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A hybrid theory which combines the full nonlocal “exact” exchange interaction with the local spin-
density approximation of density-functional theory is shown to lead to marked improvement in the
description of antiferromagnetically coupled systems. Semiquantitative agreement with experiment i
found for the magnitude of the coupling constant in La2CuO4, KNiF3, and K2NiF4. The magnitude of
the unpaired spin population on the metal site is in excellent agreement with experiment for La2CuO4.
[S0031-9007(97)03942-2]
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The “local spin-density approximation” (LSDA) o
density-functional theory (DFT) has proven extreme
useful for understanding and predicting the electro
properties of condensed matter [1–4]. Despite its ma
successes, there are situations where the LSDA is kn
to give qualitatively incorrect descriptions; notable amo
these are those instances where the bands are na
and the electrons nearly localized. In antiferromagne
insulators such as La2CuO4 the LSDA exaggerates delo
calization, thereby predicting the material to be a me
[5], or at least significantly underestimating the magnitu
of the magnetic moment [6]. A number of remedi
have been investigated, among them the self-interac
correction (SIC) [7] and LDA1 U [8] approaches. In
this Letter we examine an alternative; a hybrid function
which combines the full nonlocal “exact” exchang
interaction with the exchange-correlation functional
the LSDA. We find that it qualitatively and semiquant
tatively corrects this deficiency of conventional DFT fo
three representative antiferromagnets. Although the fo
in this work is on cluster models, this DFT approa
is amenable to implementation with periodic bounda
conditions.

Hybrid density functionals [9–12] combine elements
Hartree-Fock (HF) theory with DFT, and have enjoy
significant success in the theoretical chemistry commun
particularly in the prediction of molecular heats of form
tion and bond energies, where they often correct the LS
tendency to overestimate molecular binding energies.
order to motivate the relevance of hybrid functionals f
the localization/delocalization problem, we briefly intro
duce their formal justification. The conceptual foundati
of DFT is that the ground-state density suffices to det
mine all the properties of a many-body system. In partic
lar, the energy is given by

Efrg ­
Z

rsrdVextsrd dr 1 T frg 1 Veefrg , (1)

whereE is the total energy of the fully interacting syste
of electrons, the integral over the external potential is
nuclear-electron attraction, andT andVee are functionals
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of the electron-densityr which describe the kinetic energy
and electron-electron interactions. In the LSDA,r is
understood to generalize tora and rb spin densities.
The ground-state density is that which minimizes t
total energy.

In the Kohn-Sham formulation, the unknown kinet
energy functional is finessed by defining afictitious
noninteracting reference system described by a sin
determinant of orbitals (ci) whose density is identical to
the ground-state density. The energy is partitioned

E ­
Z

rVext dr 1 T0 1 J frg 1 Excfrg , (2)

where E and the electron-nuclear term are as befo
but T0 is now the kinetic energy of the noninteractin
determinant

T0 ­
NX

i­1

ø
ci

Ç
2

1
2

=2

Ç
ci

¿
. (3)

Note also that the Hartree energyJ [ r] has been seg-
regated in Eq. (2) from the electron-electron energy a
everything elseis lumped into the exchange-correlatio
energy functionalExcfrg. In particular, corrections to the
noninteracting kinetic energy are also found inExcfrg.
The Kohn-Sham orbitals are found by solving the equ
tions

s21y2=2 1 V0dci ­ eici , (4)

where the potentialV0 is given by

V0 ­ Vext 1 VJ 1 Vxc , (5)

with VJ the Hartree potential andVxc ­ dExcydr.
Local (LSDA) and generalized gradient approximatio
(GGA) [13] to the exchange-correlation energy can
extracted from the electron gas problem or other solva
model systems such as the He atom [14].

