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It has been argued that a black hole horizon can support the long-range fields of a Nielsen-Olesen string and
that one can think of such a vortex as black hole “hair.” In this paper, we examine the properties of an Abelian
Higgs vortex in the presence of a charged black hole as we allow the hole to approach extremality. Using both
analytical and numerical techniques, we show that the magnetic field(kisesell as the scalar figlaf the
vortex are completely expelled from the black hole in the extreme limit. This was to be expected, since extreme
black holes in Einstein-Maxwell theory are known to exhibit such a “Meissner effect” in general. This would
seem to imply that a vortex does not want to be attached to an extreme black hole. We calculate the total
energy of the vortex fields in the presence of an extreme black hole. When the hole is small relative to the size
of the vortex, it is energetically favored for the hole to remain inside the vortex region, contrary to the intuition
that the hole should be expelled. However, as we allow the extreme horizon radius to become very large
compared to the radius of the vortex, we do find evidence of an instability. This proves that it is energetically
unfavorable for a thin vortex to interact with a large extreme black hole. This would seem to dispel the notion
that a black hole can support “long” Abelian Higgs hair in the extreme limit. We show that these consider-
ations do not go through in the near-extreme limit. Finally, we discuss the implications for strings that end at
black holes, as in the processes where a string snaps by nucleating black $0556-282(198)08320-9

PACS numbgs): 04.40-b, 04.70-s, 11.27+d, 98.80.Cq

[. INTRODUCTION in string theory the Einstein equations are induced from the
low-energy effective field theory only to “zeroth” order in
Black hole “hair” is defined to be any field) associated «', wherea’ denotes the Regge slope of string theory. If
with a stationary black hole configuration which can be de-you include the ordet’ corrections, then you get curvature-
tected by asymptotic observers, but which cannot be identi“squared” terms in the Lagrangiafyou also get the usual
fied with the electromagnetic or gravitational degrees of freedilatonic terms$. It turns out[7] that black hole solutions in
dom. Back in the heyday of black hole physics, a number ofuch a curvature-squared, higher-derivative theory of gravity
results were provefl,2,3] which seemed to imply that black can support nontrivial dilatonic configurations outside the
holes “have no hair.” Put more colloquially, these results horizon, and so they are said to possess “dilatonic” hair.
implied that given certain assumptions the only informationAgain, these results do not actually contradict the original
about a black hole which an observer far from the hole camo-hair theorems since they only apply in exotic situations.
determine experimentally is summarized by the electric What these results teach us is that we have to tread very
charge, magnetic charge, angular momentum, and mass oérefully whenever we start talking about black hole hair.
the hole. Such uniqueness results are referred to as “ndAe will stick with our definition of hair as any property
hair” theorems. These celebrated results would seem to imwhich can be measured by asymptotic observers. Further-
ply that a black hole horizon can support only these limitedmore, we shall follow{8] and use the term “dressing” for
gauge charges; for a long time, physicists thought that othethe question of whether or not fields actually reside on the
matter fields simply could not be associated with a blackhorizon.
hole. However, this prejudice was to some extent discredited With all of this in mind, we now want to analyze the
when Bartnik and McKinnof4] discovered a solution of the extent to which hair is present in situations where we allow
Einstein-Yang-Mills equations which had “particle”-like the topology of some field configurations to be nontrivial; in
guantum numbers which did not correspond to the gravitaparticular, an interesting question is whether or not topologi-
tional or Maxwell fields. More precisely, the holes pf]  cal defects, such as domain walls, strings, or texti#gsan
support Yang-Mills fields which can be detected by act as “hair” for a black hole. I18] evidence was presented
asymptotic observers; one therefore says that these blatkat a Nielsen-OleseflJ(1)] vortex can act as “long” hair
holes arecolored for a Schwarzschild black hole. More precisely,[B] the
Of course, these exotic solutions do not impugn the origi-authors studied the problem of whether or not such a vortex
nal no-hair results since all such solutions are known to bean exist on a Schwarzschild black hole backgroune-
linearly unstable(see, e.g.[5]). These colored holes are glecting at first the gravitational back reactjipithey pre-
therefore said to “evade” the usual no-hair results. sented analytical and numerical evidence for such a solution.
There are other amusing tricks which allow one to evadélrhey went on to include the gravitational back reaction of a
no-hair theorems. For example, the reader will ref@lthat  single thin vortex and managed to rederive the “Aryal-Ford-
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Vilenkin” (AFV) metric [10], which is a solution meant to [l. NIELSEN-OLESEN VORTEX IN THE PRESENCE
model a cosmic string threading through a Schwarzschild OF A CHARGED BLACK HOLE

black hole(i.e., the AFV solution is just a conical defect
centered on a black hogleThus they were able to argue that for

the A,FV solution truly is the “th,'n vortex” I'm't of a background. Since we want to provide some continuity with
“physical” vortex—black-hole configuration. Using all of the study of Achaarroet al.[8], which in some respects we
these results, they concluded with an argument that the Ab%eneralize, we will present our analysis in a form and nota-
lian Higgs vortex isnot just dressing for the Schwarzschild tion that closely parallel theirs.

black hole, but rather that the vortex is truly hair, that is, a Qur treatment of the black-hole—string-vortex system in-
property of the black hole which can be detected byyvolves a clear separation between the degrees of freedom of

