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We propose a criterion for the validity of semiclassical gra{8ZG which is based on the stability of the
solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point
guantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctua-
tions. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of
stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the
metric perturbations which agree, to leading order in the latdjeit, with the quantum correlation functions
of the theory of gravity interacting withl matter fields. The homogeneous solutions of the Einstein-Langevin
equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution
of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations,
which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from
the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only
be obtained from the Einstein-Langevin equatite inhomogeneous tejnThese equations exhibit runaway
solutions with exponential instabilities. A detailed discussion about different methods to deal with these insta-
bilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based
on SCG is a valid approximation in that case.
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[. INTRODUCTION inflaton field in inflationary cosmological models. Those
fluctuations play a crucial role in the generation of the pri-

In this paper we discuss the conditions underlying themordial inhomogeneities which gave rise to the large scale
validity of semiclassical gravitySCG), emphasizing the role structure of the present universe as well as the observed
of metric fluctuations induced by quantum matter sourcesanisotropies of the cosmic microwave background of radia-
SCG is based on self-consistent solutions of the semiclassiion.
cal Einstein equation for a classical spacetime driven by the This paper focuses on the effects of the quantum fluctua-
expectation value of the stress tensor operator of quantutions of the metric. We will restrict our treatment to small
matter fields. We propose a criterion based on stochastimetric perturbations around a given background geometry.
semiclassical gravity1,2] and compare it with a recently (Of course, a full treatment of those fluctuations would re-
proposed criterion by Andersoet al. [3] based on linear quire a complete theory of quantum gravitie will linear-
response theory. To do this we need to reexamine all relevaite and quantize those metric perturbations including their
factors old and new contributing to this issue, such as thénteraction with the quantum matter fields. This can be de-
reduction of higher derivative equations, intrinsic and in-scribed more precisely in terms df identical matter fields.
duced fluctuations, and the relation between stochastic ar@ur approach corresponds then to computing the quantum
guantum correlations. It also necessitates some clarificatioporrelation functions for the metric perturbations to leading
of the relation between our approach based on stochastimrder in a 1N expansion.
dynamics and the linear response approach and differences In fact, one can show that the leading order contribution
with the approach pursued by Ford and co-workdrs11]  to the quantum correlation functions in a lafyeexpansion
based on the normal-ordering and integration-by-parts procds equivalent to the stochastic correlation functions obtained
dures on the stress-energy bitensor. The connection clarifigd the context of stochastic semiclassical gravity. Whereas
and the bridges built in this process are beneficial to furthe6CG is based on the semiclassical Einstein equation with
development of “bottom-up” approaches to quantum gravitysources given by the expectation value of the stress tensor
starting from SCE12-15. operator of the quantum matter fields, stochastic semiclassi-

a. Metric fluctuations SCG accounts for the averaged cal gravity is based on the Einstein-Langevin equation,
back reaction of quantum matter fields and can be regardeahich has in addition sources due to the noise kernel. The
as a mean field approximation that describes the dynamics ofoise kernel is the symmetrized connected part of the two-
the mean spacetime geometry. However, it does not accoupbint quantum correlation function of the stress tensor opera-
for the effects of the fluctuations of spacetime geometrytor with respect to the state of the matter fields and describes
which can also be very important. Consider, for instance, théheir stress-energy fluctuations.
metric fluctuations induced by the vacuum fluctuations of the Making use of the equivalence between quantum and sto-
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chastic correlation functions in stochastic semiclassical gravaot only the intrinsic fluctuations, but also the induced ones.
ity, one is naturally led to separate the symmetrized quanturin fact, the induced fluctuations play a crucial role when
correlation function for the metric perturbatioft® leading considering the stability of simple open quantum systems for
order in 1N) into two separate contributionstrinsic and  several reasons. First, those systems usually exhibit a char-
inducedfluctuations. The former are connected to the disperacteristic relaxation time so that for much larger times the
sion of the initial state of the metric perturbations, whereasontribution from the intrinsic fluctuations becomes negli-
the latter are proportional to the noise kernel and are inducedible. Second, after that transient period the stability around
by the quantum fluctuations of the matter field stress tensoan equilibrium configuration is the result of a balance be-
operator. tween the energy dissipated by the system and the fluctua-

b. Validity of semiclassical gravityDifferent aspects con- tions induced by the environment, which is encoded in the
cerning the validity of the description provided by SCG in so-called fluctuation-dissipation relation connecting the dis-
the case of free quantum matter fields in the Minkowskisipation and the noise kernels.
vacuum state propagating on Minkowski spacetime have It is true that the effect of intrinsic fluctuations can be
been studied by a number of authors. Most of them considdeduced from an analysis of the solutions of the perturbed
ered the stability of such a solution of SCG with respect tosemiclassical Einstein equation, but in general one cannot
small perturbations of the metric. Horowitz was the first oneretrieve the effect of the induced fluctuations from it. This
to analyze the equations describing those perturbationgffect can be properly accounted for in the stochastic semi-
which involved higher order derivativéap to fourth order,  classical gravity framework. Both intrinsic and induced fluc-
and found unstable solutions that grow exponentially withtuations are innate in the Einstein-Langevin equation.
characteristic time scales comparable to the Planck time d. Ford's program Ford[4] was among the first to have
[16,17. This was later reanalyzed by Jordan with similar noted the importance of quantum fluctuations in these issues.
conclusiong18]. However, those unstable solutions were re-An earlier criterion put forth by Kuo and Fold] used the
garded as an unphysical artifact by Simon, who argued thatariance of the fluctuations of the stress tensor operator com-
they lie beyond the expected domain of validity of the theorypared to the mean value as a measure of the validity of SCG.
and emphasized that only those solutions which resulteds pointed out by Hu and Phillig7,28 (see reply by Ford
from truncating perturbative expansions in terms of theand Wu[7]) such a criterion should be refined by considering
square of the Planck length are acceptdhi®,20. Further the back reaction of those fluctuations on the metric. Ford
discussion was provided by Flanagan and W&, who  and collaborators also considered both intringiactive” )
advocated the use of an order reduction prescription first inf9—11] and induced“passive”) [4—8] fluctuations, but they
troduced by Parker and Simd22] but insisted that even did not treat them in a unified way and did not discuss their
nonperturbative solutions of the resulting second order equagrecise relation to the quantum correlation function for the
tion should be regarded as acceptable. Following these apaetric perturbations. Furthermore, they did not include the
proaches Minkowski spacetime is shown to be a stable solfull averaged back reaction of the matter fields self-
tion of SCG with respect to small metric perturbations. consistently, and the contributions from vacuum fluctuations

Anderson, Molina-Pasi and Mottola have recently taken in Minkowski space were discarded. As these issues have
up the issue of the validity of SCE3] again. Their starting been discussed before by both groups of Ford and Hu, we
point is the fact that the semiclassical Einstein equation willwill only make a few remarks at the end of this paper.
fail to provide a valid description of the dynamics of the  Here, our attention will be focused on comparing the cri-
mean spacetime geometry whenever the higher order radigeria based on the linear response approach proposed by
tive corrections to the effective action, involving loops of Andersonet al. and our stochastic gravity approach. Since
gravitons or internal graviton propagators, become importanthe differences in the two ways to address the issue of the
(see Refs[23-2§ for some attempts to include those ef- validity of SCG are rooted in the difference between linear
fects. Next, they argue qualitatively that such higher orderresponse theory and stochastic dynamics as applied to SCG,
radiative corrections cannot be neglected if the metric flucwe hope that this work can also serve the purpose of offering
tuations grow without bound. Finally, they propose a crite-a comparison between these two important approaches ex-
rion (a necessary conditiono characterize the growth of the ploring the validity of the mean field approximation. In the
metric fluctuations, and hence the validity of SCG, based omrxamples provided, we will specialize the matter fields to the
the stability of the solutions of the linearized semiclassicalcase of free scalar fields, but generalization to vectorial or
equation. fermionic fields should not pose major difficulty.

c. Our criterion In this paper we address the issue of the e. Terminology and organizatioWo avoid unnecessary
stability of semiclassical solutions with respect to smallambiguities or confusion in interpretation, it is useful to
quantum corrections. When the metric perturbations arelarify the use of some terminology here.
guantized, the semiclassical equation can be interpreted as First, a comment on the difference between dtmchastic
the equation governing the evolution of the expectation valugravity programin general and its present implementation
of the operator for the metric perturbations. We introduce astatus in particular. Stochastic semiclassical gravity can be
stability criterion based on whether the metric fluctuationsunderstood as the Gaussian approximation to stochastic grav-
grow without bound or not by considering the behavior ofity. Although technically the actual implementations of sto-
the quantum correlation functions of the metric perturba-chastic gravity so fafto which our present discussion ap-
tions. Furthermore, we emphasize that one should considgilies) have been restricted to linear metric perturbations
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around the background geometry and a Gaussian stochastion that includes the metric fluctuations, which is then
source, the theoretical construct of the stochastic gravity proapplied to the specific case of a Minkowski background. We
gram has a much broader meaning beyond these limitationsonclude by summarizing and discussing the main results in
It refers to the range of theories based on second and high&ec. V. - _ _ _

order correlation functions. Noise can be defined in fully A number of additional details and technical points are
nonlinear theories(e.g. correlation noise[29] in the leftfor the Appendixes. In Appendix A we illustrate the basic
Schwinger-Dyson equation hierarohp some degrekbut ~ @SPECts of intrinsic and induced fluctuations using a simple
one should not expect the simple Langevin form with Gaussdu@ntum Brownian motion model. In Appendix B we pro-
ian and additive noise to prevail. Thus, stochastic gravity in/ide the expressions for the dissipation and noise kernels in a
this broad sense entails the whole hierarchy of correlatioMlinkowski spacetime and the vacuum state. Some of the
functions, which would imply going beyond ordeiNLin the ~ Mamn steps to show the equivalence between stochastic and
generating functional. It could in principle provide the meansCorrelation functions using a larde expansion are summa-
[similar to the Bogoliubov-Born-Green-Kirkwood-Yvon rized in Appendix C. The physical interpretation of the sin-

(BBGKY) hierarchy in kinetic theorl/to access the full gular coincidence. limit for t_he npise kerngl and_possiple

theory of quantum gravity14,15. It is in this sense that we Ways to deal with it are explained in Appendix D. Finally, in

say stochastic gravity is the intermediate theory betweeAPPendix E we discuss the existence of runaway solutions in

SCG (a mean field theory based on the expectation value opCG and.stochastlc semiclassical gravity as well as methods

the energy momentum tensor of quantum figldsd quan- 0 deal with them. ,

tum gravity (understood as the full hierarchy of correlation ~ 1hroughout the paper we use natural units witac=1

functions retaining complete quantum coherénce and the +,+,+) convention of Ref[30]. We also make
Second, the precise meaning in our use of the teyers ~ US€ of the abstrgct .|ndex notation of RES:L]. _Latm indices

turbations and fluctuations By perturbations of the metric denote abstract indices, whereas Greek indices are employed

we mean deviations of the perturbed metric from a backWhen a particular coordinate system is considered.

ground metric. Perturbations are purely classical and deter-

ministic in general relativity and SCG. In stochastic gravity, Il. SEMICLASSICAL GRAVITY AND LINEAR RESPONSE

they are classical but stochastigith a vanishing statistical THEORY

expectation valueso that the background configuration can ) i . .

be regarded as the expectation value of a stochastic natric A POssible first step when addressing the interplay be-

complete gauge fixing is required to meaningfully talk abou™Ween gravity and quantum field theory is to consider the

the expectation value of a metridn linear quantum gravity, evolution of q_uantum matter f|elc{matt.er fleld is referred to

perturbations are quantum operators. For a state with a vah€re as any field other than the gravitational Jooe a clas-

ishing expectation value, the background metric can then bical Spacetime with a nontrivial geometry, characterized by

regarded as the expectation value of the metric operatdt MeWICTap. AS Opposed to the situation for a Minkowski

(again a complete gauge fixing is requirdicdnes the identity spac_etime, there i_s in gengral no preferred vacuum state for
operator. On the other hand, the teffactuationsis em- the fields and particle creation effects naturally arise, such as

ployed only to refer to the statistical fluctuations of the met-Hawking radiation for black holes, cosmological particle cre-
ric perturbations when they correspond to a stochastic predtion and the generation of primordial inhomogeneities in
cess or to the quantum fluctuations of the metricinflationary cosmological modelQuantum field theory in
perturbations when they are treated as a quantum operatoiCUrved spacetimeQFTCST is by now a well-established
Third, by leading orderin the largeN limit we mean the subject(at least for free fields and globally hyperbolic space-
lowest order in IN with a nonvanishing contribution. Hence, times [32,33. o ,
as we will see, the leading order for the source of the semi- QFTCST is only an approximation in that the matter fields
classical Einstein equation, which is proportional to the ex-are reated as test field evolving on a given spacetime. Ein-
pectation value of the stress tensor operator,N& 1whereas stein’s theory requires the spacetime dynamics to determine

the leading order for the quantum two-point correlation func-2nd be determined by the matter fields. Thus one needs to
tions is 1N. consider the back reaction of the quantum matter fields on

The paper is organized as follows. In Sec. Il we brieflythe dynamics of the spacetime geometry, which naturally

review the fundamental aspects of SCG and how one calf2ds to thesemiclassical theory of gravityvhere the evo-
study linearized perturbations around a background solutiofttion of the spacetime metrig,;, is determined by the semi-
of SCG. This is generalized to incorporate the metric fluc-classical Einstein equation
tuations in Sec. lll, where the key elements of stochastic .
semiclassical gravity are introduced and the equivalence be- Gap[ 9]+ AGap— @Aap[ 91— BBap[91= (T ap[ 1) en»
tween stochastic and quantum correlation functions is ex- (1)
plained. In Sec. IV we propose a generalized stability crite-
where g, is the spacetime metricG,,[g] is the Einstein
tensor and the matter source corresponds to the renormalized
Yn general, it might be necessary to extend the concept of stoeXpectation value of the stress tensor operator of the matter
chastic process to that of processes with a real and normalizeields (a prime was used to distinguish it from that intro-
distribution functional but not necessarily positive definite. duced below after absorbing some teymidere, A is the
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renormalized cosmological constant are-87G, with G correspond to the dynamical equation for the evolution of the
El/mf) being the Newton constant amd, the Planck mass; expectation value of the metric in the limit of large® Of