Becke [9] has argued that improved functionals m
be generated by consideration of the adiabatic connec
formula [15–18]. The price paid for simplifying the
kinetic energy through the introduction of a fictitiou
© 1997 The American Physical Society 1539
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noninteracting system is that the exchange-correla
energy is given by an integral

Exc ­
Z 1

0
dl Ul

xc , (6)

where l is a coupling-strength parameter which tur
on the Coulomb repulsion between electrons, andUl

xc is
the potential energy of exchange correlation at coup
strength l. It is understood that the density used
generate the exchange-correlation energy for all va
of the coupling strength is fixed at the density of t
real, fully interacting system. Becke suggests that i
the noninteractingl ­ 0 behavior of the LSDA which is
physically inappropriate and responsible for its tende
to overbind molecular species. In particular, in that lim
there is no correlation, only an exchange term, and
the exact exchange energy of the single determinan
Kohn-Sham orbitals, call itEx. If the Kohn-Sham orbitals
were identical to the HF orbitals, this would be just t
HF exchange energy. The form of the exchange hol
this limit is also well known. Consider, for example, H2

at its equilibrium distance. Thel ­ 0 exchange hole
is simply the negative of thesg orbital density. It is
static, delocalized over both centers, and provides the
interaction correction to the Hartree term. In contrast,
LSDA or GGA exchange holes are centered locally
semilocally about each electron and are dynamic.

In the present context, note that the simplest exam
of a narrow band system is realized by H2 as the bond
length increases. At larger distances the electrons bec
more weakly interacting, and one might expect thel ­ 0
behavior of the functional to be even more important. T
unphysical behavior of local approximations in this lim
might be expected to become particularly apparent.

Less is known about the fully interacting limit, b
presumably a local or gradient corrected approxima
is reasonable. Suppose we assume the LSDA is suffi
in this limit. The simplest two-point approximation to th
integral [Eq. (6)] is then

Exc ­
1
2

sEx 1 ULSDA
xc,l­1d . (7)

The functional derivative may be used to construct
operator [Eq. (5)] and an associated set of orbitals
density obtained self-consistently. Becke denotes this
half-and-half method. This approach has been discu
and generalized recently by Levy, March, and Handy [1

In the present work we take a similar, but distin
approach. Separating the exchange-correlation pote
energy in Eq. (6) into its components, we have

Exc ­
Z 1

0
dl Ul

x 1
Z 1

0
dl Ul

c . (8)

Applying a two-point quadrature as before to the
change term, but recognizing that the second integra
just the correlation energy, we have
1540
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is

Exc ­
1
2

sEx 1 ELSDA
x d 1 ELSDA

c . (9)

Other hybrids can be defined by using GGA models,
with local approximations as above for the exchang
and a GGA for the correlation component. We us
the notation F-S:VWN to refer to the approximatio
above, signifying that the exchange component is an eq
mixture of exact (Fock) exchange and the local dens
(Slater) exchange, whereas the correlation compon
is the Vosko, Wilk, Nusair fit to the Ceperly-Alder
homogenous electron gas correlation energy.

We have performed unrestricted Hartree-Fock (UHF
LSDA, GGA, and hybrid F-S:VWN calculations on cluste
models of three representative antiferromagnets: La2CuO4,
KNiF3, and K2NiF4. The first is a spin1y2 system, while
the second and third are spin 1 on each nickel. The d
sities were determined by spin-unrestricted calculatio
on the clusters Cu2O11 and Ni2F11. The primary clusters
are embedded in a MadelungyPauli background potential
which reproduces the infinite lattice Madelung potential
the primary region as well as enforcing Pauli orthogonali
between the electrons of the primary cluster and the fi
neighbor shell of the background [20,21]. The orbitals a
expanded in standard double-zeta plus polarization ba
sets. The coupling constant appropriate for the Heisenb
Hamiltonian is extracted from spin-unrestricted calcul
tions, whose solutions are not pure eigenfunctions of t
total spin operator, as discussed by Noodleman [22].
brief, separate calculations on the high spin state and
unrestrictedSz ­ 0 spin state are used to inferJ. In the
Cu dimer, for example, the magnitude ofJ is given by
the difference in energy between the triplet and sing
states. The spin-unrestrictedMs ­ 0 single determinant
is flfrfabg, wherefl andfr refer to molecular orbitals
largely localized on the left and right sites of the dime
This determinant is an equal superposition of the sing
wave functionflfrfab 2 bag, and theMs ­ 0 com-
ponent of the tripletflfrfab 1 bag. The difference
in energy computed for the (Ms ­ 1) triplet state and the
Ms ­ 0 broken-symmetry determinant is then half the a
tual singlet-triplet splitting.

