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Abstract—In this work, we consider the problem of data
decoding in media-based modulation systems. The underlying
problem is sparse because only a subset of the available transmit
antennas is activated in each symbol; additionally, only one
of the different mirror patterns is activated depending on the
unknown data bits. Thus, the data recovery problem involves
recovery of a block-sparse vector, with the additional structure
that only one entry is active within each block. We term this
structure as inclusion-exclusion sparsity, as the inclusion of an
index in the active set precludes several other indices from
being active. Devising efficient algorithms for recovering such
sparse signals from noisy underdetermined linear measurements
is an open problem. To this end, we propose a general, non-
convex cost function that, when optimized, yields a sparse
vector with additional structure, including, but not limited to,
the inclusion-exclusion sparsity. Further, we propose a convex
concave procedure (CCP) based algorithm for optimizing the cost
function. The algorithm has low computational complexity and is
globally convergent to a local optimum. Finally, we demonstrate
the efficacy of our algorithm and its superior performance over
existing data recovery schemes via Monte Carlo simulations.

I. INTRODUCTION

Media Based Modulation (MBM) [1] is a recently proposed
communication technique where the data symbols are used to
induce variations in the propagation medium or channel, and
information is conveyed through these channel variations. In
a rich scattering environment, a small perturbation near the
transmit antenna creates an independent end to end channel
realization due to augmentation of the perturbation by many
random reflections in the environment. Consider a transmit
antenna equipped with Nrf ON/OFF RF mirrors. When an RF
mirror is ON, it allows the incident wave to pass through it.
When it is OFF, the RF mirror reflects the incident wave.
The RF mirror near the transmit antenna acts as scatterer
and this controlled perturbation leads to independent channel
realizations in the two states per mirror in rich scattering
environments [1]. An implementation of a MBM system
consisting of Nrf = 14 RF mirrors has been reported in [2].

An antenna equipped with a set of Nrf mirrors creates Np =
2Nrf mirror activation patterns (MAPs), thereby creating Np

independent channel realizations between the antenna and the
receiver. Each realization constitutes a symbol in an Np-ary
channel constellation (CC). The transmitter selects one of the
Np channel realizations from the CC based on the input data
and transmits a tone through the selected channel realization,
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resulting in the system conveying blog2Npc bits per channel
use. For decoding the data, the task at the receiver is to detect
which of the Np channel realizations has been activated by the
transmitter. Since there are typically less than Np antennas at
the receiver, the system can be modeled as one of recovering
an Np × 1 vector with a single nonzero entry (equal to 1)
at an unknown location from noisy underdetermined linear
measurements, i.e., it is a problem of sparse signal recovery.

In generalized space shift keying (GSSK)-MBM, based on
the input data, an Na sized subset of Nt available transmit
antennas is chosen to be active in each symbol transmission.
The receiver estimates the channel states corresponding to all
NtNp MAPs, and therefore the CC, using pilot tones sent by
the transmitter with each possible MAP. In the subsequent
data transmission phase, the receiver decodes the data by
detecting the channel instantiations using its estimated CC.
As will be shown in the sequel, this leads the problem of
recovering a sparse signal from underdetermined, noisy linear
measurements, but the sparse signal has additional structure.
The NtNp length sparse vector has a block-sparse structure:
out of the Nt blocks of length Np each, only Na ≤ Nt

are active. Moreover, within each active block, Nb ≤ Np

entries are nonzero; the role of Nb will be clarified in the
sequel. We term this structure as inclusion-exclusion sparsity,
as the inclusion of some entries in the active set precludes
other entries from also being active. To the best of our
knowledge, there are no algorithms for sparse signal recovery
in the literature that, by design, exploit this inclusion-exclusion
sparsity to improve the recovery performance. In this paper,
we propose novel sparse signal recovery based algorithms for
data decoding in the case of GSSK-MBM, and many of the
variations of MBM such as spatial modulation (SM) MBM,
MIMO-MBM, etc [3] are special cases of our model.

