) coincide with
the first peak in Ranunculaceae pollen (Fig. 4),
supporting the latter interpretation. In addition, the
Ranunculaceae record (and pollen PCA axis 1), as
well as the chironomid PCA axis 1, suggests
substantial water-level fluctuations between c. 23.7
and 23.3 cal. ka BP. These fluctuations could be one
of the main reasons for higher soil erosion and the
increase in coarse-grained sand particles through this
time interval. Both the d18O ostracod record (Fig. 6)
and pollen-based precipitation reconstruction (Fig. 9B;
Tarasov et al. 2017) suggest a relatively shallow lake
and relatively dry climate, which however do not
exclude short-term lake level fluctuations and asso-
ciated lakeward and landward shifts in wetland habitats.
During the second peak in Ranunculaceae around
22.3 cal. ka BP, all proxies point to a slightly deeper

Fig. 8. The structural equation model used to explore the direct and indirect effects of lake-level fluctuations on the chironomid assemblages in
Lake Kotokel. The strength of the causal influence of each path is denoted by the path coefficient (ß) adjacent to the respective arrow. Observed
variables: pollen-inferred annual precipitation (Pann), stable carbonandoxygen isotopevalues ofostracods (d

13Cost andd
18Oost), theC/Nratio and

total inorganic carbon (TIC) content in the lake sediment, and the relative abundancesof chironomid taxa:C_ant = Chironomus anthracinus-type;
M_con = Micropsectra contracta-type; M_ped = Microtendipes pedellus-type; P_pen = Paratanytarsus penicillatus-type; Procl = Procladius,
P_par = Propsilocerus paradoxus-type; S_cor = Sergentia coracina-type; T_lug = Tanytarsus lugens-type. Asterisks indicate level of statistical
significance: **p < 0.01, ***p < 0.001. The model fit and quality indices: average path coefficient (APC), average R-squared (ARS), average
adjustedR-squared (AARS), average block variance inflation factor (AVIF) and average full collinearity VIF (AFVIF).
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than before Lake Kotokel and slightly higher, although
variable, atmospheric precipitation, which could explain
the rapid changes in the lake level.

All three scenarios generally agree on a smaller-than-
present size of the lake and proximity of the coring site to
the lake shore during the whole study period, as suggested
by a study on the basin morphology and seismic stratig-
raphy of Lake Kotokel (Zhang et al. 2013). The latter
interpretation is also supported by the dominance of the
small benthic and virtual absence of planktonic diatoms
during the interval c. 24–22 cal. ka BP (Bezrukova et al.
2010).Thepollenassemblage composition,however, points
to generally moister environments during the interval with
the lowestArtemisia percentages (c. 22.4–22.0 cal. ka BP).

Amajor drop in Pediastrum accompanied by a twofold
increase in Botryococcus percentages pre-dates the KTK-
Po-3/KTK-Po-4 pollen zone boundary by about 50 years,
suggesting that the lake ecosystem was either more
sensitive or reacted faster to climate change than
terrestrial steppe vegetation in the region. The second
interpretation is more likely, regarding a low sensitivity
of the cool grass/shrub plant functional type and non-
forest biomes (Prentice et al. 1996) to the temperature
changes (Kaplan et al. 2003). Alternatively, high-resolu-
tion pollen and diatom studies on the late glacial
sediment from Lake Suigetsu, central Japan (Kossler
et al. 2011) demonstrated a rapid response of the entire
lacustrine and terrestrial system to climate changes.
Despite the fact that the diatom and sediment records
of Lake Suigetsu showed more abrupt shifts from warm
to cold (and cold to warm) environments than the
temperature-sensitive temperate deciduous forest biome
(Prentice et al. 1996), the authors did not find any
delayed response of local vegetation to climate change
(Kossler et al. 2011).

