
Investigating Fingerprinters and
Fingerprinting-alike Behaviour of Android

Applications

Christof Ferreira Torres1,2 and Hugo Jonker3,4

1 Fraunhofer AISEC, Munich, Germany
2 SnT, University of Luxembourg, Luxembourg, Luxembourg

christof.torres@uni.lu
3 Open University of the Netherlands, Heerlen, Netherlands

hugo.jonker@ou.nl
4 Radboud University, Nijmegen, Netherlands

Abstract. Fingerprinting of browsers has been thoroughly investigated.
In contrast, mobile phone applications offer a far wider array of attributes
for profiling, yet fingerprinting practices on this platform have hardly
received attention.
In this paper, we present the first (to our knowledge) investigation of An-
droid libraries by commercial fingerprinters. Interestingly enough, there
is a marked difference with fingerprinting desktop browsers. We did not
find evidence of typical fingerprinting techniques such as canvas finger-
printing. Secondly, we searched for behaviour resembling that of com-
mercial fingerprinters. We performed a detailed analysis of six similar
libraries. Thirdly, we investigated ∼30,000 apps and found that roughly
19% of these apps is using one of the these libraries. Finally, we checked
how often these libraries were used by apps subject to the Children’s
Online Privacy Protection Act (i.e. apps targeted explicitly at children),
and found that these libraries were included 21 times.

1 Introduction

Fingerprinting is a side-channel approach to identifying devices. Instead of us-
ing an explicitly defined identifier (e.g. an HTTP cookie), fingerprinting relies
on determining a set of characteristics that together are uniquely identifying.
This can be used for user tracking as well as fraud prevention (e.g. preventing
logins from devices with unknown fingerprints). For desktop internet browsers,
Eckersley found [3] that even a small set of attribute values such as screen res-
olution, browser version, and operating system version is typically sufficient to
reliably re-identify a browser and, thereby, a user.

In comparison to desktop browsers, smartphone platforms facilitate finger-
printing better. Smartphones possess a large array of sensors (e.g. accelerometer,
GPS, etc.), antennas (e.g. WiFi, Bluetooth, GSM, etc.) and internal character-
istics (phone number, contact list, installed apps, etc.), which together provide
a large fingerprintable surface. The extent to which these data can be accessed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162023128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

without privileges is far greater than on desktop browsers (e.g. JavaScript access
to sensor APIs like the Android device motion API). Moreover, unlike desktop
browsers where third-party cookies can be used to track users across sites, the
Android API does not provide any features for sharing state between apps.
Any cross-app tracking is therefore forced to develop its own approach to re-
identification, which, in absence of an explicit identification mechanism, must
rely on side channels, i.e. fingerprinting. Moreover, currently Android offers sev-
eral globally unique identifiers (e.g, MAC address, ANDROID ID, advertising ID
etc.). However, their use for tracking is reducing as newer versions of Android
take privacy measures to precisely prevent this. In other words: unique identifiers
seem not to be future-proof. In contrast, fingerprinting is easy to realize with
few permissions, can result in a large set of identifying data, serves cross-app
and cross-device tracking, and is more future-proof than relying on identifiers.
This provides a strong incentive for using fingerprinting in mobile apps. Unlike
browser fingerprinting, mobile device fingerprinting in practice has, to the best
of our knowledge, received scant attention.

In this paper, we investigate the extent to which the rich fingerprinting op-
portunities offered by Android smartphones are being taken advantage of. The
results are surprising. A large amount of companies is collecting data that could
be potentially used for profiling/identification of users (besides unique identi-
fiers). We show evidence that companies are not just collecting identifiers but
much more data. These results are uncovered by a scanning tool: FP-Sherlock.
This is a static scanner, designed to quickly identify potential fingerprinting
apps from a large corpus, reducing the search space sufficiently to make manual
inspection feasible.

Contributions. We reverse engineer two commercial fingerprinting libraries and
analyse and discuss their workings. Based on this, we design FP-Sherlock, a
static scanner that can find fingerprinting-alike behaviour in APK files. We ap-
ply FP-Sherlock to a corpus of ∼30,000 top apps, which identifies a number of
libraries that exhibit such behaviour. We reverse engineer the six most similar
libraries and discuss their workings and their occurrence rates within our corpus.
Finally, we check how many apps in our corpus include such libraries while be-
ing age-restricted, i.e., subject to the Children’s Online Privacy Protection Act
(COPPA), which strictly regulates profiling of children.

2 Background and Related Work

Eckersley [3] was the first to investigate browser fingerprinting. He computed
the entropy for various browser attributes, and found that about 90% of desktop
browsers were unique in his data set (about 470,000 fingerprints). Commercial
fingerprinters were first identified by Mayer et al. [7], identifying (amongst oth-
ers) Iovation as a company that offers browser fingerprinting services to websites.
This triggered research aimed at detecting commercial as well as non-commercial
fingerprinters. Nikiforakis et al. [9] investigated the workings of three commercial

2

browser fingerprinters. A work by Acar et al. [1] uncovered a new commercial
fingerprinter (ThreatMetrix).

Browser fingerprinting has also been investigated on mobile phones. Spooren
et al. [12], Hupperich et al. [4], and Laperdrix et al. [6] all investigated browser
fingerprinting on mobile devices. While Laperdrix et al. were positive by using
canvas fingerprinting [8], the other two studies reported negative results. Remark
that none of these studies leverage the far richer attribute surface of mobile de-
vices, and so are ill-suited for investigating real-life data gathering practices
in the mobile domain. Hupperich et al. proposed to break away from browser
fingerprinting for mobile device fingerprinting. They introduce four classes of
attributes (browser, system, hardware and behaviour) and set up an experiment
using 45 attributes over these four classes. Their experiments illustrate the feasi-
bility of fingerprinting mobile devices, as well as the strong reliance dependence
of their re-identification process on two attributes in particular. Others have also
looked beyond browser fingerprinting into mobile device fingerprinting.

