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Abstract—In this paper, we investigate the performance of
cache-assisted simultaneous wireless information and power
transfer (SWIPT) cooperative systems, in which one source
communicates with one destination via the aid of multiple relays.
In order to prolong the relays’ serving time, the relays are
assumed to be equipped with a cache memory and energy har-
vesting (EH) capability. Based on the time-splitting mechanism,
we analyze the effect of caching on the system performance in
terms of the serving throughput and the stored energy at the
relay. In particular, two optimization problems are formulated
to maximize the relay-destination throughput and the energy
stored at the relay subject to some quality-of-service (QoS)
constraints, respectively. By using the KKT conditions and with
the help of the Lambert function, closed-form solutions are
obtained for the two formulated problems. In order to further
improve the performance, a relay selection policy is introduced
to select the best relay based on either the maximum throughput
between the relays’ and destination link or maximum stored
energy at the relay, for conveying information to the destination.
Numerical results reveal significant benefits of incorporating
caching capabilities to SWIPT systems, in terms of improved
serving time, throughput and energy harvesting performance at
the relays.

Index Terms—Simultaneous wireless information and power
transfer, relay systems, wireless caching, energy harvesting, relay
selection.

I. INTRODUCTION

THE exponential increase in the usage of wireless devices
like smart-phones, wearable gadgets, or connected vehi-

cles, has not only posed substantial challenges to meet the
performance and capacity demands [1], [2], but also revealed
some serious environmental concerns with alarming energy
consumption and CO2 emissions [3]. These concerns become
more significant as the forecast number of devices will exceed
50 billions by the end of 2020 [4]. Recent developments in the
upcoming paradigm of Internet-of-Things (IoT) emphasize the
interconnection between equipments, commodities, functional-
ities, and customers, with or without human mediation. Since
most of these connecting operations involve wireless sensor
nodes or equivalent battery-limited devices that may not be
continuously powered, energy becomes a sparse and pivotal
resource. These challenges require the future communication
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networks to have not only efficient energy management but
also capability of being self-powered from redundant energy
sources, which is known as energy harvesting (EH).

Among potential EH techniques, simultaneous wireless in-
formation and power transfer (SWIPT) has received much
attention as the key enabling technique for future IoT networks
[5]. The basic premise behind SWIPT is to allow concurrent
data reception and EH from the same radio frequency (RF)
input signal. Considering rapid drainage of battery sources in
wireless devices, it has almost become essential to take up
such techniques in order to compensate for this issue. Since the
conventional receiver architectures are capable of performing
information decoding with focus on increasing the data rate
only and are unable to harvest energy, this calls for alternative
receiver architectures to support SWIPT [6]. Two notable
architectures have been proposed based on time switching (TS)
and power splitting (PS) schemes [7], [8]. In the former, the
received signal is switched between the information decoder
and energy harvester. It is noted in the TS scheme that full
received power is used for either information decoding or
energy harvesting. In the latter, both the information decoder
and energy harvester are active simultaneously, each of them
receive parts of the signal power. The research on SWIPT has
received much attention recently [9]–[11]. The Rate-Energy
(R-E) trade-off is analyzed in [12] under both TS and PS
based SWIPT. The authors in [13] investigate the performance
of SWIPT ad-hoc networks in terms of transmission capacity
and the harvested energy per unit area. The harvested energy
density can be maximized by optimizing the density of the
deployed information decoding nodes in TS architecture, and
the power splitting ratio in PS architecture. In [14], a tractable
model of the rectifier non-linearity is developed to support
general multi-carrier modulated input waveforms, which is
then used to model a wireless information and power trans-
fer architecture based on the superposition of multi-carrier
modulated and unmodulated waveforms. The authors in [15]
propose an adaptive scheduling scheme for EH based multiuser
systems to jointly maximize achievable rate and harvested
energy. In [16], the performance of cooperative networks
with battery-powered EH relays is analyzed considering direct
source-relay link. The authors in [17] have investigated various
relaying protocols to realize SWIPT in a dual-hop system
under static (equal) time distribution. A comprehensive review
on SWIPT is presented in [18].

Another major problem the future networks have to face
is network congestion, which usually occurs during peak
hours when the network resource is scarce. The cause of
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Fig. 1: System model for simultaneous wireless information and power transfer (SWIPT) with caching.

this congestion is mainly due to the fact that replicas of a
common content may be demanded by various mobile users.
A promising solution to overcome network congestion is to
shift the network traffic from peak hours to off-peak times
via content placement or caching [19]. In (off-line) caching,
there is usually a placement phase and a delivery phase. In the
placement phase, which usually occurs during off-peak times
when the network resources are abundant, popular content is
prefetched in distributed caches close to the end users. The
latter usually occurs during peak hours when the actual users’
requests are revealed. If the requested content is available
in the user’s local storage, it can be served without being
requested from the core network. Various advantages brought
by caching have been observed in terms of backhaul’s load
reduction [19]–[21] and system energy efficiency improvement
[22]–[24].

A generic concept outlining joint EH and caching has
recently been proposed for 5G networks to exploit the benefits
of both techniques. A so-called framework GreenDelivery is
proposed in [3], which enables efficient content delivery in
small cells based on energy harvesting small base stations. In
[25], an online energy-efficient power control scheme for EH
with caching capability is developed. In particular, by adopting
the Poisson distribution for the energy sources, a dynamic
programming problem is formulated and solved iteratively
by using numerical methods. The authors in [26] propose a
caching mechanism at the gateway for the energy harvesting
based IoT sensing service to maximize the hit rate. In [27], the
authors investigate the performance of heterogeneous vehicular
networks with renewable energy source. A network planning
problem is formulated to optimize cache size and energy har-
vesting rate subject to backhaul capacity limits. We note that
these works either address an abstract EH with general external
energy sources or consider EH separated from caching.

On one hand, the SWIPT-based systems are inevitably
impacted by the phenomenon of R-E trade-off [28]. On the
other hand, cooperative systems with incorporated caches
are proven to perform far better in terms of information
exchange compared to traditional communication systems
without caching [29]. In this paper, we intend to develop
a joint relationship between caching and SWIPT to study

the corresponding performance benefits. Besides, significant
benefits are anticipated from cache-assisted SWIPT systems,
in terms of: (i) prolonged serving time of the relays, (ii)
reduced content delivery time, (iii) increased transmission
throughput, and (iv) improved energy storage at the relay
(including energy harvesting capabilities). In this regard, we
investigate the performance of EH based cooperative networks,
in which the relay node is equipped with both SWIPT and
caching capabilities. In particular, we aim at developing a
framework to realize the integration of SWIPT with caching
architectures. The considered system is assumed to operate in
the TS based mode, since the PS counterpart imposes complex
hardware design challenges of the power splitter [8]. The main
contributions of this paper are four-fold, listed as follows.