«a and B are renormalized dimensionless coupling constantsourse, in realityN is finite and the semiclassical Einstein
associated with tensoss, [ 9],B,,[ 9] Nneeded for the renor- equation can only be understood as the lowest order contri-
malization of the logarithmic divergenc@ghe expectation bution in a 1N expansion.

value of the stress tensor operator exhibits divergences which Functional methods based on path integrals are useful not
are local and state independent. Introducing a covariant regnly in the rendition of ideas but also in actual computations.
larization and renormalization procedure, those divergenceldowever, the usuah-out formalism suitable for computing
can be absorbed into the cosmological constant, the Newtotfansition matrix elements in scattering problems is not ap-
constant multiplying the Einstein-Hilbert term and the gravi- propriate to deal with back-reaction problems in which one is
tational action counterterms quadratic in the curvature. Thénterested in the causal evolution of true expectation values
finite contributions from those counterterms give rise to thefrom their initial values. The closed-time-pa@TP) formal-
covariantly conserved tensohs, andB,;, which result from  ism, which naturally yields true expectation values and
functionally differentiating with respect to the metric the causal evolution equations for their dynamif35—39,
terms [ d*x\/— gC2P°‘C,, .4 and [ d*x\/— gR? respectively, should be used instead. This formalism has been applied to
where C,pcq IS the Weyl tensor and is the Ricci scalar. study a number of situations involving gravitational back-
Those contributions were explicitly written on the left-hand reaction effects of quantum fieldg40—-44. (See also Ref.
side of Eq.(1), but from now on will be included in the [45] for an interesting application to an analogous situation
renormalized expectation value of the stress tensor operatanr QED, where the back reaction of charged quantum fields

so that the semiclassical Einstein equation becomes on the dynamics of the expectation value of the electromag-
netic field was consideredThis includes minisuperspace
Gagl= K('Arab[g]%en- ) models which restrict the possible geometries to Robertson-

Walker metrics and consider perturbative deviations from the

. - massless conformal case for the matter figdig—44], as
The field operators appearing in the stress tensor operator fg

. . ; ! ell as small metric perturbatior{sf a less restricted forin
the quantum matter fields are in the Heisenberg picture an

. i . . . 2around self-consistent solutions of SC@,41].
satisfy the corresponding equation of motion, which coin- More specifically, given a background metgg, which is
cides with the classical field equation for fields evolving on

a solution of the semiclassical Einstein equation in SCG, one

t_hat spacgtime. In parFicuIar, if_we consiQer a frge Sc.alaEan compute the CTP effective action on the perturbed met-
field, the field operator in the Heisenberg picture will satisfy . ~

the corresponding Klein-Gordon equation for that geometryriC Yab=Jap* hab.Up to quadra.tic order [n the metric pertur-
Given a manifoldM and a metrig,, which characterize bations h,,. Taking the functional derivative of the CTP

. . . ~ ffecti ti ith t th,p, ts th turbed
a globally hyperbolic spacetime, and a density maijsix CTIeCHVe acton WIth respect Map, ONe gets the perturbe

. o . version of Eq.(2) to linear order in the metric perturbations:
which specifies the state of the quantum matter fields on a a(2) P

particular Cauchy hypersurface, the triple‘t/l(gab,f)) con-

stitutes a solution of SCG if it is a self-consistent solution of

both the semiclassical Einstein equati(®) and the equa- GMIg+h]=k(TH[g+h])ren: (3)
tions of motion for the quantum operators of the matter fields

evolving on the spacetime manifold1 with metric g,y,-

Those operators enter in turn into the definition of the stres§ ere the superindefl) was used to denote that only terms

tgnsor operator appearing in the semiclassical Einstein €dUetrear in h,, should be considered. The linearized Einstein

tion. . . o . .. tensorG{J[g+h] comes from the Einstein-Hilbert term in
The semiclassical Einstein equation has been justified i e gravitational action. On the other hand, the contribution

at least two different ways. One possibility is to argue, byto the CTP effective action which results from functionally

assuming a number of reasonable axioms, th"’?t itis th? Onl?ﬁtegrating the matter fields and involves the expectation
consistent way to extend the classical Einstein equation 0alue

couple the quantum matter fields to a classical metric
[21,33. Alternatively, it can be derived by considerihgree
matter fields weakly coupled to the gravitational field in the ;

- . - One could be concerned that such a derivation was purely formal
sense that the gravitational coupling constant imes the numd_ue to the impossibility of having a well-defined expectation value
ber of fieldsNG remains constant in the lim\l—c [34].

. - . . . for the metric(at least without a complete gauge fixjnthe diffi-
The semiclassical Einstein equation can then be shown t8.1Ities in defining a measure for the path integral free of problems
related to the gauge freedom under diffeomorphisms, and the issues
_ ) _ ) related to the nonrenormalizable character of perturbative gravity.
®The renormalized coupling constants are running coupling connevertheless, in the limiN— = the contribution from the graviton

stants which depend on some renormalization sgaleHowever,  |oops vanishes so that the last two problems become irrelevant,

since(?ab[g]>r’en has the same dependenceonthe semiclassical whereas the fluctuations of the metric around a given background

Einstein equation is invariant under the renormalization groupare completely suppressed and, hence, the first problem also disap-

which involves changes in the renormalization sqale pears.
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and two-point correlation functions of the stress tensor oparbitrary mass. For our discussion we have included them in
erator on the background geometry yields the following re-Appendix B, where a global inertial coordinate systextt}
sult for the linearized expectation value of the stress tensdior the Minkowski background is used. According to Eq.
operator: (B6), (TMa g+ h1),, can be written entirely in terms of
< (1)ab o b b the linearized Einstein tensa®(3°, Taking that into ac-
(THH¥g+hix))==2(H-h)*®(x)=2(M-h)**(x), (4 count, the expression for the linearized semiclassical Ein-

where we have introduced the notationA:-B stein equatior(3) in Fourier space becomes

= [d*y/—g(y)A*(y)B,,(y), and the kernelsl andM are

given by FLu(p)GMA(p)=0, )
1 o~ A o~
HEPedxy) = — ZIm(T* T* ¢, 0:) T*T 0,9;y)) where
| rabr s o Fed s FE2(p)=F 1(p) 81,8+ Fo(P)P2P " 705, 8
+g([Tab[QD,g,X),TCd[(P,g,)’)]>, (5) aﬁ(p) 1(p) (a¥pB) 2(p)p n B ( )
S b~ with
1 1 ST , X
Made(X,y): _ E (< 5[QD (ga)b )>) , ~ B
V=9(x) Yealy © Fi(p)=1+2kp?[AA(p)—2a], (9)
where the notatiolT* was employed to indicate that the 2k - _
spacetime partial derivatives appearing in the time-ordered Fa(p)=— 5-[Ha(p) +3Hg(p) —2a—6]. (10

operators also act on the theta function implementing the

time ordering. The functional derivative appearing on the . o

right-hand side of Eq(6) should be understood to account wherea and 3 are some constants which include the renor-
only for the explicit dependence on the metric: the implicit malized parameters: and 8 in Eq. (1), and the kernels

dependence through the field opera&rﬁg] is excluded" ﬁA(p) andHB(p) are defined in EqgB3) and (B4) of Ap-
The previous result for the expectation value of the strespendix B. The solutions of E¢7) were analyzed in Refs.

tensor when small metric perturbations around a backgrounf 6] and[21] for the massless case and Ré&f for the gen-

solution of SCG are considered has been obtained in tW@5| case. There is an obvious solution 6t)(p)=0,

ways:(1) by applying the usual techniques of linear response hich corresponds to linear gravitational waves propagating
theory (see, for instancd46]) to SCG[3,47,48 and(2) by i Mminkowski spacetime. In addition, there are solutions of

applying the influence functional formalis9,50 to linear- = (1) 2 2 . 2 .
ized metric perturbations regarded as an open quantum sygrle form GMV.OC o(p”~ Po) g:)r pag"cu'f"" va:]ues OEQb(pO;'_
tem interacting with an environment constituted by the quan:['ve or neggtlvaz comparable tanj, . Since they exhibit char-

tum matter field$51,52. The influence functional approach acteristic time scales or length scales comparable to the
also provides the noise kernel which underscores the stochaglanck scale, where semiclassical gravity is not expected to

tic nature of the dynamics for the metric perturbations. WeP€ reliable anymore, they are usually regarded as unphysical.
will employ this method in the next section. A more detailed discussion of this kind of solutions is given

The explicit expression for the linearized expectationi S€C. [V and Appendix E.

A . . . . In fact, as will be explained in Sec. 1V, if one quantizes
(1)aby . ’ ’
value(T g+ h,x)_) in the particular case of a M'nkO\.NSk' the linearized metric perturbations, K@) coincides with the
background spacetime and a free scalar field in th

Minkowski vacuum state was obtained in Réf5] and[21] quation goyerning the evolution of the expectation value of
for a massless field and in Ref&,53,54 for a field with an the operatoth,, for the metric perturbations. Therefore, an
analysis of the stability of the solutions of linearized semi-

classical Einstein equatiof¥) can be equivalently under-

“The kernelsH and M both exhibit divergences, but they can be stood in terms of the evolution for the expectation value of

removed by the standard procedure for renormalizing the expectdian- IN Sec. IV we will argue that a stability analysis for
tion value of the stress tensor in an arbitrary spacefiafter all ~ solutions of SCG with respect to small quantum corrections

they are related to the terms {T2%g+h;x)) that are linear in based solely on the expectation value of the metric perturba-
h,p), Which involves renormalizing the cosmological constant andtions is incomplete and should be extended to take into ac-
the Newton constant in the bare gravitational action as well as incount the metric fluctuations as well. Stochastic semiclassi-
cluding counterterms quadratic in the curvature. More precisely, bygal gravity is particularly well suited to study the fluctuations
evaluating all the counterterms in the bare gravitational action orof the metric and will play an important role in our later
the perturbed metric and keeping the terms quadratic in the metridiscussions. Therefore, in the next section we briefly review
perturbations, which give rise to linear terms (i’ g;x)), the  the formalism based on the Einstein-Langevin equation for
divergences in the CTP effective action arising from the kerkels small metric perturbations around semiclassical solutions
andM are exactly canceled. within the framework of stochastic semiclassical gravity.
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[l. EINSTEIN-LANGEVIN EQUATION FOR METRIC sources. Conservation of the expectation value of the stress
PERTURBATIONS AROUND A GIVEN BACKGROUND tensor operator follows immediately from the fact that the
divergence(with respect to the covariant derivatjvef the

The semiclassical Einstein equation, which takes into aCiress tensor operator vanishes when the equation of motion

count only the mean values, is inadequate whenever the flu%-f the matter field operators is satisfiéd.g. the Klein-

tuations of the stress tensor operator are important. An 'M&ordon equation for a scalar figldOn the other hand, the
proved treatment is provided by the Einstein-Langevin a - c - X
. : . . . . fact that(Va&,(x)) =0 and(&,5(x) V°&cq(X)) =0, which
equation ofstochastic gravitywhich contains dGaussian completely characterize the Gaussian stochastic field
stochastic source with a vanishing expectation value and g, P y : )
&ap(X), guarantees the conservation of the stochastic

correlation function characterized by the symmetrized two- . )
source(unless otherwise stated, from now on all the covari-

point function of the stress tensor operator. This theory ha3 - . : o
been discussed by a number of autdarg,42—44,51,55,56 ant derivatives are taken in the background metric and indi-
Consider a globally hyperbolic background spacetime and aﬁe)s a_rreh raised ?‘”d Ioglvered us'?tg also the backgrtqunld met-
initial state for the quantum matter fieldene usually re- fic). € prev;otl;]s Wo he_qua| 1es tatr_e, reTpec vatehy, ?
stricts to free fields which is a self-consistent solution of consgquence ot the vanishing expectation va.ue o the sto-
SCG: i.e., it satisfies the semiclassical Einstein equation witlghastic source and the fact th&ft,,(x)=0. Finally, the

the expectation value of the stress tensor operator obtainddnStein-Langevin equation is invariant under gauge trans-
by considering the evolution of the matter fields on the samdormations corresponding to infinitesimal diffeomorphisms
background geometry. The Einstein-Langevin equation goveharacterized by an arbitrary vector figl(k), which gener-
erning the dynamics of the linearized perturbatiamg,  ates transformations for the metric of the fotm,—h,,

around the background metrnig,, is given by + Vol + W, This fact can be seen by realizing that the
A stochastic source does not depend on the metric perturba-
GHIg+h]=k(T[g+h])rent k€arl 9], (11)  tions, whereas the terms depending on the metric perturba-

_ _ _ tions are all together gauge invariant. This is because they
where the Gaussian stochastic souégg{ g] is completely  correspond to perturbing the semiclassical Einstein equation
characterized by its correlation function in terms of the noise&or the background metrig,;,, which is automatically satis-
kernelNped(X,Y), Which accounts for the fluctuations of the fied since the background configuration under consideration

stress tensor operator, as follows: for the metric and the state of the matter fields is a solution
of SCG.
(€apl 90 €cd 9:Y)) = Naped X,¥) The Einstein-Langevin equation had been previously de-