Kurtz et al. [5] investigate device fingerprinting for iOS devices. They man-
ually evaluated the iOS SDK to find fingerprintable attributes, identifying 29
attributes as such, including last played songs, list of installed applications, etc.
They created an iOS application to fingerprint devices based on these 29 at-
tributes, and found that in their test set of 8,000 different devices, each device
had a unique fingerprint. Wu et al. [15] provide a similar study focused on the
Android operating system. They construct a fingerprinting mechanism that does
not require permissions, relying on 38 attributes. Wu et al. investigate the en-
tropy of these 38 attributes, finding the list of currently installed applications
and wallpapers to be the most revealing.

In summary, the many developments that occurred to desktop browser fin-
gerprinting are not directly applicable to mobile fingerprinting. While Wu et
al. [15] demonstrated the possibility of fingerprinting users on Android devices,
there is insufficient data available on the entropy of attributes to label determine
whether a specific set of gathered attribute values could serve as a fingerprint.
Remark that Wu et al. only investigated 38 attributes that served their pur-
pose. In contrast, we seek to find out what attributes are being used by actual
fingerprinters in practice, and the extent to which other apps engage in similar
behaviour. To the best of our knowledge, we are the first to study whether or
not mobile fingerprinting occurs in practice.

3 Investigating Known Fingerprinters

Previous works [9,7,1] had identified three companies behind commercial browser
fingerprinting: BlueCava, Iovation and ThreatMetrix. We used the ICSI Haystack
Panopticon project [14] to check whether any of these companies’ names or
their domain names occurred in applications scanned by the project. The ICSI
Haystack Panopticon project gathers data communication between mobile ap-
plications and trackers, and offers an online interface5 to search for tracking

5 https://haystack.mobi/panopticon/index.html, providing data from 2015.

3

activity on the collected dataset. We found eleven applications communicating
with ThreatMetrix, but none that communicated with either BlueCava or Iova-
tion. We downloaded these eleven applications and disassembled them in order to
verify that these applications actually included a library or code that would com-
municate with ThreatMetrix. Via a thorough manual examination of the source
code, we identified the presence of a ThreatMetrix library with the package name
“com.threatmetrix.TrustDefenderMobile” in each application. Moreover, af-
ter gradually de-obfuscating each piece of code, we were able to confirm that
the library is indeed performing fingerprinting by gathering a large amount of
information about the device and transmitting it to their back-end. From this,
we learned how the fingerprinting library communicates to its back-end servers.

To find fingerprinting libraries by Iovation and BlueCava, we downloaded
all top free apps for each of the 62 categories on the Google Play Store (about
600 per category). This resulted in a dataset containing a total of 30,696 apps,
collected in mid-July 2017. We scanned their source code for the string “io-
vation” and “bluecava”, respectively, which uncovered ten applications includ-
ing Iovation. Upon manual investigation and de-obfuscation, we found they
were indeed using a fingerprinting library by Iovation with the package name
“com.iovation.mobile.android”. We also found that Iovation’s fingerprinting
library avoids detection by the ICSI Haystack project because communication
with Iovation’s back-end is handled by the developer’s back-end and not by the
library itself (cf. Sec. 5.3).

Through reverse engineering, we found that unlike desktop browser finger-
printing, the identified libraries do not engage in side channel techniques to
establish an identifier. That is, we did not find canvas fingerprinting or other
similar techniques that are common to browser fingerprinters. Moreover, to our
surprise we discovered that, except for the JavaScrip based plugin enumeration
performed by ThreatMetrix, the libraries did not reuse code from their already
existing browser fingerprinting libraries. Instead, the libraries seem to focus on
the Android environment and to have been created independently to collect a
large set of different attributes.

Note that there are several attributes on mobile phones that provide a glob-
ally unique identifier. Any of these would suffice as a way to identify a user
without using fingerprinting. Hence, an app or library that goes beyond these
and engages in promiscuous collection of diverse attribute data is thus suspect
of performing fingerprinting.

4 FP-Sherlock: Hunting for Unknown Fingerprinters

To identify unknown fingerprinters, a definition of what constitutes a finger-
printer is needed. However, there is no agreed-upon definition of fingerprinting.
Fingerprint-detecting tools such as FPDetective focus on detecting use of spe-
cific techniques, e.g. font list probing or canvas fingerprinting. In contrast, we
aim to create a tool that can detect siphoning of large quantities of attributes
that together constitute a fingerprint (as shown by Eckersley [3]). However, in

4

the mobile domain there is no equivalent to the work of Eckersley. Previous stud-
ies focused on a subset of attributes (e.g. [15]), which only have a very limited
overlap with attributes used by actual fingerprinters. This means we cannot de-
termine whether a given set of attributes constitutes a unique fingerprint in the
mobile domain. Thus we have to approach detection of fingerprinters differently.
Instead of looking for a library that is fingerprinting, we look for fingerprinting
behaviour: is the app collecting attributes commonly used by fingerprinters, and
is this accumulation due to one single library?

Based on previous studies in browser fingerprinting [3,9,1,13], studies in mo-
bile fingerprinting [12,4,5,15] as well as our findings from analysing mobile finger-
printers (cf. Section 3), we find that all fingerprinters share two characteristics:

Diversity: measures how many different attributes are accessed by a library.
Accumulation: determines whether the attributes identified by the diversity

measure are all collected at one point in the library.

Both diversity and accumulation are necessary characteristics of fingerprint-
ers, but they are not sufficient to positively identify a fingerprinter. Therefore,
any approach based on them requires post-processing, e.g. manual inspection of
found candidate fingerprinters.