MBM was introduced in [1], [4], [5], while its BER
performance under maximum likelihood (ML) data detection
was analyzed in [3]. ML is computationally expensive, as the
complexity of exhaustive search scales linearly with the size of
the CC. A suboptimal iterative search algorithm for MIMO-
MBM was proposed in [2]. An l∞ based approximate ML
symbol detection algorithm was proposed in [6]. However, no
solution has been attempted by posing the detection problem
as one of sparse signal recovery, as is done in the sequel.

Sparse signal recovery has been extensively studied over
the past couple of decades, and popular algorithms include
the `1 penalty based lasso algorithm [7], greedy algorithms
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such as orthogonal matching pursuit (OMP) [8], and Bayesian
methods such as Sparse Bayesian Learning (SBL) [9]. These
algorithms have been extended to the recovery of block sparse
signals also, where the nonzero entries occur in blocks, with
each block being entirely zero or entirely nonzero [10]–
[12]. However, to the best of our knowledge, even in the
sparse signal recovery literature, no solution exists which
leverages the inclusion-exclusion structured sparsity that arises
in GSSK-MBM, GSM-MBM and MIMO-MBM systems.

In the above context, our contributions in this paper are as
follows:
• We mathematically formulate the data decoding at the

receiver of a GSM-MBM system as a sparse signal
recovery (SSR) problem.

• We propose a new penalty function that promotes the
inclusion-exclusion sparsity structure in the solution to
the ML data detection problem.

• The inclusion-exclusion sparsity-penalized ML data de-
tection problem is a non-convex optimization problem
and is subject to convex constraints. We solve the prob-
lem using a convex-concave procedure (CCP). We also
discuss the convergence and complexity of the proposed
solution.

• We empirically show the superior performance of the
proposed procedure compared to conventional sparse
recovery methods that do not exploit the underlying
structure. We also show that the proposed approach can
be used to improve the performance of existing block-
sparse recovery algorithms when additional structure,
e.g., the sparsity level, is known.

Notation: Lower or upper case letters represent scalars,
lower case boldface letters represent vectors, and upper case
boldface letters represent matrices. ‖ · ‖ represents the Eu-
clidean norm, | · | represents the cardinality of a set or the
magnitude of a scalar, (·)T represents transpose and

(
a
b

)
represents a choose b.

The rest of the paper is organized as follows. Section II
presents the system model. Section III presents the problem
formulation, and proposed algorithm is detailed in Section IV.
Section V presents simulation results, followed by conclusions
in Section VI.

II. SYSTEM MODEL

We consider a downlink GSSK-MBM [3] system with Nt

transmit antennas at the base station (BS) and M receive
chains at the user. For each symbol transmission, a subset
of Na transmit chains out of the Nt antenna elements is
chosen to be active, based on the input data bits; ON-OFF
keying is used to transmit the data. Each transmit antenna
is also equipped Nrf ON/OFF mirrors in its vicinity. These
mirrors create Np = 2Nrf independent channel realizations
between each transmit and receive chain in a rich scattering
environment [1]. Thus, in each symbol, the transmitter conveys⌊
log2

(
Nt

Na

)⌋
bits through the selection of the active antennas,

and a further NaNrf bits through the selection of mirror

patterns. This can be represented as an NtNp length binary
symbol vector x = [xT

1 , . . . ,x
T
Nt

]T , consisting of Nt blocks,
where the ith block is xT

i = [xi1, . . . , xiNp ]. Each active block
contains a single 1 depending on the bit pattern used to select
the RF mirrors, and exactly Na out of the Nt blocks are active
in each symbol. The inactive blocks are all zero. Thus, the data
symbol is sparse, and further, exhibits the inclusion-exclusion
sparsity structure alluded to earlier.