In this section we analyze the Nielsen-Olesen equations
an Abelian Higgs vortex12] in the Reissner-Nordstno

asymptotic observers. each of these objects. The action takes the form
In this paper, we extend the analysis[8f and allow the
black hole to be charged. That is to say, we consider the S=S5,+S,, (2.1

problem of an Abelian Higgs vortex in the Reissner-

Nordstran background. In order to “turn up” the electric where the first term is an Einstein-Hilbert-Maxwell action,
charge of the hole, we have to allow for the presence of two

U(1)’s [one U1) is where the charge of the hole resides and S - 1 f d“x\/—_
the other W1) is the symmetry spontaneously broken in the 17 167wG 9
ground statg otherwise, the charge would be screened. We

find that the results di8] are reproduced when the charge of and the second describes an Abelian Higgs system minimally
the hole is very small relative to the mass. However, as wgoupled to gravity:

increase the charge and the hole approaches extremality, we

find that something very remarkable happens. In the extrem :j 4y [ tru _i 2_& foo 212
8= | d*xV—g|D,»'D ® g2 Fim g (@To—7?2).

: (2.2

1
_p__
R 4}"

limit, all of the fields associated with the vortéloth the

magnetic and scalar degrees of freeflare expelled from (2.3

the horizon of the black hole. We present dramatic numerical

evidence that the magnetic and scalar fields always “wrag he matter content of the Abelian Higgs system consists of
around” the horizon in the extremal limit. This behavior was the complex Higgs fieldP and a Ul) gauge field with
expected, given that extreme black holes in EinsteinstrengthF,, and potentiah, . Both the Higgs scalar and the
Maxwell—dilaton theories generically display such adauge field become massive in the broken sy_mmetry_phase.
“Meissner effect” and so can be thought of as “supercon-They are -coupled through the gauge covanant derlyat|ve
ductors” (a deeper analysis of the superconducting properPx«= V. TIA,, whereV , is the spacetime covariant deriva-

ties of extremal black holes anptbranes in Kaluza-Klein 1VE: AS in[8], we choose metric signatufe- ———).
and string theories will be given ifL1]). The degrees of freedom i8, will be treated as “test

We go on to calculate the total energy present in the elecf-'eIds  1.e,, their energy-momentum tensor is supposed to

tromagnetic field(of the vortey as we allow the extreme yield a negligible contribution to the source of the gravita-
black hole to become very large compared to the size of thtional field. The latter, instead, affects the propagation of the

. d find an instability. Put imolv. for bl k‘ﬁelds ® and A,: an exact solution of the Einstein-
vortex, and we find an instabifity. Fut more Simply, 1or DIack vy, | equations frons,; will be plugged into the Abelian
holes large compared to the vortex radius, the energy of

. . ) Bliggs actionS, as a fixed, background metri »- Notice
vortex which doesmotwrap the holdi.e., with the black hole thgtgwe havestzwo different gaugegfieIdE,and F,g;énd each is

outside the vortexis muchless than the energy of a Vortex yreated in a very different manner. It is orfiythat couples to
which does wrap the hole. It is therefore energetically unfayne Higgs field and is therefore subject to spontaneous sym-
vorable for the vortex to interact with the hole, and indeedmetry breaking. The other gauge fiekicould be thought of
the vortex will want to “slide” off of the hole. Thus, in the as the free, massless Maxwell field of everyday experience;
thin vortex limit, a vortex does not want to be attached to ampart from modifying the background geometry, its dynam-
extreme black hole. It follows that the vortex cannot in anyics will be of little concern to us here. Notice that whereas
way be thought of as a “property of the black hole which canwe treatF as a test field, the back reaction & on the

be measured at infinity”; in other words, an Abelian Higgs geometry will be fully accounted for.

vortex is not hair for an extreme black hole. Curiously, the The parametey, is the energy scale of symmetry breaking
expulsion of the vortex does not proceed gradually as thend X is the Higgs coupling. These can be related to the
black hole approaches extremality; rather, we have foundiiggs boson mass byn,ges= 7VA. There is another rel-
numerical evidence that a nonextreme black hole is alwaygvant mass scale, i.e., that of the vector field in the broken
pierced by a vortex, no matter how close to extremality it is.phase, Mo =v2e7. On length scales smaller than
We conclude with a discussion of the implications of ourm;elctop m;iégs, the vector and Higgs fields behave as essen-
results to scenarios involving strings ending on black holestially massless. It is also convenient to define the Bogomol-
in particular, the snapping of strings by the formation of nyi parametel;8=)\/2e2=mﬁiggslm\z,ector

black hole pairs. The action(2.3) has a W1) invariance realized by
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PP, A AV, A(X), (2.4

which is spontaneously broken in the ground state,

PHYSICAL REVIEW D 58 124014

The Reissner-Nordstno black hole has inner and outer
horizons where/(r)=0. We will only be interested in the
outer horizon, which is at radius

= pe'Mo, Besides this ground state, another solution, the vor-

tex, is present when the phased®(Xx) is a nonsingle-valued
quantity. To better describe this, define the real fildB , ,
and y by
O=nXeX, A,=P,—V,x. (2.5

A vortex is present whegdy=2=N, the integerN being
called the winding number of the vortex. N# 0 and if the
spatial topology is trivial, then, by continuity, the integration
loop must encircle a point of unbroken symmety=0),
namely, the vortex core.