1) Firstly, we introduce a novel cache-assisted SWIPT
architecture for decode-and-forward (DF)-enabled relay-
ing systems under a dynamic TS-based scheme to study
the interaction between caching capacity and SWIPT in
the considered system.

2) Secondly, an optimization problem is formulated to
maximize the throughput of the (serving) link between
the relay and destination, taking into account the caching
capacity, minimum harvested energy and quality-of-
service (QoS) constraints. By using the KKT conditions
with the aid of the Lambert function, a closed-form
solution of the formulated problem is obtained for the
dynamic TS factors and the transmit power at the relay.
Based on this result, the best relay will be selected for
cooperation.

3) Thirdly, we formulate an optimization problem to max-
imize the energy stored at the relay subjected to the
QoS constraint. Similar to the previous problem, a
closed-form solution is obtained for optimization of the
dynamic TS factors and the transmit power at the relay,
by using the KKT conditions and the Lambert function.

4) Finally, the effectiveness of the proposed schemes are
demonstrated via intensive numerical results, through
which the impacts of key system parameters are ob-
served. Furthermore, a discussion on practical imple-
mentation and future directions is provided.

The remainder of this paper is organized as follows. Sec-
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Fig. 2: Proposed DF relay transceiver design for hybrid SWIPT and caching
with time switching (TS) architecture.

tion II describes the system model and relevant variables.
Section III presents the problem for maximization of link
throughput between the relay and destination. Section IV
maximizes the stored energy at the relay. In Section V, nu-
merical results are presented to demonstrate the effectiveness
of the proposed architectures. Finally, Section VI concludes
the paper.

II. SYSTEM MODEL

We consider a generic TS based SWIPT system, which
consists of one source, K relays, and one destination, as
depicted in Fig. 1. Each device within the network is equipped
with single antenna. Due to limited coverage, e.g., transmit
power limit or blockage, there is no direct connection between
the source and the destination. The considered model can find
application on the downlink where the base station plays the
source’s role and sends information to a far user via a small-
or femto- cell base station. The relays operate in DF mode
and are equipped with single antenna. We consider a general
cache-aided SWIPT model, in which each relay contains an
information decoder, an energy harvester, and a cache in order
to store or exchange information. The block diagram of a
typical relay architecture is shown in Fig. 2.

We consider block Rayleigh fading channels, in which
the channel coefficients remain constant within a block (or
coherence time), and independently change block to block.
One communication session (broadcasting and relaying) takes
place in T seconds (T does not exceed the coherence time).
In the broadcasting phase, the source-relay links are active
for information decoding (at the relay) and energy harvesting.
The relays employ the TS scheme so that the received signal is
first provided to the the energy harvester for some fraction of
the time allocated for transmitter-relay communication link,
and then to information decoder for the remaining fraction.
In case of equal time slots in both the hops, this mechanism
is also known as harvest-then-forward protocol [30]. Corre-
spondingly, due to the changing nature of the TS factors’, we
refer to this analogous operation as “dynamic harvest-then-
forward” protocol. In the relaying phase, the selected relay
forwards the information to the destination. Full channel state
information (CSI) is assumed to be available at a centralized
base station which performs all the computations and inform
the relevant devices via adequate signaling. The relay with
the best reward will be selected for sending information to the
destination. Details on relay selection will be presented later.

Fig. 3 presents a convention for allocation of time fractions
in the TS scheme: i) energy transmission from the source
to i-th relay, ii) information processing at the relay, and iii)
information forwarding to the destination. The link between
the transmitter and i-th relay with cache is active for a
fraction of βiT seconds, while the link between the i-th
relay and destination is active for the remaining (1 − βi)T ,

Fig. 3: Convention assumed for distribution of time to investigate the through-
put maximization problem.

where 0 ≤ βi ≤ 1. Furthermore, we assume that the energy
harvesting at the relays takes place for a fraction of αiβiT
seconds and the information decoding at the relay takes place
for a fraction of (1 − αi)βiT seconds, where 0 ≤ αi ≤ 1.
For ease of representation, we assume normalized time to use
energy and power interchangeably without loss in generality.

A. Signal model
We define the information transfer rates from the source

to the i-th relay as R̂S,Ri
, and from the i-th relay to the

destination as R̂Ri,D, with 1 ≤ i ≤ K, where i ∈ Z.
Let hS,Ri

and hRi,D denote the channel coefficients be-
tween the source and the i-th relay and between the i-th
relay and the destination, respectively, and dS,Ri and dRi,D

denote the distance between the source and i-th relay, and the
distance between the i-th relay and destination, respectively.
Furthermore, PS and PRi

denote the transmit power at the
source and the i-th relay, respectively.

Let x ∈ C be the transmitted symbol by the source
satisfying E{|x|2} = 1. The signal received at the i-th relay
is given by

yRi
=
√
PS d

−ϑ/2
S,Ri

hS,Ri
x + nRi

, (1)

where ϑ is the path loss exponent, nRi
is the additive white

Gaussian noise (AWGN) at the relay, which is an independent
and identically distributed (i.i.d.) complex Gaussian random
variable with zero mean and variance σ2

nRi
.

Upon receiving the desired signal from the source, the relay
decodes to obtain the estimate of the original signal. Then the
(selected) relay re-encodes and forwards it to the destination.
The signal received at the destination as transmitted by the
i-th relay is given by

yD =
√
PRi d

−ϑ/2
Ri,D

hRi,D x̃ + nD, (2)

where x̃ is the transmit symbol from the relay, and nD is
the AWGN at the destination node which is an i.i.d. complex
Gaussian random variable with zero mean and variance σ2

nD
.

We note that in the proposed cached-aid architecture, the
relayed symbol can be either decoded source symbol or from
the relay’s cache.

The effective signal-to-noise ratio (SNR) of the source-relay
and relay-destination links are given as

γ
S,Ri

=
PS d

−ϑ
S,Ri

|hS,Ri
|2

σ2
nRi

; γ
Ri,D

=
PRi

d−ϑRi,D
|hRi,D|2

σ2
nD

.

(3)
By assuming a Gaussian codebook, the achievable information
rate on the source-relays’ link is

R̂S,Ri
= B log2(1 + γ

S,Ri
), ∀i, (4)

and the achievable information rate at the destination is
R̂Ri,D = B log2(1 + γ

Ri,D
),∀i, (5)

where B is the channel bandwidth.
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B. Caching model

A general caching model is considered at the relays. In
particular, in addition to the information sent from the source,
the relays have access to the information stored in their
individual caches to serve the destination. For robustness, we
assume that for i = 1, . . . ,K, the i-th relay does not have
information about the content popularity. Therefore, it will
store 0 ≤ δi ≤ 1 parts of every file in its cache [19], [22] 1. For
convenience, we call δi as the caching coefficient throughout
the paper. This caching scheme will serve as the lower bound
benchmark compared to the case where priori information of
content popularity is available. When the destination requests
a file from the library, δi parts of that file are already available
at the i-th relay’s cache. Therefore, the source need to send
only the remaining portions of that file to the relay.