Let hij ∈ CM×1, i ∈ {1, . . . , Nt} and j ∈ {1, . . . , Np}
be the channel realization for ith transmit antenna and jth

mirror pattern. Let Φ ∈ CM×N be the concatenated chan-
nel matrix with all channel realizations as its columns, i.e.,
Φ = [h11, . . . ,hNtNp ], with N , NtNp. Then, the received
vector y ∈ CM×1 at the user can be written as

y = Φx + w, (1)

where x is the sparse binary vector defined earlier, and w
is the AWGN with independent, zero mean, and complex
Gaussian distributed components: w ∼ N (0, σ2IM ), with σ2

representing the known noise variance and IM denoting the
M ×M identity matrix.

As mentioned earlier, the vector x has a block sparse
structure, with Na out of Nt blocks being active, and 1 entry
being nonzero within each active block. In this paper, we
consider a more general structure for the purpose of algorithm
development, where each active block contains Nb ≥ 1
active elements; clearly, Nb = 1 is a special case. Since,
typically, M < N , and each x contains K , NaNb � N
nonzero entries, the problem of decoding x from y is one of
recovering a sparse signal from noisy underdetermined linear
measurements.

There are other related communication systems where the
received symbol vector can be modeled using (1), such as the
uplink multi user MIMO (MU-MIMO) with generalized space
shift keying (GSSK). Here, consider a system consisting of
Nt users1 communicating with a BS having M antennas. In
GSSK, each user activates Nb out of Np antennas, thereby
conveying

⌊
log2

(
Np

Nb

)⌋
bits per channel use, per user. Unlike

MBM, where the information is conveyed through a symbol in
CC, in GSSK information is conveyed through active antenna
indices. In each symbol duration, only Na ≤ Nt users are
active. Thus, the concatenated symbol vector, x, from the Nt

users can again be represented as an NtNp length binary
block-sparse vector consisting of Nt blocks of length Np

each. Further, only Na out of the Nt blocks are active,
and within each active block, Nb out of the Np entries are
nonzero. Therefore, a total of NaNb entries are nonzero in an
NtNp length transmitted vector x. Thus, the data decoding
problem in the MU-MIMO GSSK system can be formulated
as (1), where Φ is the channel between the users and the BS,
estimated using a training phase prior to data transmission.

Under these assumptions, and with xij taking the values
from a given constellation such as M-PSK or M-QAM, all the

1Note that the notation is different from the downlink GSSK-MBM example
presented earlier. This reuse of notation allows us represent the vector to be
recovered with the same inclusion-exclusion sparsity structure as in (1).



MBM variations considered in the literature become special
cases of (1). The following table gives a few examples of
such systems:

MIMO-MBM Na = Nt Nb = 1
GSM-MBM Na < Nt Nb = 1
SM-MBM Na = 1 < Nt Nb = 1
MBM Na = Nt = 1 Nb = 1
Uplink MU-MIMO GSM Na ≤ Nt Nb ≤ Np

Block sparse recovery Na ≤ Nt Nb = Np

Here, uplink MU-MIMO GSM represents an uplink MU-
MIMO system with GSM being employed at the users. Also,
the block sparse recovery case refers to the classical block
sparse recovery problem, where each block is either all zero
or all nonzero.

III. PROBLEM FORMULATION

The problem of recovering x from noisy underdetermined
linear measurements given by (1) under the constraint of
inclusion-exclusion sparsity can be formulated as

min
x

f1(x) ,
‖y − Φx‖22

2σ2
(2)

subject to
C1 : xij ∈ {0, 1}, i = 1, . . . , Nt, j = 1, . . . , Np

C2 :
Np∑
j=1

xij ∈ {0, Nb}, i = 1, . . . , Nt

C3 :
Nt∑
i=1

Np∑
j=1

xij = K

Constraint C1 in (2) forces the solution to have entries that
are either 0 or 1, while constraint C2 restricts each block
of size Np in the solution to either be all zeros or contain
exactly Nb ones. The requirement that x must have K ones
in total is ensured by constraint C3. All the constraints in
(2) are combinatorial in nature. Finding a globally optimal
solution to (2) requires exhaustive search over the set χ ,
{x : |x| = K, |xi| ∈ {0, Nb} ∀ i and xij ∈ {0, 1} ∀ i, j}. The
number of vectors in χ is Na

(
Nt

Na

)(
Np

Nb

)
. The size of χ therefore

increases exponentially with the dimension of vector to be
recovered, due to which, exhaustive search based solutions
quickly become computationally prohibitive. We seek sub-
optimal but computationally tractable algorithms to solve the
problem. In the next section, we present our proposed solution.