1 . R rived making use of a formal analogy with open quantum

E§<{tab[g;x),tcd[g;y)}), (12 systems and employing the influence functional formalism
[49,50. This form was also justified in Ref57] by arguing

that it is the only consistent generalization of the semiclassi-

Wheretﬁ}bETab_<Tab> and(---) is the usual expectation .o Finstein equation which takes into account the lowest
value with respect to the quantum state of the matter fields

h denotes taking th th £t IIorder effects due to the fluctuations of the stress tensor op-
whereag- - -), denotes taking the average with respect to a erator. In fact, making use of a lardé expansion, one can

possible realizations Of. the stochastic soufg'g.' Note tha_t .._show that the stochastic correlation functions for the metric
any local term quadratic in the curvature arising from finite erturbations obtained from the Einstein-Langevin equation
contributions (_)f the counterterms required to renormalize th oincide with the leading order contribution to the quantum
bare expectation value of the stress terAlsor operator has be(‘?grrelation functions in the larg limit. The details of the
absorbed into its renormalized versigiy[g+h])en. It derivation will be given in Ref[58] and are summarized in
should also be emphasized that solutions of the EinSteinAppendix C for the particu|ar case of a Minkowski back-
Langevin equation for the metric perturbations are classicayround, to which we will restrict in the present discussion. In
stochastictensorial fields, not quantum operators. particular, the two-point stochastic correlation function is
The precise meaning that should be given to these staquivalent to the symmetrized quantum correlation function
chastic metric perturbations and the relation of the correto |eading order in ™M provided that one also averages over
sponding stochastic correlation functions to the quantumhe initial conditions for the solutions of the Einstein-
fluctuations resulting from quantizing these metric perturba{ angevin equation distributed according to the Wigner func-
tions will be discussed below. Before doing so, it is, how-tional characterizing the initial state of the metric perturba-
ever, useful to mention some of the basic properties of thgions [see Eq.(C11) in Appendix C for the definition of the
Einstein-Langevin equatiofa more detailed discussion can wigner functional. It is, therefore, convenient to express the
be found in Refs[1,2,51). First, when taking the average of solutions of the Einstein-Langevin equation as
the Einstein-Langevin equatiofll) with respect to all the
possible realizations of the stochastic source, we recover the < (0 —
semiclassical Einstein equatidB), as follows straightfor- hap(X) =25 (X) + k(Grer ) abl(X), (13
wardly from the vanishing expectation value of the stochas- _
tic source. Second, the integrability of the Einstein-Langevirwherex =N« is the rescaled gravitational coupling constant
equation is guaranteed, in the same way as in the semiclasitroduced in Appendix ng%)(x) is a solution of the ho-
sical Einstein equation, by conservation of the mattemmogeneous part of the Einstein-Langevin equatitl) con-
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taining all the information about the initial conditiofiby ~ coupled scalar fields and found exponential instabilities for
homogeneous part we mean Etjl) excluding the stochastic the linearized metric perturbations with characteristic time
source, which coincides with the semiclassical Einsteinscales comparable to the Planck time. Those solutions are
equation(2)], andG(x,x") is the retarded propagator with closely related to the higher derivative countertems required
vanishing initial conditions associated with that equat®®e  to renormalize the expectation value of the stress tensor op-
Appendix E 3 for important remarks on the propagatbls-  erator (see, however, Appendix E for further comments on
ing Eq. (12), we can then get the following result for the this poiny and are analogous to the runaway solutions com-

symmetrized two-point quantum correlation function: monly present in radiation reaction processes such as those
1 considered in classical electrodynamj€®,61. It is gener-
§<{ﬁab(x),ﬁcd(x’)}>=<2§%)(X)2£%)(X')>2(‘g,Hc.d aI_Iy believed that the runaway s_olutions qbtained by Horo-
b’ () witz are an unphysical artifact since they involve scales be-
— yond the regime where SCG is expected to be relidinle
X T ! fact, this statement can be naturally formulated when regard-
+W(Gret'N'(Gret) )abcd(xvx )s . ! o y . g
ing general relativity as a low energy effective theory
(14 Since the existence of terms with higher derivatives in

L time implies an increase in the number of degrees of freedom
where the Lorentz gauge conditiof®(h,,—1/27,,hg)=0  (in an initial value formulation, not only the metric and its
as well as some initial condition to fix completely the re-time derivative should be specified, but also its second and
maining gauge freedom of the initial state should be implic-third order time derivatives it seems plausible that, by re-
itly understood, and the stochastic source was rescaled astricting to an appropriate subspace of solutions of the semi-
cording to Appendix C so that(£,p[9;X)écd0;Y))¢  classical Einstein equation, one can reestablish the usual
=(IN)NapcdX,Y), where NapedX,y) is the noise kernel number of degrees of freedom in general relativity and, at the
for a single field. same time, get rid of all the unphysical runaway solutions.

This result is analogous to that obtained in R&0] for  Following this line of thought Simon proposed that one
linear QBM models and briefly summarized in Appendix A. should restrict to solutions which result from truncating to
It sho'uld be emphasged that, similar to t'hat case, there argqerz an analytic expansion i (or equivalently in2, the
two gllfferent pontnbunqns to th_e symmetrized quantum COpjanck length squaredl19,20. Together with Parker he also
relation function. The first one is connected to the quantumyceq 5 prescription to reduce the order of the semiclas-
fluctuations of the initial state of the metric perturbations and_. . . . . X

sical Einstein equation which was computationally conve-

we will refer to it asintrinsic fluctuations The second con- nient in order to obtain solutions corresponding to such trun-
tribution, proportional to the noise kernel, accounts for the . . P g
ated perturbative expansionsfin22].

fluctuations due to the interaction with the matter fields, and’ i
we will refer to it asinduced fluctuationsn the next section On the other hand, Flanagan and Wald argued that Si-
we will formulate a generalized stability criterion for the MON'S criterion based on truncating to order solutions
solutions of SCG which involves the quantum fluctuations of?hich correspond to analytic expansionsfinseemed too
the metric. In particular we will see that the induced fluctua-restrictive since it only allowed small deviations with respect
tions will play an important role on that issue. to the classical solutions of the Einstein equatip2$]. In

The noise kernel that we need for our discussions is foparticular, one would miss those situations in which the
the particular case of a Minkowski background spacetimesmall semiclassical corrections build up to give significant
with a scalar field in the Minkowski vacuum. It was obtained deviations at long times, such as those corresponding to the

in Ref.[54] and is given by Eq(B7) in Appendix B. evaporation of a macroscopic black h@Wth a mass much
larger than the Planck madsy emission of Hawking radia-
IV. STABILITY CRITERION FOR SOLUTIONS tion. Furthermore, they illustrated with simple examples that
OF SEMICLASSICAL GRAVITY there are cases in which one expects that no solutions of the

semiclassical equation are analyticiinTherefore, they sug-

In this section we will propose a criterion for analyzin ; ;
the stability of a given soll?tioﬁ of SCG with respect toysngllgeSted that, rather than trying to restrict the subspace of ac-
- . . ; ) ceptable solutions, one should simply transform the semi-
guantum corrections, associated with quantized metric per-

turbations around a background geometry. As an importan(fl?jss'caldeq;‘.at'on’ by m?kmgt use of Sm(;on gnd Park?rs
example, we will apply this to the particular case of gorder reduction prescription, to a second order equation

Minkowski background with N scalar fields in the Which_were eqzuivalent to th_e original equation up to the
Minkowski vacuum state. order inf (or I;) under consideration. All the solutions of
the second order equation should then be regarded as accept-
able, even if they are not analytic #n Obviously, one could
only extract physically reliable information from those solu-
The stability of metric perturbations around a Minkowski tions for scales much larger than the Planck length.
spacetime interacting with quantum matter fields in their Yet another prescription was proposed by Anderson,
Minkowski vacuum state was first studied in the context ofMolina-Pars and Mottold 3] on the stability of small metric
SCG by HorowitZ16]. He considered massless conformally perturbations around the Minkowski spacetime. They got rid

A. Stability of Minkowski space: Previous criteria
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of the unphysical runaway solutions by working in Fourier characterize the quantum state of the metric perturbations.
space and discarding those solutions which corresponded ta@t us now suppose that the evolution of the expectation
4-momenta with modulus comparable or larger in absolutevalue is stabldi.e. that it does not grow unboundedly with
value than the Planck mass. However, it is not clear how thisime) or even that it vanishes for all times. It is clear that the
procedure could be generalized to situations where workingemiclassical solution cannot be regarded as stable with re-
in Fourier space is not adequate, as in time-dependent backpect to small quantum corrections if the fluctuations of the
ground spacetimes. state for the metric perturbations grow without bound. There-
The consequences of both the order reduction prescriptiofere, the stability criterion stated in Reff3] should be gen-

introduced by Simon and Parker and advocated by F|anag@falized: one also needs to take into account the fluctuations.
and Wald and the procedure employed by Andersoal. are  According to Ref[3], a necessary condition for the stability
rather drastic, at least when applied to the case of &f @ solution of SCG requires that no gauge invariant scalar
Minkowski background, since one is just left with the solu- quantlty constructed just from the linearized metric perturba-

tions of the sourceless classical Einstein equation corrdi®n Nap (Which satisfies the semiclassical Einstein equation
sponding to linear gravitational waves propagating inllnearlzed around the semiclassical solution under consider-

Minkowski spacetime. In fact, the situation was not Com_ation) and its derivatives grows without bound. This criterion

pletely trivial for Flanagan and Wald, who were interested inan b? interpreted as a contzlmon on the stability of the_ ex-
analyzing whether the averaged null energy COnditionoectatmn.value of the_operatbgb for th(_a state of Fhe metric
(ANEC) was satisfied in SCG by considering perturbationgPerturbations. We claim that, in addition, thepoint quan-

of the Minkowski solution, because they also perturbed thaum correlation functions for the metric perturbatidstart-

state of the matter fields. The order reduction prescriptior\ng with n_=2) ;h()tuld alsb? be s_;tlablet. g:onsﬂera’uonz based
also seems to exclude those solutions which correspond )| gauge-invariant variables will not be necessary because

) . . . ._— we will be dealing with expressions where the gauge free-
inflationary models driven entirely by the vacuum polanza-dom has been completelv fixed
tion of the quantum matter field62], such as the trace b y )

. . . i As explained in Appendix C, to leading order irNLthe
anomaly driven inflationary model initially proposed by Star- CTP generating functional for the metric perturbations exhib-
obinsky[63]. To keep this kind of models, Hawking, Hertog

) ) . _its a Gaussian form provided that a Gaussian initial state for
and Reall considered a less drastic alternative to deal Withhe metric perturbations with vanishing expectation value is

the runaway solution$64,63. Their procedure, which is cposen. All then-point quantum correlation functions can
analogous to some methods previously employed in classicghen pe obtained, to leading order itN]/from the two-point
electrodynamics for radiation reaction problerf80], is  quantum correlation function. Furthermore, any of the two-
based on discarding solutions which grow without bound apoint quantum correlation functions can in turn be expressed
late times(see Appendix E for further discussions on this andin terms of the symmetrized and antisymmetrized correlation
related issues functions(the expectation values of the commutator and an-

ticommutator of the operatdr,,). To leading order in M
the commutator is independent of the initial state of the met-
ric perturbations and is given by i2[G,(X',X)

How does one characterize the quantum state of the met_-Gret(X_’X’)]' On th‘? other hand, the expectation value of
ric perturbations? The first candidate is the expectation vaIuIéhe antlcommutator_gs glver? t_)y qu.A') an(;j .'Sdthe Zu?ﬂ of
for the operator associated with the perturbation of the met’axg(rjlsseparate contributions: intrinsic and Induced fluctua-
ric, Nap. In fact, using a largeN expansion, Hartle and  The first contribution in Eq(14) to the correlation func-
Horowitz showed that the semiclassical Einstein equatioRion for the metric perturbations involves the solutions of the
can be interpreted as the equation governing the evolution &fomogeneous part of the Einstein-Langevin equafitb,
the expectation value of the metric to leading order iN 1/ which actually coincides with the linearized semiclassical
[34]. Taking that result into account, the study of the stabilityequation for the metric perturbations around the background
of a solution of SCG by linearizing the semiclassical Einsteingeometry. SimilarlyG,; corresponds to the retarded propa-
equation with respect to small metric perturbations aroundjator (with vanishing initial conditionsassociated with the
that solution can be understood in the following way: Take
an initial state for the metric perturbations with a small non-

B. Generalized stability criterion

vanishing expectation value for the operaﬂﬁxgb, let it SNevertheless, since the metric perturbations constitute an open
evolve, and see if the expectation value grows withoutduantum system due to the interaction with the matter fields, their
bound. state should be described by a density mattite reduced density

matrix obtained by taking the density matrix for the whole

system—metric perturbations plus matter fields—and tracing out

Yhe matter fields which exhibits a nonunitary and even non-
arkovian evolution. Therefore, as explained in H&0)], the cor-

However, in addition to the expectation valueFQ,fb the
state of the metric perturbations will also be characterized b
its fluctuations. In fact, if there was no interaction with mat-
ter.erI.dS so that the state for the met”? perturbqtlons evolve lation functions involving different times may contain information
unitarily, the set of quantum correlation functioffer the  \yhich cannot be obtained just from the correlation functions evalu-
operatorh,,) evaluated at equal times would completely ated at equal times.
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linearized semiclassical equation. Thus, solving the permetric perturbation corresponding t& and ¢ respectively
turbed semiclassical Einstein equation not only accounts focan be eliminated by choosing a gauge transformation such
the evolution of the expectation value of the metric pertur-that V3= —v? and {= — /2 (this will also imply a change
bations, which will exhibit a nontrivial dynamics as long as for ¢: ¢— ¢+2017).
we choose an initial state with nonvanishing expectation When the Lorentz gaug&2(h,,— 1/27,,h) =0 is im-
value, but also provides nontrivial information, even for aposed, we get the following conditions on the metric pertur-
state with a vanishing expectation value, about the commubations: (v?=0 and Vo=0 (which implies ¢=const).
tator as well as the intrinsic fluctuations of the metric. ThisAny vector field characterizing the remaining gauge transfor-
implies that the analysis about the stability of the solutions oimations compatible with the Lorentz gauge satisfies the con-
SCG can also be used to determine the stability of the metrigition C172=0, which impliesdV3=0 andV31¢=0. We
perturbations with respect to intrinsic fluctuations. can see that a vectorial gauge transformation compatible
The new observation we make here is that the inducegith the Lorentz gauge can still be used to eliminate the
fluctuations can be important as well. Both the retarded,ectorial part(now bothv? and V@ must be solutions of the
propag_ator anq the solutions of the linearized semiclassical’ Alambertian equation On the other hand, a scalar gauge
Einstein equation depend, through the kerHglon the ex-  transformation such thdfl{=— ¢=const. (this is always
pectation value of the commutator of the stress tensor opergossible for Minkowski spacetime with a trivial—simply
tor on the background geometry and on the imaginary part 6¢onnected—topologycan be introduced to get=0. More-
its time-ordered two-point function. However, they do notgyer, an additional scalar gauge transformation compatible
involve the expectation value of the anticommutator, whichyjith the Lorentz gauge and leaving invariant, which is

drives the induced fluctuations. Furthermore, although thnaracterized by & which satisfies the D’Alambertian equa-

expectation values of the commutator and anticommutatO{- _ : A — 2_ v

: S L ion OOZ=0 [or, equivalently, =0 for p =p*
are related by a fluctuat|(_)n-d|55|pat|9n relation in some PaAL g in Igourie[r spagb can beyugc(az)to eIimianl)te tEoFs)eZ%Vntri-
ticular case451,54), that is not true in general and the in-

duced fluctuations need to be explicitly analyzed. blzjtions toyy which correspond to Fourier mod&{p) with
To sum up, when analyzing the stability of a solution of P =0 while leaving the remaining contributions unmodified.