The mentioned changes in the NPP record of Lake
Kotokel are accompanied by a distinct minimum in the
TIC, TOC and TN percentages around 22.5 cal. ka BP
(Fig. 3). Nevertheless, the observed trend towards the
lowest values starts some decades earlier and parallels a
decrease in Artemisia pollen percentages (Fig. 4) repre-
senting changes in the upland vegetation. Comparable
trends can be seen in the ostracod (Fig. 6) and chironomid
(Fig. 7) records, in which distinct compositional shifts
occurredbetween c. 22.6 and22.5 cal. kaBP.These results
corroborate the previous study on Lake Suigetsu showing
that pollen-derived disturbances in the forest vegetation
reflect regional cooling andwarming shifts that started at
least two to three decades prior to the major change in the

inorganic lake sediment (e.g. appearance/disappearance of
detrital layers) and in diatom assemblages (Kossler et al.
2011).

The diatomanalysis of theKTK2 core sediment demon-
strated extremely poor preservation or total absence of
diatoms during the LGM interval (Bezrukova et al. 2010),
thus preventing the use of this otherwise informative proxy
for the reconstruction of palaeoenvironments. The coarse-
resolution diatom record available shows a dominance of
small valves of the Staurosirella pinnata agg. complex
between c. 24 and 22 cal. ka BP (Bezrukova et al. 2010).
The tychoplanktonicStaurosirella pinnata canbe abundant
in relatively warm, shallow, eutrophic lakes with high pH
(Bennion 1994), although it is more widely known for
developing large populations in arctic and alpine lakes
under cold and oligotrophic conditions (Lotter et al. 2010;
Li et al. 2015). It is considered an opportunist taxon that
takes advantage of repeated disturbances (Lotter & Bigler
2000) in line with the interpretation in Bezrukova et al.
(2010) and with the records of lake-level fluctuations
presented in the current study. The very low diatom
concentrations in the LGMsediment of LakeKotokel also
hindered their extraction and purification for isotope
analysis (Kostrova et al. 2014). The results obtained for
the four samplesof theKTK2core fromthe c.24–23 cal.ka
BP interval display relatively high d18O diatom values of
about 30.1& prior to 23.3 cal. ka BP, interpreted as a
combined effect of low atmospheric precipitation and
relatively high evaporation during the summer time
(Kostrova et al. 2014). The latter study also reported a
noticeable spike of 28.7& at about 23.2 cal. ka BP that is
broadly synchronous with an oscillation in the NGRIP
d18O record (Fig. 9F; Svensson et al. 2008) and in the
KTK10 isotope record of ostracods presented here
(Fig. 9G), that may reflect an additional water input as a
reaction to hemispheric temperature increase (Kostrova
et al. 2014).

The analysed key proxies from the Lake Kotokel sed-
imentary archive representing terrestrial and aquatic
environments during the selected interval are summa-
rized in Fig. 9A–H. Upland vegetation dynamics are
mirrored in the scores of the cold steppe biome (Fig. 9A)
that absolutely dominate in the regional vegetation
cover. Except for a minor gradual trend towards lower
values suggesting a turn to slightly wetter climate con-
ditions after c. 23.4 cal. ka BP, the biome scores remain
relatively stable, which probably indicates overall stability
of the vegetation cover. The pollen-derived atmospheric
precipitation (Fig. 9B) corroborates the main trend in

Fig. 9. Summarized records of the terrestrial and aquatic proxies from the Lake Kotokel sediment discussed in this study (A–H) along with the
selected proxies representing regional and hemispheric records of climate variability during the interval in focus. (A) and (E) are modified from
M€uller et al. (2014); (B) – fromTarasov et al. (2017); (C), (D), and (F–H) – from this study; (I) – fromWang et al. (2001); and (J) – from Svensson
et al. (2008). Note: to facilitate a direct comparison, values along the vertical axis in (A), (E), (G), and (I) are plotted in reversed order. Vertical
dashed lines signify the three main phases in Lake Kotokel’s development: the driest phase (c. 24.0–23.4 cal. ka BP) with low precipitation, high
summer evaporation, and low lake levels; the transitional phase (c. 23.4–22.6 cal. kaBP); and the phase (c. 22.6–22.0 cal. kaBP) of relatively high
precipitation (and moisture availability) and relatively deep lake.
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vegetation development, although the reconstructed shift
to higher values and greater fluctuations after c. 23.4 cal.
ka BP is more obvious in this case. The pollen PCA axis 1
(Fig. 9C) explains 42% of the variation, suggesting a
strong response of the pollen composition to changes in
the regional vegetation and associated climate. The most
pronounced feature in this curve is the intervalwithhighest
values, representing a phase with less arid vegetation and
climate between c. 22.6 and 22.0 cal. ka BP. The observed
differences in the curves in Fig. 9A–C may indicate that
the pollen PCA axis 1 represents changes in the regional
moisture availability (i.e. ‘moisture index’ sensu Prentice
et al. (1996)) rather than simply changes in atmospheric
precipitation.

