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Abstract

Background: In an agreement assay, it is of interest to evaluate the degree of agreement between the different
methods (devices, instruments or observers) used to measure the same characteristic. We propose in this study a
technical simplification for inference about the total deviation index (TDI) estimate to assess agreement between
two devices of normally-distributed measurements and describe its utility to evaluate inter- and intra-rater
agreement if more than one reading per subject is available for each device.

Methods: We propose to estimate the TDI by constructing a probability interval of the difference in paired
measurements between devices, and thereafter, we derive a tolerance interval (TI) procedure as a natural way to
make inferences about probability limit estimates. We also describe how the proposed method can be used to
compute bounds of the coverage probability.

Results: The approach is illustrated in a real case example where the agreement between two instruments, a
handle mercury sphygmomanometer device and an OMRON 711 automatic device, is assessed in a sample of 384
subjects where measures of systolic blood pressure were taken twice by each device. A simulation study procedure
is implemented to evaluate and compare the accuracy of the approach to two already established methods,
showing that the TI approximation produces accurate empirical confidence levels which are reasonably close to
the nominal confidence level.

Conclusions: The method proposed is straightforward since the TDI estimate is derived directly from a probability
interval of a normally-distributed variable in its original scale, without further transformations. Thereafter, a natural
way of making inferences about this estimate is to derive the appropriate TI. Constructions of TI based on normal
populations are implemented in most standard statistical packages, thus making it simpler for any practitioner to
implement our proposal to assess agreement.

Background
In an agreement assay, it is of interest to evaluate the
degree of agreement between different methods (devices,
instruments or observers) used to measure the same
characteristic. Thus, the closeness between the measures
of the methods must be evaluated. Different procedures
for assessing agreement with continuous measurements
have been proposed and these can be classified under
two terms [1]: (1) unscaled summary indices based on
absolute differences; and (2) scaled summary indices

which translate absolute differences into more meaning-
ful values ranging between -1 (perfectly reversed agree-
ment) and 1 (perfect agreement), where 0 indicates no
agreement.
Scaled indices have probably been the most widely

used, especially the intraclass correlation coefficient
[2-4] (ICC) and the concordance correlation coefficient
[5] (CCC). Both ICC and CCC indices have recently
been evaluated and compared in many studies [6-8], and
have been shown to provide two different expressions of
one common index. However, when conducting an
agreement analysis it should be remembered that these
scaled indices depend on the covariance between mea-
surement devices [9], as the resulting estimates can vary
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depending on the possible range of values of the mea-
surement instrument under consideration. Another con-
sequence of this covariance dependency is that the
indices might be overestimated if potential confounding
variables are not taken into account [8].
Among unscaled procedures, the total deviation index

(TDI) describes a boundary such that a majority percent
of the differences in paired measurements are within the
boundary [10,11], i.e. a probability interval. The advan-
tage of the TDI against scaled measures such as CCC is
that it does not depend on the data range and therefore
it avoids the inconvenience of not taking into account
potential covariates that explain between-subject varia-
tion. However it must be noted that as in the CCC case
the TDI will depend on covariates explaining within-
subject variation. A further advantage is that it has a
straightforward interpretation since it results in the
same measurement scale as that of the variable consid-
ered for agreement purposes.
Several methods for inference about the TDI estimate

have been proposed. To calculate the index Lin [10]
derived the cumulative probability function of the
square of the paired-measures difference variable, which
is assumed to follow a non-central chi-squared distribu-
tion. He argues that inference about the estimate of the
resulting equation is cumbersome, and he thus derives a
further approximation with more desirable properties
based on the asymptotic theory of the mean squared
deviation (MSD) [10]. Lin et al. [12] extended the
method to deal with repeated measures. Due to the
positive skewness of the resulting TDI estimates, when
performing inferences the natural log transformation of
the estimate is used. This approximation has been
shown to conclude satisfactory agreement when mean
differences between two measurement devices are small,
but it can be conservative when the relative bias square
value is unreasonably large and when the coverage prob-
ability is large (0.95). Choudhary and Nagaraja [13] pro-
posed an upper bound for the estimate of Lin’s resulting
TDI equation for the case of no repeated measures
derived from an exact test. As the exact test method
needs to maximise an integrated equation with no
closed form, numerical computations are required to
implement it; as the authors acknowledge, these may
not be readily available in practice, so they also propose
a closed-form approximation.
Choudhary [14] subsequently extended the method

based on the asymptotic distribution of the logarithm of
Lin’s TDI proposal to deal with repeated measures. He
argues that this method performs well with large sample
sizes and proposes a modified version for smaller sam-
ple sizes based on a bootstrap approach. Recently,
Quiroz and Burdick [15] also derived a method for
inference about the TDI estimate when dealing with

repeated measures for the two methods that are paired
over time, and fit the data using an ANOVA model.
They then construct generalised confidence intervals
about the TDI estimate that are based on replacing
parameters involved in Lin’s [10] TDI expression with
generalised pivotal quantities. The generalised confi-
dence intervals are constructed via Monte Carlo simula-
tions and have been shown to perform well in a wide
range of scenarios, including those with either small,
moderate or large sample sizes. Here we propose a tech-
nical simplification for inference about the TDI estimate
based on a closed approach. We first estimate the TDI
by finding the appropriate probability interval of the dis-
tribution of the paired-measures difference variable.
Therefore, a natural way of making inferences about this
TDI estimate is to derive its tolerance interval (TI). This
procedure offers a straightforward approach as the the-
ory and methods about TI for normal populations are
well established [16-18].
The article is structured as follows: in the methods