The Euler-Lagrange equations that follow by varyln
the action(2.3) are

2

A7
VZX—XP,P#+ - X(X?—1)=0, (2.6)

while by varyingA,, one finds
V F#r+2e?9?X?P=0. (2.7

The field y is not dynamical. In flat space, vortices of
Nielsen-Olesen typgl2] appear as cylindrically symmetric
solutions

D=X(ro)e'N?,

P,=NP(r), (2.9

=+ B QL

The horizon exists as long &=|Q|; otherwise, one finds a
naked singularity. If the inequality is saturated, =E
=|Q|, thenV(r) has a double zero at. and the black hole
is said to be extremal.

Return now to the equations of the vortex. One can con-
sistently take

(2.11

X=X(r,0), P¢=NP(r,0), (2.12
which simplifies the equations of motidg.6), (2.7), to the

form

1
= 3, (r’Vo,X)— 9(SiN 69 ,X)

r2sin 0
1 . NZX p2
+ = X(X%2-1)+ =0, 2.1
2 ( ) r2siré 0 (213
Vo p sing [ d,P\ X°P o -
3,(Va,P)+ d — =0. .
(Vo,P) z % gng 3 (2.149

r. being the cylinder radial coordinate and all other compo-ln this generic form these equations allow us to recover two

nents ofP,, being zero. We will be concerned, however, not
with flat space, but with another solution of the Einstein-
Maxwell theory(2.2), namely, the Reissner-Nordstndblack
hole

dp? .
d2=Vde— —— p2(d6?+sitode?),
2Gm ¢?
v=l- 4 2.9
PP

(the chargey is measured here in geometrical upitghich is
not cylindrically symmetric. This makes the analysis of the
solutions somewhat more complicated.

It will be convenient to rescale the radial coordinate and )
black hole parameters by the Higgs wavelength to work withfluX tube isr~

the nondimensional variables,E,Q)= n\/X(p.Gm,q). In
terms of these variables,

2E 2
v=1——+Q—.
r r2

(2.10
We stress that the charggof the black hole, which couples
to the field 7, is unrelated to the Abelian gauge fididas-
sociated with the vortexQ can be primarily thought of as a
parameter that allows us to modify the background geom

etry, in particular, to consider the extremal black hole back-

grounds described below.

interesting situations as limiting cases. First, wien « the
Higgs field decouples. In this situation we would be essen-
tially studying a free Maxwell test field in the Reissner-
Nordstran background. The complementary situation arises
when P=1 (a constantthroughout the space: this would
be a global string, i.e., without any local gauge dynamics, in
the presence of the charged hole.

Equations2.13), (2.14), are, in general, rather intractable
in exact form and we will need to resort to approximation
methods. In the next section, we will solve the equations
numerically and study configurations with arbitrary relative
sizes of the black-hole—vortex radii. For the remainder of
this section we will describe an analytical solution of these
equations for the case where the black hole is small relative
to the vortex size. In the units we are using the radius of the
J2NBY4 for N>1. Thus we will require

N>E. This sort of largeN limit was first employed to
obtain analytical results ifiL3]. The results we obtain in this
way will be consistent with our numerical solutions in the
next section.

Well inside the core of the vortex the gauge symmetry
remains essentially unbroken. Thus we expéstO or, bet-
ter, X%/ B~0. It is not difficult to see that, within the approxi-
mation considered, one can consistently neglect the last term
in Eqg. (2.14) and then attempt to solve

)

) sinf [ 9,P
5r(V(9rP)+ r—z dy

sin 6

(2.19
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For the Schwarzschild backgroun@€0), a solution is

provided byP— 1or2 sir? 6. This suggests that we try the

ansatz
P~1+a(r)siré. (2.16
The equation we must solve now is
QZ
(r’—2Er+Q%a"+2|E— s a’'—2a=0, (2.17
which admits the solution
a(r)=—p(r’-Q?, (2.18
and hence
P~1-p(r2—Q?)sir’e. (2.19

PHYSICAL REVIEW D 58 124014

(k is another integration constant; its precise value is irrel-
evant for our purposgésFrom here we geX as
X~bN(r)sinVe. (2.29
Equations(2.19), (2.23), and(2.24), constitute our solu-
tion describing a “test vortex” residing in the background of
a charged black hole that sits well within the vortex core.
The presence of charge induces a number of qualitative
changes in the picture described[8] (the neutral cageTo

start with, notice that the distance at whi€h=0, which
roughly defines the thickness of the vortex, is

1 1
r sin f~ \/=+ Q?%sirfo~ —
P Vo

1+ g stinzﬁ),
(2.29

Herep is an integration constant equal to twice the magneticand so we see that, compared to the neutral black hole case,
field strength at the center of the core. We have also chosethe vortex is thicker on the equatorial region when the black

the parameters in order to hat®—1 at the string axis §

hole has charge. This effect is of ordpr~1/N and acts

=0,7). Far from the black hole, but still inside the vortex, against the “squeezing” of the string due to the black hole

we can perform an analysis similar to that[it8] to show
that

1
~— 2.2
INVB (2.20
LargeN thus means smap.
Now we have to solve the equation for the Higgs fixld

Eq. (2.13. Following [13], we setX=¢N and expand in
powers of 1IN. This yields

(aré 21 09§>2__ p? ,
V| — t= | —m'FO(l/N ). (2.2))

3 re\ ¢

attraction. Intuitively, the presence of charge induces
tension—a repulsive effect.

However, there is a more important modification intro-
duced by a nonzero charge on the black hole. If we compute
the magnetic flux crossing any portion of the horizon, which,
from Eq.(2.19, is given by

Foglr=r,=—p(ri—Q?sin 29, (2.26

we see that it decreases as we increase the charge, until it
precisely vanishes for an extreme black hole. Moreover, we
see from Eq(2.23 that the Higgs field also vanishes at the
horizon in that limit. The extreme black hole expels from its
horizonall the fields that reside in the core of the string.