SCG with respect to small quantum corrections, one shoulf™@m now on we will assume that the Lorentz gauge has
also consider the behavior of both the intrinsic and induced®®€n imposed and that the additional gauge transformations

fluctuations of the quantized metric perturbations. Wherealt!St mentioned have been carried out so that we are left only
information on the stability of the intrinsic fluctuations can With the tensorial components as well as those modes of the
be retrieved from an analysis of the solutions of the perScalar componeny with p®#0 in Fourier space. ,

turbed semiclassical Einstein equation, the effect of the in- One could select the gauge mentioned in the previous
duced fluctuations is properly accounted for only in the stoParagraph imposing suitable conditions on the reduced

chastic semiclassical gravity framework based on thaVigner functional characterizing the initial state for the met-
Einstein-Langevin equation. ric perturbations; see Appendix E for some additional com-

ments on this point. However, as explained in Appendix D,
asymptotic initial conditions should be considered in order to
get a finite result for the metric correlation functions. There-
We now turn to the application of the criterion proposedfore, rather than fixing the gauge for some initial state at
in the previous subsection to the particular yet important caseome finite initial time, we will work in Fourier space im-
of Minkowski spacetime. As explained there, the existingplicitly assuming asymptotic initial conditions and fixing the
results in the literature can be interpreted as analysis of thgauge as described above.
stability of the expectation value of the operator associated In order to analyze the two-point quantum correlation
with the metric perturbations(see, however, Refs. function for the metric perturbations, we will make use of the
[17,34,68). On the other hand, we also need to include inresults mentioned in Sec. lll and described in some more
our consideration the fluctuations, characterized by the twodetail in Appendix C. In particular, we will exploit the fact
point quantum correlation function. that the stochastic correlation functions obtained with the
Before proceeding to analyze the two-point quantum corsolutions of the Einstein-Langevin equation coincide with
relation functions it is convenient to decompose the metriche quantum correlation functions for the metric perturba-
perturbations around Minkowski spacetime in the followingtions. Moreover, according to E(L4), the symmetrized two-
way [3]: point quantum correlation function has two different contri-

B T butions: intrinsic and induced fluctuations. We proceed now
hab= & 7apt (VaVo) = 7apl) ¥+ 2Vavn) T hap, (19 (g analyze each contribution separately.

C. Stability of Minkowski space from our criterion

. . 1. Intrinsic fluctuations
wherev? is a transverse vector and, is a transverse and

traceless symmetric tensor, i.&,0%=0, V®h[=0 and The first term on the right-hand side of E@4) corre-
(h™2=0. Similarly, any vector field:* characterizing an sponds to the fluctuations of the metric perturbations due to
infinitesimal gauge transformation can be decomposed d&€ fluctuations of their initial state and is given by
{3=V3a7+V? whereV?is a transverse vector field. It is then () ) ur\ -

clear that the vectorial and one of the scalar parts of the (Zap (0 Zca'(x »Eg%vnff)” (16
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where we recall that (9)(x) is a solution of the homoge- 2. Induced fluctuations

neous part of the EinStein-LangeVin equat(once the Lor- The second term on the right_hand side of Em_) corre-
entz gauge has been impogedith the appropriate initial  sponds to the fluctuations of the metric perturbations induced
conditions. by the fluctuations of the quantum matter fields and is given

As mentioned in Sec. Il and Appendix C, the homoge-py
neous part of the Einstein-Langevin equation actually coin-
cides with the linearized semiclassical Einstein equafion

N

K
Therefore, we can make use of the results derived in Refs. W(Grer/\/'(Gret)T)abca(X,X')
[3,16,21, which are briefly summarized in Appendix E. As
described there, in addition to the solutions wiB{})(x) =N&?(Grer N- (Gred Dabed X.X), (17

=0, there are other solutions that in Fourier space take the

form 'éi}v)(p)o@(p?_pg) for some particular values qi2, ~ Where Mgped(x,x’) is the noise kernel accounting for the

but they all exhibit exponential instabilities with Planckian fluctuations - of = the  stress tensor operator, ~and
characteristic timescales. (Gredabed(X:X") is the retarded propagator with vanishing

In order to deal with those unstable solutions. one possii_nitial conditions associated with the integro-differential op-

bility is to employ the order reduction prescription. We areeratorLabcd(x,x’) deflned.m Eq(C10 of Appgndlx C. .

i i i = B As shown in Appendix C, the symmetrized two-point
then left only with the solutions which satis®§,,(P)=0  guantum correlation function coincides with the stochastic
(see Appendix E. The result for the metric perturbations in correlation function obtained from solutions of the Einstein-
the gauge introduced above can be obtained by solving forangevin equation. In fact, the contribution corresponding to
the Einstein tensor in that gaugiy(p)=(1/2)p?[h,,(p)  the induced quantum fluctuations, given by HG7), is
_ 1/277MVF‘5(F’)]- Those solutions fOF‘uv(p) simply corre- equivalent to the stochastic correlation function obtained by

spond to free linear gravitational waves propagating inconsidering just the inhomogeneous part of the solution to

Minkowski spacetime expressed in the transverse and tracébehtlzrllnstdelnaLan?Evgs)eq_ll_Jakt'lon: Itlhti ?Qc:)nd termt Qt”, the
less(TT) gauge. When substituting back into E46) and right-hand side ot £g.15). Taking afl that into account, 1t 1S
. o . . clear that we can make use of the results for the metric cor-
averaging over the initial conditions we simply get the sym- . ; ) . . )
metrized quantum correlation function for free gravitons inrelauon; obtamg d in Refl54] by solving the Emstem—
Langevin equationthe homogeneous part of the solution

t_he TT gauge for th? st'ate_ given by 'the reduced Wigner funC\'/\/as not considered thereln fact, one should simply take
tion. As far as the intrinsic fluctuations are concerned,

_ ons are IS =1 to transform our expressions to those of FB#] and,
clear that the order reduction prescription is rather drastic, &jmilarly, multiply the noise kernel in the expressions of that
least in the case of Minkowski spacetime, since no effect§eference byN so that they can be used here, which follows
due to the interaction W|th the quantum matter flel_ds are |eftstraightforwardly from the fact that we hawindependent
The method employed in Rdf3], although slightly different, matter fields.
yields the same result. The same kind of exponential instabilities in the runaway
A second possibility, proposed by Hawkiegal.[64,69,  solutions of the homogeneous part of the Einstein-Langevin
is to impose boundary conditions which discard the runawaquation(the linearized semiclassical Einstein equaltialso
solutions that grow unboundedly in time and correspond to arise when computing the retarded propag&gy. In order
special prescription for the integration contour when Fourietto deal with those instabilities, similar to the case of the
transforming back to spacetime coordinatese Appendix E intrinsic fluctuations, one possibility is to make use of the
for a more detailed discussiprFollowing that procedure we order reduction prescription. The Einstein-Langevin equation
get, for example, that for a massless conformally coupledecomes theGglb)=K§ab. The second possibility, following

scalar field witha=0° and3>0 the intrinsic contribution to  the proposal of Hawkingt al, is to impose boundary con-
the symmetrized quantum correlation function coincidesditions which discard the exponentially growing solutions

with that of free gravitons plus an extra contribution for the @nd translgte into a Spe.Cia' choice of the.integration contour
scalar part of the metric perturbations which renders when Fourier transforming back to spacetime coordinates the

Minkowski spacetime stable but plays a crucial role in pro_expression for the propagator. In fact, it turns out that the

viding a graceful exit for inflationary models driven by the Propagator which results from adopting that prescription co-

vacuum polarization of a large number of conformal fieldsInCIdes W't.h the propagator tha_1t was emp!oyed n Rﬁ‘ﬂ]'.
(such a massive scalar field would not be in conflict with However, it should be emphasized that this propagator is no

present observations because, for the range of parametd?s?ger the retarded one since it exhibits causality violations

usually considered, the mass would be far too large to hav@t Planckian scales. A more detailed discussion on all these

; points can be found in Appendix E.
observational consequendés)). Following Ref.[54], the Einstein-Langevin equation can

be entirely written in terms of the linearized Einstein tensor
G{M(p) as follows:

14

SFor the massless case one can always lav® by choosing the
appropriate value of the renormalization scale, as explained in Ap-

pendix B. Fvap(P)CH¥(p)=KkE,,(p), (18)
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which simply corresponds to adding the stochastic source ti the order reduction prescription is employed. It should be
the linearized semiclassical Einstein equatigf), where emphasized that, contrary to the linearized Einstein tensor
F.ap(P) was given by Eq.8). One can then solve the Gglb), the metric perturbatioh,, is not gauge invariant. This

stochastic equation fo6)(p) and obtain its correlation Should not pose a major problem provided that the gauge has

function [54]; been completely fixed.
The correlation functions in spacetime coordinates can be
<(~3(1)(p G(l)(p )) easily derived by Fourier transforming ER2) or (23).
mr ¢ However, there is apparently an infrared divergenceZat
- KZD,mw(p)@“'g(p)gw(p’)>g5pgya(|0') =0, at least for the massless case. Eor the massive case the
result is finite because the noise kernél?7%(p) is propor-
2 ~ _ tional to #(—p?—4m?), so thatm?>0 guarantees thgt?
= WDMWB(p)N“ﬁV‘s(p)DWW(— p)(2m)*s(p+p’), =0 lies outside the domain of integration. On the other hand,

in the massless case the terms of the farpp,p,p,/(p?)?
appearing when substituting the noise kernel in E28). and

In the last equality we have taken into account translation 23),.g|ve rise 1o infrared d|verg§nces when computing the
ourier transform. In fact, even if we exclude the massless

. . . o~ B 8 . .
invariance. The noise kerndl””"(p) is given by Eq.(B7)  5qe  the result would be finite, but it would become larger

in Appendix B, andD ,,.4(p) is the propagator that results and larger as we chose a positive but arbitrarily small mass.
from invertingF ,,.5(p) (see Appendix E for a discussion |n any case, such an infrared divergence seems to be just a

19

on the uniqueness of this propagatand is given by gauge artifact.
We can conclude that, once the instabilities giving rise to
B (p)= Fa(p) 2p the unphysical runaway solutions have been properly dealt
prapP F.(p) T 1B)v™ F1(p)F3(p) P v ap: with, the fluctuations of the metric perturbations around the

(20 Minkowski spacetime induced by the interaction with quan-
tum scalar fields are indeed stal§leinstabilities had been
with P, = 7,,— pMpV/p F1(p) andF,(p) given by Egs. present, they would have led to a divergent result when Fou-
(9) and (10), andF4(p)=F;(p) + 3p2F,(p). On the other rier transforming back to spacetime coordinatds should
hand, if we make use of the order reduction prescription, wée emphasized that no ultraviolet divergences related to the
get coincidence limit of the noise kernel appeared in the previ-
ous analysis because we implicitly assumed asymptotic ini-
(PG (")) = kX (E,(P)E,0(P"))e tial conditions when working in Fourier space, as explained
in Appendix D. Furthermore, in contrast to the intrinsic fluc-
~ 4 tuations, even when using the order reduction prescription
=NNM,,W(p)(27r) s(p+p’). there is still a nontrivial contribution to the induced fluctua-
tions due to the quantum matter fields.

2

(21)

V. DISCUSSION

Note thatG(l)(p) is gauge invariant when perturbing a
Minkowski background because the background te@f}

vanishes and, henceﬁ;g ©) also vanishes for any vector

field g -
Finally, using the expression for the linearized Einstein "This is suggested by the fact that neither the correlation function

tensor in the Lorentz gaugeGELlV)—(UZ)pzh , with h of the linearized Einstein tensor nor that of the linearized Riemann
= hw_(]_/z),?/” g we obtain the correlation funCtlon for tgnsor ex.hibits those.dive.rgences. The fini.te resqlt for the correla-
the metric perturbations in that gauge: tion function of the Einstein tensor follows immediately from Egs.
(19) and(21), whereas for the Riemann tensor the potentially diver-
_ _ 42 1 gent contributions coming from the terms proportional to
(h,,(p)h U(p')>§:_ — D ,,a/;(p)x/"’ﬁ’/‘s(p) pﬂpvpppgl(pz)2 in the correlation function for the metric pertur-
a P N (p?)2 * bations involve exterior products with, and, thus, vanisHof
_ course the finite result for the Einstein tensor could also have been
X Dpo’y&( - P)(ZTT)45( p+p") inferred from the finite result for the Riemann tensaiternatively,
22) one can eliminate the terms giving rise to divergences in &285.
and (23) by performing a gauge transformation of the form
or F\MV(p)—fﬁW(p)va#pV/pz, which is generated by a vector field
7(p) = p*/p? [consisting of just a scalar pai{p) = 1/p?]. Such a
_ _ A2 5 gauge transformation does not preserve the Lorentz condition.
<hw(p)hp0(p’)>§:_ _NMVp(;(p)(27)45(p+ p’), Therefore, it seems that the infrared divergence is simply indicating
N (pz)2 a singular massless limit for the Lorentz gauge in the case under
(23 consideration.