IV. PROPOSED ALGORITHM

Our proposed solution consists of three steps. First, we
relax the combinatorial constraints C1 and C2 in (2) to convex
constraints. Second, we introduce judiciously chosen penalty
functions into the cost function to ensure that the solution to
the optimization problem lies at the boundary of the constraint
sets, thereby guaranteeing that the final solution conforms to
the desired inclusion-exclusion sparsity structure. However,
this renders the optimization problem non-convex. In the third

step, we iteratively solve the non-convex problem using a
convex concave procedure (CCP) [13].

To elaborate on the above, we first relax constraints C1

and C2 in (2) to the convex constraints 0 ≤ xij ≤ 1

and
∑Nt

j=1 xij ≤ Nb, respectively. Further, we introduce the
penalty function

f2(x) ,

K − Nt∑
i=1

Np∑
j=1

xij

2

into the cost function to encourage the solution to have exactly
K nonzero entries. Also, from constraint C2, we desire each
Np length block of x to have either zero or Nb ones. To this
end, we introduce the penalty function

f3(x) ,
Nt∑
i=1

 Np∑
j=1

xij

 Np∑
j=1

xij −Nb


into the cost function. The resulting optimization problem
becomes

min
x

f(x) , f1(x) + λf2(x)− µf3(x) (3)

subject to
0 ≤ xij ≤ 1, i = 1, . . . , Nt, j = 1, . . . , Np

Np∑
j=1

xij ≤ Nb, i = 1, . . . , Nt

where λ, µ > 0 are tuning parameters. It is easy to see
that for sufficiently large λ and µ, the solution to the above
optimization problem will occur at f2(x) = f3(x) = 0,
ensuring that the constraints C2 and C3 in (2) are satisfied.2

Constraint C1 is satisfied by virtue of the concave term
−µf3(x) in the cost function, due to which, the solution occurs
at a boundary point of 0 ≤ xij ≤ 1, i.e., at xij equal to 0 or 1.

Now, the cost function f(x) in (3) is non-convex due to
the negative f3(x) term, making it difficult to solve directly.
However, f(x) can be written as f(x) = h(x) − g(x),
where h(x) and g(x) are convex functions defined as h(x) ,
f1(x) + λf2(x) and g(x) , µf3(x). Thus, f(x) belongs to
the class of difference-of-convex (DC) programming problems
under the linear constraint set of (3). CCP, introduced in [13],
is a powerful heuristic tool for finding a locally optimum
solution to such DC programming problems. It is an iterative
algorithm for which starting from an initial feasible point
suffices to ensure that all iterates remain feasible.3 CCP
iteratively executes the following two steps:
• Convexification of f(x) by replacing g(x) with its affine

approximation around the previous estimate x̂k. The
affine approximation is given by g(x, x̂k) , g(x̂k) +
(∇g(x̂k))T (x− x̂k).

2From our simulations, λ = µ = 1 performs very well in practice.
3A variation of CCP called penalty based CCP, recently introduced in [14],

does not need an initial feasible point to converge to a feasible and locally
optimal solution.



• The next iterate, x̂k+1, is obtained by solving the convex
optimization problem

min
x

h(x) − (∇g(x̂k))Tx (4)

subject to
0 ≤ xij ≤ 1, i = 1, . . . , Nt, j = 1, . . . , Np

Np∑
j=1

xij ≤ Nb, i = 1, . . . , Nt.