C. Power assumption at the relay

For robustness, we assume that the relays are powered by
an external source, Eext, on top of the harvested energy. This
general model allows to analyze the impact of various practical
scenarios. As an usecase, the purely SWIPT relay is obtained
by setting Eext to zero. The harvested energy at the i-th relay
is given by

ERi = ζαiβi(PSd
−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
), (6)

where ζ is the energy conversion efficiency of the receiver.

III. MAXIMIZATION OF THE SERVING INFORMATION RATE

In this section, we aim at maximizing the serving infor-
mation data between the selected relay and the destination,
by taking into consideration the caching capacity at the relay,
while assuring the predefined QoS constraint and that the total
transmit power at the source does not exceed the limit. The
corresponding optimization problem (P1) is stated as follows

(P1) : max
i∈K,αi,βi,PRi

(1− βi)R̂Ri,D (7)

subject to : (C1) : (1− αi)βi(R̂S,Ri + (δi · r))
≥ (1− βi)R̂Ri,D, (7a)

(C2) : (1− βi)PRi ≤ ERi + Eext,
(7b)

(C3) : 0 < PS ≤ P ?, (7c)
(C4) : 0 ≤ αi ≤ 1, (7d)
(C5) : 0 ≤ βi ≤ 1, (7e)

where K = {1, . . . ,K}, ERi
is given in (6), Eext is the

external energy required at the relay for further transmission of
the signal, P ? is the maximum power limit at the transmitter,
and r is the QoS constraint. The objective in (7) is to
maximize the transfered data to the destination, since the relay-
destination link is active only in 1−βi (active times normalized
by T ). Constraint (7a) is to assure non-empty buffer at the
relay. Constraint (7b) is to assure that the used energy at
the relay cannot exceed the input. It is noteworthy that Eext
is stipulated in each time slot which thereby translates into

1This caching method is also known as probabilistic caching.

stored energy for the successive time slot, provided the relays
are battery driven. In other case, Eext can be assumed to
be constant in each time slot if the relays are part of the
infrastructure with sufficient power supply, as in [31].

This is a mixed-integer programming problem implying that
relay selection along with joint computations of αi, βi, and
PRi

is a difficult task. Therefore, we recast (P1) into a pair
of coupled optimization problems namely, outer optimization
for choosing the best relay, and inner optimization for joint
computations of αi, βi, and PRi . In the following sections,
we address the optimal solutions to the inner and outer
optimizations, respectively.

A. Optimization of TS Factors and the Relay Transmit Power

In this subsection, we address the inner optimization prob-
lem of (P1) involving joint computations of αi, βi, and PRi ,
assuming that the i-th relay is active. The consequent sub-
problem is formulated as follows

(P2) : max
αi,βi,PRi

(1− βi)R̂Ri,D (8)

subject to : (7a)− (7e).

This is a non-linear programming problem involving joint
computations of αi, βi, and PRi

, which is challenging to find
the exact solution. Since the constraints are partially convex on
each variable while fixing the others, we propose to solve this
problem using the Karush-Kuhn-Tucker (KKT) conditions.

The Lagrangian corresponding to (P2) can be denoted as
follows

L(αi, βi, PRi ;λ1, λ2, λ3, λ4) = F (αi, βi, PRi)

−λ1 G(αi, βi, PRi)− λ2 H(αi, βi, PRi)

−λ3 I(αi, βi, PRi)− λ4 J(αi, βi, PRi), (9)

where

F (αi, βi, PRi) = (1− βi)B log2(1 + γ
Ri,D

), (10)
G(αi, βi, PRi) = (1− βi)B log2(1 + γ

Ri,D
)

−(1− αi)βi[B log2(1 + γ
S,Ri

) + (δi · r)] ≤ 0, (11)

H(αi, βi, PRi) = (1− βi)PRi − ζαiβi(PSd−ϑS,Ri
|hS,Ri |2

+σ2
nRi

)− Eext ≤ 0, (12)

I(αi, βi, PRi) = αi − 1 ≤ 0, (13)
J(αi, βi, PRi) = βi − 1 ≤ 0. (14)

For (local) optimality2, it must hold
∇L(αi, βi, PRi

;λ1, λ2, λ3, λ4) = 0. Thus, we can represent
the equations for satisfying the optimality conditions as

∂L(αi, βi, PRi
;λ1, λ2, λ3, λ4)

∂αi
=⇒ −λ1

(
βi
(
B log2(1+

γ
S,Ri

) + (δi · r)
))
− λ2

(
− ζβi(PSd−ϑS,Ri

|hS,Ri |2

+ σ2
nRi

)
)
− λ3 = 0, (15)

2Note that a KKT point is not necessarily a local optimum, but can also
be saddle point and even maximum points [32].
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∂L(αi, βi, PRi
;λ1, λ2, λ3, λ4)

∂βi
=⇒ −B log2(1 + γ

Ri,D
)

−λ1
(
−B log2(1+γRi,D

)−(1−αi)
(
B log2(1+γS,Ri

)+(δi·r)
))

− λ2
(
− PRi − ζαi(PSd−ϑS,Ri

|hS,Ri |2 + σ2
nRi

)
)
− λ4 = 0,

(16)
∂L(αi, βi, PRi ;λ1, λ2, λ3, λ4)

∂PRi

=⇒

ln(2)d−ϑRi,D
|hRi,D|2

σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

− λ1

(
ln(2)d−ϑRi,D

|hRi,D|2

σ2
nD

+ PRid
−ϑ
Ri,D
|hRi,D|2

)
− λ2 = 0. (17)

The conditions for feasibility are as expressed in (11), (12),
(13), and (14). Complementary slackness expressions can be
represented as follows

λ1 ·G(αi, βi, PRi
) = 0, (18)

λ2 ·H(αi, βi, PRi) = 0, (19)
λ3 · I(αi, βi, PRi) = 0, (20)
λ4 · J(αi, βi, PRi) = 0. (21)

The conditions for non-negativity read
αi, βi, PRi

, λ1, λ2, λ3, λ4 ≥ 0. It is straightforward to
verify that if λ3 6= 0, then I(αi, βi, PRi) = 0 implying that
αi = 1. Since this is not a feasible solution, therefore λ3 = 0.
Similarly, it can be shown that λ4 = 0.

The final solution can be postulated in the following theo-
rem.

Theorem 1: If λ1 6= 0 =⇒ G(x, PRi
) = 0; λ2 6= 0 =⇒

H(x, PRi
) = 0, then we obtain the following optimal values

PRi
=

(
exp

(
W
(A
B

exp
(
− 1

B
log2(2)

)
∗ log(2)

)
+

log2(2)

B

)
− 1

)(
σ2
nD

d−ϑRi,D
|hRi,D|2

)
,

where A =
(ln(2)d−ϑ

Ri,D
|hRi,D

|2)(ζ(PSd
−ϑ
S,Ri
|hS,Ri

|2+σ2
nRi

))

σ2
nD

and
W(·) is the Lambert W function [33].