In this paper we make the point that an analysis of the
stability of any solution of SCG with respect to small quan-
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tum corrections should consider not only the evolution of thefluctuations[4—8], which they usually refer to asctiveand
expectation value of the metric perturbations around that sgaassivefluctuations respectively. However, they usually con-
lution, but also their fluctuations, encoded in the quantunsider these two kinds of fluctuations separately and have not
correlation functions. Making use of a largé expansion, provided a unified treatment where both of them can be un-
where N is the number of matter fields, the symmetrizedderstood as different contributions to the full quantum corre-
two-point quantum correlation function for the metric pertur-lation function. Moreover, they always neglect the nonlocal
bations can be decomposed into two distinct parts: intrinsi¢cerm which encodes the averaged back reaction on the metric
fluctuations due to the fluctuations of the initial state of theperturbations due to the modified dynamics of the matter
metric perturbations itself and fluctuations induced by theirfields generated by the metric perturbations themsélves.
interaction with the matter fields. The stability of the first Their justification is by arguing that those terms would be of
contribution turns out to be closely related to the stability ofhigher order in a perturbative expansion. That is indeed the
linearized perturbations of the semiclassical Einstein equasase when considering a Minkowski background if the order
tion, whereas the second contribution is equivalent to th&eduction prescription is employed, but it is not clear
stochastic correlation functions in stochastic semiclassicavhether it remains true under more general conditions. In
gravity obtained from solutions of the Einstein-Langevinfact, as mentioned in Ref68], for the usual cosmological
equation. inflationary models the contribution of the nonlocal terms

As a specific example, we analyzed the two-point quancan be comparable or even larger than that of the remaining
tum correlation function for the metric perturbations aroundterms. Finally, in order to deal with the singular coincidence
the Minkowski spacetime interacting witki scalar fields ini-  limit of the noise kernel, in Ref.5] Kuo and Ford opted to
tially in the Minkowski vacuum state. Once the ultraviolet subtract a number of terms including the fluctuations for the
instabilities (discussed in Appendix)Ewhich are ubiquitous Minkowski vacuum. Even when no such subtraction was
in SCG and are commonly regarded as unphysical have begrerformed(because a method based on multiple integrations
properly dealt with by using the order reduction prescriptionby parts was used insteid,69,70, they usually discard the
or the procedure proposed in Ref64,65, both the intrinsic ~ fluctuations for the Minkowski vacuum. Therefore, the infor-
and the induced contributions to the quantum correlatiormation on the metric fluctuations around a Minkowski back-
function for the metric perturbations are found to be stableground when the matter fields are in the vacuum state is
In fact, one gets an infrared divergence for the massless casggissing in their work.
when computing the inverse Fourier transform for the in- We close this section by recalling a couple of partially
duced contribution to the correlation function of the metric,open issues for which either a better understanding or a bet-
but that seems to be purely a gauge effect, as argued fier treatment would be desirable. The first issue is the singu-
footnote 7. lar coincidence limit for the noise kernel. It seems clear that,

The symmetrized quantum correlation function for thewhen properly treating the noise kernel as a distribution, a
metric perturbations obtained is in agreement with the realfinite result for the metric correlation function is obtained
part of the propagator obtained by Tomboulis in R&7]  except for some divergent boundary terms at the initial time.
using a largeN expansiofi (he actually considered fermionic There is a natural physical interpretation: the completely un-
rather than scalar fields, but that just amounts to a change igorrelated initial state that was considered becomes patho-
one coefficient Tomboulis used tha-out formalism rather logical when the number of modes of the environment is
than the CTP formalism employed in this paper. Nevertheinfinite. A simple way to overcome this problem and obtain a
less, his propagator is equivalent to the time-ordered CTIfinite result for the correlation function is to switch on the
propagator when asymptotic initial conditions are considerednteraction smoothly so that the modes of the environment
because in Minkowski spacetime there is no real particlevith arbitrarily high frequencies become correlated with the
creation and thén andout vacua are equivaleritip to some  system in a nonsingular way. However, in order to preserve
phase which is absorbed in the usual normalization of théhe conservation of the source in the Einstein-Langevin
in-out propagator. The use of a CTP formulation is, how- equation, which guarantees the integrability of the equation
ever, crucial to obtaining true correlation functions ratherthrough the Bianchi identity, the interaction has to be turned
than transition matrix elements in dynami¢abnstationary  on adiabatically and asymptotically past initial conditions are
situations(such as in an expanding Robertson-Walker back+equired. Therefore, other procedures should be devised to
ground geometry where thein-out scattering matrix might address situations that require specifying the initial condi-
not even be well defined at all. tions at a finite initial time.

As we pointed out in the Introduction, Ford and collabo- The other question which deserves further study is the
rators have stressed the importance of the metric fluctuatiorgrocedure employed to deal with the runaway solutions dis-
and investigated some of their physical implicatipas-11].  cussed in Appendix E. The order reduction prescription is
They have considered both intringi6,9-11 and induced rather drastic as its net outcome is to discard entirely the

contribution from the dissipation kern@s far as the expec-
tation value and the symmetrized two-point correlation func-
8The imaginary part can be easily obtained from the expectation
value for the commutator of the metric perturbations, which is
given by A k[ G (X' ,X) — Ge(X,X")], as briefly explained in Ap- %In those references dealing with stochastic gravity this term is
pendix C. usually called the dissipation term by analogy with QBM models.
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tion are concerngdwhich encodes the averaged back reacwhere(---) denotes the expectation value with respect to

tion of the matter fields on the metric perturbations. As fOfthe guantum state of the Systei\qm) is the position operator
the method employed by Hawkireg al.in Refs.[64,65, we  for the system in the Heisenberg pictue; - ), denotes the
find the fact that the choice of the physical solutions at aaverage over all possible realizations of the stochastic source
given instant of time depends on the far future somewhag(t) and (- - '>Xi »p, is the average over all possible initial
unsatisfactory, and discarding solutions which grow un-conditions for the solutions of the Langevin equation distrib-
boundedly in time could get rid of other possible instabilitiesyted according to the reduced Wigner function for the initial
which are physically meaningful. Furthermore, it is not clearstate of the system. The functioX§t) appearing inside the
whether both procedures could be implemented in a genergtochastic averages are solutions of the Langevin equation
case. L-X=¢  where  L(t,t")=M(d¥dt®+ Q%) 6(t—t")

To gain insight into some of the previous aspects, an in-+H,(t,t'), with H,., being the renormalized kernel ap-
teresting possibility is to consider an analogous situation ifhearing in the real part of the influence action aﬁdﬁfdt
QED with the electromagnetic field regarded as an opern : . . . -
guantum system interacting with an environment constitute&srguor%%hc\);ljimh'\'lsa"’r‘l?spheigg'Xé)?pzﬁégtigsnaviﬁjuessg%Sté);r?;ztt'ﬁ) N
?gge cga}[rhged que;_ntur? f'?rllds' In fa(t:t,t_the ar;alog¥t?1etwfeﬂ4nction (E(1)&(t))e=N(t,t") whereN(t,t") is the noise

and the equation for tne expectation value of the eleGq g being the kernel appearing in the imaginary part of
tromagnetic field to leading ordeorder 1 in a largeN ex-  yhe jnflyence actiorisee Ref[59] for further details. When

pansion forN charged quantum fields has been discussed byo enyironment is initially in a thermal equilibrium state, the
a number of authorfl7,18,34. One step further was con- noise kernel is explicitly given by N(tt’)

R4S, e e vl of e SXpectalon s u)cothcosult1), wherel ) i he specal
) ) 9 . density function, which characterizes the frequency distribu-
leading order in M (order 1N). The two-point quantum . . . :
correlation functiongthe CTP propagatoysor the electro- tion of the oscillators in the environment.
propag The solution of the Langevin equation can be written as

magnetic f|¢|d to leading order in N/(order 1N), which X(t) = Xo(t) + (Grer £)(1), WhereXq(t) is a solution of the
play a crucial rolg there, are completely a.nalogous to th(?wmogeneous part of the Langevin equation which contains
quantum correlation functions for the metric perturbatlonsa” the information about the initial conditions ai.(t,t’)
considered here. is the retarded propagator with vanishing initial conditions.
Substituting the previous expression #%(t) into Eq. (Al)
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where the first contribution corresponds to th&insic fluc-
tuations connected to the dispersion of the initial state of the
system, and the term proportional to the noise kernel reflects
the fluctuationsnducedby the system’s interaction with the

In this appendix we illustrate the importance of the fluc-€nvironment. Note the close analogy between @) and
tuations induced by the environment when considering théh€ expression for the symmetrized two-point quantum cor-
quantum fluctuations for an open system. As an example weelation function in the gravitational case, given by Etj).
will use a simple model which was analyzed in some detail Let us specialize to the case of an ohmic environment, i.e.
in Ref. [59]: a linear quantum Brownian motiofQBM) the case in which the spectral distribution function for the
model that consists of a harmonic oscillator, which will be frequencies of the oscillators in the environment is of the
referred to as the system, bilinearly coupled to a set of haform I(w)=Myw, whereM is the mass of the system har-
monic oscillators, which constitute the environment. monic oscillator andy is some constant proportional to the

In Ref. [59] it was shown that a stochastic descriptionsquare of the system-environment coupling constant. Then
based on a Langevin type equation could be used to gaifhe kernelH., becomes local withH (t,t")=Myd’'(t
information on the quantum properties of the open system. In-t’) and the homogeneous soluti®g(t) takes on the fol-
particular, the symmetrized two-point quantum correlationlowing simple form:
function for the system turns out to be equivalent to the

APPENDIX A: INTRINSIC AND INDUCED
FLUCTUATIONS IN A SIMPLE QUANTUM BROWNIAN
MOTION MODEL

correl_ati_on function obtained in the context of the stochastic Xo(t) =€~ (712)(t—1) Xicosﬁ(t—ti)
description:
1 . ~ pi Y . ﬁ
S X)) =((X(t)X(t)dx . (AD) T vo g SNt (A3)
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where Q= \/Qfen—(y/Z)2 and we considered the under- Mﬁg’,’f“ﬁ(x—y) is proportional to the Einstein tensor and can
damped case(},.,> y/2). A similar result also holds for the be absorbed in a finite renormalization of the gravitational
overdamped case with the trigonometric functions replacedoupling constant. The expression in Fourier space for the
by the hyperbolic functions. As a result of the exponentialnonlocal kerneHﬁgff‘B(x—y) is

factor, Xy(t) and hence the intrinsic fluctuations will decay

at times much larger than the relaxation timg2.%In fact, 1 1

if we take the limitt;— —o, the contribution to the two- HArah(p)= > praprh— §P,uvpa,8 [Ha(p)—2a]

point correlation function from the intrinsic fluctuations

completely vanishes and one is just left with the induced
fluctuations. If the initial state of the environment were a
thermal state, the dissipation kerrjéhe antisymmetric part L
of H.4t,t")] and the noise kernel are related by awherea andg are constants which include the renormalized
fluctuation-dissipation relation which characterizes the balparametersr andB appearing in Eq(1), P, is the projector
ance between the noise induced by the environment and th@thogonal top#, given byP,,=7,,— pﬂpylpz, and
dissipation effect so that the two-point correlation function

remains bounded in time. | (

+PHrPP[Hg(p)—28], (B2)

2

2
o o 5 m
From the example employed in this appendix, it is clear 1+4_2) {—iwsgnpo
p

Ha(p)=

that the induced fluctuations play an important role when
considering correlation functions in open quantum systems.

192072

In fact, for asymptotically past initial conditions they become m? 8 m?
the entire contribution to the correlation function since the X 0(—p*=4m?) \| 1+4—+¢(p?) | - 3 —2]
intrinsic fluctuations are completely damped by the dissipa- P P
tion. In a more general context, such as the gravitational (B3)
case, the dissipation kernel will not damp the intrinsic fluc-
tuations, but the induced ones will still play an important )12
role. Fa(p) = 1 3(5_3 L —imsgnp®
2882 6/ p?
APPENDIX B: DISSIPATION AND NOISE KERNELS
IN MINKOWSKI SPACETIME y m? o 1m?
XO(=p°=4m) \[1+4—+o(p) |~ = =1,
In this appendix we provide the expressions for the dissi- p p

pation and noise kernels of a free real scalar field when a (B4)
Minkowski background spacetime is considered and the state

of the fields is the Minkowski vacuum. The details of their ) . )
where¢ is the parameter characterizing the coupling of the

derivation can be found in Ref54]. All the expressions in i )
this appendix are given in Fourier space and derived by makscalar field to the spacetime curvature through a term of the
—(&é12)R¢? in the matter Lagrangian, and(p?) is

ing use of the translational invariance in terms of the inertiaf®"™m
coordinates employed for the Minkowski background. Givendven by

any expressio(p), the corresponding expression in space-
time coordinate#\(x—y) can be simply obtained from p2
1+ —a(l—a)

1
(,o(pz):f daln
0 m?2

d*p i
e'P*A(p). (B1)

Aw—yr=f

by Egs.(5),(6) is commonly referred to as the polarization
tensor in an analysis based on linear response theory. We will
use the term “dissipation kernel,” by analogy with the usual
terminology employed in the context of open quantum
systems? In the case under consideration the local kernel

(2m)* —
m
The linear combination-2(M +H) with M andH given 2 1+4E+ 1
=—2+ 1+4—In| ———

p m

10The existence of such a decay still holds for the overdamped
case provided thaf,.,# 0, otherwise there is a constant contribu-
tion that does not decay in time.

Ustrictly speaking, the term dissipation kernel commonly refers to X arccota 14—
the antisymmetric part of the kernelH,. Making an abuse of 2
language, we will employ this term to refer to the whole kernel
—2H ¢, plus the local and symmetric kernel2M o,. (B5)
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Using the renormalized version of E@l) in Fourier space, thermore, the stochastic correlation functions for the solu-
the dependence on the metric of the renormalized expectdions of the Langevin equation are actually equivalent to
tion value of the stress tensor operator can be written entirelguantum correlation functions for the system observables.

in terms of the linearized Einstein tensor as follows: Although the previous results were obtained in R&f)]
_ for linear open quantum systems, they can be extended to the
(T*"[g+h;p))ren case of nonlinear quantum field theories provided that some

kind of Gaussian approximation for the corresponding influ-
ence functional is considered. In fact, in RE#8] it will be
explained in detail how those results can indeed be shown to
hold for the metric fluctuations around a given background
+ Epg[ﬁA(p)—Za(é(l))“V- (B6) spacetime _by properly treating the gauge freed(_)m and the
3 corresponding dynamical constraints. More precisely, when
, _ . consideringN free quantum matter fields weakly interacting
Following Ref.[54], we have employed a renormalization \yith the gravitational field in the sense that the gravitational
sch(gme in which the renormalization scale is fixedd coupling constant times the number of fields remains con-
=m°. This is, of course, not possible for the masslesssiant in the largé limit, the stochastic correlation functions
case. Nevertheless, the expression for the massless casg pe shown to coincide with the leading order contribution
can still be obtained by adding a term () g the quantum correlation functions of the metric perturba-
to Eq. (B5 and subtracting (192€°) In(u¥n?) and tions in a largeN expansion.