section the TDI is defined and Lin’s [10] first approach
is described. A brief description of two current closed
approaches for inference about the TDI estimate is sub-
sequently given. Thereafter, a probability interval
approach is defined to obtain an alternative expression
of the TDI estimate. This approach is also used to
derive estimates of the inter- and intra-method [12,19]
measures of agreement when more than one reading per
subject is available. Based on the probability interval
approach a direct inference method about this estimate
is derived via the TI. Lastly, in this section we also
describe how one may utilize the TI approach to per-
form inference for the computation of the coverage
probability, an agreement measure related to the com-
putation of the TDI. In the results section we illustrate
the methodology by using it to evaluate agreement
between a manual and an automatic blood pressure
device. In this example we point out the independence
of the TI method from the effect of the between-subject
variation, as compared with other scaled methods such
as the CCC, whose covariate adjustment that explains
between-subject variation modifies the resulting agree-
ment value. We will also describe and report our simu-
lation study procedure for evaluating the performance of
the method and compare it to already established meth-
ods. A discussion and concluding remarks are given at
the end of the manuscript.

Methods
Definition
Suppose a continuous variable is measured by two dif-
ferent devices m times each from n different subjects.
Therefore, the data can be fit using the following mixed
model [12,14]:
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y eijl ijl j i ij ijl    x     (1)

where yijl is the lth measurement from subject i by
device j, with i = 1, ..., n, j = 1, 2, and l = 1, ..., m. δ is
the vector of fixed effects parameters common to both
devices and xijl is the corresponding row of the design
matrix for covariates, bj is the fixed device effect, ai is
the individual random effect assuming that ai ~ N(0,


2 ), gij is the individual-method interaction random
effect with gij ~ N(0,  

2 ) and eijl is a random error
assuming that eijl ~ N(0,  e

2 ) and is independent of any
other component of the mixed model. If the error varia-
bility differs across devices, then eijl ~ N(0,  e j

2 ).
Lin [10] defined the TDI as a boundary, �p, which

captures a large proportion, p, of paired-measurement
differences from two devices or observers within the
boundary, i.e., the value of �p that yields P(|D| <�p) = p,
where D is the paired-differences variate. Under the
assumption of the mixed model in (1), D is the paired-
differences variate based on any one of the replicates,
D = (yijl - yij’l’), and hence �p based on D is actually
known as the total-TDI for evaluating total agreement
[12]. It is shown that the distribution of D is then D ~
N(μD, sD) with μD = bj - bj’ and   D e

2 2 22 ( ) , or
in the case of different error variances between devices
   D e e

2 2 2 22
1 2

   .
When more than one reading per subject given by

device j is available, one might be interested in measuring,
in addition to the total agreement, the inter- and intra-
method agreement [12,19]. Intra-method indices are used
to measure the agreement among the multiple readings
obtained from the same device [12]. This agreement mea-
sure is useful when ones wishes to evaluate the reproduci-
bility or repeatability of a specific device. To evaluate
intra-method agreement, differences between replications
from the same individual given by the j - th device are
used and, therefore, under the assumption of the
mixed model in (1): (yijl - yijl’) ~ N(0,  Dintra

2 ) with  Dintra

2

= 2 e
2 . Inter-method agreement is used to measure

the agreement among different devices based on the aver-
age of their multiple readings [12]. If we denote

y m yij ijll

m
. ( / )  1

1
, under the assumption of the

mixed model in (1), the inter-method agreement can be
evaluated by the following distribution: (yij. - yij’.) ~ N(μD,

 Dinter

2 ), where μD = bj - bj’ and   D einter
m2 2 22 ( / ) ,

or in the case of different error variances between devices,

   D e einter
m m2 2 2 22

1 2
  / / .

The first formal definition [10] of the TDI for the case
of one single reading from each device for each subject,
i.e when m = 1, was based on the distributional

assumption of the square transformation of the paired-
measurement difference variable:

    p D D DF p p  1 2 1 2 21( ) ( , , / )( ) (2)

where F-1 is the inverse of the cumulative probability
function of |D|, and c2(-1)(·) is the p-th percentile of a
non-central chi-square distribution with 1 degree of
freedom and non-centrality parameter  D D

2 2/ . Even
though equation (2) was defined for the case of one sin-
gle reading, one can apply the mixed model (1) to
accommodate replicated readings from each device for
each subject and use the model parameter estimates to
obtain estimates of μD and  D

2 and, furthermore, com-
pute the TDI estimate by plugging in these estimates
[14]. However, and as Lin [10] argued, inference about
this �p estimate is cumbersome, and he therefore pro-
posed a further approximation based on the mean
squared deviation (MSD):

 p pz 1
2

| | (3)

where ε2 = E(yijl - yij’l’)
2, z(1 + p)/2 is the (1 + p)/2 - th

percentile of the standard normal distribution and |·| is
the absolute value.