To concretise the notion of diversity, we set out to construct a taxonomy of
attributes. Diversity could then be based not on the amount of attributes itself,
but on the amount of groups in the taxonomy accessed by the suspect library. We
chose an initial set of classes of attributes based on the classifications proposed
by Wu et al. [15], expanding it to incorporate the results of our analysis on the
commercial fingerprinting libraries by Iovation and ThreatMetrix (cf. Table 5).
To concretise the notion of accumulation, we examine the call graph (a directed
graph) of a library. This allows us to perform flow analysis, determining whether
there is a single point in the suspect library where attribute values could be
accumulated. We thus arrive at the following concretisation:

δ-diversity: there must be at least one node in the call graph of the library that
accesses attributes (either directly or accumulated) from at least δ different
categories listed in Table 5,

α-accumulation: a node inherits the attributes accessed by its children, iff:

1. there exists a calling relationship between the two nodes (e.g. the parent
node calls a subroutine of the child node)

2. the child node accesses at least one of the attributes listed in Table 5
3. the similarity between the class names of the parent and the child is at

least α

4.1 System Design

FP-Sherlock is a static analysis tool for Android applications that uncovers fin-
gerprinting libraries. As FP-Sherlock is based on static analysis, it is quick in
comparison to approaches based on dynamic analysis. This enables large scale

5

Fig. 1: FP-Sherlock’s main steps and workflow.

scanning of applications. The tool is based on our characterisation of fingerprint-
ing: accumulation and diversity. As mentioned, this characterisation is sound but
not complete. FP-Sherlock is intended to be used to scan a large set and iden-
tify a much smaller set of candidates, which is then investigated by other, more
time-consuming analysis methods (e.g. manual analysis or dynamic analysis). By
updating the list of attributes covered and setting rates for α-accumulation and
δ-diversity, FP-Sherlock can easily be adopted to other studies. FP-Sherlock’s
workflow in evaluating a single application is as follows (cf. Figure 1):

1. Attribute Extraction: the application is disassembled and the source code
is examined for methods and fields that occur in the attribute taxonomy. In
addition, FP-Sherlock keeps track of all call relationships between classes.

2. Library Extraction:

(a) a partial call graph is generated, taking only call relations into account
between classes that share a similar class name and that call on at-
tributes.
(accumulation)

(b) we extract all connected components from the call graph. Each connected
component represents a library and is only considered relevant if the
overall categories of its attributes are sufficiently distinctive.
(diversity)

3. Library Matching: every extracted library is matched with previously
stored libraries, possibly exposing the un-obfuscated class names of obfus-
cated libraries. Eventually, the library is stored in a database for subsequent
matches.

The remainder of this section explains each of the three main steps of FP-
Sherlock in more detail.

Attribute Extraction. As input, FP-Sherlock takes a set of Android applica-
tions to be analysed and a taxonomy of attributes to look for in these applica-
tions. We created a taxonomy of 120 attributes, mapping all the smali methods
and fields that we came across during our reverse engineering of Iovation’s and
ThreatMetrix’s libraries (see Section 5) to our own representation of attributes.

6

We stored our taxonomy using YAML, a human-readable data serialization lan-
guage commonly used for configuration files. In the attribute representation,
we store class name, method name, field name and parameters separately. For
example, the following smali method invocation:

const−s t r i n g v1 , ” http proxy ”

invoke−v i r t u a l {v0 , v1 } , Landroid / prov ide r / Se t t ing s$Secure ;−>ge tS t r i ng
(Ljava/ lang / St r ing ;) Ljava/ lang / St r ing ;

is mapped to the subsequent YAML description:

- className: Landroid/provider/Settings$Secure
methodName: getString
parameters: [http_proxy]
category: "Proxies"
description: "HTTP Proxy Settings (Secure)"

We separate these in order to easily search for occurrences and overcome simple
Java reflection, where methods of a class are retrieved by passing the name of
the method as a string.

Every attribute contains a description and a category. We grouped the 120
attributes into 10 different categories (see Table 5 for more details). Our classifi-
cation is based on the classification of 38 attributes by Wu et al. [15] (Hardware,
Operating System, and Settings), which we expanded further to account for the
attributes collected by ThreatMetrix and Iovation. We grouped attributes with
similar purpose into one class, and separate classes based on perceived use. For
example, unlike Wu et al., we distinguish a class Localisation as separate from
Settings. This ensures that applications that access localisation information but
no other settings score lower than apps that gather both localisation attributes
and other settings. Similarly, we distinguish the class Device from Hardware
and Network from Carrier. In addition, we identify a class Applications whose
attributes pertain to infer installed applications. Finally, we consider the class
WebView, which governs attributes accessed via JavaScript inside a Webview.

The analysis of an application starts by disassembling its bytecode using
baksmali, a tool that translates DEX bytecode into a more human readable rep-
resentation called smali. As a next step, we iterate over all method definitions.
To boost performance, we slightly modified baksmali in order to keep the smali
representation of a method definition in memory as a string, instead of writing
it to a file. Afterwards, we use a regular expression (const-string.*? v.+?,

(".*?")) to extract all the string constants contained inside the method defini-
tion. In addition, we keep track of calling relations between methods and classes,
(deliberately ignoring system libraries, e.g. classes that start with Landroid/,
Lcom/android/ or Lcom/google/), by using another regular expression ("invoke
.+? {.+?}, (.+?;)"), that extracts all method invocations. Finally, for every
attribute, we search for occurrences of its class name and method name (or field
name) within the method definition. Analogous, for the parameters of a method,
we loop through the string constants and search for strings that match the given
parameters. If the current class contains any occurrences of attributes, we create
new node in the call graph labeled by the name of that class, and add all the

7

matched attributes to it. Please note that the call graph is only a partial call
graph as it only contains class nodes that hold attributes.