To be consistent we must neglect the terms proportional to |t was already known that an extreme black hole placed in
p?, since as we have seen they would contribute taa uniform magnetic field exhibits a sort of “perfect diamag-
O(1/N?). Having done this, the equation becomes separablgetism.” The solution(2.19 for the gauge field describes

and can be solved in the forg=b(r)sin 6, whereb must
satisfy

b’ _1-p(r’-Q?

b rJv '

This is integrated to yield

(2.22

b(r)=k(r—E+rV)
Xex;{ — g (r2+3Er)\/——g P(E*-Q?)

><In(r—E+r\/V)) (2.23

1This limits the validity of the solution to distancessin 6 suffi-
ciently smaller thany2N.

precisely this effect. But here we have found that this exclu-
sion is also true for the Higgs field associated with the string
vortex. Moreover—and this is something that we could not
have anticipated from what we knew about the behavior of
the magnetic fields—a global string is also expelled from the
extreme horizon. This is very easy to see: simply get
=0 in Eqg.(2.23 to obtain the field of the global string.

Given that the solution we have found is only a leading-
order approximation for largsl, one might inquire whether
further corrections still preserve the expulsion of the fields.
The numerical evidence from next section confirms this
point, even down tiN=1.

A natural question to ask is whether the black hole will
stay inside the vortex or will instead try to find its way out-
side the core. To this effect we will study the energy stored
in the string core when a black hole is sitting inside it.

For a static solution of the Abelian Higgs equations, in
length and energy units rescaled by the Higgs wavelength,
the energy density takes the form

124014-4
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N - B 1 The conclusion seems to be that the black hole should
Tg:—g'Jﬁixan—ng”PiPﬁE F2+Z (X2—1)2 remain stable inside a thick vortex. Qualitatively, this is
(2.27) largely independent of the presence or absence of black hole
charge and, in particular, of the vanishing of the fields on an
extreme horizon. However, as will be revealed in next sec-
tion, this no longer remains true if the vortex radius shrinks
below the horizon radius.

More specifically, for the vortex in the Reissner-Nordstro
background,

o , 1 , N&EPZ o1 Ill. NUMERICAL SOLUTIONS
TOZV((?rX) +—2((90X) +2++—(X —1)
r risinfe 4 In the previous section we have provided evidence that an
N2 1 extremal black. hole does. not allpw penetration through i.ts
+ ———— | V(,;P)%+ = (9,P)?|. (2.29  horizon of the fields associated with the vortex. The analysis,
r2sirfg r though, has had to be restricted to the situation where the

black hole is small relative to the vortex and stays well
within its core. It is irresistible to push this picture to its
Let ggggh be the total energy of the gauge field in the limits and let the vortex shrink to a size smaller than the
absence or presence of the black hole. A rather long analysiBorizon radius. Will the string still fail to pierce the extreme
which we will spare the reader, keeping leading-order termdiorizon? In this case we would expect that the presence of
in 1/N (or, what amounts to the same, expanding for smiall the black hole inside the vortex should cause an increment of
leads to the conclusion that the tension of the flux. As a result, the energy stored in the
vortex should increase—instead of decrease, as in the previ-
&9 ous section—and this would clearly suggest that the configu-
Lh)zl_CE\/B+ o(p), (2.29 ration is unstable: the extremal black hole would strongly
5%9 oppose wearing the Abelian Higgs wig, and flt&n) string
should slide off the horizon, leaving the extreme black hole
wherec is a positive constar{ts pure numbegrof order unity.  as bald as we have always known it to be.
Hence the presence of a black hole within the vortex de- To analyze these issues we shall need to resort to numeri-
creases the energy of the gauge field. For fixed black holeal integration of Egs(2.13 and (2.14) outside and on the
masskE, this is independent of the value of the charge. Everblack hole horizon. Our results will confirm the picture of the
if the latter causes an equatorial thickening of the stringprevious section for thick vortices, as well as provide evi-
which would tend to increase the energy, the energy of thelence that, when the string is thin, it will tend to slip off the
fields decreases. This is, however, a smaller effect of ordezxtreme horizon.

O(p). The Abelian Higgs equations in the presence of a back-
Consider now the energy stored in the Higgs field. Fromground Reissner-Nordsim metric are elliptic. On the hori-
the solution(2.23 we can see that switching on a black hole zon they become parabolic. In order to solve the equations