Current approaches for inference about the TDI estimate
There are two already existing closed procedures for infer-
ence about the TDI estimate that consider repeated mea-
sures taken by each of the two devices with multiple
readings being compared. The first approach was defined
by Lin et al. [12] where the authors expressed the TDI
approximation based on the MSD, as in (3), which under
the assumption of the mixed model in (1) the MSD

becomes     
2 2 2 22 2 2   e , and therefore

    p p ez  ( )/1 2
2 2 22 2 2 , where  

2 = (bj - bj’)2/

2 is defined as the variance between the two devices.
Furthermore, the generalized estimating equations (GEE)
approach [20] is used to obtain the model parameter esti-
mates in (1). Since this TDI estimate is positively skewed
[11,12] the authors use the log transformation to form
inference and the delta method is applied to obtain the var-
iance of the resulting TDI estimate.
The second approach was defined by Choudhary [14]

where the author proposes to use the maximum likeli-
hood estimation (MLE) procedure to obtain model para-
meter estimates in (1) and, furthermore, compute the
TDI estimate by simply plugging the MLE estimates of
μD and  D

2 in (2). The author argues that the distribu-
tion of this MLE estimate of the TDI approach normality
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more quickly on the log scale, especially when the sample
size is small. Based on this assumption the delta method
is used to obtain the variance of the log-transformed TDI
estimate.
Both approaches for inference about the TDI estimate

are based on the delta method, which means that one
should first find the partial derivatives of the log trans-
formed TDI with respect to the model parameters used
to obtain the expression of the TDI and then find the
inverse of the information matrix for the fitted model.

TDI as a probability interval
Consider the TDI definition, which sets a boundary such
that a majority p percent of the differences in paired
observations are within the boundary: P(|D| <�p) = p.
This is the same as finding �p, such that P(-�p <D <�p)
= p. Thus, [-�p; �p] defines the probability interval of D
centered at 0, regardless of the mean value of D. Since
D is assumed to behave as a normal distribution
with mean μD and standard deviation sD, one can derive
�p using standard methods for computing probability
intervals:

  

  
p D p D

p D p D

z

z

 

  
1

2

(4)

where zps
, s = 1, 2, are the ps-th percentile of the

standard normal distribution, such that zp2
= -2μD/sD

- zp1
and p1 - p2 = p. Therefore, one can find p1 by

using its link with p:

 ( ) ( / )z z pp D D p1 1
2     (5)

where F(·) is the cumulative standard normal
distribution.
However, p1 cannot be found in a closed form using

equation (5), so a recursive algorithm is required. We
propose to use a modified version of the binary search
algorithm [21] to find p1 and, furthermore, to compute
�p using (4).
Typically, the binary search algorithm is used to

search in an ordered array for a single element by
repeatedly dividing the array in half. Here we translate
the ordered array into the interval [low; high], which
means that low(high) is the lowest(highest) value that
p1 can take. Now, since equation (5) has a single solu-
tion for p1 in the interval [p; 1], one can repeatedly
halve the interval in an adequate manner to find the
optimum for p1. Therefore, the algorithm is implemen-
ted as follows:

1. begin with the interval [low = p; high = 1];
2. calculate the midpoint of the interval mid =
(low + high)/2;

3. if the left-hand side of equation (5) for pi = low is
greater than p up to a tolerance bound δ (i.e.,

lim( )






0

p ), then recalculate the interval [low = mid

+ δ; high = 1]; if it is lower than p up to a tolerance

bound δ (i.e. lim( )






0

p ), then recalculate the inter-

val [low = p; high = mid - δ];
4. repeat steps 2-3 until convergence, i.e. until
the solution for p1 in (5) is p - δ < F(zp1) - F(-2μD/
sD - zp1

) <p + δ.

The advantage of using this iterative algorithm is its
speed, as it converges on the true value of p1 in a loga-
rithmic order of growth.
This probability interval procedure ensures that the

lower bound of the interval is symmetric with the upper
bound about 0; therefore it is only necessary to search
for one of the interval’s two limits, as the other is sym-
metrical about zero.
We propose to use the restricted maximum likelihood

estimation (REML) method [22] to obtain the model
parameter estimates in (1) and furthermore compute the
TDI estimate based on probability intervals by plugging
in the REML estimates of μD and sD in (4).
We must note that this resulting estimate of the TDI

yields the same estimate as that directly computed from
equation (2) using the sample counterparts, however as
we will illustrate in subsequent sections this binary
search algorithm is necessary to compute our proposal
for the upper confidence limit of TDI.

Intra- and inter-method TDI
The TDI based on probability intervals can also be used
to assess inter- and intra-method agreement measures.
To evaluate intra-method agreement, we use the differ-

ence between two replications for the i - th individual
given by the j - th device and, therefore, under the
assumption of the mixed model in (1): (yijl - yijl’) ~ N(0,
 Dintra

2 ). Now, since the probability distribution is centered
at 0, the TDI can easily be derived via a probability inter-
val:

 p intra p Dz
intra  1

2
(6)

In fact, this resulting approach corresponds to the ISO
definition of the standard way of measuring the reprodu-
cibility or repeatability of a device for the specific case
where the 95th percentile point of the standard normal is
used for z(1+p)/2 [23].
If the variability differs across devices one should then

obtain two different intra-method agreements as

 p intra p ej j
z  1

2
, with j = 1, 2.
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Inter-method agreement can be evaluated by the
following distribution: (yij· - yij’) ~ N(μD,  Dinter

2 ), and
therefore:

  p inter D p Dz
inter  

1
(7)

where p1 is found by using the modified binary search
algorithm detailed previously.

A tolerance interval (TI) for inference about the TDI
estimate
Our proposal for inference about the TDI estimate is
based on tolerance intervals (TI), provided that we esti-
mate the TDI by deriving the limits of a probability
interval that contains a specified p-proportion of the
resulting estimated normal distribution.
Now, since we use estimates of the normal distribution

parameters of D instead of using true values, �p is
obtained by replacing μD and sD by their REML estimate
counterparts derived from model (1) in expression (4):

ˆ ˆ ˆ  p D p Dz 
1

(8)

Therefore, a natural way of making inference about ̂ p

is to compute a one-sided tolerance interval [17,18] that
covers the p1-percent of the population from D with a
stated confidence. This is analogous to computing a one-
sided confidence interval for the limit that defines the
one-sided probability interval which contains the p1-per-
cent of the population of the estimated distribution of D,
where p1 is found using the modified binary search
algorithm.
Thus, let T be the studentized variable of ˆ ˆ D p Dz

1
.