The proxies representing the aquatic system of Lake
Kotokel reveal a more complex pattern of changes than
could be seen in the terrestrial vegetation (i.e. biome scores
and pollen PCA axis 1), in line with the supposedly higher
sensitivity of the lake to direct and indirect impacts of
climate change. The chironomid PCA axis 1 (Fig. 9H)
reveals a rapid lake-level rise after c. 23.4 cal. ka BP,
supporting the turn to awetter climate, whichwas inferred
from the pollen data (Fig. 9A, C, H). The C/N ratio
(Fig. 9D) and Pediastrum percentages (Fig. 9E) appear to
change in concert, suggesting their strong dependence on
the water depth, which, in turn, is controlled by variations
in precipitation and temperature. A visibly negative rela-
tionship between the higher C/N and Pediastrum values
and the minima in the atmospheric precipitation curve
(Fig. 9B) supports this interpretation. Furthermore, both
thePediastrum variations and the changes in ostracod and
chironomid assemblage composition (Fig. 9G, H) suggest
that the phase between c. 22.6 and 22.0 cal. ka BPwas the
deepest lake phase of the entire interval in line with the
relatively moist environments suggested by the terrestrial
proxies (Fig. 9A–C). The pollen PCA axis 2 (Fig. 9F)
explains 29% of the variation and suggests a moderate
(although still noticeable) response of the pollen compo-
sitionat theKTK10coring site to the changes in the littoral
vegetation represented mainly by the pollen of Ranuncu-
laceae. Two distinct peaks in the second PCA axis (and in
Ranunculaceae percentages) appear within the earliest
(driest) and the latest (wettest) phase derived from the
different proxies. This feature possibly implies substantial
lake-level fluctuations within these phases, as discussed
above.

Driving factors and mechanisms of the regional climate
changes

The strong relationship between the terrestrial environ-
ments (i.e. vegetation cover) and the aquatic system
suggests climatic change to be the common underlying
forcing factor, as demonstrated by limnological studies
(e.g. Lotter & Anderson 2012; Hildebrandt et al. 2015),
although diverse lacustrine and terrestrial system res-
ponses todeglacialwarminghavealsobeen reported (e.g.

Wilson et al. 2015; Shala et al. 2017), preventing simple
universal interpretations.

Thepresent-day (i.e. ‘interglacial’) climate in the study
area is mainly controlled by the westerly flow active
through the whole year, while the thermal Asian anticy-
clonepredominatesduring the colderhalfof theyear and
cyclonic activity along the Mongolian branch of the
Polar front represents the summerperiod (Alpat’evet al.
1976). The proxy-based reconstructions and model
simulations (Kageyama et al. 2001; Hubberten et al.
2004; Andreev et al. 2011) suggest a much colder and
drier than present LGM climate, which caused a virtual
disappearanceof the continuous temperate-boreal forest
belt in the middle/high latitudes of Eurasia (Prentice &
Jolly 2000; Williams et al. 2011). LGM annual temper-
atures about 20–25 °C colder than those of today,
amplitudes of rapid temperature shifts as high as 8–
10 °C, and annual precipitation up to three times lower
than that of themodernvalue are reconstructed from the
GRIP ice-core d18O record for the summit of the
Greenland Ice Sheet (Johnsen et al. 2001). Although
proxy-derived and model-simulated temperature and
precipitation anomalies may vary between different
approaches (e.g. Leipe et al. 2015; Igarashi 2016) and
study regions within northern Eurasia, there is basic
agreement on two key points. Firstly, the reconstructed
decrease in precipitation was strongly related to the
changes in atmospheric circulation patterns (i.e. weaker
moisture supply) due to the global ice-cover expansion
and major lowering of the ocean level. Secondly, the
LGM temperature and precipitation decrease was
markedly greater in winter than in summer (e.g. Tarasov
et al. 1999; Kageyama et al. 2001; Melles et al. 2012).