Library Extraction. In the previous step we extracted the attributes and
added nodes to the call graph. A node represents a class and contains a list of
attributes that have been found in the method definitions of the class. How-
ever, the previous step does not connect any of these nodes. In this step, we
iterate over the pairs of the previously extracted call relations by solely consid-
ering pairs where the callee node contains at least one attribute and adding a
connection to the call graph if the class names of the nodes are different, yet
share at least a similarity score of α. The similarity between two class names is
computed using fuzzy string matching. We use the JavaWuzzy6 implementation.
JavaWuzzy uses the Levenshtein Distance to determine the similarity between
two strings. This metric determines the similarity of two strings by looking at
the minimum number of edits required for two strings to be equivalent. However,
this approach does not work for pair of nodes with short obfuscated class names,
as these will not fulfil the similarity score of at least α. Hence, for such pairs
we perform a less precise matching, where we check whether the token set ratio
and the token set partial ratio of their class names are equivalent, and whether
both class names share a non-empty longest common starting substring. We then
add a connection between a pair of nodes, if these two properties are fulfilled.
JavaWuzzy computes the token set ratio by tokenising the strings and compar-
ing their intersection and remainder. The partial token set ratio is identical to
the token set ration, except that the partial token set ratio matches based on
the best substrings (e.g. the best partial match from a set of matching tokens),
whereas the token set ratio matches based on pure Levenshtein Distance.

Finally, after adding the connections to the call graph, we extract the con-
nected components. The connected components of a graph are the set of largest
subgraphs of which every subgraph is connected, where connected means that
there is is a path from any point in the graph to any other point in the graph.
As a result, a connected component represents a library, e.g. a subgraph that
is connected and yet independent from the other subgraphs, similar to the con-
cept of a library included inside an Android application. For every connected
component we compute the cardinality-based cosine set similarity between the
set of all possible categories and the set of categories for the node of the con-
nected component with the highest number of attributes (including its children’s
attributes). The cardinality-based cosine set similarity is computed as follows,
where A and B are sets of categories:

cos(A,B) =
|A ∩B|√
|A| × |B|

A connected component must have a cosine set similarity score of at least δ in
order to be considered as a library with potential fingerprinting-alike behaviour.

6 https://github.com/xdrop/fuzzywuzzy

8

Limitations. Obviously, as FP-Sherlock is a static analysis tool that relies on
comparing strings, it inherits certain limitations such as dynamic code loading
or string encryption. Although, none of the studied fingerprinting libraries made
use of such techniques at the time of writting.

Library Matching. In this last step, we compare the extracted libraries with
previously analysed libraries in order to search for identical libraries. This can
be useful in order to match obfuscated with non-obfuscated libraries and extract
their non-obfuscated class names. We use a greedy library matching algorithm
(see Algorithm 1) in order to compare two libraries. As previously stated, li-
braries are represented as connected components, hence graphs. The algorithm
matches libraries by matching nodes. We match nodes based on attributes, the
attributes of both nodes’ parents and the attributes of both nodes children. We
did not consider graph isomorphism as we want to preserve permutation between
nodes. If a graph matches a previously analysed graph, we extract the longest
common starting substring amongst the class names of its nodes and append it
to the list of candidate names for that particular graph. If there is no match,
we store the graph and create a new list of candidates names for that particular
graph, appending its longest common starting substring as a first candidate. We
store the graphs and the lists of candidate names in a MongoDB database for
subsequent analysis.

4.2 Experiment: Scanning 30,000 Applications

As mentioned above, we downloaded a set of free top-rated applications from
the Google Play store (∼30,000 apps) as of July 2017. We scanned this corpus
with FP-Sherlock, using δ = 0.75 and α = 0.75. We ran a single instance of
FP-Sherlock on a customer grade computer with a dual core CPU and 16 GB of
RAM. With these settings we were able to scan our corpus in approximately 8
hours (∼1 second per app). We uncovered 150 candidate fingerprinting libraries.
Of these, we analysed the six most popular ones in terms of occurrences in our
corpus: Amazon Mobile Ads, Chartboost, INFOnline, Kochava, Kontagent and
Tapjoy. More details about these six libraries, are condensed in Table 1.

Table 1: List of most popular libraries and their package names.
Library Category Package Name

Amazon (AZ) Ads/Analytics com.amazon.device.ads

Chartboost (CB) Ads/Analytics com.chartboost.sdk

INFOnline (IN) Ads/Analytics de.infonline.lib

Kochava (KC) Ads/Analytics com.kochava.android

Kontagent (KA) Ads/Analytics com.kontagent.fingerprint

Tapjoy (TJ) Ads/Analytics com.tapjoy.connect

9

Algorithm 1 A greedy library matching algorithm

1: function matchGraphs(G1, G2)
2: if |G1.nodes()| 6= |G2.nodes()| or |G1.edges()| 6= |G2.edges()| then
3: return False
4: matched← {}
5: for every node n1 ∈ G1.nodes() do
6: found← False
7: for every node n2 ∈ G2.nodes() do
8: if n2 /∈ visited and n1.attributes() = n2.attributes() then
9: if matchNodeList(n1.parents(), n2.parents()) and

10: matchNodeList(n1.children(), n2.children()) then
11: matched← matched ∪ {n2}
12: found← True
13: break
14: if not found then
15: return False
16: return True

17: function matchNodeList(N1, N2)
18: if |N1| 6= |N2| then
19: return False
20: matched← {}
21: for every node n1 ∈ N1 do
22: found← False
23: for every node n2 ∈ N2 do
24: if n2 /∈ matched and n1.attributes() = n2.attributes() then
25: matched← matched ∪ {n2}
26: found← True
27: break
28: if not found then
29: return False
30: return True

5 Analysis of Fingerprinting-alike Libraries

We manually analysed the source code of every library using JADX7, a DEX to
Java decompiler with a GUI. For each of the analysed libraries, both those by
fingerprinters as well as those uncovered by FP-Sherlock, we determined which
permissions are necessary (cf. Table 2). Note that permissions with protection
level “normal” are automatically granted by the system, whereas those with
protection level “dangerous” must be actively granted by the user.