(6—1/6)?(967?) ~In(u?/n?) respectively from 2 and 2 Here we briefly sketch, in the context of a lafyeexpan-
in Egs. (B2) and (B6) before taking the limitm>—0. The  sion, some of the key aspects in the derivation of the result
renormalized parameters will then depend on the arbitrargtated above. The details will appear in Ré8] and were

scalep. If desired, it is always possible to choose=0 by ~ Partially included in Ref[72]

fixing the renormalization scale to some appropriate value. h WebWI'." (t:)onilder mdetrlc perturbatlolr;lsbaround. all. glgbally
Finally, the expression for the noise kernel in Fourier yperbolic backgroun spaceUr(tGa@t will be specialized to
space is given by Minkowski spacetime at some pojntegarded as an open

quantum system interacting with the quantum matter fields,

L2 ik
=2P*| — ZFa(p) + ga—Hg(p)+28 | (GD)i(p)

N (p) which constitute the environment. In particular we will con-
wrpa sider N minimally coupled free scalar fields, but the main
1 am?(1 am?\ 2 result can be generalized to nonminimally coupled scalar
=———0(—p?>—4m?) \/ 1+ —2[— 1+ —2) fields or even vectorial and fermionic fields. The action for
2880m p? |4 p the combined system is the sum of the gravitational acgipn

1 plus the action for the matter fields,,. The gravitational

X(p2)2(3pﬂ(ppo)y— PPy +1 3< i 5) action is given by the usual Elnstem-HlIb_ert term, the corre-
sponding boundary terifwhich should be included to have a

well-defined variational problem and will later be important

2 . . .
m? 22 and the usual counterterms required to renormalize the diver-
+F (P)PuvPpo - (B7) gences arising when functionally integrating the matter
fields:
APPENDIX C: STOCHASTIC AND QUANTUM N — N _
CORRELATION FUNCTIONS Sg=2—_fMd4X\/—gR(g)+ :J'S Md3X\/§_SKg(g)
K K =4

It was initially believed that some kind of environment-
induced decoherence mechanism was required to realize the + (countertermg (C1
stochastic dynamics described by the Einstein-Langevin - ) ) _
equation[51,52. Later, in Ref[59] it was shown that, even Where gap=gap+hap is the perturbed metricg,;, is the
in the absence of decoherence, a stochastic description bade@ckground metric and the gravitational coupling constant
on a Langevin type equation contains nontrivial informationx= 8/ mrzJ was rescaled ta/N so that the product of the
on fully quantum properties of simple linear open quantumrescaled gravitational constant times the number of fields
systems. In particular, the reduced Wigner function of theremains constant in the liml—occ. The action for the mat-
system(see, for instance, Ref71] for the definition and ter fields is
properties of the Wigner functioncan be expressed as a N
double average for the solutions of the Langevin equation =1 .
with respect to both the different realizations of the stochas- S _;1 Md“X\/—_g E(gabva‘PiVb‘Pj * mz‘Piz)'
tic source and the initial conditions, which are distributed (C2)
according to the reduced Wigner function at the initial time.
This expression can then be used to derive the master equaherem is the mass of the scalar field. In fact, we will not
tion governing the time evolution of the reduced Wignertake the limitN—co, but rather use the expansion irNlas
function (or, equivalently, the reduced density matrifur-  a useful way to organize our computation and the contribu-
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tions that are included. At the very end one can always Suq-unctiona| resumng from that approximatiorz(clzrog , and
stitute back the rescaled gravitational constant in terms of thghey show that including terms of higher order in the metric

physical one. _ , . perturbations would yield corrections to the connected part
' The CTP ge:neratmg funcUongI for the metric perturt_)a—of the generating functional of higher order irfNL/
tions, from which true expectation _valyes and correlation  \va how specialize to the case of a Minkowski back-
functions can be obtaing@5,37-41, is given by ground, i.e.gap= 77ap, and consider a family of Cauchy hy-
Zerd Jap Jedl persurfaces which foliate the spacetime into constant time
hypersurfaces of a given inertial frame in Minkowski space-
time. The initial states for the metric perturbations and the
matter fields are specified on one of these hypersurfaces,
N which will be denoted bys; . Another hypersurface is chosen

1 aiSmlei h1—iSmle! ,h’ ORNI0) as the final hypersurfacg; so that any spacetime region of
X H f DepjDejener Honter Mol o), interest lies between trffm. Then we integrate by parts those
contributions to the Einstein-Hilbert term of the gravitational
action involving two derivatives acting on the same factor

where we have used the notation A-B  andimpose the Lorentz gauge condit®th,,=0 [we recall
=[d*/—g(y)A?(y)Bay(y). The density matrices for the that the indices are raised and lowered using the background
initial state of the fields and the metric perturbations, whichminkowski metric, all the covariant derivatives are taken in

are all as(_ssum?_()j to be initially uncorrelated, afe{” o[ "] i background metric andh,,=A.,— (1/2)7,,AY. The

I 7 (1 . .
and p;[hp,heq’] respectively. The gauge freedom in the poyngary terms resulting from integration by parts are can-
path integrals for the metric perturbations should be properly.q|eq by the boundary terms included in the gravitational

treated, as briefly described below. . 1o L~ . ,
The first step is to integrate out the matter fields using th@Ct'onl and the expressio§[h,h"]=5[h]—SJh’] up to

influence functional formalism of Feynman and Vernon forduadratic order in the metric perturbations becomes
open quantum systemg9,50. The influence actiorS is
defined as

:J 'Dhabphédeisg[h]—ng[h']eiJh—iJ’-h’pr[h(aik)),hég)]

(C3

. N —

N [2 b,A d]:__j d4X\/—gV ADCVaEb

eiSEn = T fD@jDQDJ’,eiSm[@j'h]—ism[‘Pj"h’] S Beal =220 : )
i=1

. . + (countertermgs (Co)
xp[ e,/ M1, (C4
Up to quadratic order in the metric perturbations it is givenNext, we introduce the momentum canonically conjugate to
by [51,52 ALp, 2 which is given by
i
S|F[Eab,Aab]=N(Z-A+A~(H+M)-E+§A-N~A ,
58S N -—
€9 M o] = —2 = — =32, (C7)
5Aab 4k

where we have introduced the semisum and difference vari-
ables 3,,=(ha,+h.)/2 and Ag,=hl—h.,, Z3°%(x)
=—(1/2)(T?" ¢,g;x)) and the kerneldd, M and \ were
defined in Egs(5), (6) and(12). As explained in Sec. Il, the
kernelsH and M exhibit divergences that are canceled by

renormali;ing the grayitational coupling constant and th auchy hypersurfaces including the initial and final hyper-
cosmological constant in the bare gravitational action as wel urfacess; ands; . Finally, one can integrate again by parts
as the coupling constants of the counterterms quadratic in ﬂ‘geo that ! - ’

curvature. We will not need terms of higher order in the
metric perturbations because they give contributions to the

\‘;\‘/’(TQ;E jtf? |Eazr(ctLOO)]; t(?fehic-fl;zr %?Sg:ai'::nﬁl fl#}?g?g‘(seg t?ti/e 12In general, one should be careful with the contributions from the
CTP CTP 9 o o . . . timelike boundaries as well as the edges connecting the spacelike
for the terms in the gravitational actioy;, which implies 5 timelike boundariég’9]. Here we will assume that the timelike
that we do not have to consider graviton vertices. In order tqoundaries are infinitely far away and the value of the metric per-
show that, when computing the connected part of the CTRrbations decays at large distances so that only the contributions
generating functional to leading order inNL/it is indeed  from the spacelike boundaries are relevant.
sufficient to keep just those terms in the gravitational action *Throughout this section we will neglect the contribution to the
and the influence action which are at most quadratic in thenomentum from the counterterms; see Appendix E for further dis-
metric perturbations, one can first compute the generatingussion of this point.

where we employed the notatiok,,=n°V,.A,, for the co-
variant derivative with respect to the normalized and future-
directed timelike vectom? orthogonal to the family of
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N o less gauge has been imposed on the reduced density matrix
Sel 2 ab,Acal=— v d*x\/—gAPeY,VaS, (or, equivalently, the reduced Wigner functionat the initial
KJM time.
Introducing a suitable functional change, the CTP gener-
+j d3x gsfH?f?AQ@ ating functional can be rewritten in the following way when
Scam taking J3,=0:

— d3x /g5 IT3°PA0) + (countertermy A
fsicw STOTab ZER 5= 03cal = (V" M) s e, (C12

(C8)

where the indice§) and(f) denote quantities evaluated 8p where the expectation valugs- '>EQQ,H(°§ and(---), are

andS; respectively. It should be emphasized th} or h{})  defined as

simply correspond to the spacetime metric evaluated on

those hypersurfaces and should not be confused with the in- _ _

duced metric in the usual Arnowitt-Deser-MisnékDM) (- '>2§g,H(°§:J dS(dIIgs- - WIS g1, (C13
formulation. Furthermore, the contribution 8¢ will not be

relevant because, when computing the CTP generating func-

tional, we should také,,=h., (which impliesA,,=0) on B - oy
the final hypersurface. (- )e=(2mNIN) 1/2f Déyp - - (NAEN L,
Changing to the new current variable3§b=(Jab (C19

+J.)/2 and J5,=J%,—J.p, and functionally integrating
with respect toA.4, one gets the following expression for Thes

the generating functional: ab(X) inside the expectation values in E12) satis-

fies the equation
PGS N
N 2 Vo
=KfD2abex -—= L3——J|-N"*|L-X
2k

N
_2_KJ2)

(L-3)ap(X) = k€ap(X), (C15

with initial conditions3{) and ()= —(4x/N)II] on the
initial hypersurfaceS; . From Eq.(C14) it becomes clear that
one can formally interpret,, as a Gaussian stochastic
source with a vanishing expectation value and whose corre-
where the functional integral with respectXq, is restricted lation function is given by the noise kernel. Equati@L5)

to those configurations that satisfy the Lorentz gauge condican then be regarded as a stochastic Langevin equation and

tion, and we introduced the integro-differential operator ~ coincides with the Einstein-Langevin equation expressed in
the Lorentz gaugéwhen integrated with the metric pertur-

Labed X:X") = (L2 ( 9acpd— TabWed!2) D S(X—X") bationh,,,, the first term on the right-hand side of E.10
corresponds to the linearized Einstein tensor, whereas the last
two terms correspond t6T{J[g+h]), as follows from Eq.
(Clo (4). FurthermoreZ(CL%[JifO,Jﬁd] is also the generating

. o ) functional for the stochastic correlation functions for the so-
K'is some normalization const?gt Vgh'cq can be eventuallyytions of the Einstein-Langevin equation and, therefore, the
determined by demanding thaf52[J3,,Jz4]=1 when we  stochastic correlation functions are actually equivalent to
take J3,=Jo4=0, andW,[3 () TI{]] is the reduced Wigner quantum correlation functions for the metric perturbations.
functional for the metric perturbations at the initial time,  The solutions of Eq(C15 can be expressed as
which is defined in terms of the reduced density matrix at the
initial time as

N eV Ew s ) T, (C9

+2kHEED(x—x") + 2kM {ED(x—Xx").

abc abc

3 260 =2 Q%) + k(Grer E)an(X), (C16

WS TG = (1/2m) j dALIexXpITTEHACH pd 355, AL
(c1y Where 3 is a solution of the homogeneous equation
(L-X)ap=0, which coincides with the linearized semiclas-
The Lorentz gauge condition does not fix completely thesical Einstein equation for the metric perturbations in the
gauge freedom under local diffeomorphisms. However, it cahorentz gauge, with all the information on the initial condi-
be completely fixed by imposing additional gauge fixingtions, and G e ancd(X,X") is the retarded propagator associ-
conditions on the state of the metric perturbations at the iniated with the integro-differential operatbr,(x,x") with
tial time. Thus, from now on it should be understood thatvanishing initial conditions o; . The CTP generating func-
some appropriate condition such as the transverse and tradénal for a nonvanishingib can then be written as follows:
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S 4A
Z(CL'I'OP)[‘Jab'ch] 1/N
=<e”A'E(O)>zgg,ngg
o N N
2K s
xexp| i3% Gre J 1/N 1/N
2
K 1/N
><exp< —mJA-G,et-N- G,Tet-JA) , (C17 /
where we introduced the notation A()apcd(X,Y) N
EAct_jatg(an)- . . .
It is interesting to consider the particular case of the two-
point correlation function. Functionally differentiating twice 1/N 1/N
with respect tal5, and then takingl5, andJZ, equal to zero,
one gets the following result for the symmetrized quantum
correlation function for the metric perturbations: O(1/N?)
1 . - . . . . . .
—Uhn(X), heg(x )WY= ()2 O (x") ) (i) qycd FIG. 1. Two diagrams illustrating the fact that including either
2<{ ab(X):MedX)}) = (225 () 2ed( )>2ab’n(i) the vertices for the metric perturbatiofes in the first diagramor

_ terms from the influence functional evaluated beyond the Gaussian
" K_Z(G N-(G T) X,x') approximation(as in the second diagrantead to contributions of
N oret rev) Jabod X.X"). higher order in IN. In particular, the two diagrams shown here
give contributions of order N? to the two-point quantum correla-
(C18 tion function for the metric perturbations. The plain lines represent
ftllée CTP propagators for the matter fields on the background space-