Quantitativeclimatic reconstructions for theLakeBaikal
regionare scarceandmainly refer topollen records.Expert-
estimatedabsolutevalues for theareaaroundLakeKotokel
were reported by Shichi et al. (2009). They suggested
annual precipitation of <250 mm and a mean January
temperature dropping down to �32 °C during the LGM
period. This estimate corroborates the pollen-based pre-
cipitation reconstruction for the study area based on an
extensive modern pollen–climate dataset (Tarasov et al.
2005, 2017; Fig. 9B) and reflects globally cold and arid
LGM climate conditions seen in proxy records and model
simulations (e.g. Johnsen et al. 2001; Kageyama et al.
2001). Whilst much colder and drier than present LGM
winters are generally accepted, the reconstructions of
summer temperatures raise debates amongst scientists
working in central and southern Siberia. Pollen-based
interpretations are less conclusive, mainly because of the
absence of temperature-sensitive tree pollen, the low
taxonomic level of herbaceous taxa identification, and the
large tolerance of the steppe biome to temperature changes
(Kaplan et al. 2003). Tarasov et al. (1999) attempted to
reconstruct mean temperatures of the warmest month
(MTWM) using the best modern analogue and biomiza-
tion approaches applied to the LGM pollen spectra from
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the mid-latitudinal belt of northern Eurasia. The results
revealedMTWM close to modern values (12–15 °C), with
reconstructionuncertainties of�3 °C, at several sites from
Siberia, Mongolia, and around Lake Baikal. Using a
detailed record of plant macrofossils from the high Arctic
siteMamontovy Khayata in the Lena River delta, Kienast
et al. (2005) reconstructed an extremely continental, arid
LGM climate with winters colder and summers distinctly
warmer than at present. Their hypothesis is based on the
similarity of the LGM vegetation composition to modern
mosaic vegetation in the relict steppe areas of eastern
Siberia, north and northeast of Lake Baikal. This recon-
struction finds further support from the current study from
Lake Kotokel. The high abundance of Propsilocerus para-
doxus in the upper part of the KTK10 chironomid record
(Fig. 7) provides strong evidence that the water tempera-
ture near the bottom of the lake reached at least 19 °C in
summer between c. 23.4 and 22.0 cal. ka BP (cf. the
present-day mean July air temperature is 15.4 °C). Indeed,
similar or higher than present summer temperatures (and
hence higher evaporation) in combination with lower
than present precipitation and much colder winters with
extremely thin snow cover would better explain the treeless
productive steppe and meadow vegetation and associated
rich herbivorous and predator fauna around Lake Baikal
and inthevast regionsofSiberiaduringtheLGMsuggested
by a number of botanical (Kienast et al. 2005; Bezrukova
et al. 2010; M€uller et al. 2010), zoological (Pavelkov�a
�Ri�c�ankov�a et al. 2014), archaeological (Fiedel & Kuzmin
2007), and DNA (Willerslev et al. 2014) records.