massE decreases the value of the Higgs field inside thenumerically, we use a technique first used by Asdmio,
vortex. Again, the charge works in the opposite direction, buiGregory, and Kuijkeri8]. We will briefly describe this tech-
this is a smaller effect. As regards the energy, the largestique below.
contribution is the potential energy arising from the fact that One common approach to solving elliptic equations is to
the core is in the false vacuum. This is, however, hardlyintroduce an artificial, first-order in time, diffusive term to
affected by the introduction of the black hole. The gradientthe elliptic equation to be solved. The resulting diffusion
terms, on the other hand, are more significantly modifiedequation is then iterated and the fields relaxed, until the time-
and it is not difficult to see that a nonzero value of the blackdependent ternfthe “residual”) approaches zero to suffi-
hole mas< always tends to decrease the energy. cient accuracy, leaving a solution to the original elliptic
Of course, these energetic considerations alone do not tefiquation. This is the basic technique used8i however,
us what the forces induced by the vortex on the black holehey have introduced some changes in order to solve the
are. In order to compute these, we would need to considezquations on the horizon.
configurations where the black hole is not exactly at the axis Their method is to set boundary conditionsét 0 and
of the vortex and, thus, nonaxisymmetric configurations. A6= 7 consistent with field values at an Abelian string core.
simple way to estimate the forces would be to compute thé\t r=c«, boundary conditions are set to those of the
energy stored in the vortex as a function of the separation asymptotic fields of the string. Field values on the horizon
of the center of the black hole to the axis of the vortex; callare also initially set to asymptotic values. The integration
this function £(x). It is clear that the lack of symmetry technique then proceeds as follows.
makes this problem very much harder. Nonetheless, the es- First, the discretized field is relaxed inside the simulation
timations above give us the value§x=0)=¢&,,<&(x  volume. Next, using the equations for the fields on the hori-
—o)=E&;. If &(X) were a monotonic function of, which  zon, which are elliptic in the radial direction, the field is
does not seem unreasonable, then the forces acting on thelaxed on the horizon, giving new boundary points there.
black hole would tend to keep it inside the vortex. This process is iterated until the residual is considered small
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enough that a solution has been found. the field.

The relaxation procedure we have used is based on the To check our code, we ensured that solutions to the un-
successive overrelaxation method describedlil. How-  charged black hole case matched thos€8af
ever, since the equations are nonlinear, Chebyshev accelera- The discretized equations for thHe and X fields in a
tion had to be turned off, and we typically had to underrelaxReissner-Nordstm background outside the horizon are

2 E\ Xy0—X_g cOtfh Xg,—Xo_ 2E Q7
—(1-— + +

Xio+X_o Xos+Xo_

1-—+— -
. r r 2Ar r2 2A6 roor? Ar? r2A 62 a1
00_1 2E Q%) 2 2 1x2 . NPy \2 2 1x2 . NPy | 2’ @1
-t =] —S+t5—+= -1)+ + + = —-1)+
ror2) Ar?  r2A6? 2( o0~ 1) rsing) r?Ae? 2( oo~ 1) r sin 6
2 Q% P.o—P_, Por—Po_ 2E Q?\ P.g+P_o Py +Po
— | E—— cot ¢ +1l-—+— +
r2 r 2Ar 2r2A 6 roor? Ar? r2A 62 32
Poo= , .
o0 2E Q2| 2 2 XZ
1_ R
roor2) Ar2 r2A¢*> B
|
and theP and X equations on the horizon are A. Expulsion of the electromagnetic and Higgs fields
by the extreme black hole
We have already seen, in Eq2.23—(2.26), that when
N = X+0 N Xo+ 1 Xo- -+ cotd Xo+—~Xo- the vortex size is large compared to the black hole size the
Q Ar 2A 62 co 4A 0 magnetic and Higgs fields are both expelled by the extreme
Xoo= — > x black hole. However, the estimates which we used to obtain
VE*=-Q 1 r3 X2 1 [NPgo these analytic expressions no longer hold when the vortex is
Ar + A 62 + 4 (Xoo—1) 2 \sing very thin relative to the hole. In this situation, we have to use
(3.3  humerical techniques.
We have pushed this calculation to the limits, making the
vortex as small as we could given the computational con-
p P. 4P P. —P straints. What we have found is that the vortexalsiays
E2-qQ2 4 & 20—_Cot PRk expelled, no matter how small the magnetic and Higgs flux
Ar 2A0 4A6 tubes are taken to be.
Poo= Jf@z 1 r2 : Here we present dramatic pictures of the numerical evi-
- < * go dence which we have amassed. Our intention is to give the
Ar A9? 4B reader a “flavor” of the general phenomena using a frugal

(3.4 selection of images. The general pattern displayed here holds
no matter how small you make the flux tubes.
We begin with the expulsion of the field by the extreme
Here a zero subscript indicates the value at a given meshhole. In the diagram below, we have $etQ=10, with
point, and+ and — indicate adjacent values to the left or winding numbeM=1 (the smallest winding possibleFur-
right. thermore, the Bogomol'nyi parametgris set equal to unity,
On the =0, 7 boundaries, we sé®=1 andX=0, atr  so that the magnetic and Higgs flux tubes are the same size
=I'max W& SetP=0 andX=1, and initially, on the horizon, (see Fig. 1
we setP=0 andX=1. The boundary conditions at=r,4 Clearly, theP field literally “wraps” the black hole hori-
are only an approximation to the correct values since theon; furthermore, given the relation betweeandF ,,, , it is
string is forced to have a width of one grid zone @i,. This  clear that no magnetic flux is crossing the horizon. The ex-
tends to distort the field values negy,y. In our simulations, treme hole still behaves just like a perfect diamagnet. We
we have solved the equations on a Cartesiah mesh. In  now want to see if we can “puncture” the horizon with flux
order to minimize the distortion, we set. to be from 5to by making the magnetic flux tube even smaller. Perhaps the
10 horizon radii. Since grid zone volume increases for largesimplest way to make the vector flux tube thinner is by de-
r, the string is then well approximated as having a width ofcreasing the value 8. This has the effect of greatly enhanc-

less than a grid zone in-# coordinates. ing the size of the mass term in E.14. Since B is the
With the above discussion in mind, we now present theratio of the sizes of the vector and Higgs flux tubes, making
numerical results. B very small will correspond to making the magnetic flux
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P—contours (P=0.1...0.9) creased the size of the extreme hoknd again we see per-

' ' ' fect expulsion.(There is very little reason to show the pic-
tures of these calculations since without magnification they
are qualitatively identical to the figure aboye.