Once a library is called upon to gather a fingerprint, it typically operates in
two or three phases, as shown below. The remainder of this section is structured
along these three phases.

7 https://github.com/skylot/jadx

10

Table 2: Permissions required by the analysed libraries.
Permission Protection IO TM TJ AZ IN CB KA KC

INTERNET Normal X X X X X X X X
READ PHONE STATE Dangerous X X X X X X X X
ACCESS WIFI STATE Normal X X X X X X
ACCESS NETWORK STATE Normal X X X X
ACCESS COARSE LOCATION Dangerous X X X X
ACCESS FINE LOCATION Dangerous X X X X
BLUETOOTH Normal X
GET ACCOUNTS Dangerous X

1. An optional initialisation phase, during which additional configuration may
be loaded from a remote server;

2. A collection phase during which attribute values are collected; and
3. A submission phase, during which the accumulated fingerprint is transmitted

back to a designated collection point, typically a server of the party that
developed the library.

5.1 Initialization Phase

The ThreatMetrix library is the sole library (of those investigated) that contacts
an external server before gathering attributes. It requests an XML file contain-
ing configuration information. This seems to be a way to include experimental
attributes, such as novel checks for packages which indicate if the device has
been rooted or to test for emulators by giving a list of phone numbers and IMEI
numbers (a per-device unique number) known to be used in emulators.

5.2 Collection Phase

This section discusses our findings on the collection of attributes by the eight
studied libraries and compares them to Wu et al.’s permissionless fingerprinter [15],
which was based on implicit identifiers. The attributes collected by the libraries
are shown in Table 5.

Inclusion of other fingerprinting libraries. During our manual analysis of Tapjoy’s
source code, we noticed that Tapjoy includes the ThreatMetrix fingerprinting li-
brary and combines it together with its own fingerprint.

Collection of explicit identifiers. Wu et al. [15] focused on implicit identifiers
and therefore did not consider explicit identifiers. However, as one can see in
Table 5, known fingerprinting companies such as Iovation and ThreatMetrix
make extensive use of identifiers such as the Android ID, IMEI, Bluetooth and
WiFi MAC addresses, etc. Note that not all explicit identifiers necessarily require
a permission. For example, ThreatMetrix, Tapjoy and Amazon obtain the device
hardware serial via android.os.Build.SERIAL, whereas access to this identifier
does not require any permission while it can be used as a unique device identifier.

11

Attributes relevant for cross-device tracking. Of particular interest is Iovation’s
access to certain attributes: WiFi’s SSID (network name), BSSID (MAC address
of the base station), list of user accounts, phone number, subscriber ID and SIM
serial number. Especially user account information may contain personally iden-
tifiable information (PII), such as username, that may link the device to exter-
nal accounts (such as Facebook, Google, etc.). Obviously, all this information
together can be used for cross-device tracking.

Context checks. Iovation and ThreatMetrix have some checks that consider the
integrity and the environment of its hosting application. For instance, Threat-
Metrix gathers some attributes in two different ways (via Java API and JNI)
enabling them to detect inconsistencies. Both libraries check if the device is
rooted or running inside an emulator by checking for instance the existence
of installed binaries such as /system/xbin/su. Interestingly enough, Iovation
search for installed applications that have the access mock location permis-
sion. This permission allows an application to override the current location with
a fake location. Moreover, Iovation checks the signature on the hosting applica-
tion. If this was re-signed, this probably indicates the hosting application has
been potentially modified. Also, Iovation checks the isUserAMonkey() method.
This method returns true if the user interface is undergoing structured test-
ing by a program (e.g. a ‘monkey’). Finally, Iovation checks wether the hosting
application has the debug flag set, which should not occur in production runs.

Location fallback methods. In Table 5 we see that Iovation requests the cell ID
and the location area code (Localisation: GSM/CDMA CID & LAC). Combined
with the locale country and operator name, these attributes allow Iovation to
derive a so-called “Global Cell-ID”. This ID determines the specific cell in which
a mobile device is located world-wide, without relying on GPS.

Device uptime. Iovation and ThreatMetrix derive the timestamp when the device
was last booted, by subtracting the device’s uptime from the current time. We
suspect that this is because these companies found the timestamp of the last
boot to have a high entropy. Note that we cannot verify this suspicion, since to
the best of our knowledge, none of the published works on attribute entropy in
Android devices consider device uptime.

Browser properties. ThreatMetrix gathers a list of installed browser plugins and
mime-types via Javascript injected inside a WebView. This is rather bizarre as
we suspect WebViews to have no browser plugins installed and to share the same
set of mime-types.

Inference of installed applications. Iovation abuses a method intended as an
easter egg by Google (i.e. UserManager.isUserAGoat()) in order to check if a
specific goat simulator package is installed. ThreatMetrix scans every 60 seconds
for newly installed non-system applications on the device as well as a list of
running processes. Tapjoy checks whether two alternative application markets

12

are installed on the device: Gfan (a Chinese application market) and SK Telekom
(a South Korean application market). Tapjoy also checks for the presence of four
specific social sharing applications: Facebook, Twitter, Google+ and LinkedIn,
thus inferring in which social networks the user is present.