The convex optimization problem in (4) requires the minimiza-
tion of a quadratic cost function subject to linear inequality
constraints, and can be solved using any off-the-shelf convex
solver. For our simulations, we used cvx [15], [16]. We stop
the iterations once either ‖x̂k+1 − x̂k‖ is sufficiently small,
or a maximum number of iterations have been executed. We
call this recipe the inclusion-exclusion sparse recovery (IESR)
algorithm.

Note that the IESR is based on CCP, which is a
majorization-minimization (MM) procedure. In MM, the con-
vexification step majorizes the cost function, while the op-
timization step minimizes it. Thus, the iterative procedure
solves a series of convex optimization problems obtained by
upper bounding the non-convex cost function by a convex
function, and the upper bound is tight at the previous iterate.
It is well known that the MM procedure converges to a local
optimum from any feasible initialization (see, e.g., [17]). In
our case, the initialization x̂0 = 0N×1 is a feasible point of
(3). Consequently, the algorithm is guaranteed to converge to
a local optimum from this initialization.

Before presenting simulation results, we make a couple of
remarks about the computational complexity. The complexity
of each iteration is determined by the complexity of solving the
convexified optimization problem (4). Optimization packages
such as cvx can efficiently solve (4) even in large dimensional
settings. Further, through simulations, we have observed that
the algorithm always converges within 10 iterations in the low
SNR regime and within 6 iterations in the high SNR regime.
Thus, the proposed solution is computationally efficient, and,
as will be seen in the next section, offers significantly better
performance compared to state-of-the-art sparse signal recov-
ery algorithms that do not exploit the additional structure of
inclusion-exclusion sparsity.

V. SIMULATION RESULTS

Our experimental setup is as follows. We consider the sparse
vector x ∈ {0, 1}N×1 of length N = 256 with Nt = 16
blocks, each of size Np = 16. Further, Na = 8 of the
Nt blocks are active, and Nb = 6 elements are nonzero
per active block. The nonzero entries are chosen to be at
uniformly at random locations under the inclusion-exclusion
sparsity structure. In each trial, a channel matrix Φ ∈ CM×N

with M � N is generated with entries drawn i.i.d. from
zero mean, unit variance complex Gaussian distribution. We
evaluate the performance in terms of the support recovery rate
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Fig. 1: (a) SRR and (b) NMSE of the proposed algorithm for
the recovery of inclusion-exclusion sparse vectors compared
against popular SSR algorithms, with M = 80, N = 256,
Nt = 16, Na = 8, Np = 16, and Nb = 6.

(SRR), defined as

SRR ,

trials∑
i=1

1 [(x− x̂) = 0]

trials
,

where 1(·) is the indicator function, and the normalized mean
square error (NMSE), defined as

NMSE ,
‖x− x̂‖22
‖x‖22

.

The average SRR and NMSE are obtained by averaging the
results over 1000 independent trials. Note that, the outcome
of the algorithm upon convergence could have entries close
to, but not precisely equal to, 0 or 1. In this case, we hard-
threshold the entries of the recovered sparse vector using a
threshold of 0.5 to obtain the binary estimated data vector.
The decoded data vector is mapped back to the raw data bits,
and the average SER is computed by comparing it with the
transmitted bit sequence.
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Fig. 2: (a) SRR and (b) NMSE of the proposed algorithm for
the recovery of inclusion-exclusion sparse vectors compared
against popular SSR algorithms, with N = 256, Nt = 16,
Na = 8, Np = 16, Nb = 6, and SNR= 40 dB.