We now turn to the behavior of the Higgs fiexd Again,
in the thin vortex limit we are unable to make analytic esti-
mates and we are forced to resort to humerical integration.
10 1 We have found that th¥ field is always expelled from the
extreme hole, no matter how small the scalar flux tube is
N0 1 made. Actually, in Fig. 3 what we do is fix the size of the
scalar flux tubgby fixing N=1 and8=0.5) and we allow
-10 T the mass of the extreme hole to increase. The plots run from
left to right with increasing mass. The graphs are plotted for
-20 . the valuesE=Q=1,E=Q=5, E=Q=10, andE=Q=20.

As was claimed, th& contours all wrap around the black
-30 . hole horizon, no matter how large the hole is made. Indeed,
the sequence of pictures in Fig. 3 provides an intuitive pic-
- s . ture of why Eq.(2.29 makes sense. When the black hole is
o 10 2 80 4 much smaller than the vortex, the black hole is just a “hole”
where no vortex energy can be stored. Thus the presence of

FIG. 1. Expulsion of theP field from the extreme horizon, for the hole tends to subtract the total energy of the vortex. On
the valuesE=Q=10, N=1, andp=1. the other hand, when the hole becomes much larger than the

vortex (and our estimates break doyithe vortex still has to
tube very thin(while keeping the size of the Higgs flux tube Wrap the hole and so we would expect the total energy of the
fixed, though enlarging the size of the transition region beYOrtex to become very large. We now provide a more de-
tween massless and massive Higgs phases, which jailed discussion which will show that this intuition is in fact
~ BV This is done in Fig. 2, where we have e Q  Ccorrect.
=10,N=1, and3=0.0001.

Again, theP contours all wrap around the black hole ho-
rizon, indicating that there is never any penetration. We have As we have discussed, E(R.29 tells us that when the
repeated this calculation for the smallest resolvable values dfole is small relative to the vortex, increasing the mass of the
B (keepingE, Q, andN fixed), and we have always seen the hole tends to decrease the total energy stored in the vortex.
same phenomena. Similarly, we have ki@ndg fixed and ~ We can also see it must be the case that when the hole is very
madeE=Q very large(i.e., fixed the vortex size and in- large relative to the vortex, increasing the mass of the hole
must increase the energy of the vortex due to the tension in
the flux lines. Thus the energy of the vortex as a function of
extreme black hole mass must have at least one minimum. In
fact, it is not hard to see that there must be at most one
minimum (although we will not provide an analytic argu-
ment here, since the numerical results will make this glear
We shall denote this value of the hole mass, where the vortex
energy is minimized, a&;(N,3). We have writterE; as a
function of N and B in order to emphasize that the critical
mass depends on the “width” of the vortex. Now, again, let
Eon denote the total energy of the vortex centered on the

40

30

20

B. Instability of the vortex energy in the large mass limit

P-contours (P=0.1...0.9)
40 T T y

30

20

10

NoOF i extreme black holénote that in the numerical calculations
which follow we have introduced an obvious cutoff; i.e., we
-10 1 do not integrate over all of spacetime to obtain the energy,
but rather we integrate out to the boundaries of some large
_20 ] “box™ ). Then it is always the case thé§(E.) <&y, where
& is the energy of the vortex in the absence of the black
_a0 ] hole. This means that a black hole of mdssis perfectly

happy to sit inside of the vortex, and indeed it would be
, . ) energetically unfavorable for the hole to be removed from
0 10 20 30 40 the vortex. In fact, it is always the case that there exists a
R )
maximum mas<,,, such that for all black holes of mass
FIG. 2. Expulsion of theP field from the extreme horizon, for E<Eax. En(E)<&p; as long as the hole is not too massive,
the valuesE=Q=10, N=1, and3=0.0001. it is content to sit inside the vortex.
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X-contours (X=0.1...0.9) X-contours (X=0.1...0.9) X-contours (X=0.1...0.9) X~contours (X=0.1...0.9)
v v y 40 y r v . v 40 v v v
30 30 ] 30
20 1 20 1 20
10 E 10 1 101
N0 N0 N 0
-10 -10 -10
-20 -20 -20
-30 -30 -30
_40 . . R _40 . . . _4 . s .
0 10 2'_? 30 40 0 10 20 30 40 00 10 20 30 40
R R

FIG. 3. Expulsion of the Higgs field from the extreme horizon, for the valéresn left to right E=Q=5,10,20,30N=1, and3=0.5.

The statements made above are based on the results of ahrough in this situation. Of course, when the mass of the
numerical computations of the total ener&y,. In the figure  hole is small, you could still technically try to identify the
below we have plotted the results of one such computatiornvortex with hair since at least in that case the configuration is
Here we have sgg=0.5 andN=10. The flat, horizontal line energetically stable. On the other hand, the fact remains that
(at 6640 represents in our units. Clearly, for these values the vortex is completely expelled from the hole, even in the
E. is about 8 ancE,,,, is about 15. Furthermore, for black (putatively stable situation. Thus one would say that the
holes of mass greater thdy,,,, the energy of the vortex is vortex is notdressingthe black hole. It is still unclear to us
diverging. The erratic behavior of the vortex energy for verywhether or not one should think of such a “thick” vortex as
small values of the black hole mass is an artifact of thegenuine hair for a small extreme black hole. This is some-
numerical techniques employed in the calculation and shouldhat a reversal of previously studied situatid¢asy., the col-
be ignored(see Fig. 4. ored black holes where the black hole may be dressed, but