βi =
ϕ1 · ϕ2 + PRi

− Eext · ϕ3

ϕ1 · ϕ2 + ϕ2 · ϕ3 + PRi
· ϕ3

, (22)

where ϕ1 = B log2(1 + γ
Ri,D

), ϕ2 = ζ(PSd
−ϑ
S,Ri
|hS,Ri

|2 +
σ2
nRi

), and ϕ3 = B log2(1 + γ
S,Ri

) + (δi · r).

αi =
(1− βi)PRi

− Eext
ζβi(PSd

−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
)
. (23)

Proof: See Appendix A.
Remark: Since there is one and only one feasible solution

(as derived using the KKT conditions), therefore, the obtained
solution must be in-line with respective conditions in Theo-
rem 1. Alternatively if the conditions in Theorem 1 are not
satisfied, then it is reasonable to discard the solution as the
problem becomes infeasible.

It is proved in our analysis above
(
(9) - (21)

)
that

the necessary conditions for KKT are satisfied. Assume

that KKT yields the following solutions: (i) Primal
variables: α?i , β?i , P ?Ri

, (ii) Dual Variables: λ?1, λ?2. The
second order derivatives can therefore be represented
using these solutions as: ∇2

αiαi
L(α?i , β?i , P ?Ri

;λ?1, λ
?
2) =

0, ∇2
βiβi
L(α?i , β?i , P ?Ri

;λ?1, λ
?
2) = 0, and

∇2
PRi

PRi
L(α?i , β?i , P ?Ri

; λ?1, λ
?
2) ≥ 0. It is found that

the sufficiency criteria are not strictly met and hence the
function is not strictly constrained local minimum. However,
the sufficiency conditions are satisfied, the solutions obtained
above does not guarantee global optimality.

From an economic view-point, the Lagrange Multipliers
λ1 and λ2 can be expounded as the prices for data and
energy in cost/bit and cost/Joule, respectively. Leveraging the
results from our analysis in Appendix A, we find that λ1 =
f1(PS)

f2(PS ,δi,r)
· λ2, where f1(PS) = ζ(PSd

−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

),
and f2(PS , δi, r) = B log2(1 + γ

S,Ri
) + (δi · r). Correspond-

ingly, it is clear that if more data rate is demanded by the user
provided the caching capacity is fixed, then we are enforced
to compensate for the request by using the energy metric per
cost unit in order to satisfy the respective data and energy
constraints in (P2). This action would however add more to
the energy price. Similarly, it is apparent that increasing the
transmit power will readily add to the cost of data transfer
in addition to an increased energy price. In the context of
caching, it would be needless to mention that the higher the
cache capacity is, the lower will be the prices for data and
energy transmissions.

B. Relay Selection

In this subsection, we consider optimal selection of a relay
to address the solution of outer optimization of (P1). Based on
the above developments, we find the best relay which provides
maximum throughput corresponding to (7). The best relay
index is selected as j? = argmaxj∈{1,...,K}(1 − β?j )R̂?Rj ,D

,
where β?j and R̂?Rj ,D

are the solutions of problem (8). It is
worth to mention that this relay selection is based on exhausted
search and provides the best performance with high cost of
complexity. Finding a compromise relay selection is of interest
in the future research.

IV. MAXIMIZATION OF THE ENERGY STORED AT THE
RELAY

In this section, we aim at maximizing the energy stored
at the relay. The stored energy is calculated by subtracting
the input energy, e.g., Eext plus the harvested energy, by
the output energy, e.g., used for forwarding information to
the destination. Our motivation behind this section is that
the stored energy at the relay can be used to perform extra
processing task, e.g., sensing, or to recharge a battery for future
use. In particular, an optimization problem is formulated to
jointly select the best relay and maximize the stored energy,
while satisfying a given QoS.

For convenience, we introduce a new convention for frac-
tions of time in the TS scheme, as shown in Fig. 4. However,
the corresponding inter-relationships between the two conven-
tions in Fig. 3 and Fig. 4 are established in Appendix C. For
the newly adopted convention, the link between the transmitter
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Fig. 4: Convention assumed for distribution of time to investigate the stored
energy maximization problem.

and relay with cache is considered to be active for a fraction
of (θi + φi)T seconds, while the link between the relay and
destination is active for the remaining (1− (θi+φi))T , where
0 ≤ θi + φi ≤ 1. As mentioned earlier, since the relay adopts
a TS type of scheme for SWIPT, we assume that the energy
harvesting at the relay takes place for a fraction of θiT seconds
and the information decoding at the relay takes place for a
fraction of φiT seconds. Similarly, we assume normalized
time to use energy and power interchangeably without loss
in generality. We remind that the harvested energy at the relay
i is given as

ERi
= ζθi(PSd

−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

), (24)

where ζ is the energy conversion efficiency of the receiver.
We now consider the problem of relay selection for maxi-

mization of the energy stored at the relay, while ensuring that
the requested rate between relay-destination is above a given
threshold and that the total transmit powers at the transmitter
and relay does not exceed a given limit. The corresponding
optimization problem (P3) can be expressed as
(P3) : max

i∈K,θi,φi,PRi

[ζθi(PSd
−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
)

+ Eext − (1− (θi + φi))PRi ]
+ (25)

subject to : (C1) : φi(R̂S,Ri
+ (δi · r)) ≥

(1− (θi + φi))R̂Ri,D, (25a)
(C2) : (1− (θi + φi))PRi

≤ ERi

+ Eext, (25b)

(C3) : (1− (θi + φi))R̂Ri,D ≥ r,
(25c)

(C4) : 0 < PS ≤ P ?, (25d)
(C5) : 0 ≤ θi + φi ≤ 1, (25e)

where the objective in (25) is non-zero and the constraint (25c)
is to satisfy the QoS requirement.

The problem (P3) is difficult to solve, since it is a mixed-
integer programming problem involving relay selection along
with joint computations of θi, φi, and PRi . So, we recast (P3)
into pair of coupled optimization problems for performing
the outer optimization to choose the best relay, and inner
optimization for joint computations of θi, φi, and PRi

. In the
following subsections, we address the optimal solutions to the
inner and outer optimizations, respectively.