In Fig. 1, we compare the NMSE and SSR performance
of proposed algorithm with the least-squares (LS) solutions
as well as with popular SSR algorithms, namely, OMP [8],
lasso [7], and SBL-EM [9], across different SNRs. We con-
sider M = 80 observations for recovering the inclusion-
exclusion sparse vector with K = NaNb = 48 nonzero
elements. We see that the proposed algorithm outperforms the
existing algorithms, with significantly better performance at
higher SNRs. The existing algorithms fail to recover the sparse
vector even at high SNR, as the number of measurements is
insufficient for successful recovery. This can be seen clearly
in Fig. 2, where we plot the SRR and NMSE as a function
of the number of observations, M , at an SNR of 40 dB. The
figure shows that the proposed CCP based procedure requires
significantly lower number of measurements for successful re-
covery, compared to the existing SSR algorithms. Interestingly,
the CCP based IESR algorithm is able to achieve an SRR close
to 1 with M ≈ 50 measurements, which is just 2 more than
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Fig. 3: (a) SRR and (b) NMSE of the proposed algorithm
compared against popular SSR algorithms in the block-sparse
setting, with N = 192, Nt = 24, Na = 12, Np = 8, and
Nb = 8.

the number of nonzero entries (K = 48) in an N = 256 length
sparse vector, while the existing algorithms need M ≈ 2K for
achieving an SRR close to 1.

Next, we consider the recovery of block-sparse signals, for
which several algorithms such as BOMP [11], Group-lasso
[10], and BSBL-EM [12] have been proposed in the literature.
We let Nt = 24, Na = 12, Np = Nb = 8, N = 192 and SNR
= 30 dB, and plot the SRR and NMSE performance in Fig. 3.
Again, we see that the proposed algorithm outperforms the
existing block-sparse recovery algorithms; this is because it
is able to fully exploit the available structure in the signal
(known number of nonzero blocks, with nonzero values being
either 0 or 1).

In Fig. 4, we plot the symbol error rate (SER) performance
of IESR, OMP, lasso, and SBL-EM for data decoding in an
MBM system with Nt = 10, Na = 8, Nrf = 4, Nb = 1,
N = 192 and with M = 20 in Fig. 4(a) and SNR = 30 dB
in Fig. 4(b). To decode the data, we considered the maximum
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Fig. 4: SER of the proposed algorithm for decoding data with
MBM, compared against popular SSR algorithms, with Nt =
10, Na = 8, Nrf = 4, Np = 16, and Nb = 1.

entry in each block, and selected the Na blocks with largest
entries to be active, and set the remaining entries to zero. For
generating this plot, the SER is averaged over 5000 trials.
Here, the transmitted signal dimensionality is 160. Again, we
see that, by exploiting the inclusion-exclusion structure of the
MBM signal, IESR achieved SER of 10−3 with M ≈ 20,
which is a factor of 8 lower dimensionality of the transmitted
signal, in comparison to the other methods which need a larger
number of receive antennas for success. We also notice an error
floor in the performance of IESR as the SNR increases. This
is because, with the given number of receive antennas, a small
probability of failure remains even as SNR increases. Under
the de-mapping from the sparse vector to the information bits,
when ISER (or any SSR algorithm) fails, it fails completely,
i.e., achieves an SER close to unity for that particular symbol,
leading to the error floor.

VI. CONCLUSIONS

In this work, we proposed a novel algorithm, IESR, to re-
cover the vectors with inclusion-exclusion sparsity, from noisy

underdetermined linear measurements. First, we formulated an
optimization problem with combinatorial constraints that cap-
tures the inclusion-exclusion sparsity of the signal. We relaxed
the combinatorial constraints and introduced appropriately
chosen penalty terms to ensure that the constraints are sat-
isfied, resulting in a non-convex optimization problem, which
we solved using a CCP. Through simulations, we showed that,
by exploiting the inclusion-exclusion sparsity present in the
vector, IESR can recover the signal with far fewer observations
compared to conventional sparse signal recovery methods. We
also illustrated that proposed algorithm outperforms existing
block-sparse signal recovery algorithms in the block sparse
setting also. Finally, we applied the algorithm to symbol detec-
tion in MBM systems, and showed that the proposed algorithm
can lead to significantly improved SER performance. Future
work could consider theoretical analysis of the number of
measurements required to guarantee successful recovery under
inclusion-exclusion sparsity constraints.
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