One can see that there are two separate contributions to ttlme and the wavy lines correspond to the CTP propagators for the

g,ivs()[;ep:)slir:)tncgzcrifgl?r:‘itfigr(;?gpé ;2? R:Zt r?‘lr(]e?rilcs ;zlﬁtig;gotgsemetric perturbations obtained by functionally differentiatvé-
. . . ‘twice with respect to the external currents.
whereas the second one is proportional to the noise kernel
and accounts for the fluctuations induced by their interactiorhigher order in the metric perturbations. In order to consider
with the environment(in this case, the quantum matter and evaluate the different contributions to EG19), it is
fields). We refer to these two contributions asrinsic and  convenient to introduce the corresponding Feynman rules
induced fluctuations respectively. Furthermore, taking intoand diagramsin the CTP formulationas follows: each term
account Eq.(C12), we see that, under the aforementionedin Siy[ 5/5J§b,5/5J§d] gives rise to a vertex with the same
conditions, the symmetrized quantum correlation functionnumber of legs as the total power of the functional deriva-
for the metric perturbations is equivalent to the stochastidives /833, and &/ 835, appearing in that term, and the CTP
correlation function obtained in stochastic semiclassicapropagators simply corresg)ond to those obtained by func-
gravity by solving the Einstein-Langevin equation. tionally differentiating W= —i InZ&Q with respect to
From the expression for the generating functional in Eqthe external currents twice. Expanding in powers f, 1dne
(C17 one can get the remaining two-point quantum correla€an show that all the diagrams representing the corrections,
tion functions to leading order in W/ In particular the com-  as given by Eq(C19), to the connected part of the generat-

i P B e T\ — o ) ing functional, Werp= —i InZctp, are of order IN? or
TuGt':g: X',s))gl\;i:l S;’ <cEcr)]far:)l()?(r2i’r?5d§r)1(e)]gomzrkﬁigtgtr(xaﬁ)c(j) the higher [58]. Therefore, one can conclude that the leading

anticommutator the rest of two-point functions can be easiIy%r%?roﬁzgtr'?nt'gzéi/ygg ﬁhﬁgﬂrﬁ!}é ?é\fdr;nzwg%gr’ (\:/gr]:tcrihbu
obtained. Moreover, assuming a Gaussian initial state WIﬂ't‘ion to all the quantum correlation functions with an even
. . . ! Sumber of points can be obtained. Two particular examples
expression fOT the generating functlonal in HE17) be,' showing how the corrections due $3,[ 2 ,,,,A 4] contribute
comes Gaussian and any otirepoint quantum correlation v, the two-point quantum correlation functiofeorrespond-
function has a simple expression in terms of the two-pomring to terms inWerp which are quadratic in the external

functions. . _ o current$ are provided in Fig. 1. The first diagram involves
The exact CTP generating functional is given by vertices with three legs associated with cubic terms in the
gravitational action. The second diagram involves a nonlocal

S A . (LO)F 15 1A vertex with four legs associated with quartic terms in the
Zetd Jab Jedl exp( Sing PN )ZCTP[Jab"JCd influence action. The nonlocal vertex has been represented

(C19 by a loop of the matter fields because, if Feynman diagrams

are introduced when evaluating the influence action, the
where S {2 ap.Acq] corresponds to all the terms in the terms quartic in the metric perturbations giving rise to the
gravitational action or the exact influence action of cubic orsecond diagram in Fig. 1 correspond to a loop of matter
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fields with four insertions linear in the metric perturbationsexpression(D2) is singular for a finite initial time can actu-
(there are three other contributions to the influence actiomlly be seen by using the last equality in EB1), substitut-
involving terms quartic in the metric perturbations: one cor-ing into expressiofD2) and integrating by parts. The con-
responds to a loop of matter fields with two insertions lineartributions from the boundary terms at the finite tinigsand

in the metric perturbation and a third insertion quadratic int, are finite, at least when #t, [the fact that;#t, may be
the metric perturbation, a second contribution that correrequired to get a finite result is simply indicating that expres-
sponds to a loop of matter fields with two insertions qua-sion (D2) is also a distributioh On the other hand, the
dratic in the metric perturbation, and a third one correspondboundary terms that correspond to takitigand t, both

ing to a loop of matter fields with an insertion linear in the equal tot; are divergent. The fact that all the singular con-
metric perturbation and a second insertion cubic in the metrigiputions can be concentrated at the initial time seems to

perturbation. suggest that the origin of the problem may be related to the
initial state that was chosen.
APPENDIX D: SINGULAR COINCIDENCE LIMIT We proceed now to argue that the origin of the singulari-
FOR THE NOISE KERNEL ties described in the previous paragraph can indeed be traced

. . ) back to the initial state that was considered, with the metric
_The noise kernel defined by E¢12) has in general a hoyrhations and the matter fields completely uncorrelated.
singular coincidence limik—x" (in fact, it is still singular |, grder to do that, it will be useful to discuss an analogous
even forx#x’ when the two points are connected by a null iy ation for QBM models such as that described in Appen-
geodesig, which translates into an ultraviolet divergence gix A |n particular, let us consider an Ohmic distribution for
when integrating over momenta in Fourier space, as can bge environment frequencies with an ultraviolet cutdff
seen from Eq(B7). The result is, nevertheless, finite when yhich can be characterized by a spectral density function
x#x' (and they are not _connected _by a null geoq)esm such asl(w)=wf(A—w) or wexpw/A) (the details
fact, even though the noise kernel is not well defined as ap gt the particular way in which the cutoff is implemented
tensor-valued functiolt it is well defined as a tensor-valued are not important hejeWe have an expression analogous to
distribution and yields finite results when integrated with Eq. (D2) for the induced fluctuationsee Eq(A2) and Ref.
suitable test functions. , _[59]]. If we consider the ground statéhermal state at zero
Let us consider a specific example to illustrate the point§emperature as the initial state for the environment, the
addressed in this appendix: a massless conformally couplgfhise kernel is given bp(t,t')=fdwl (w)/w cosa(t—t').
scalar field in Minkowski spacetime. The expression for the/han taking the limitA — o ,the noise kernel becomes pro-

noise_ kernel in s_pacetime coor(_JIinates, Whi.Ch res_ult_s fronﬂ)ortional toPf(1/(t;—t5)?). To obtain the correlation func-
Egrl]miesr ttr:?]fifl(ljorvrcilgg[SEAf](:Bn and is a well-defined distribu- tipn we integrate by parts, as described above, in t'he expres-
' ' sion for the induced fluctuations, EGA2), before taking the
2 limit A—c0. We obtain again a boundary term at the initial
) time which diverges as we finally lét go to infinity, and we
(x—x")? end up with an infinite result for the correlation function. On
the other hand, one can show that the result for the correla-
_ i(a 9,d'900,0n(x—x")2, (DY) tion funct_ion of the_ground state of the wholg syst@ystgm
160 #7Vee x plus environment including the system-environment inter-
action, is finite(the use of Euclidean path integrals is par-
where Pf stands for the Hadamard finite part prescription,ticularly convenient in this respacf75]. This constitutes a
whose precise definition can be found in R¢®3,74. How-  clear example of the fact that initial states in which the sys-
ever, the contribution from the induced fluctuations to thetem and the environment are Suitab]y correlated give rise to
symmetrized two-point correlation function, which is given well-defined correlation functions.
by Alternatively, when taking a completely uncorrelated ini-
tial state, one can still get a finite result for the correlation
function by smoothly switching on the system-environment
interaction so that the boundary term at the initial time which
results from the integration by parts and becomes divergent
is not necessarily well defined if the time integral in thein the limit A —c actually vanishes. This reveals again that
center dot () involves a finite initial timet; . That is because the origin of the singularity for the correlation function arises
in that case the noise kernel is actually convoluted withbecause the highest frequency modes of the environment be-
Gre(X1,X7) 0(t;—1;), which is not a good test function since come correlated with the system in a time scale of the order
it is not differentiable at]=t;. The fact that the result for of A~*. Such a fact is supported by the existence of a jolt
with a characteristic time scalé ! in the diffusion coeffi-
cients of the master equation which becomes singular when
4The noise kernel is in general a bitensor, but due to the homoA —, as was found in Ref76]. In fact, one can show that
geneity of Minkowski spacetime and the triviality of the connection those states in which the high frequency modes of the envi-
(and the corresponding parallel transpgitie noise kernel becomes ronment and the system are uncorrelated are unphysical
in that case a simple tensorial field which dependsyonx’)*. when the environment contains an infinite number of modes

N,

MVPU(X—X')OC((S’M(?V@;(?;)'Pf

K2
W[Gret'N‘(Gret)T](XliXZ)r (DZ)

044002-19



HU, ROURA, AND VERDAGUER PHYSICAL REVIEW D70, 044002 (2004

with arbitrarily high frequencies since their energy becomedutions for the case of a massless scalar field were first dis-
infinite asA — oo, cussed in Ref[16] and an exhaustive description can be
Return now to the gravitational case. There are some situfound in Appendix A of Ref[21]. Taking Eq.(7) and using a
ations, such as the effect of stress tensor fluctuations on thgecomposition for the linearized Einstein tensor analogous to
propagation of null geodesics, in which the appropriate wayhat introduced in Sec. IV C for the metric perturbation, the
to deal with the Singular coincidence limit of the noise kern6|vectoria| part is found to Vanis}?, whereas the scalar and

is by integrating over some smearing funct{@j (in general  tensorial contributions satisfy the equations
smearing just along the spatial directions is not enough:

smearing in time is needed to get a finite res@mn the other [F,(p)+3p2F,(p)]1GLS)p)=0, (ED)

hand, when computing the correlation functions for the met- r

ric perturbations, the noise kernel naturally appears inte- F.(p)BOM(p)=0 (E2)
1 uv Y

grated with the retarded propagator. As explained above, the

problem still persists at the initial time, which reflects thewhereFl(p) andF,(p) are given by Eqs(9) and(10), and
unphysical character of the completely uncorrelated initialx (s, and DM denote. respectively. the scalar ar;d tenso-
state that was employed. Similar to QBM models, a well-7#»v wy » Fesp Y

defined result for the correlation functions can be obtained'@ pf;l]rts ththe ImeanzedlEl_nsteln tensor. In_l?rder tg '"uﬁ'
by considering a properly correlated initial state, such as thdfate how the runaway solutions arise, we will consider the

resulting from the use of Euclidean path integrals that aré)articulfar example of a massless and conforn"_nally cpupled
then analytically continued to Lorentzian tif@4]. Roughly scalar field(see Ref[21] for the massless case with arbitrary

speaking, this would imply the existence of an additional®®UPling and Refs.3,54] for the general massive cas&he

term in Eqgs.(14) and (C18 due to the existence of correla- Previous equations become then

tions between the initial conditions for the solutions of the — 2 R (1)(S)

Langevin equation and the stochastic source, which reflect (1+12xpp7) G, () =0, (E3)

the initial correlations between the system and the environ-

ment. .
Alternatively, one can still make sense of the results ob- I|m+

tained from assuming an uncorrelated initial state by °

smoothly switching on the interaction between the metric =0. (E4)

perturbations and the matter fields so that the high frequency

modes can get correlated with the system. However, in conn addition to the obvious solutioéﬁg(s)(p)zo (the only

trast to the QBM case, we have to be careful with switching, | i whenB=0), whenB=>0 the solutions for the scalar

on the interaction during a finite period of time since thatcomponent exhibit an oscillatory behavior in spacetime co-

V.VOUI.d imply that the source of the El_nsteln-l__ang_evm €quayrginates which corresponds to a massive scalar field with
tion is not conserved and would be in conflict with the Bi- —iN—1 — ,
m?=(12«|B|)~*; for B<0 the solutions correspond to a

anchi identity, which guarantees the integrability of the equa- P I = !
tion. Therefore, the interaction should be turned ontachyonic field withm®=—(12«|B|)"*: in spacetime coor-
adiabatically and asymptotically past initial conditions dinates they exhibit an exponential behavior in time—
should be considered. In fact, in Sec. IV, where we assumeg@lowing or decreasing—for wavelengths larger than
asymptotic initial conditions and worked mostly in Fourier 47(3«|8|)Y? and an oscillatory behavior for wavelengths
spak\]ce, arl:inite redSt;It fortr;g _clorrelaticr)]n functiorr: was obtainedmaller than 4r(3«|B])Y2 On the other hand, the solution
without the need for explicitly switching on the interaction OO pY=0 i o ; ;
. . e . g =0 is completely trivial since any scalar metric
adiabatically. There are, however, situatidfa instance, in ny (p). ~ p y . y. . .
cosmology in which asymptotic initial conditions are not Perturbatiorh,,,(p) giving rise to a vanishing linearized Ein-

adequate. An alternative procedure should be considered #{€in tensor can be eliminated by a gauge transformation as
those cases. explained in Sec. IV C.

As for the tensorial component, whermn=< i

APPENDIX E: RUNAWAY SOLUTIONS AND METHODS =1, 1(120m)Y%e” (or A=\ ¢y= i in the notation of Ref.
TO DEAL WITH THEM [21]) the first factor in Eq(E4) vanishes for four complex

values ofp® of the form + w and + w*, wherew is some

i : . X , complex value, as illustrated in Fig. 2. We will consider here
runaway solutions in SCGsolutions which grow without the case in whichu< . a detailed description of the

bound in time scales comparable to the Planck Yintteeir _situation for u= u; can be found in Appendix A of Ref.
counterparts at the quantum level, and how their connection

can be understood in the context of stochastic gravity. We_______
will also discuss the existing prescriptions for dealing with 5
this kind of unstable solution.

—(p°+ie)*+p

PE:

a@m
G, (p)

1+(960n%—1xp4n(

In this appendix we will briefly discuss the existence of

More precisely, decomposing the metric perturbation into scalar,
vectorial and tensorial parts, as done in Sec. IV C, and computing
the linearized Einstein tensor, one gets a vanishing result for the
vectorial part of the metric perturbation; the scalar and tensorial
Let us start by considering the linearized semiclassicatomponents of the metric perturbation give rise, respectively, to the
Einstein equation around the Minkowski spacetime. The soscalar and tensorial components of the linearized Einstein tensor.