A. Optimization of TS Factors and the Relay Transmit Power

In this subsection, we consider the inner optimization prob-
lem of (P3). We determine the technique for joint computations
of θi, φi, and PRi , for maximizing the energy stored at the
relay while ensuring that the requested rate between relay-
destination is above a given threshold and that the total
transmit powers at the transmitter and relay does not exceed

a given limit. Correspondingly, the sub-problem (P4) can be
formulated as

(P4) : max
θi,φi,PRi

[ζθi(PSd
−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
) + Eext

− (1− (θi + φi))PRi
]+ (26)

subject to : (C1) : φi(R̂S,Ri
+ (δi · r))

≥ (1− (θi + φi))R̂Ri,D, (26a)
(C2) : (1− (θi + φi))PRi

≤ ERi
+ Eext,

(26b)

(C3) : (1− (θi + φi))R̂Ri,D ≥ r, (26c)
(C4) : 0 < PS ≤ P ?, (26d)
(C5) : 0 ≤ θi + φi ≤ 1. (26e)

This is a non-linear programming problem involving joint
computations of θi, φi, and PRi

, which introduces intractabil-
ity. Therefore, we propose to solve this problem using the
Karush-Kuhn-Tucker (KKT) conditions.

The Lagrangian for (P4) can be expressed as follows

L(θi, φi, PRi ;µ1, µ2, µ3, µ4) = F (θi, φi, PRi)

−µ1 G(θi, φi, PRi)− µ2 H(θi, φi, PRi)

−µ3 I(θi, φi, PRi)− µ4 J(θi, φi, PRi), (27)

where
F (θi, φi, PRi) = ζθi(PSd

−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
)

+Eext − (1− (θi + φi))PRi
, (28)

G(θi, φi, PRi
) = (1− (θi + φi))B log2(1 + γ

Ri,D
)

−φi[B log2(1 + γ
S,Ri

) + (δi · r)] ≤ 0, (29)
H(θi, φi, PRi

) = (1− (θi + φi))PRi
− Eext

−ζθi(PSd−ϑS,Ri
|hS,Ri

|2 + σ2
nRi

) ≤ 0, (30)

I(θi, φi, PRi) = r − (1− (θi + φi))B log2(1 + γ
Ri,D

) ≤ 0,(31)
J(θi, φi, PRi) = (θi + φi)− 1 ≤ 0. (32)

with µ1, µ2, µ3, µ4 being the Lagrange Multipliers for the cor-
responding constraints (C1), (C2), (C3), and (C5). Note that
the objective function in (26) is non-differentiable, and hence
we relax the (x)+ = max(0, x) constraint as represented in
(28). However, only positive values should be the acceptable
solutions as the problem becomes infeasible with negative
values.

For optimality, ∇L(θi, φi, PRi
;µ1, µ2, µ3, µ4) = 0. Thus,

we can represent the equations for satisfying the optimality
conditions as

∂L(θi, φi, PRi
;µ1, µ2, µ3, µ4)

∂θi
=⇒ [ζ(PSd

−ϑ
S,Ri
|hS,Ri

|2

+ σ2
nRi

) + PRi
]− µ1[−B log2(1 + γ

Ri,D
)]

− µ2[−PRi − ζ(PSd−ϑS,Ri
|hS,Ri |2 + σ2

nRi
)]

− µ3[B log2(1 + γ
Ri,D

)]− µ4 = 0, (33)
∂L(θi, φi, PRi

;µ1, µ2, µ3, µ4)

∂φi
=⇒ PRi

−µ1[−B log2(1+

γ
Ri,D

)− (B log2(1 + γ
S,Ri

) + (δi · r))]
− µ2[−PRi

]− µ3[B log2(1 + γ
Ri,D

)]− µ4 = 0, (34)
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∂L(θi, φi, PRi
;µ1, µ2, µ3, µ4)

∂PRi

=⇒ −(1− (θi + φi))

− µ1

[
(1− (θi + φi))

(
ln(2)d−ϑRi,D

|hRi,D|2

σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

)]

− µ2(1− (θi + φi))− µ3

[
− (1− (θi + φi))(

ln(2)d−ϑRi,D
|hRi,D|2

σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

)]
= 0. (35)

The conditions for feasibility are as expressed in (29), (30),
(31), and (32). Complementary slackness expressions can be
represented as follows

µ1 ·G(θi, φi, PRi
) = 0, (36)

µ2 ·H(θi, φi, PRi
) = 0, (37)

µ3 · I(θi, φi, PRi
) = 0, (38)

µ4 · J(θi, φi, PRi
) = 0. (39)

The conditions for non-negativity are:
θi, φi, PRi

, µ1, µ2, µ3, µ4 ≥ 0. It is clear that if µ4 6= 0,
then J(θi, φi, PRi) = 0 implying that θi + φi = 1. Since
this is not a feasible solution, therefore µ4 = 0. The two
possible solution are as mentioned in the following theorems,
respectively.

Theorem 2: If µ1 6= 0 =⇒ G(θi, φi, PRi
) = 0; µ2 =

0 =⇒ H(θi, φi, PRi
) 6= 0; µ3 6= 0 =⇒ I(θi, φi, PRi

) = 0,
then we obtain the following optimal values

P †Ri
= (ν − 1)

(
σ2
nD

d−ϑRi,D
|hRi,D|2

)
, (40)

φ†i =
r

B log2(1 + γ
S,Ri

) + (δi · r)
, (41)

θ†i = 1− r

(
1

B log2(1 + γ
S,Ri

) + (δi · r)

+
1

B log2

(
1 +

P †Ri
d−ϑ
Ri,D

|hRi,D
|2

σ2
nD

)
)
, (42)

where

ν = exp

(
W
(
−A
B

exp
(
− 1

B
log2(2)

)
∗log(2)

)
+
log2(2)

B

)
,

(43)
with A = ln(2)−

(
ζ

σ2
nD

)
(ln(2)d−ϑRi,D

|hRi,D|2)(PSd−ϑS,Ri

|hS,Ri |2 + σ2
nRi

).
Theorem 3: If µ1 6= 0 =⇒ G(θi, φi, PRi

) = 0; µ2 6=
0 =⇒ H(θi, φi, PRi

) = 0; µ3 6= 0 =⇒ I(θi, φi, PRi
) = 0,

then the following values are optimal

P ∗Ri
= (η

L
− 1)

(
σ2
nD

d−ϑRi,D
|hRi,D|2

)
, (44)

φ∗i =
r

B log2(1 + γ
S,Ri

) + (δi · r)
, (45)

θ∗i =
rP ∗Ri

− EextB log2

(
1 +

P∗Ri
d−ϑ
Ri,D

|hRi,D
|2

σ2
nD

)
ζ(PSd

−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

)
, (46)

where η
L

= Largest Root of [A − B log2(η)
(
B + Cη +

DB log2(η)
)
= 0], with A = a · b · r, B = a · b + a · r ·(

σ2
nD

d−ϑ
Ri,D

|hRi,D
|2

)
− b · r, C = −a · r ·

(
σ2
nD

d−ϑ
Ri,D

|hRi,D
|2

)
, and

D = a · Eext, where a = B log2(1 + γ
S,Ri

) + (δi · r), and
b = ζ(PSd

−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

).
Proof: See Appendix B.