It is shown, then, that T follows a non-central Student-t
distribution with non-centrality parameter z Np1

:

T
D zp D D

D
N

D D
D
N

z N t z Np p


 

  

ˆ ˆ

ˆ

ˆ
ˆ ~ ( )

  


 
 

1

1 1

(9)

where N = 2 × n × m is the total possible paired-mea-
surement differences between the two devices. The
degrees of freedom, ν, are derived from the residual
degrees of freedom. We have adopted here the conserva-
tive situation, as ANOVA (analysis of variance) philoso-
phy (see for example Searle et al. [24]), where all fixed
and random effects consume degrees of freedom
and, therefore, ν = 2 × n × (m - 1). If there is no indivi-
dual-device interaction, then the degrees of freedom are
ν = 2 × n × m - (n + m - 1). However one can also
adopt a less restrictive position and consider that the

random effects do not consume degrees of freedom and
in that case ν = 2 × n × m - 2. In situations where the
variability differs across devices, the error variance of the
difference between paired measurements is obtained as a
linear combination of the two residual variance estimates,
so the degrees of freedom can be achieved more effi-
ciently using the Satterthwaite adjustment [25].
One can therefore construct an upper bound (UB) for

the TDI estimate by using the following cf = (1 - a) ×
100% one-sided TI, where a is the type I error rate:

UB t z N D
Ncf p D p( ) ( , )   


 



  1
1

(10)

This TI corresponds to the exact one-sided tolerance
interval for at least p1 proportion of the population
defined by Hahn [17] and Hahn and Meeker [18].
For computing the above TDI approach, a SAS macro

and an R function are available in additional file 1. The
same rationale is used to construct an upper bound for
the intra- and inter-method TDI estimates derived from
plugging the REML estimates from expression (1) into
expressions (6) and (7), respectively. The upper bounds
are constructed as in the following expressions:

UB t z N
Dintra

Ncf p intra p( ) ( , )


 


  1
1

(11)

UB t z N
Dinter

Ncf p inter D p( ) ( , ) 


  


   1
1

(12)

One can also adopt the TI defined in expressions
(10), (11) or (12) to perform a hypothesis test if the
interest is to ensure that at least p-percent of the abso-
lute differences between paired measurements are less
than a predetermined constant �0. Therefore, the null
hypothesis would be defined as in Lin [10], and take
the form

H vs Hp p0 0 1 0: . :      

and H0 would be rejected with a type I error a if

UB t z N D
Np D p( ) ( , ) 


       1

1 0

where one should use the appropriate ̂D and ̂ D if
the hypothesis test is constructed to evaluate total-,
intra- or inter-method TDI.

Coverage probability (CP)
Another user friendly measure of agreement which is
related to the computation of the TDI is the so called
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coverage probability (CP) [11,12]. The CP describes the
proportion captured within a pre-specified boundary of
the absolute paired-measurement differences from two
devices, i.e., the value of p� such that P(|D| <�) = p�.
Therefore one can find p� for a specified boundary �
using standard methods for computing probability quanti-
ties under normal assumptions [11]:

p D
D

D
D


 


 


     ( ) ( ) (13)

and to obtain a CP estimate, p� can be computed by
replacing μD and sD by their REML estimate counter-
parts derived from model (1).
As with the TDI, the CP criterion can also be trans-

lated into a hypothesis test specification. In this case the
interest is to ensure that a specified boundary of the
absolute paired-measurement differences captures at
least a predetermined proportion, p0:

H p p vs H p p0 0 1 0: . :    

The proposed TI method for inference about the TDI
can be utilized to perform inferences about the CP esti-
mates. From the TI in (10) it follows that

 
 
 ˆ
ˆ ~ ( )D
D
N

t z Np1 (14)

Now � is a fixed known boundary, and our interest
lies in finding a lower confidence bound for the CP esti-
mate. Thus, one can find a lower confidence bound for
a non-central Student-t proportion with confidence level
1 - a by searching the non-centrality parameter, that
depends on zp1

and hence on p�, that satisfies

 
 
  

ˆ
ˆ ( , )D
D
N

t z Np1
1 (15)

and once the non-centrality parameter z Np1
is

achieved, a lower bound about the proportion p� is found
using equation (5), p� = F( zp1

) - F(-2μD/sD - zp1
).

However, the non-centrality parameter cannot be
found in a closed form, so one may use again a modified
version of the binary search algorithm as follows:

1. begin with the interval [low = 0; high = 1], as p� is
bounded by the interval (0,1);
2. calculate the midpoint of the interval mid =
(low + high)/2 and compute the difference

d t z ND
D
N

mid   
  ˆ
ˆ ( , )1 ;

3. if d is greater than 0 up to a tolerance bound δ

(i.e., lim( )






0

d ), then recalculate the interval [low

= mid + δ; high = 1]; if it is lower than 0 up to a tol-

erance bound δ (i.e. lim( )






0

d ), then recalculate the

interval [low = 0; high = mid - δ];
4. repeat steps 2-3 until convergence, i.e. until d satis-

fies         
 d t z ND

D
N

mid
ˆ

ˆ ( , )1 .