Proxy detection. Iovation tries to detect if the user is using a proxy for FTP,
HTTP, and HTTPS. It does so by calling the method ProxySelector.getDefau

lt().select(<url>).toString(), for the three URLs: ‘ftp://www.example.com/’,
‘http://www.example.com/’ and ‘https://www.example.com/’.

Font enumeration. ThreatMetrix attempts to get the list of system fonts, first
via JNI, failing that, via Java, looking in the /system/fonts directory for all
files having the .ttf extension. Note that this is not equivalent to font list
probing – in desktop browsers, the font list is not directly accessible, but may be
partially determined by checking whether specific fonts are present. Conversely,
on Android systems, the list of fonts is directly accessible. Moreover, Wu et
al. found that the lists of fonts in Android devices does not provide a great
amount of entropy, in contrast to font lists on desktop computers.

Storage capacity. Similar to Wu et al., Iovation and ThreatMetrix compute the
capacity of the internal and external storage by multiplying block size with block
count. ThreatMetrix goes further by also computing the available space left on
the internal storage.

Battery characteristics. Iovation gathers information about the current battery
level and whether the device is currently plugged to a power source. Olejnik et
al. [10] have shown that the HTML5 Battery Status API exposes a fingerprint-
able surface that can be used to track web users in short time intervals.

CPU and Memory characteristics. Iovation and ThreatMetrix, both gather in-
formation about the CPU and Memory by reading /proc/cpuinfo and /proc/

meminfo respectively. Moreover, Threatmetrix extracts the BogoMips value per
CPU core. The BogoMips (from ‘bogus’ and MIPS) is an unscientific measure-
ment of CPU speed made during boot.

Camera characteristics. Iovation gathers characteristics of all built-in cameras.
In particular, it gathers the values of INFO SUPPORTED HARDWARE
LEVEL and SENSOR CALIBRATION TRANSFORM1 for every camera.

5.3 Submission Phase

After collection, the gathered data is sent back to the back-end. Thankfully, all
studied libraries make use of HTTPS to submit the gathered data. Nikiforakis
et al. [9] found two scenarios for communicating browser fingerprints: by an
included third party without involvement of the first party, or explicitly upon the
request of the first party. In our analysis, we find exactly the same two scenarios

13

in the mobile domain. While the top six investigated libraries do not require
interaction with the host application developer, the libraries by ThreatMetrix
and Iovation take a different approach. These two libraries operate on the explicit
request of the hosting application, and provide the gathered user identity to the
hosting application. In contrast, the top six libraries are advertising and analytics
libraries that do not offer explicit identification services to applications, and
therefore do not have to communicate an identity back to the developer. In the
remainder of the submission section, we thus focus on the submission processes
of Iovation and ThreatMetrix.

Iovation. Iovation is the odd library out, as it does not explicitly submit the
fingerprint to its own back-end, but leaves this to the app developers. These
thus have to set up and maintain a back-end server which gathers and forwards
the fingerprints to Iovation’s back-end. This also explains why Iovation was not
in the ICSI Panopticon dataset. Iovation’s fingerprinting library encrypts its fin-
gerprints (using AES in CBC mode without padding) via a hard-coded key that
is identical across all applications that include Iovation. Moreover, Iovation uses
a random initialisation vector, which is concatenated in clear to the AES out-
put. The input to AES is a concatenation of all the collected attributes, starting
with the magic number “0500”. In order to collect a fingerprint, the hosting ap-
plication typically calls Iovation’s method DevicePrint.getBlackbox(). This
method returns a base64 encoded version of the encrypted string. Application
developers explicitly do not know about the AES encryption, nor about the key
used for encryption. Thus, app developers must submit the collected fingerprints
back to Iovation if they are to be used. This delivery mechanism not only per-
mits Iovation to hide their implementation details and to bill their customers,
but this also allows Iovation to remain undetected towards traffic analysis tools
such as the ICSI Panopticon.

ThreatMetrix. In contrast to Iovation’s fingerprinting library, ThreatMetrix com-
municates its fingerprint directly to its back-end servers. The fingerprint is
submitted via a web beacon, a 1x1 pixel image hosted at https://h.online-
metrix.net/fp/clear.png. ThreatMetrix follows the same approach to submit fin-
gerprints via its browser fingerprinting scripts. The body of the request con-
tains the fingerprint, as the parameter “ja”. The fingerprint is “encrypted” by
XOR’ing it with the session id. The HTTP Referer header contains the package
name of the host application. In addition to submitting the fingerprint, Threat-
Metrix also submits an HTTP cookie (thx guid) to its own back-end servers.
This cookie includes a unique identifier that is based on the Android ID of the
mobile device. The developer can request any information about the user from
ThreatMetrix’s back-end servers via the session id.

6 Adoption of Investigated Libraries

We investigated the adoption of the investigated libraries across popular Android
applications. Fingerprinting-alike behaviour turns out to be much more common

14

Table 3: Prevalence of fingerprinting-alike libraries in popular applications from
the Google Play Store.

Installs
Library # Apps [0, 10K) [10K, 100K) [100K, 1M) [1M, +∞)

Chartboost 4493 188 633 1564 2108
Amazon 1428 85 204 492 647
Tapjoy 1204 42 132 350 680
ThreatMetrix 471 3 22 123 323
Kochava 221 4 12 49 156
INFOnline 220 18 66 78 58
Kontagent 54 0 0 15 39
Iovation 12 0 1 1 10

5917 unique

in Android applications than on the web (see e.g. Acar et al.’s study [1]) We
found 5.917 unique applications that include at least one of the eight studied
libraries, hence 19% of our dataset. Our findings are summarised in Table 3.
Using the classification from the Google Play Store, we state that the majority
of the investigated fingerprinting libraries can be found inside games with the
following categories: Action, Casino, Casual, Racing and Games, whereas the
five app categories with the least library occurrences are: Events, Art & Design,
Business, Maps and Navigation and Libraries & Demo.