To summarize the solutions obtained above, we propose the
following algorithm to maximize the stored energy in the relay
supporting SWIPT - Caching system (MSE-WC Algorithm)

Algorithm. MSE-WC Algorithm

Input: The parameters hS,Ri , hRi,D , δi, r, and Eext.
Output: The maximized value of energy stored at the relay: {ES}.
1) : Initialize: ζ ∈ (0, 1], PT ∈ (0, εPMax], 0.5 < ε < 1,

σ2
nRi

= 1, and σ2
nD

= 1.
2) : Compute P †Ri

, φ†i , and θ†i using (40), (41), and (42) respec-
tively.

3) : Define: E†S = ζθ†i (PSd
−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
) +Eext − (1−

(θ†i + φ†i ))P
†
Ri

.
4) : Compute P ∗Ri

, φ∗i , and θ∗i using (44), (45), and (46) respec-
tively.

5) : Define: E∗S = ζθ∗i (PSd
−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
) +Eext − (1−

(θ∗i + φ∗i ))P
∗
Ri

.
6) : ES = max(E†S , E

∗
S).

7) : return ES .

The algorithm proposed above returns the maximized value
of the objective function as its output. First, we initialize all
the necessary values as indicated in 1). Then, we compute
the optimal values of P †Ri

, φ†i , and θ†i in 2), and define the
energy stored at the relay in 3). 2) and 3) corresponds to the
solutions obtained for Case VI during the analysis. Similarly,
we find the optimal values of P ∗Ri

, φ∗i , and θ∗i in 4), and
define the energy stored at the relay in 5) accordingly. 4) and
5) corresponds to the solutions obtained for Case VIII during
the analysis. Next, we find the maximum of the two computed
local optimal solutions for the energy stored at the relay, which
in turn maximizes the objective function. It should also be
noted that the solutions proposed in (P2) for maximizing the
energy stored at the relay are not necessarily global optimum,
as the problem is non-linear in nature. However, the KKT
conditions guarantees the local optimal solutions.

From our analysis above
(
(27)-(39)

)
, it is clear that the

necessary conditions for KKT are satisfied. Let us assume
that the optimal solutions obtained via KKT are (i) Primal
variables: θ?i , φ?i , P ?Ri

, (ii) Dual Variables: µ?1, µ?2, µ?3.
With the help of these solutions, we find that the second
order derivatives : ∇2

θiθi
L(θ?i , φ?i , P ?Ri

;µ?1, µ
?
2, µ

?
3) =

0, ∇2
φiφi
L(θ?i , φ?i , P ?Ri

;µ?1, µ
?
2, µ

?
3) = 0, and

∇2
PRi

PRi
L(θ?i , φ?i , P ?Ri

;µ?1, µ
?
2, µ

?
3) ≥ 0; are sufficient

conditions for KKT, but does not meet the sufficiency
criteria strictly. Hence, the function is not strictly constrained
local minimum. Therefore, the presented solutions are not
necessarily global optimal.

In order to analyze the proposed approach from an economic
perspective, we denote the equivalent relationship between
the Lagrange Multipliers µ1 and µ3 as µR and rename µ2

as µE which corresponds to the the prices for data and
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Fig. 5: Simulated Scenario: An ITU-R P.1238 framework implemented with
the relays spatially distributed within the blue region (4m to 6m from the
source) and the destination placed randomly within the black region (8m to
10m from the source).

energy, respectively, in cost units. Using the results from our
analysis in Appendix B, we find that µE = f1(PS ,δi,r)

f2(PS) · µR,
where f1(PS , δi, r), and f2(PS) are functions computed as
per the illustrated technique. Correspondingly, if more energy
is required by the relay with fixed caching capacity, then
we are forced to compensate for the request by using the
energy metric per cost unit at the source in order to satisfy
the respective data and energy constraints in (P2). This action
would however add more to the data price as well. Similarly,
it is apparent that increasing the transmit power will readily
add to the cost of energy transfer in addition to an increased
data price. Furthermore in the context of caching, it is worth
mentioning that extra cache capacity implies subordinate
prices for data and energy transmissions per cost unit.

B. Relay Selection

From the methods proposed above, optimal TS ratios and
the relay transmit power can be computed easily. Herein,
we propose to find the best relay which provides maximized
harvested power corresponding to (25). In this context, the
index of the optimally selected relay can be expressed as
j? = argmaxj∈{1,...,K}E

?
Sj

, where E?Sj
is the optimal energy

stored at the j-th relay as the solution of problem (26).

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
system for the solutions presented in this paper. We employ
the ITU Radiocommunication Sector (ITU-R) P.1238 channel
model with central frequency assumption at 450 MHz. The
signal fading in both the hops follow Ricean distribution with
K-factor of 3.5. The overall emulation setup is depicted in
Fig. 5. Additionally, we consider a total bandwidth of B = 1
MHz, ζ = 0.50 [34], σ2

nRi
= −100 dBW, and σ2

nD
= −100

dBW. All the relays are assumed to have the same caching
coefficient, i.e., δi = δ, ∀i. All the results are evaluated over
500 Monte-Carlo random channel realizations. The proposed
architecture is compared with a reference scheme using a
fix time-splitting. The reference scheme spends the first half
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Fig. 6: Performance comparison between the proposed cache-aided SWIPT
and the reference scheme for different number of available relays with δ =
0.5, r = 3 Mbps, and Eext = 1µJ. (a) Link rate performance. (b) Stored
energy performance.

period for information broadcasting and energy harvesting, and
uses the second half period for relaying [17], [30].

Fig. 6 plots the performance of the cache-aided SWIPT
as a function of the total number of relays. The result is
calculated based on the best relay selected as in Section III
and Section IV. In both cases, δ = 0.5, and Eext = 1µJ.
It is observed from Fig. 6(a) that the proposed architecture
significantly outperforms the reference and the gain is larger
as the number of available relays increases. In particular, the
proposed architecture achieves a performance gain of 15%
for PS = 5 dBW and 20% for PS = 10 dBW over the
reference scheme. This result confirms the effectiveness of
the proposed optimization framework. It is also shown that
having more relays results in a better serving rate thanks to
inherent diversity gain brought by the relays. The harvested
energy comparison between the proposed and the reference is
plotted in Fig. 6(b). A similar conclusion is observed that the
proposed architecture surpasses the reference in all cases. In
addition, having more available relays improves the harvested
energy.