Results
Case-example: blood pressure device data
The method proposed here to assess agreement using
the TDI measure will now be illustrated in a real case
example. We will also show that the independence of
the method from the effect of the covariance between
devices (between-subject variability) constitutes an
advantage of unscaled over scaled indices such as the
CCC.
A sample of 384 subjects was collected and measures of

systolic blood pressure were taken via two instruments: a
handle mercury sphygmomanometer device and an
OMRON 711 automatic device. The systolic blood pres-
sure was measured twice by each instrument. Gender,
age and heart rate were also recorded as covariates.
A Bland-Altman plot is shown in Figure 1. It can be

seen that measurements taken from the handle
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Figure 1 Blood pressure device data. Bland and Altman plot of
systolic blood pressure measured using automatic device (OMRON
711) and handle device (mercury sphygmomanometer). The total
possible paired-measurements are represented.
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sphygmomanometer tend to be discretized in round
values of 10 units each, while measurements from the
automatic instrument are dispersed around the range of
values of the systolic blood pressure. As a result of dis-
cussions with clinical practitioners, one can assume that
the manual instrument can be replaced by the automatic
device if a large proportion of paired-measurement differ-
ences are within a boundary of 10 mmHg. Under this
hypothesis the TDI measure is appropriate for making
such a decision.
We first fit the mixed model with ‘measurement device’

as the fixed effect and ‘individual’ and ‘individual-device
interaction’ as random effects (Model 1, Table 1) and
thereafter we excluded the ‘individual-device interaction’
in a second model which produced a similar fit (Akaike
Information Criterions (AIC): AICModel1 = 11764.83 vs.
AICModel2 = 11760.83). The resulting estimates of

ˆ ˆ . D e  2 2 52 8672 = 10.283 and ̂D = 2.174

are used to obtain the TDI estimate. Assuming that the
TDI should contain at least a proportion of 0.90 of the
paired measurements between devices, the TDI estimate
was 17.29 and its corresponding one-sided 95% TI was
17.93 (TDI estimates for proportions of 0.80, 0.85 and
0.95 are shown in Table 2). The TI’s were calculated
using a tolerance bound of 1e-10 and the computed
values of p1 for proportions of 0.80, 0.85, 0.90 and
0.95 were 0.864, 0.896, 0.929 and 0.963 respectively.
We also applied Lin’s and Choudhary’s procedures

described in the methods section; the second produced
the same results as our TI proposal and Lin’s approach
resulted in more conservative estimates compared to the
respective percentiles calculated from the absolute

difference. Though these percentiles are naive estimates
of the TDI’s, they can serve as the reality check for
comparing across the three methods, since we do not
know the theoretical values. Based on the three methods
applied, under the hypothesis of disagreement between
devices, if a large proportion of absolute paired-mea-
surement differences are above a boundary of 10 we
would not reject disagreement, thus the two devices are
not interchangeable.
We then entered gender, age and heart rate as covari-

ates into the model. The inclusion of covariates in the
model did not modify the parameter estimates used to
calculate the TDI, i.e. the device fixed-effect and the
error variance estimates, and therefore the TDI esti-
mates as well as their 95% one-sided TI remain the
same.
Finally, we also calculated the intra- and inter-method

TDI containing 80%, 85%, 90% and 95% proportions, as
shown in Table 2. The intra-method TDI is interpreted
as the boundary at which the specified proportion of the
replicated measurements are furthest from themselves.
The inter-method TDI is interpreted as the boundary at
which the specified proportion of the average of the
replicated measurements from one device are furthest
from the average of the replicated measurements of the
other device. In the case example, for all four propor-
tions specified, the intra-method TDIs are larger than
the pre-specified boundary of a difference of at least
10 to ensure agreement (the difference observed
between Lin’s and our TI proposal is due to the estima-
tion method of the variance components), which means
that the principal problem with the total-TDI is due to
the fact that the intra-individual variability is too large
rather than the systematic bias. In other words, if one
calibrates both devices, i.e., in the absence of bias, the
devices would still not be interchangeable. Therefore a
specific device for measuring the systolic blood pressure
is not interchangeable with itself and it is somewhat
pointless to assess agreement between these two devices
since they are not repeatable within themselves.

Simulation study
The performance of the method to evaluate agreement
via the TDI estimate using probability intervals, as well
as inference via the TI approach, will be assessed and
compared to the two already established methods by
means of a simulation study.
The scenario is based on the real case example of

blood pressure device data where two measures for each
of the two devices are simulated. For the sake of simpli-
city we assumed, as in the case-example, no interaction
effect between individuals and devices. We therefore
held fixed the intercept and the variance component of
the individual random effect equal to the mixed-model

Table 1 Blood pressure device data: model parameter
estimates

Effects Model1 Model2 Model3 Model4

Random individual 380.187 380.187 221.396 221.391

individual*device 1.56e-06 - 3.00e-4 -

error 52.867 52.867 52.867 52.867

Fixed intercept 133.369 133.369 84.864 84.864

(1.029) (1.029) (5.061) (5.061)

device 2.174 2.174 2.174 2.174

(0.371) (0.371) (0.371) (0.371)

gender - - -9.496 -9.496

- - (1.585) (1.585)

age - - 0.817 0.817

- - (0.057) (0.057)

heart rate - 0.194 0.194

- - (0.069) (0.069)