It is clear from the graph of Fig. 4 that a black hole with the configuration is unstable.
massE>15 is going to find it energetically favorable to slip
out of the vortex. Thus it is really not appropriate to think of
such a vortex as a “property of the black hole”; the identi-  C. No expulsion of vortex fields in the near-extreme limit

fication of the vortex long hair n m ) . .
cation of the vortex as long hair does not seem to go So far, we have presented firm numerical evidence that

the fields of an Abelian Higgs vortex are expelled from the
6760 - - ' - ' ~ - - - horizon of an extreme black hole. A natural question is then
whether or not similar results continue to hold when the hole
is madeslightly nonextreme. As is well known, a nonex-
treme black hole with nonsingular horizon Has<E. As we
let Q approachE from below (letting the hole approach ex-
tremality), will we see the fieldd® and X “gradually” ex-

6740

67201

67001

£ eesor pelled from the horizon? Or will the fields suddenly “pop”
Bessol out only when we get precisely to the extreme limit?

5 In order to understand how to answer this question, it is
go640r useful to first recall the estimates which we made in Sec. Il

6620k ] in the limit where the vortex is thick compared to the outer
horizon radius of the black hole. In particular, recall Eq.
(2.26), which follows immediately from Eq2.19. Equation
6580+ | (2.20 tells us that, in regions where the mass of the gauge
field is negligible, the magnetic flux across the horizon in the
W 16 18 20 nonextreme limit will always be nonvanishing and, hence,
that the vortexP field will penetrate the horizon. The flux
FIG. 4. Plot of total vortex field energy as a function of black vanishes in the extreme limit since the equation saysihat
hole mass. on the horizon is proportional tcﬁ—Q2 (wherer, is the

6600

6560 : . L 1 \
0 2 4 6

8 10 12
mass of extreme black hole
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P-contours (P=0.1...0.9) X~contours (X=0.1...0.9)

40
30
20
10
N0
-10
20
-30

10 20 30 40 4% 10 20 30 40

R R
FIG. 5. Penetration of a non-extremal horizon by fhield, for FIG. 6. Penetration of a non-extremal horizon by the Higgs
the valuesE=10, Q=9.99,N=1, andB=1. field, for the value€€=10,Q=9.99,N=1, andB=1.

) ) _ _ outer horizon of any nonextreme black hole. In Fig. 6, where
outer horizon radidsandr, =Q precisely in the extreme e plot X, we have again se€f=10, Q=9.99,N=1, and
limit. B=1.

Now the regionr _<r<r, is regular in the coordinates
which we have been using, even though there (ezeov- IV. CONCLUSIONS
able coordinate singularities at the inner and outer horizons

r_ andr . . Furthermore, there is no reason why the estimate \ye have found that the fields of a vortex are always ex-
(2.26) should not continue to hold in this region. In other pelled from an extreme horizon; this effect is generic for
words, there is always a surfacerat Q, which we dub the  arbitrary relative sizes of the horizon and the vortex core.
“Meissner surface,” across which no flux may flow. This Furthermore, a thin enough vortex tends to slip off the black
Meissner surface agrees with the outer black hole horizoihole. Thus it appears that an extreme black hole cannot sup-
only in the extreme limit, and so it is only in this limit that port “long” Abelian Higgs hair. Of course, we have in no
the Meissner surface is of relevance to external observersvay accounted for the back reaction of the vortex on the
One could think that, since for a near-extremal black hole thgigeometry. Is there any reason why the flux tubkeuld not
Meissner surface can be very close to toetep horizon, pierce the horizon once the back reaction is included? Actu-
then if the layer of vortex on the Meissner surface is thickally, there is a piece of evidence that the expulsion may hold
enough, the expulsion from the Meissner surface might bexactly: there do exiséxactsolutions(i.e., including the
appreciable by external observers. Now this vortex layer getiull back reaction for black holes in U(13 theories where a
thicker with vortex size. But for large vortices, the effect of black hole that is charged to extremality with respect to one
the Meissner surface can be read from €419, and we see of the gauge fields completely expels the field aMelvin)
that the expulsion only appears when the extremal limit isflux tube of the other gauge fieldL1]. In these solutions
reached. none of the gauge symmetries is broken, but recall that the

In all of our numerical calculations, we do not consider spontaneous symmetry breaking is of negligible influence on
the penetralia of the black hole. Rather, we solve for testhe perturbative first-order solution inside the core that we
fields outsidgand on) the horizon of the hole and we do not have found in Eq(2.19. This strongly suggests that, after
concern ourselves with what goes on inside the horizon. Thiaccounting for the back reaction, the flux should be expelled
is why, by constructionwe do not expect to see the fields from a black hole that sits inside it, at least in the case where
gradually expelled from the horizon. the vortex is thick. In view of the evidence provided above,

For the edification of the reader we present here somehe effect could as well persist for thinner black holes, but we
pictures of calculations which show that the argument givercannot be conclusive. In any case, the back reaction would
above goes through even when the vortex is thin relative tgertainly be expected to be small if the energy scale of sym-
the radius of the hole. In Fig. 5, where we pRytwe have set metry breaking is sufficiently small compared to the black
E=10,Q0=9.99,N=1, andB=1. hole mass.