The synchronicity of East Asian and North Atlantic
climateoscillations is shownby the correlationof isotope
records from Greenland ice-cores with a stalagmite
record from China (Wang et al. 2001). Magnetic sus-
ceptibility data from the Continent Ridge core of Lake
Baikal indicate a rough correlation with events in the
GISP2 ice-core, with the coldest period dated to c. 26–
23 cal. ka BP (Bo€es et al. 2005). The detailed sedimen-
tary recordof climatic events from theLakeBaikalBDP-
93-2 core (Prokopenko et al. 2001) and century-scale
pollen record from the Lake Kotokel KTK2 core
recognize distinct environmental changes during the last
glacial interval that can be correlated to the Heinrich
Events and the Greenland Interstadials recorded in the
North Atlantic region (Johnsen et al. 2001; Svensson
et al. 2008). The latter correlations suggest that the cli-
matic teleconnection between the Lake Baikal region in
central Eurasia and the North Atlantic region was not
interrupted even during the coldest and driest interval of
the Late Pleistocene (Bezrukova et al. 2010).

The Lake Kotokel proxies summarized in Fig. 9A–H
facilitate comparison of the decadal/multidecadal-scale
records representing terrestrial and aquatic environments
in the study area with the proxies representing past
climate variability in the North Atlantic and Northwest
Pacific regions (Fig. 9I–K) during the 24–22 cal. ka BP
interval in focus. Visual comparison of the Hulu Cave

stalagmite record of the East Asian monsoon (Wang
et al. 2001; Fig. 9I) demonstrates surprisingly good
correspondence of the major peaks in the d18O curve
c. 23.3 and c. 22.4 cal. ka BP (reflecting strengthening of
the summer monsoon circulation) with the two major
phases of increased precipitation around Lake Kotokel
(Fig. 9B). The major drop in the GISP2 K+ record from
Greenland by 23.4 cal. ka BP (Mayewski et al. 1997)
indicates a weaker Siberian high and a slightly warmer
winter climate overEurasia. The onset of hemispherically
warmer conditions after c. 23.3 cal. ka BP and decadal/
multidecadal-scale climatic variability documented in the
d18O NGRIP record (Svensson et al. 2008; Fig. 9J) can
be traced in the analysed proxies fromLakeKotokel. It is
worth mentioning that the numerous oscillations in the
NGRIP temperature record corroborate changes in
pollen-derived precipitation (Fig. 9B) and Pediastrum-
inferredwaterdepth (Fig. 9E).This suggests that climate-
driven changes in effective moisture (and regional water
balance) were the main forcing factor, which controlled
terrestrial and aquatic environments in the studyarea and
probably in the broader region of central Eurasiabetween
24 and 22 cal. ka BP.

Conclusions

In sum, all proxies stored in the Lake Kotokel sedimen-
tary archive demonstrate qualitatively and quantita-
tively distinct changes, indicating complex responses of
the terrestrial and aquatic environments to the regional
climate changes, as shown in the discussion above. Based
on the present results, the regional climatic conditions
between24and22 cal. kaBP, i.e. during the globalLGM
interval, may be divided into three phases: a driest phase
(c. 24.0–23.4 cal.kaBP)with lowprecipitation,highsum-
mer evaporation, and low lake levels and a phase
(c. 22.6–22.0 cal. ka BP) of relatively high precipitation
(and moisture availability) and relatively high lake levels,
which are separated from each other by a transitional
phase of unstable conditions (c. 23.4–22.6 cal. ka BP).
During the driest phase, there is also evidence for short-
term variations in atmospheric precipitation and substan-
tial lake-level fluctuations. Our results also contribute to
clarifying the regional LGM summer thermal conditions,
which are still under debate. The findings advocate for at
least 3.5 °C higher than present summer temperatures
paralleled by increased levels of available moisture that
were reached after the transitional phase (c. 22.6 cal. ka
BP) identified in this study. Progressively warmer and
wetter conditions following the end of the driest phase
(after c. 23.4 cal. ka BP) are well in line with isotope data
from Greenland ice-cores showing that teleconnections
betweencentralEurasia and theNorthAtlantic continued
through the LGM. Given the precipitation reconstruc-
tions, far-distant linkages are also indicated with the
Northwest Pacific region. Moreover, it appears that
environmental conditions during the LGM in central
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Eurasia were mainly controlled by the interplay of much
colder winter temperatures, relatively high summer tem-
peratures, and varying levels of humidity.
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