AIC 11764.83 11760.83 11574.54 11570.54

Restricted maximum likelihood estimates of the mixed effects models. The
values of random effects are variances, whereas point estimates and standard
errors (between brackets) are shown for fixed effects.
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point estimates in the original data (Table 1, Model 2),
while we simulated different combinations of fixed
device effects and random error variance. We first con-
sidered a device effect equal to the point estimate
obtained from the original data (2.174), and then simu-
lated two other more extreme values: a mean difference
of 0 and a larger mean difference of 5. Likewise, we
simulated a random error variance equal to the case-
example point estimate (52.867), which gives a standard
deviation of the difference between devices of 10.283,
and then simulated a smaller random error variance of
16, which gives a standard deviation for the paired dif-
ferences around half the value obtained in the original
case-example data (5.65). Sample sizes of 20 and 100
individuals were considered. For each scenario consid-
ered, the simulation study involved generating 1000
samples of the measurements vector with the particular
structure. The algorithm used to generate the s - th (s =
1, ..., 1000) sample can be summarised in the following
steps:

1. set δ and 
2 and set values for b and  e

2 ;
2. generate each measurement data vector ys from
the multivariate normal distribution MV N(X(δ, b)t,
V(

2 ,  e
2 ));

3. fit the mixed model for each data set using GEE
when Lin’s approach is applied, MLE for Choudh-
ary’s approach and REML for our proposal.

Note that the parameters of the multivariate normal
distribution in step 2 come from the matrix notation of
the mixed model described above, where X is the design
matrix of the fixed effects and V is the block-diagonal
total variance-covariance matrix with diagonal elements

equal to  
2 2 e and off-diagonal elements equal to


2 .
The TDI point estimate via probability intervals and

their corresponding TI were computed for each case,
with a tolerance equal to 1.0e-4, as well as Lin’s and
Choudhary’s proposals.
The accuracy of the TDI estimate was calculated in

order to determine whether the TI was reliable. Thus,
we calculated the mean of the TDI estimates and the

mean square error, MSE = E( ̂ p - �p)
2, where the

actual �p is calculated using Lin’s [10] definition, as in
equation 2.
To evaluate the performance of the TI approach

for inference about the TDI estimate we analyzed
the empirical confidence (EC) of the TI as
EC I s

s
  ( / )1 1000 100

1

1000 , where Is = 1 if �p is
within the TI. The same rationale was applied for the
two other established methods.
Since the distribution property of a TDI estimate has

been shown to be log-normal [11,12], the mean and
MSE are computed based on the log transformation of
the TDI estimates, and the EC are directly computed
from the upper limits of the log transformed TDI
estimates.
Table 3 shows that good point estimates of the TDI

are obtained in all of the simulated combinations; how-
ever, the small MSEs found increase in line with the dif-
ference between devices, the standard deviation of the
differences, and the proportion of the population that
should be contained within the TDI boundary increase.
The fact that the MSE is lower for larger sample sizes
indicates the consistent asymptotic properties of the
probability interval estimation approach. It is also
shown that in simulations based on no difference

Table 2 Blood pressure device data: concordance measures

Percentile Lin Choudhary TI

p ̂ p UB95%( ̂ p ) ̂ p UB95%( ̂ p ) ̂ p UB95%( ̂ p )

0.80 Total TDI 10 14.3 16.0 13.5 13.9 13.5 14.0

Intra-method TDI 10.5 14.1 15.7 13.2 13.6 13.2 13.8

Inter-method TDI 7.4 10.3 11.6 - - 10.2 10.6

0.85 Total TDI 12 16.1 17.9 15.1 15.7 15.1 15.7

Intra-method TDI 14 15.8 17.7 14.8 15.3 14.8 15.5

Inter-method TDI 9 11.6 13.0 - - 11.3 11.8

0.90 Total TDI 15 18.4 20.5 17.3 17.9 17.3 17.9

Intra-method TDI 16 18.1 20.2 16.9 17.5 16.9 17.7

Inter-method TDI 11 13.3 14.9 - - 12.9 13.3

0.95 Total TDI 19 21.9 24.4 20.6 21.3 20.6 21.3

Intra-method TDI 20.5 21.5 24.1 20.1 20.8 20.2 21.0

Inter-method TDI 15 15.8 17.7 - - 15.2 15.7

Percentile of the absolute difference, total, inter- and intra-method Total Deviation Indices for four different proportion sets. Results represent the TDI estimates,
̂ p , based on Lin, Choudhary and our Probability Interval approaches respectively and the resulting 95% upper bounds, UB( ̂ p ), based on Lin Choudhary and
our Tolerance Interval (TI) approaches.
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Table 3 TDI simulation results