Fig. 7(a) illustrates the results corresponding to the solutions
proposed for the rate maximization problem, assuming that an
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Fig. 7: Link-rate maximization: (a) Maximum link rate versus increasing values of PS for various values of Eext with total number of available relays
K = 8, caching coefficient δ = 0.5, and r = 5 Mbps. (b) Maximized link rate versus the caching coefficient for various PS with total number of available
relays K = 8, Eext = 10 µJ, and r = 5 Mbps.
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Fig. 8: Stored Energy maximization: (a) Stored energy performance as a function of the source transmit power for various values of Eext. K = 8 relays,
δ = 0.5 and r = 1 Mbps. (b) Stored energy performance as a function of the caching coefficient for various values of PS . K = 8 relays, Eext = 0.5 mJ,
and r = 5 Mbps.

optimal relay is chosen as per the solutions corresponding to
the outer optimization of (7). It is observed from the figure
that the source transmit power has a significant influence on
the achievable rate. In particular, by increasing the source
transmit power by 5 dBW, the serving rate is increased by
30%. This result can be explained from the fact that for a
given caching coefficient, the source does not have to send
the whole requested content to the relay. In this case, having
a larger source power results in more harvested energy, which
in turn increase the relay’s transmit power. Especially, this
observation is also obtained when there is not external energy
source, e.g., Eext = 0, which shows the effectiveness of the
proposed cache-aided SWIPT architecture.

Fig. 7(b) plots the maximum throughput as a function of the
caching gain coefficient with Eext = 10 µJ and r = 5 Mbps.
It is observed that the caching gain has similar impact on the
achievable throughput for different values of PS . In general,
a larger cache size (or equivalent larger caching coefficient)
results in a higher serving rate. This result together with result

in Fig. 7(a) suggest an interactive role of the caching capacity
and the transmit power. In particular, a smaller source power
system can still achieve the same throughput by increasing the
cache size.

Fig. 8(a) presents the stored energy at the chosen relay,
according to the solution of outer optimization of (25), as a
function of the source’s transmit power and different external
energy values. It is shown from the results that the source
transmit power has large impacts on the stored energy at the
relay. In particular, increasing the source’s transmit power by
2 dBW will double the stored energy at the relay. It is also
observed that increasing the external energy can significantly
improve the stored energy at high PS values. However, when
PS is small, increasing Eext does not bring considerable
improvement. This is because at low PS values, most of the
time is used for information transfer from the source to the
relay.

Fig. 8(b) depicts the plot of the energy stored at the selected
relay as a function of the cache capacity δ, with Eext = 0.5
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Fig. 9: Rate-Energy trade-off and comparison of the two proposed relay selection schemes. (a) Stored energy performance as a function of QoS requirements
with different source transmit power. K = 8 relays, δ = 0.5 and Eext = 0.1 mJ. (b) Performance of the two proposed relay selection schemes for ten time
slots. K = 8 relays, PS = 7.5 dBW, Eext = 1µJ, r = 3 Mbps.

mJ and r = 5 Mbps. The case with δ = 0 implies that there
is no caching at the relay. It is shown that caching helps to
increase the saved energy at the relay for all PS values. And
the increased stored energy are almost similar for different PS .
This is because of the linear model of the caching system.

Fig. 9(a) presents an evaluation of the energy stored at the
chosen relay against the increasing values of r. It is seen that
the energy stored at the relay decreases with increasing values
of requested rate (r), for δ = 0.5 and Eext = 0.1 mJ. On the
other hand, it is clear that with increasing values of PS , the
energy stored at the relay increases non-linearly. The former
variation is due to the fact that in order to meet the demand
of requested rate at the destination, more energy would be
required for resource allocation at the relay which utilizes the
harvested energy.

Fig. 9(b) illustrates the comparison between the two pro-
posed relay selection schemes for various time slots with
K = 8 relays, PS = 7.5 dBW, Eext = 1 µJ, r = 3
Mbps. Herein, we assumed Eext = 1 µJ as the initial external
energy in the first slot, while in the subsequent slots, the
value for Eext was assumed as the stored energy value in
the previous slot. The results helps in simultaneously studying
impact of the relay selection using the two problems, where
it is seen that the throughput saturates after some time-slots
implying that Eext → 0 while the stored energy increases
linearly. These respective cases for throughput and stored
energy maximization provides useful insight on the benefits
of relay selection on the system performance.

VI. CONCLUSION

In this paper, we proposed and investigated relay selection
strategy in a novel cache-assisted SWIPT architecture with
dynamic time switching (TS) in dual-hop half duplex system,
where the relays employ the DF protocol. We addressed the
problem of relay selection to maximize the data throughput be-
tween the relay and destination under constraint on minimum
energy stored at the relay; and relay selection for maximizing
the energy stored at the relay under constraints on minimum

rate and harvested energy, guaranteeing a good performance
in both the cases with regards to the QoS constraints. Besides,
both the problems were formulated according to two separate
yet distinct conventions over the time period. We presented
the closed-form solutions for the proposed relay system to
enable SWIPT with caching. With the help of simulations, we
illustrated the results corresponding to the solutions obtained
for the aforementioned problems with parameter variations.
This work can be further extended to many fascinating di-
rections like multiuser and multicarrier scenario, and relaying
with full duplexing mode. Another promising research topic
is to consider multiple antennas systems where an additional
dimension is how to optimally select antennas or design
beamforming vectors for information transmission or energy
transfer. In addition, the energy queuing model and adoption of
Markov Decision Process (MDP) to model the aforementioned
problems can be another interesting direction to this work,
wherein the same problems can be studied using stochastic
methods with uncertain CSI. Therefore, by leveraging from the
benefits of caching, we intend to improve system efficiency to
enhance SWIPT performance. This can be realized by dynamic
adjustment of the TS factors, which can significantly improve
the throughput and energy storage capabilities at the relay.

APPENDIX A
ANALYSIS OF DIFFERENT POSSIBILITIES FROM KKT
CONDITIONS FOR DATA MAXIMIZATION PROBLEM

We analyze all the cases corresponding to (9) – (21) in order
to obtain a feasible solution as follows

Case I: λ1 = 0 =⇒ G(αi, βi, PRi) 6= 0; λ2 6= 0 =⇒
H(αi, βi, PRi

) = 0
From (15), we find that λ2 = 0, which is contradictory. Hence,
this case is not possible.

Case II: λ1 = 0 =⇒ G(αi, βi, PRi
) 6= 0; λ2 = 0 =⇒

H(αi, βi, PRi) 6= 0
This case is not acceptable as B log2(1 + γ

Ri,D
) 6= 0.

Case III: λ1 6= 0 =⇒ G(αi, βi, PRi) = 0; λ2 = 0 =⇒
H(αi, βi, PRi

) 6= 0
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From (17), we find that λ1 = 1 which implies that PS → 0.
Therefore, this is not a feasible solution.