Finally, we must address how well the Heisenbe
constants extracted from cluster calculations relate
those appropriate to the infinite lattice. Earlier resear
has shown that the superexchange interaction conver
quickly with cluster size, and that it is possible to ex
tract a reasonable approximation toJ in La2CuO4 (within
,20%) from a simple dimer containing only two meta
sites [20,21]. Even more direct evidence for this co
clusion was obtained in the present work, where UH
results for Ni2F11 in a background potential appropri-
ate for KNiF3 can be compared with UHF calculation
on KNiF3 which employ fully periodic boundary con-
ditions [23]. Similar basis sets were used in both ca
culations. The dimer model givesJ ­ 2.58 meV, while
the fully periodic calculations giveJ ­ 2.57 meV. Thus
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we believe that qualitative conclusions drawn from t
clusters will transfer straightforwardly to fully periodi
calculations.

Our results are presented in Table I. We focus
two parameters: the magnitude ofJ, and the “magnetic
moment” as determined by the Mulliken unpaired sp
population on the metal site in the unrestricted (Sz ­ 0)
solution. Consider first the Cu2O11 results. The UHF
unpaired spin population (Pd) on the Cu sites is 0.90
indicating a sizable moment. The remainder of the u
paired spin is delocalized onto the oxygen2ps orbitals.
The localization of the moment is in fact overemphasiz
the unpaired population being greater than the value
0.80 inferred from experiment [24]. The UHF value fo
J (38 meV) underestimates experiment (J ­ 128 meV)
[25] by nearly a factor of 3. The reason for this is unde
stood. If the cluster were approximated by a single-ba
Hubbard Hamiltonian, thenJ , t2yU, wheret is the ef-
fective hopping integral between the two metal sites, a
U is the on-site Coulomb repulsion. The HF approxim
tion grossly overestimatesU, thereby underestimatingJ.
Acceptable agreement with experiment may be obtain
through configuration-interaction (CI) expansions whi
explicitly screenU to its proper value [20,21].

In contrast, the LSDA (S:VWN) underestimates th
localization. As can be seen in Table I, it gives to
little unpaired spin population on the metal sites (Pd ­
0.31). Note that in the limit in which there is no spi
polarization at all, the singlet-triplet energy differenc
is simply 2t, where t is the effective hopping integral
Thus, the large energy difference in the LSDA,J ­ 820
meV, is more a measure of the effective hopping integ
than an antiferromagnetic coupling constant. While ea
investigations of the periodic LSDA gave no sign
a spin-polarized solution [5], we note that Kasows
et al. [6] argue that if sufficient care is given to th
representation of the potential, a spin-polarized solution
found with Pd ­ 0.35, in good agreement with the valu
determined for the cluster.

An extension to a generalized gradient approxim
tion is reported in the column labeled B:PW91. He
Becke’s gradient-corrected exchange functional [27]
coupled with the gradient-corrected correlation function
f
nt-
xima-
TABLE I. The coupling constantssJ d and associated unpaired spin population (Pd) on the metal site for the cluster models o
La2CuO4, K2NiF4, and KNiF3. The columns refer to unrestricted Hartree-Fock (UHF), local spin-density (S:VWN), gradie
corrected exchange and correlation (B:PW91), gradient-corrected exchange only (B:VWN), and hybrid (F-S:VWN) appro
tions, where the notation (exchange:correlation) and the specific functionals are described in the text.

UHF S:VWN B:PW91 B:VWN F-S:VWN Expt.