Clearly, theP field is passing right through the black hole  In order to implement a back reaction in the numerical
horizon even though the hole is quite close to extremalitycalculations, we would first start with a fixed background
Similarly, one finds that thX field contours flow through the and solve for the “test fields” as we have done in this paper.
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Next, we would have to plug the energy-momentum tensogffectively, one works in a U(%)theory of the same kind
for the test fields into the Einstein equations and solve for thgve have been discussing in this paper. But if, as we have
“corrected” background geometry. Then we would againargued, the string cannot end at the extreme horizon, the
have to solve for the vortex field configuration in the cor-corresponding instanton does not exist. This would seem to
rected geometry, and so on. Now, in general, the horizon willmply that a Nielsen-Olesen string could not snap by forming
move each time we obtain a corrected background geometrgxtreme black holes at its ends. Therefore, consideration of
While we are currently working on a numerical approach to“realistic” strings seems to impose new selection rules on
include the back reaction, we will have nothing more to saystring snapping, of a sort somewhat different from those re-
about this issue here. cently discussed if20].

If, as we have argued, the vortices may fail to penetrate Furthermore, if the extrapolation of our no-penetration re-
extreme horizons, then there are several interesting implicasults to strings trying to end at an extreme black hole were
tions. Consider what happens when a string triesrtdat a  correct, then another thing that the string could not do is to
black hole. It has been argued[B,17] that there is no global “fray”—as discussed in[17]—by forming extreme black
topological obstruction for a topologically stable string to holes on it, since in order for the string to fray the tension,
end at a black hole. The reason is that the spatial topologgnd thus the flux, must be different on each side of the black
S?XR of the extended black hole spacetime allows one tchole. But the flux cannot be different on each side for rea-
take gauge patches in the manner of Wu and Yang that transens identical to those just discussed: without piercing the
form the trivial vacuum on one side of the black hole to theblack hole, there is no place for the “excess” flux to go.
nontrivial configuration of the vortex on the other side. Fur-  Another interesting scenario involving pair creation of
thermore, there do exist solutions where the string actuallyplack holes, still in a theory with two gauge fields(mass-
penetrates the nonextreme black hole, as shown fdes9 andF (massive, is the following: let there be a string
Schwarzschild spacetime i8] and generalized to a vortex(carrying confined flux of) and a magneti¢uncon-
Reissner-Nordstm background in this paper. Now consider fined background field3 parallel to the string. Suppose that
what happens if the black hole is extremally charged witha pair of magnetic holes, charged relative to théeld with
respect to a different (). Then, again, there is no topologi- charges+q, are pair created and accelerate apart under the
cal obstruction in principle, since the topology of the spatialforce induced by the field, like in the Schwinger pair creation
sections is stillS? X R and this would admit a gauge patching process. Suppose, moreover, that the black holes are created
of the same sort as before. But what we have found seems taght on the string, but that the latter does not snap or
strongly suggest that, even if the penetration on only one sid&fray.” This process can be described by means of the Ernst
of the black hole is globally topologically feasible, there metric with a constant conical deficit along the axis where
does not exist a solution of the equations of motion that doethe black holes lie.
actually penetrate. We say “suggest” since we have not ana- In principle, the presence of the stridgesaffect the pair
lyzed the situation where the string is only on one side of thecreation rate: it is enhanced relative to the creation of black
black hole, but our results very strongly hint that there is noholes away from the string, since the action of the instanton
way a vortex can penetrate an extreme horizon: the reasois smaller precisely by a factor of the conical deficit. This
we would say, is that this penetration islacal issue, not enhancement is no more than the eff@iscussed in19] in
having to do with global topological considerations. Now, if the context of thermal nucleation of black holésat a black
the string cannot pierce the extreme horizon, then there is nieole nucleates preferentially on a string, rather than on flat
way that one can construct the Wu-Yang type of patch forspace. Now, if the holes are extreme, the string cannot pen-
the string to end at the black hole: intuitively, there is noetrate the horizon of either of the holes. Rather, the vortex
place for the flux to escape. With the caveats above irmust wrap around each of the black hole horizons, so that the
mind—back reaction being perhaps the most troublesomentire configuration will look rather like two peas in a pod
issue—it would follow that a topologically stable string can- being squeezed apart. Now suppose that the created holes are
not terminate on the horizon of a black hole that is extrem-smuch larger than the vortex flux tube. Then the created holes
ally charged relative to a distinct, unbrokerfll This is a  will want to pop out of the vortex. This would suggest that
rather unexpected twist, since one usually assumes, naivelthe rate at which two extreme black holes nucleate on a
that once the topological obstruction disappears, the desirggionsnappingstring will be strongly suppressed and prob-
solution can be constructed. ably zero. It would also suggest that a one-dimensional in-

Now there have been a number of papers describing theeracting gas of small extreme black holes would populate
pair creation of black holes with strings ending on tHe®s—  the string. Research on this and related problems is currently
19]. Apart from the topological stability issues, the processunderway.
of a string snapping with formation of black holes differs in  Note added in proofAfter this work was completed, and
one important respect from the strings that break with monoaccepted for publication, more recent studies have appeared
poles at the end. In order for the Euclidean gravitational[21], which cast doubt on our numerical results for thin vor-
instanton that mediates the process to be regular, the bladices in the extreme black hole background. As a result, thin
holes must havéunconfinedl charge and be either extremal enough vortices seem to be capable of piercing extremal ho-
or close to extremality. This forces one to introduce, in ad+izons. However, the expulsion seems to be a true phenom-
dition to the massive gauge field carried by the string, aenon for thicker vortices. In particular, we believe the ana-
(masslessU(1) field to which the black hole charge couples. lytical results in Sec. Il to be valid.
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