1. Runaway solutions in semiclassical gravity
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0 Refs.[19,77)). The theory can then be quantized following
ﬂ the standard canonical quantization rules. The corresponding
Wigner function(or Wigner functional if a field theory were
e consideregican also be introduced. The pathological charac-
; ter of the theory becomes clear by diagonalizing the Hamil-
tonian and realizing that the result corresponds to two inde-
= i pendent harmonic oscillators, but with one of them having a
negative sign in the kinetic term. Ferx 0 the potential term
of the harmonic oscillator with the negative kinetic term is
also negative and the classical solutions do not exhibit insta-
° o bilities. However, in any case the configurations for the har-
monic oscillator with the negative kinetic term can have
negative energies arbitrarily large in absolute value. More-
over, the frequency for that oscillator is proportionalfo?
and diverges as—0. At the quantum level, such a theory
also gives rise to negative eigenvalues of the Hamiltonian
arbitrarily large in absolute value, but can be alternatively

-
~a?

f e e -

FIG. 2. Representation in the complex plane of the valugs’ of
for which the coefficient of the semiclassical Einstein equation for

the tensorial components of the Einstein tensor in Fourier Spacg) mulated in terms of a Hamiltonian without negative ener-
vanishes. The cage< u.; and a particular value g > were con- gies by introducing states with negative nofzommonly
sidered, but the qualitative structure will remain the same for anYeferred to as ghostd65]. This fact is often argued in a
other value ofp 2. The plot also corresponds to the structure of thequalitative way by pointing out that the propagator of the

poles of the tensorial part of the propagady,.s(p). The solid  theory in Fourier space is proportional to
line corresponds to the integration contour when Fourier transform-

ing back to spacetime coordinates which follows from the prescrip-

tion proposed by Hawkingt al. [64] and was chosen in Refb4]. 1 1
Changing this contour as indicated by the dashed lines, one obtains > 5T o 1 (E6)
a strictly retarded propagator, but it exhibits exponential instabilities w = w T

for large positive time differences associated with the two poles on

the upper half of the complex plane. . .
PP plexp It should also be mentioned that Hawking and Hertog have

[21]. The two zeros on the upper half of the complex p|(,jmesug_;ges_ted a prescription fqr dealing wi_th that kind of theorigs
correspond to solutions in spacetime coordinates exponedf!hich is based on imposing well-defined boundary condi-
tially growing in time, whereas the two on the lower half oS in Euclidean time and then Wick rotating back to
correspond to solutions exponentially decreasing in timelOrentzian time. The results have then a nonsingular limit
Strictly speaking, these solutions only exist in spacetime co? 9. SO that when the higher order derivative term in the
ordinates, since their Fourier transform is not well defined-@drangian is small, one essentially recovers the results of
They are commonly referred to as runaway solutions and foih€ Sécond order theof$5].

~1-1 they grow exponentially in time scales comparable EVEN though there is a range of parameters:Q) in
f:) th(pa Plan)ékgtime P y P which the free theory described above does not exhibit insta-

bilities, they arise when a nonlinear self-interaction term is
added to the Lagrangian. The reason is that the two Hamil-
tonian contributions corresponding to a couple of harmonic
oscillators, one with a negative energy spectrum and the
Before proceeding to discuss the situation in stochastiother with a positive one, can have a stable evolution as long
gravity, it is interesting to make a few remarks about theas they are decoupled. However, adding an interaction term
quantization of higher derivative theories and the countercouples them in such a way that one can acquire negative
parts of the previous classical instabilities in the quantunenergies arbitrarily large in absolute value while the other
context. Let us consider first a free theory with a structuregains large positive energies, which is the source of instabil-
analogous to that of linearized semiclassical gravity aroundty. In general this is reflected in the structure of the propa-
Minkowski spacetime without including the nonlocal terms. gator as a shift of the poles on the real axis to the complex
It is characterized by the following Lagrangian, which cor- plane. Hawkinget al. have argued that well-behaved results
responds to a harmonic oscillator with a higher derivativecan still be obtained by imposing boundary conditions which
term: discard solutions which grow unboundedly in tirfi&4,65.
Those conditions can be implemented by a suitable choice of
the integration contour on the complex plane when comput-
ing the inverse Fourier transform of the propagator, but cau-
sality is violated at small time scaléae will come back to
To begin with, one can consider a generalization of the usuahis point below. Another possibility, when the parameter
canonical formalism introduced by Ostrogradski to deal withis small, is to make use of an order reduction procedure
theories involving higher order derivativésee, for instance [21,22,78, which consists of differentiating the equation of

2. Quantum mechanical systems with higher order time
derivatives

. T. 1. 1
L(g,9,0)= 50°+ 50°~ 5 Q%q* (ED
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motion wi.th respect- to time, substituting bac_k into the o.rigi- Gglb)[gth]:OJro(Kz)’ (E7)

nal equation and discarding the terms of higher order.in

This procedure can be iterated as many times as necessary\iere no effects from the vacuum polarization of the quan-
get a second order equation valid up to the correspondingum matter fields are left. Since the linearized semiclassical
order of 7. The usual canonical formalism associated withEinstein equation coincides with the homogeneous part of
the second order equation of motion can then be employed tive Einstein-Langevin equation, E@7) governs the contri-
evolve the Wigner function. It should be stressed that, albution of the intrinsic fluctuations to the quantum correlation
though we have considered a simple model as an illustratintpnction, which coincides with that of free gravitons. Simi-
example, the previous methods have been applied to mofarly, when making use of the order reduction prescription,
involved situations, including SC{22,21 and quantum cos- the Einstein-Langevin equation becomes

mology [64].

Glg+h]= K&+ O(x?), (E8)

3. Runaway solutions in stochastic gravity ) ) .
where the stochastic source, whose correlation function only

Let us now address the case of stochastic gravity and sgfspends on the background metric and hence does not in-
how the instabilities in SCG and the difficulties in quantizing yolve higher order derivatives of the metric perturbation, is
theories with higher order derivatives are related. First of allnot affected by the order reduction procedure. Therefore, in
we recall that in Appendix C the counterterms quadratic incontrast to the intrinsic fluctuations, there will still be a non-
the curvature were ignored and it was implicitly assumedrivial contribution to the induced fluctuations due to the po-
that the Einstein-Langevin equation was a second ordearization of the quantum matter fields, but no contribution
integro-differential equation whose initial conditions were from the dissipation kernel is left in the Einstein-Langevin
completely determined by specifying the metric perturbationrequation. Since all the terms involving higher order deriva-
and its normal derivative on the initial Cauchy hypersurfacefives, which were associated with the dissipation kernel,
If the counterterms quadratic in the curvature, which givehave been discarded, an ordinary Wigner functional can be
rise to higher order derivative terms, are also taken into acihtroduced without any need to consider generalized Ostro-
count, the generalized canonical formalism referred to abovgradski momenta. Furthermore, the absence of the dissipa-
and the corresponding Wigner functional should be used. [§on kernel also allows the possibility of specifying initial

fact, as a result of the singular behavior of the nonlocal pargonditions at a finite initial time as far as the homogeneous

of the dissipation kernel at the initial time, specifying initial solqtions(relevant for the computation of the intrinsic fluc-
conditions at a finite initial time is an even more delicatetuat'ons and the retarded propagator are concerned. Never-

matter. In any case, since we have to consider asymptoti eless, one is still forced to consider asymptotic initial con-
initial conditions to deal with the singular coincidence limit ftions in order to get a f'n'te. r(_asult fo_r t_he mducgd
of the noise kemnel, as explained in Appendix D, we do not1{1I1uctuat|ons due to the singular coincidence limit of the noise

) kernel, as explained in the previous appendix.
nee d _to_ .b € poncerned about the_ problems assou.ated.W| Hawkinget al. have proposed an alternative procedure for
finite initial times. Runaway solutions, however, still exist de

, , ! , aling with the runaway solutiorj§4,65. Their method is
and some method to deal with them is required. In particularyage 4 on imposing final boundary conditions which discard
when computing two-point correlation functions in the con-iase solutions that grow unboundedly in time. Let us first
text of stochastic gravity, the existence of runaway solutiongee how their approach can be applied to the computation of
has implications for both the intrinsic and the induced con+he intrinsic fluctuations by considering the particular case of
tributions. a massless and conformally coupled scalar field. From Eq.
One possible method for dealing with the existence of(E4) and Fig. 2 one can see that, in addition to the solution
runaway solutions is therder reductionprescription. As ex- Gilgzo, the solutions of the tensorial part grow or decrease
plained above, the method is based on treating perturbativelxponentially in time. The exponentially growing solutions
the terms involving higher order derivatives, differentiatingare discarded when the final boundary condition is imposed,
the equation under consideration and substituting back thend the contributions from the exponentially decreasing ones
higher derivative terms in the original equation keeping onlyalso vanish if regular initial conditions are specified at an
terms up to the required order in the perturbative parameteasymptotic initial time. On the other hand, from EE3) one
In the case of the semiclassical Einstein equation, the pertugan see that the situation is analogous for the solutions of the
bative parameter employed #sor, equivalently, the square scalar part whe3<0. For 8>0 the solutions are oscilla-
of the Planck Iengtﬂlg=xl87-r. If we consider the semiclas- tory and, hence, are not discarded when the final boundary
sical Einstein equation for linear metric perturbations aroundtondition is imposedin contrast to the situation where the
Minkowski spacetime and differentiate twice with respect toorder reduction prescription is used
the background covariant derivative, it becomes clear that Let us now apply the previous approach to the computa-
the second order derivatives of the Einstein tensor are dfon of the induced fluctuations. When considering
order k. Substituting back into the original equation, we getasymptotic initial conditions, the relevant propagator for ex-
the following equation up to ordet?: pressing the linearized Einstein tensor in terms of the sto-
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chastic source, can be obtained by invertig,.z(p) in Eq.  tors are of ordergR3 or higher. Thus, we see that the higher
(7). The resulting propagatof)#mﬁ(p), exhibits a number order corrections not included in SCG are negligible pro-
of poles in the complex plane, as illustrated in Fig. 2. Thevided thatL>1,. In that regime, however, the vacuum po-
expression for the retarded propagator in spacetime coordiarization terms only yield a small correction to the Einstein-
nates corresponds to choosing the integration path reprédilbert term and any classical gravitational source which
sented by the dashed line in Fig. 2 when Fourier transformwere present. The justification of the order reduction pre-
ing back from momentum space. It exhibits the appropriatescription is actually based on this fact. Therefore, significant
causal behavio® ,,,5(x—y)=0 fort,<t,, as can be seen effects from the vacuum polarization of the matter fields are
by closing the integration contour on the upper half of theonly expected when their small corrections accumulate in
complex plane. However, for,>t, it increases exponen- time, as would be the case, for instance, for an evaporating
tially in time due to the contributions from the two poles on macroscopic black hole all the way before reaching Planck-
the upper half of the complex plane when closing the path oman scales.
the lower half. Imposing the final boundary conditions which ~ The previous estimates for the different terms in the ef-
discard solutions growing unboundedly in time is equivalentfective action change in a remarkable way when a large num-
to taking a different integration path: that represented by #&er of fields,N, is considered® The vacuum polarization
solid line in Fig. 2. The resulting propagator does not exhibitterms involving loops of matter become of ord¢R* and,
exponential instabilities, but gives rise to causality violationssimilarly, the higher loop corrections involving internal
since D ,,,5(x—y)#0 for t,<t, (the characteristic time- graviton propagators are of ordNﬂ§R3 or higher(the con-
scale of these causality violations is of ordﬁlp). This  tributions corresponding to one and two graviton loops are,
propagator is the only one which has a well-defined Fourierespectively, of ordeR? andI§R3, but are negligible as com-
transform. It was employed in Rg64], where it was argued pared to those from matter loops whinis large. There is
that any other propagator should yield an equivalent resulthen a regime in which the vacuum polarization of the matter
for the correlation function obtained by solving the Einstein-fields and the Einstein-Hilbert term are comparable when
Langevin equation. This argument is certainly true for propa—~ \/Nlp_ On the other hand, the higher loop corrections will
gators with a well-defined Fourier transform. However, thestill be much smaller iL>1,. Both conditions are compat-
existence of poles off the real axis gives rise to propagatoriple provided that the number of fieldd, is very large. This
in spacetime coordinateghey do not have a well-defined s, in fact, the kind of situation considered in trace anomaly
Fourier transform because of the exponentially growing orriven inflationary model$64], such as that originally pro-
decreasing contributionsvhich yield inequivalent results for posed by Starobinsky3], where the exponential inflation is
the correlation function. Since this choice for the propagatodriven by a large number of massless conformal fields. The
was made, the results obtained in RE4] correspond to  order reduction prescription would completely discard the
those that would follow when employing the procedure pro-effect from the vacuum polarization of the matter fields even
posed by Hawkingt al. In fact, Hawkinget al. applied their  though it is comparable to the Einstein-Hilbert term. In con-
method to quantum propagators, but, as we have described titast, the procedure proposed by Hawkiegal. keeps the
can also be used when solving the semiclassical Einsteigontribution from the matter fields.
equation and the Einstein-Langevin equation. The stochastic We conclude this appendix by mentioning that it has been
correlation functions obtained are then equivalent to thepointed out that a similar kind of instability, which is closely
quantum correlation function§CTP propagatojs which  connected to the existence of the Landau pole, is also present
would result from the application of the prescription. in scalar QED(as well as ordinary QE[[17,18,34. Never-
theless, a number of nonperturbative studies on the evolution
of the expectation value of the electromagnetic field using a
4. Estimates of radiative corrections for a single matter field largeN expansion have been carried out. In fact, it was sug-
and a large number of them gested in Ref{45] that by introducing a finite 3-momentum
cutoff and considering a running coupling constant small
SCG is expected to provide reliable results as long as thenough at low energies, the problem with the Landau pole
characteristic length scales under consideration are muatpuld be circumventedat least from a practical point of
larger than the Planck length [21]. This can be qualita- view). Yet it seems unlikely that a similar procedure could
tively argued by estimating the magnitude of the differentwork for the gravitational case due to the existence of higher
contributions to the effective actidieonsidering the relevant derivatives. Moreover, introducing a 3-momentum cutoff
Feynman diagrams and using dimensional argunmettte ~ would break general covariance and that would pose serious
Einstein-Hilbert term and the radiative quantum correctionsdifficulties when implementing a consistent and natural
The Einstein-Hilbert term is of ordéf; °R (the characteristic renormalization scheme in general curved spacetimes.
curvatureR is simply given byL ~2, wherelL is the charac-
teristic length scale of our problegthe vacuum polarization
terms involving loops of matter fields are of ordef, and 18The actual physical Planck length is considered, not the res-
higher loop corrections involving internal graviton propaga-caled one,/«/8w, which is related td,, by 8wlf,:;<=?/N.
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