La2CuO4 J (meV) 37.8 820.0 601.0 610.3 105.0 128.0 6 0.7
Pd 0.90 0.31 0.49 0.48 0.79 0.8

K2NiF4 J (meV) 2.9 57.1 41.3 38.9 7.5 8.6 6 0.4
Pd 1.92 1.61 1.68 1.68 1.86 · · ·

KNiF3 J (meV) 2.6 53.1 38.6 36.5 7.0 8.2 6 0.6
Pd 1.93 1.63 1.69 1.69 1.87 · · ·
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of Perdew and Wang [28]. This approximation is a st
in the right direction, but the unpaired population (0.4
is still too small, and the splitting (601 meV) much to
large. Most of the change from the LSDA result is ass
ciated with the exchange functional. For example, if on
the exchange functional is replaced by a GGA (B:VWN
the unpaired population and coupling constants (0.48 a
610 meV) are nearly identical to B:PW91. Finally, th
simple hybrid functional [Eq. (9)] is reported in the co
umn labeled F-S:VWN. The agreement with experime
is much improved. The moment (Pd ­ 0.79) is in excel-
lent agreement with experiment, and the magnitude oJ
(105.0 meV) is within 20% of experiment.

As additional tests, we examined the “locally” spi
1 systems KNiF3 and K2NiF4 (Table I). The general
behavior exhibited byLa2CuO4 is also evident here,
although the LSDA gives a significant spin populatio
in these cases. The magnitudes ofJ predicted by the
hybrid approach are 7.5 vs 8.6 meV (experiment) [2
for K2NiF4, and 7.0 vs 8.2 meV (experiment) [26] fo
KNiF3. Once again, the theoretical splittings are smal
than experiment by about 20%, but from a more gene
perspective the agreement in these cases is remark
considering the interaction is only of the order of 100 K
As regards the spin population, the hybrid function
again enhances localization on the metal site, but to
knowledge there are no experimental results with wh
to compare.

The results in Table I suggest that it is the unphysic
nature of local or semilocal approximations for the e
change operator in the weakly interacting limit which
responsible for the problems of the LSDA in narrow ba
systems. This point is reinforced by the study of the a
ditional hybrid combinations reported in Table II. Th
results are found to be largely insensitive to the cor
lation functional (LSDA vs GGA) employed in Eq. (9)
and only marginally sensitive to the use of a GGA
the exchange expression. In fact, carrying the former
servation to its logical conclusion, we also report a h
brid which ignores the correlation functional complete
(F-S:null). It is, surprisingly, in general agreement wi
the other results. It is important to remember thatJ is
determined from energy differences, and we certainly
1541
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f
th the
TABLE II. The coupling constantssJ d and associated unpaired spin population (Pd) on the metal site for the cluster models o
La2CuO4, K2NiF4, and KNiF3. The columns refer to various combinations of exchange and correlation functionals used wi
hybrid expression in the text. LYP refers to the gradient-corrected correlation functional of Lee, Yang, and Parr.

F-S:VWN F-B:VWN F-S:LYP F-B:LYP F-S:null Expt.

La2CuO4 J (meV) 105.0 98.8 110.7 101.1 101.9 128.0 6 0.7
Pd 0.79 0.80 0.79 0.80 0.80 0.8

K2NiF4 J (meV) 7.5 6.5 8.0 7.1 6.9 8.6 6 0.4
Pd 1.86 1.87 1.85 1.86 1.86 · · ·

KNiF3 J (meV) 7.0 6.1 7.4 6.6 6.4 8.2 6 0.6
Pd 1.87 1.87 1.86 1.87 1.87 · · ·
o
x

s
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tt.

ev.
d
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not mean to imply that the correlation functional is no
important for other properties. We interpret this behavi
as a reflection that local or semilocal correlation appro
mations should give similar results for both the triplet an
spin-unrestricted (Sz ­ 0) densities when the moment
are largely localized on the metal sites. In contrast, bo
the moment and the coupling constant are fairly sensit
to the fraction of Fock exchange incorporated in th
operator [29]. For example, a popular empirical hybr
functional (B3LYP [30]) which combines,20% exact
exchange with the B:LYP GGA yieldsPd ­ 0.68 and
J ­ 237 meV for La2CuO4, an error of nearly 100%
for J. Still, this is a marked improvement over eithe
the LSDA or GGA result, and the point we wish to
make is a qualitative one. We conclude that hybrid DF
methods and their refinements hold promise for the stu
of condensed matter systems.
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