Mean MSE × 1000 EC

p n log(�p) Lin Ch. PI Lin Ch. PI Lin Ch. TI

μD = 0 0.80 20 1.981 2.014 1.977 1.985 10.409 8.492 8.496 95.7 94.7 98.5

sD = 5.65 100 1.997 1.980 1.981 2.040 1.617 1.615 97.4 94.8 98.5

0.85 20 2.097 2.131 2.093 2.102 10.425 8.491 8.498 95.7 94.7 98.3

100 2.133 2.096 2.098 2.048 1.616 1.615 97.4 94.8 98.3

0.90 20 2.231 2.264 2.227 2.235 10.381 8.496 8.491 95.7 94.7 97.9

100 2.246 2.229 2.231 2.027 1.618 1.615 97.3 94.4 97.9

0.95 20 2.406 2.439 2.402 2.410 10.399 8.495 8.491 95.7 94.7 97.6

100 2.421 2.405 2.406 2.036 1.617 1.615 97.3 94.7 97.6

μD = 2.174 0.80 20 2.052 2.076 2.047 2.054 10.286 9.216 9.135 95.2 94.9 97.4

sD = 5.65 100 2.061 2.048 2.050 2.167 1.983 1.971 95.5 93.4 95.4

0.85 20 2.167 2.192 2.161 2.169 10.347 9.109 9.030 95.2 94.9 96.9

100 2.178 2.163 2.165 2.192 1.961 1.951 95.7 93.3 95.0

0.90 20 2.300 2.326 2.293 2.300 10.364 8.998 8.902 95.3 94.8 96.6

100 2.311 2.296 2.297 2.199 1.943 1.930 95.8 93.1 94.2

0.95 20 2.473 2.501 2.465 2.472 10.487 8.834 8.735 95.6 94.9 96.2

100 2.486 2.469 2.470 2.253 1.904 1.892 96.1 93.3 93.8

μD = 5 0.80 20 2.287 2.281 2.276 2.281 8.736 9.211 9.061 91.9 94.6 91.0

sD = 5.65 100 2.278 2.286 2.287 1.954 1.890 1.886 91.9 94.7 92.6

0.85 20 2.391 2.398 2.378 2.383 8.748 8.658 8.505 93.6 95.0 91.4

100 2.395 2.390 2.390 1.890 1.751 1.747 95.3 94.5 92.8

0.90 20 2.508 2.531 2.495 2.500 9.231 8.114 7.965 94.9 94.6 91.9

100 2.528 2.507 2.508 2.272 1.616 1.613 97.7 94.5 92.8

0.95 20 2.662 2.706 2.647 2.652 10.660 7.624 7.463 97.2 94.1 92.0

100 2.703 2.660 2.661 3.569 1.485 1.481 99.1 94.4 93.2

μD = 0 0.80 20 2.579 2.618 2.581 2.589 10.282 7.911 8.011 97.1 96.7 99.1

sD = 10.28 100 2.595 2.577 2.579 2.121 1.647 1.639 97.2 94.3 98.5

0.85 20 2.695 2.734 2.697 2.705 10.301 7.911 8.014 97.1 96.7 98.7

100 2.711 2.693 2.695 2.128 1.642 1.639 97.2 94.4 98.2

0.90 20 2.828 2.868 2.830 2.839 10.327 7.912 8.018 97.1 96.7 98.3

100 2.844 2.827 2.828 2.139 1.641 1.640 97.2 94.4 97.8

0.95 20 3.003 3.043 3.006 3.014 10.349 7.911 8.020 97.1 96.7 98.0

100 3.020 3.002 3.004 2.148 1.640 1.640 97.2 94.5 97.5

μD = 2.174 0.80 20 2.601 2.627 2.593 2.601 9.833 8.595 8.502 95.3 95.2 97.9

sD = 10.28 100 2.613 2.597 2.599 2.171 1.819 1.809 96.3 93.5 96.9

0.85 20 2.717 2.743 2.709 2.717 9.846 8.567 8.473 95.3 95.3 97.8

100 2.729 2.713 2.715 2.177 1.816 1.806 96.3 93.6 96.9

0.90 20 2.850 2.877 2.842 2.849 9.864 8.529 8.435 95.4 95.2 97.3

100 2.862 2.847 2.848 2.185 1.812 1.802 96.3 93.6 96.4

0.95 20 3.025 3.052 3.016 3.024 9.879 8.848 8.379 95.5 95.3 97.1

100 3.038 3.022 3.023 2.192 1.807 1.797 96.4 93.7 95.8

μD = 5 0.80 20 2.689 2.706 2.682 2.689 9.727 9.684 9.550 93.6 94.1 95.8

sD = 10.28 100 2.698 2.688 2.689 2.103 1.994 1.988 95.8 93.8 95.1

0.85 20 2.803 2.823 2.795 2.802 9.810 9.444 9.313 94.0 94.2 95.7

100 2.814 2.802 2.803 2.147 1.947 1.942 95.9 94.0 94.5

0.90 20 2.934 2.956 2.925 2.932 9.907 9.175 9.037 94.0 94.4 95.2

100 2.947 2.933 2.934 2.204 1.890 1.886 96.0 93.8 94.0

0.95 20 3.105 3.131 3.095 3.102 10.112 8.826 8.684 94.1 94.1 94.7

100 3.123 3.104 3.105 2.335 1.812 1.808 96.5 94.1 93.6

Simulation results. log(�p) refers to the actual log-transformed Total Deviation Index (TDI) simulated, whereas Mean and MSE correspond to the mean value and
mean squared error of the log-transformed TDI estimates from each of the scenarios considered, based on Lin, Choudhary and our Probability Interval (PI)
approaches respectively. EC refers to the empirical confidence based on the 95% confidence level based on Lin, Choudhary (Ch.) and our Tolerance Interval (TI)
upper bounds of the log-transformed TDI estimates respectively.
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between devices, a systematic, slight overestimation is
found in TDI point estimates.
ECs, for each scenario combination, evaluating the

95% nominal coverage of the TI approach, are shown
in Table 3. The results show that the TI approximation
produces accurate coverage rates which are reasonably
close to the nominal coverage. It should be highlighted
that combinations with higher EC are those based on a
mean difference between devices of 0. This is a result
of the systematic overestimation of the TDI. At the
other extreme, simulations based on mean differences
of 5 and small standard deviation for paired differences
show a EC lower than the desired 95% nominal cover-
age, although this is only observed in cases with
small sample sizes. However, the coverage rates do
increase towards the nominal coverage with larger
sample sizes.