Table 4: Prevalence of identified libraries in applications subject to COPPA.
Library # Apps Subject to COPPA

Chartboost 13
Tapjoy 6
Kochava 5
Amazon Mobile Ads 3
ThreatMetrix 2
INFOnline 0
Iovation 0
Kontagent 0

21 unique

Adoption Amongst Apps Targeted at Children. Collecting children’s per-
sonal information without parental consent is illegal in the USA under the Chil-
dren’s Online Privacy Protection Act (COPPA) [2]. In particular, collection of
personally identifiable information of children is mostly prohibited, and excep-
tions are only allowed under “verifiable parental consent”. Where a recent study
by Reyes et al. [11] searched for any COPPA violations in their data set, we
explicitly limit ourselves to the previously analysed libraries. Therefore, we do
not need to encode COPPA regulations into a scanner.

We identified 21 applications from Play Store categories 5 & Under and 6–8
(both clearly subject to COPPA) that used one or more of the analysed libraries.
Only three of the eight investigated libraries were not present (cf. Table 4).

15

The question of whether or not the observed behaviour is a violation of
COPPA is a legal matter beyond the scope of this paper. That notwithstanding,
we hold the view that apps explicitly aimed at children should sidestep this
question by not engaging in fingerprinting-alike behaviour at all.

7 Conclusions and Future Work

We reverse-engineered two commercial fingerprinting libraries for Android apps
and analysed their behaviour. We expected these libraries to reuse techniques
that their creators apply for fingerprinting browsers but, to our surprise, we did
not encounter this. We also expected to find typical fingerprinting techniques
such as canvas fingerprinting, but found no such techniques. These commercial
authentication libraries apparently do not need such techniques to be certain
about a user’s identity – collecting a large set of attribute values and some
unique identifiers apparently suffices. This implies that there is quite some au-
thenticating information to be gleaned from the collected attribute values.

With this in mind, we set out to identify other libraries that gather simi-
lar amounts of attribute values. We designed and implemented FP-Sherlock, a
static scanner for fingerprint-alike behaviour. FP-Sherlock is based on the no-
tions of diversity and accumulation, which provide a necessary but incomplete
characterisation of fingerprint behaviour.

We applied FP-Sherlock to a corpus of ∼30,000 applications and found sev-
eral candidate fingerprinters. Of these, we reverse-engineered the six most pop-
ular libraries (i.e., with the highest usage rate in our corpus). We were able to
establish a lower bound on mobile device fingerprinting-alike behaviour that is
vastly higher than browser fingerprinting: 5,917 out of 30,695 or 19.28%. In con-
trast, recent studies into browser fingerprinting prevalence find between 0.4%
and 1.4% adoption rate amongst popular websites. While the found behaviour
lacks the telltale signs of fingerprinting present in browser fingerprinters, the
amount of data gathered by these libraries is clearly unwarranted and exceeds
the bounds of reason. We believe that neither users nor app developers are aware
of this data gathering, let alone of the scale of this.

Moreover, we investigated how many apps targeted at children include one
of the studied libraries. Tracking children is (in general) subject to stricter le-
gal restrictions than tracking adults. In our dataset, we found 21 apps targeted
at children that included one or more of the studied libraries. Two of the used
libraries explicitly fingerprint, and thus definitely should fall under tracking re-
strictions.

Future work. Future work focuses on three aspects. First of all, we are currently
developing a framework to repeat Eckersley’s study of attribute entropy [3] for
mobile devices. Secondly, we are looking to improving and automating the detec-
tion of fingerprinters, using machine learning techniques. Thirdly, countering fin-
gerprinters seems more challenging than for web browsers, as some fingerprinters
piggyback on the first-party. Solution approaches based on guided randomization
at level of the Android API should be further investigated.

16

References

1. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F.,
and Preneel, B. FPDetective: dusting the web for fingerprinters. In Proc. 2013
ACM SIGSAC conference on Computer & communications security (CCS’13)
(2013), ACM, pp. 1129–1140.

2. Commission, F. T., Commission, F. T., et al. Children’s online privacy pro-
tection rule (COPPA).

3. Eckersley, P. How unique is your web browser? In Proc. 2010 Privacy Enhancing
Technologies conference (PET’10) (2010), vol. 6205, Springer, pp. 1–18.

4. Hupperich, T., Maiorca, D., Kührer, M., Holz, T., and Giacinto, G. On
the robustness of mobile device fingerprinting: Can mobile users escape modern
web-tracking mechanisms? In Proc. 31st Annual Computer Security Applications
Conference (ACSAC’15) (2015), ACM, pp. 191–200.

5. Kurtz, A., Gascon, H., Becker, T., Rieck, K., and Freiling, F. Finger-
printing mobile devices using personalized configurations. Proceedings on Privacy
Enhancing Technologies (PETS’16) 2016, 1 (2016), 4–19.

6. Laperdrix, P., Rudametkin, W., and Baudry, B. Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints. In Proc. 2016
IEEE Symposium on Security and Privacy (S&P’16) (2016), IEEE, pp. 878–894.

7. Mayer, J. R., and Mitchell, J. C. Third-party web tracking: Policy and tech-
nology. In Proc. 2012 IEEE Symposium on Security and Privacy (S&P’12) (2012),
IEEE, pp. 413–427.

8. Mowery, K., and Shacham, H. Pixel perfect: Fingerprinting canvas in HTML5.
In Proceedings of 2012 workshop on Web 2.0 Security and Privacy (W2SP’12)
(2012), IEEE, pp. 1–12.

9. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F.,
and Vigna, G. Cookieless monster: Exploring the ecosystem of web-based device
fingerprinting. In Proc. 2013 IEEE Symposium on Security and privacy (S&P’13)
(2013), IEEE, pp. 541–555.

10. Olejnik, L., Acar, G., Castelluccia, C., and Diaz, C. The leaking battery. In
Proc. 2015 Workshop on Data Privacy Management (DPM’15) (2015), Springer,
pp. 254–263.

11. Reyes, I., Wijesekera, P., Reardon, J., On, A. E. B., Razaghpanah, A.,
Vallina-Rodriguez, N., , and Egelman, S. “won’t somebody think of the
children?” examining coppa compliance at scale. PoPETs 2018, 3 (2018), 63–83.

12. Spooren, J., Preuveneers, D., and Joosen, W. Mobile device fingerprint-
ing considered harmful for risk-based authentication. In Proc. Eighth European
Workshop on System Security (EuroSec’15) (2015), ACM, pp. 6:1–6:6.

13. Torres, C. F., Jonker, H., and Mauw, S. FP-Block: usable web privacy by
controlling browser fingerprinting. In Proc. 2015 European Symposium on Research
in Computer Security (ESORICS’15) (2015), Springer, pp. 3–19.

14. Vallina-Rodriguez, N., Sundaresan, S., Razaghpanah, A., Nithyanand,
R., Allman, M., Kreibich, C., and Gill, P. Tracking the trackers: Towards un-
derstanding the mobile advertising and tracking ecosystem. CoRR abs/1609.07190
(2016).

15. Wu, W., Wu, J., Wang, Y., Ling, Z., and Yang, M. Efficient fingerprinting-
based android device identification with zero-permission identifiers. IEEE Access
4 (2016), 8073–8083.

17

A A Detailed Taxonomy of Attributes Used by
Fingerprinting-alike Libraries

Table 5: A detailed taxonomy comparing all the attributes used by the studied
libraries.

Authentication Advertising/Analytics
Category Attribute [15] IO TM TJ AZ IN CB KA KC

List of Installed Applications X X X(JAVA/JNI) X X
App/Package Name X X X X X X X X
App/Package Version X X X X X X X
App/Package Hash X ;
App/Package Signatures X
Debug Flag X
Is User a Goat/Monkey X
List of Special Files & Proper-
ties

X(JAVA/JNI) ;

List of Running Processes X(JAVA/JNI) ;

Usage of Alternative App Mar-
kets

X

Applications

List of Social Sharing Services X
SIM Operator Name (P) X X X
SIM Operator Country (P) X X ; X
Network Operator Name (P) X X X X X X X X
Network Operator Country (P) X X X
MSISDN (Phone Number) (P) 4
IMSI (Subscriber ID) (P) 4

Carrier

SIM Serial Number (P) 4

Manufacturer X X X X X X X
Brand X X ; X X
Model X X X X X X X X X
Product X X ; X X
Device Build X X ; X X
IMEI (Device ID) (P) 4 4 4 4

Device

Uptime X X ;

Screen Resolution X X X X X X X X X
Screen Orientation X X X X X
Internal Storage Capacity X X X ;
External Storage Capacity X X
Available Internal Storage X ;
Battery Information X
Proximity Sensor X
CPU Information X X ;
RAM Information X X ;
Hardware Build X
Hardware Serial 4 4 4

Hardware

Camera Information X
Android ID 4 4 4 4 4 4 4 4
Google Play Advertising ID(P) 4 4 4 4 4 4Identifiers
Facebook Attribution ID 4 4

Locale Country X X X X X
Locale Currency X
Locale Language X X X X X X X X
Timezone X X X ; X
Time & Date Format X
Geolocation (P) X X ; X X

Localisation

GSM/CDMA CID & LAC (P) X

18

Authentication Advertising/Analytics
Category Attribute [15] IO TM TJ AZ IN CB KA KC

Local IP Addresses X X
Local Hostname X
Connection Type (P) X X X X
WiFi MAC Address (P) 4 4 4 4 4 4
WiFi SSID (P) X
WiFi BSSID (P) X X
Bluetooth MAC Address (P) 4

Network

List of Available Proxies X
OS Name X X X X X X X X
OS Version X X X X X X X
Root Status X X(JNI) X(JAVA/JNI) ; X
Is an Emulator X X X
Kernel Information X X
API Level X X
Build ID X
Build Display X X
Build Fingerprint X
Build Host X
Build Time X
User-Agent X X(JAVA/JS) ; X X
System Storage Structure X
Root Directory Structure X
Input Methods X
System Font Size X

Operating
System

List of System Fonts X X(JAVA/JNI) ;

Automatic Time Sync X
Automatic Timezone Selection X
Time of Screen Locking X
Notify WiFi Availability X
Policy of WiFi Sleeping X
Lock Pattern Enabled/Visible X
Phone Unlocking Vibration X
Sound Effects Enabled X
Show Password in Text Editors X
Screen Brightness Mode X
Is Device Orientation Locked X
Current Wallpaper X
List of Default Ringtones X X
Install Non Market Apps X
Granted Permissions X X X
List of User Accounts (P) X
HTTP Proxy Settings X

Settings

System Volume X
List of Plugins X(JS) ;

Web View
List of Mime-Types X(JS) ;

4 : Explicit identifier that by itself is sufficient to uniquely identify a device.
; : Attribute collaterally called via the ThreatMetrix SDK.

(P) : Attribute requires a permission in order to be retrieved.
(JS) : Value retrieved via JavaScript Interface (allowing calls to JavaScript objects).

(JNI) : Value retrieved via Java Native Interface (allowing calls to native methods written in C/C++).
(JAVA/JNI) : Value retrieved via Java and Java Native Interface.
(JAVA/JS) : Value retrieved via Java and JavaScript Interface.

19