Simulation results of the current approaches are also
shown in Table 3. Choudhary’s proposal seems to pro-
duce the most stable results in terms of EC in all the
scenarios simulated, however the range of the estimated
TDI upper bounds are very similar to our TI approach
(Figure 2), the difference is only seen in scenarios simu-
lated with a mean difference of 0, even though the box-
plots in these situations are shifted up in the worst case
by no more than 0.5 units. Lin’s approach results in
intermediate values between Choudhary’s results and
our TI proposal results for these specific scenarios.
However Lin’s upper bounds of the TDI estimates seem
to increase in line with larger mean difference, stated
proportions and sample size (Figure 2). This issue is in
accordance with the results found in [12] where the
authors also recognized that their approximate TDI can
be conservative when the relative bias square value is

Figure 2 Simulation results: upper bounds of the TDI estimates. Boxplots of the upper bounds of the TDI estimates (UB(TDI)) based on
Choudhary (Ch), Lin (L) and our Tolerance Interval (TI) approaches for each of the scenarios considered. Horizontal lines refer to the actual TDI
simulated based on the four different proportion sets (80%, 85%, 90% and 95%).
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unreasonably large and when the coverage probability is
large (>0.9).

Discussion
With the aim of assessing agreement between two
devices of continuous measurements via the total devia-
tion index (TDI), the present study evaluated the perfor-
mance of a simplified technical approximation of the
TDI based on probability intervals and a tolerance inter-
val (TI) approach for inference about the resulting TDI
estimate.
The parameters involved in the TDI are obtained from

a linear mixed effects model estimated via REML. The
linear mixed model has the advantage of its flexibility
that allows adapting the model to the data features as
replicates.
Several methods have been implemented for making

inferences about the TDI estimate [10,12-15,26]. How-
ever, since all these methods are based on the square
transformation of the paired-measures difference vari-
able, which makes exact inference about the resulting
estimate difficult, inference is carried out using analyti-
cal approaches or methods based on Monte Carlo
simulations.
Bland and Altman [27,28] also defined an unscaled

agreement index known as limits of agreement, which is
similar to the TDI. The authors derive the limits as
boundaries, such that a majority percent of the paired-
measurement differences fall within the boundaries
using a probability interval, and thereafter they derive a
TI for inference about the limits. However, since the
intervals are constructed to be symmetrical about the
mean difference, and not symmetrical about 0, the TDI
could be constructed by taking the maximum of
the absolute value among lower and upper limits:
max(|Llow|, |Lupp|). Conversely, the initial percent that is
assumed to fall within the boundaries would result in a
larger proportion thereafter. The proposal introduced
here corrects this fact and, as a result, the “effective
length” of the interval is shortened.
We have also shown in the present study how the

proposed method can be used to compute bounds for
the coverage probability (CP). As the computation of CP
is related to the computation of the TDI, the perfor-
mance of the CP bound behaves very similarly to the
TDI bound (results from a simulation analysis are
shown in additional file 2).
Although our proposal has been shown to provide

accurate empirical confidences it does tend to overesti-
mate the nominal confidence level slightly, especially
for small differences between devices. In terms of
hypothesis testing this means that the type I error will

be smaller than the desired nominal rate in this particu-
lar scenario. In agreement assays were the aim lies in
evaluating if one currently used device can be replaced
by another one, as in our case example, this might be a
benefit since it means that replacing a good device by a
bad device is very unlikely. This issue was already
detected by Westlake [29], who proposed a modification
of the conventional confidence interval method to
obtain symmetrical confidence intervals around 0 for
bioequivalence trials. The limits of the confidence inter-
vals were constructed in the same manner as proposed
here to obtain the probability intervals to estimate the
TDI. Westlake demonstrated that the confidence level
constructed in this way is 100% for a mean difference of
0 and larger sample size, decreasing monotonically to
the desired nominal confidence as the difference tends
to infinity. A limitation of our proposal is seen when the
mean difference between devices is large compared to
the standard deviation and the sample size is small, in
these situations the type I error will be slightly larger
than the desired nominal rate.

Conclusions
Finally, we would like to highlight that the method pro-
posed here is straightforward since the TDI estimate is
derived directly from a probability interval of a normally-
distributed variable in its original scale, without further
transformations. Thereafter, a natural way of making
inferences about this estimate is to derive the appropriate
TI. The expression of our TI proposal corresponds to the
exact one-sided TI defined by Hahn in 1970 [17] for at
least a pre-specified proportion of a normally distributed
population, with the particularity that the specified pro-
portion is found using a search algorithm to ensure the
confidence bounds be symmetrical about 0. This proce-
dure has been shown to provide accurate coverage rates,
even though it is slightly more conservative than Lin’s
and Choudhary’s approaches in the case of no systematic
bias, which both show results closer to the nominal con-
fidence level. However the TI results in these situations
are reasonably close to those given by these other estab-
lished methods. At the other extreme, when there is a
large bias compared to the standard deviation and the
sample size is small, the empirical confidence is slightly
smaller than the stated nominal confidence, but again the
TI results are very close to those given by Choudhary’s
proposal which appears to be the most stable approach
in terms of empirical coverage in this situation. The
advantage of our proposal is that constructions of TI are
implemented in most standard statistical packages, thus
making it simpler for any practitioner to implement it to
assess agreement.

Escaramís et al. BMC Medical Research Methodology 2010, 10:31
http://www.biomedcentral.com/1471-2288/10/31

Page 11 of 12



Additional file 1: Software codes. Description of a SAS macro and an R
function developed to compute the TDI estimate and upper confidence
bound.

Additional file 2: 2CP simulation results. Simulation results about the
performance of the coverage probability (CP) index.
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