Case IV: λ1 6= 0 =⇒ G(αi, βi, PRi
) = 0; λ2 6= 0 =⇒

H(αi, βi, PRi
) = 0

For λ1 6= 0 =⇒ G(x, PRi
) = 0; λ2 6= 0 =⇒ H(x, PRi

) =
0, we deduce to the following equations
−λ1[βi(B log2(1+γS,Ri

)+(δi·r))]+λ2[ζβi(PSd−ϑS,Ri
|hS,Ri |2

+ σ2
nRi

)] = 0, (47)

−B log2(1 + γ
Ri,D

) + λ1

(
B log2(1 + γ

Ri,D
)

+ (1− αi)
(
B log2(1 + γ

S,Ri
) + (δi · r

))
+ λ2

(
PRi

+ ζαi(PSd
−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

)
)
= 0, (48)

ln(2)d−ϑRi,D
|hRi,D|2

σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

− λ1

(
ln(2)d−ϑRi,D

|hRi,D|2

σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

)
− λ2 = 0, (49)

(1− βi)B log2(1 + γ
Ri,D

)− (1− αi)βi
(
B log2(1 + γ

S,Ri
)

+ (δi · r)
)
= 0. (50)

(1− βi)PRi
− ζαiβi(PSd−ϑS,Ri

|hS,Ri
|2 + σ2

nRi
)− Eext = 0.

(51)
From (47) and (49) we have

λ1 =
χ

1
(ζ(PSd

−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

))

χ2

, (52)

λ2 =
χ

1
(B log2(1 + γ

S,Ri
) + (δi · r))

χ2

, (53)

where χ1 = (ln(2)d−ϑRi,D
|hRi,D|2), and χ2 =

(ln(2)d−ϑRi,D
|hRi,D|2)(ζ(PSd−ϑS,Ri

|hS,Ri
|2 + σ2

nRi
)) + (σ2

nD
+

PRid
−ϑ
Ri,D
|hRi,D|2)(B log2(1 + γ

S,Ri
) + (δi · r)).

Assuming κ = 1 + γ
Ri,D

and substituting (52) and (53) in
(48), we obtain the following equation

A+ κ[ln(2)−B log2(κ)] = 0, (54)

where A =
(ln(2)d−ϑ

Ri,D
|hRi,D

|2)(ζ(PSd
−ϑ
S,Ri
|hS,Ri

|2+σ2
nRi

))

σ2
nD

. The
solution of this equation is obtained in a closed form as follows

κ = exp

(
W
(A
B

exp
(
− 1

B
log2(2)

)
∗ log(2)

)
+

log2(2)

B

)
,

(55)
where W(·) is the Lambert W function [33].

Using (55), (50) and (51), we obtain the following

βi =
ϕ1 · ϕ2 + PRi

− Eext · ϕ3

ϕ1 · ϕ2 + ϕ2 · ϕ3 + PRi
· ϕ3

, (56)

where ϕ1 = B log2(1 + γ
Ri,D

), ϕ2 = ζ(PSd
−ϑ
S,Ri
|hS,Ri

|2 +
σ2
nRi

), and ϕ3 = B log2(1 + γ
S,Ri

) + (δi · r).

αi =
(1− βi)PRi − Eext

ζβi(PSd
−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

)
. (57)

APPENDIX B
ANALYSIS OF DIFFERENT POSSIBILITIES FROM KKT

CONDITIONS FOR MAXIMIZATION PROBLEM OF ENERGY
STORED AT THE RELAY

We analyze all the cases in order to obtain a feasible solution
corresponding to (27) – (39). The analysis is as follows

Case I: µ1 = 0 =⇒ G(θi, φi, PRi) 6= 0; µ2 = 0 =⇒
H(θi, φi, PRi

) 6= 0; µ3 = 0 =⇒ I(θi, φi, PRi
) 6= 0

From (33) and (34), we find that PRi
= −ζ(PS |g|2 + σ2

nRi
)

or PRi
= 0 respectively. Since both these solutions cannot be

accepted, therefore this case is not possible.
Case II: µ1 = 0 =⇒ G(θi, φi, PRi

) 6= 0; µ2 = 0 =⇒
H(θi, φi, PRi

) 6= 0; µ3 6= 0 =⇒ I(θi, φi, PRi
) = 0

This case again leads us to the unacceptable solution as in the
previous case, therefore this case can be excluded.

Case III: µ1 = 0 =⇒ G(θi, φi, PRi
) 6= 0; µ2 6= 0 =⇒

H(θi, φi, PRi) = 0; µ3 = 0 =⇒ I(θi, φi, PRi) 6= 0
From the optimality conditions, we deduce that µ2 = 1 with
no solutions for θi, φi, and PRi

. Hence, this case is not
admissible.

Case IV: µ1 6= 0 =⇒ G(θi, φi, PRi
) = 0; µ2 = 0 =⇒

H(θi, φi, PRi
) 6= 0; µ3 = 0 =⇒ I(θi, φi, PRi

) 6= 0
Herein, we find that µ1 < 0; which violates the non-negativity
condition. Thus, this case is infeasible.

Case V: µ1 = 0 =⇒ G(θi, φi, PRi
) 6= 0; µ2 6= 0 =⇒

H(θi, φi, PRi
) = 0; µ3 6= 0 =⇒ I(θi, φi, PRi

) = 0
For this case, we can represent the following equations in their
simplified forms

[ζ(PSd
−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

) + PRi
] + µ2[PRi

+ζ(PSd
−ϑ
S,Ri
|hS,Ri |2+σ2

nRi
)]−µ3[B log2(1+γRi,D

)] = 0,

(58)
PRi

+ µ2[PRi
]− µ3[B log2(1 + γ

Ri,D
)] = 0, (59)

1 + µ2 − µ3

(
ln(2)d−ϑRi,D

|hRi,D|2

σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

)
= 0, (60)

(1−(θi+φi))PRi
−ζθi(PSd−ϑS,Ri

|hS,Ri
|2+σ2

nRi
)−Eext = 0,

(61)
r − (1− (θi + φi))B log2(1 + γ

Ri,D
) = 0. (62)

Solving the above equations, we obtain solutions for PRi

as follows
PRi

= max(exp
(
W(exp(− log2(2)) + log(2)) + log2(2)

)
,

exp
(
W−1(exp(− log2(2)) + log(2)) + log2(2)

)
), (63)

where W(·) is the LambertW function or the product log
function and Wk(·) is the analytic continuation of the product
log function [33]. As the solution is independent of PS , it is
reasonable to discard this solution.

Case VI: µ1 6= 0 =⇒ G(θi, φi, PRi
) = 0; µ2 = 0 =⇒

H(θi, φi, PRi) 6= 0; µ3 6= 0 =⇒ I(θi, φi, PRi) = 0
We can represent the following equations in their simplified
forms

[ζ(PSd
−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
) + PRi ]

+ µ1[B log2(1 + γ
Ri,D

)]− µ3[B log2(1 + γ
Ri,D

)] = 0,

(64)
PRi

+µ1[B log2(1+γRi,D
)+(B log2(1+γS,Ri

)+(δi · r))]
− µ3[B log2(1 + γ

Ri,D
)] = 0, (65)
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1 + µ2 − µ3

(
ln(2)d−ϑRi,D

|hRi,D|2

σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

)
= 0, (66)

(1−(θi+φi))PRi−ζθi(PSd−ϑS,Ri
|hS,Ri |2+σ2

nRi
)−Eext = 0,

(67)
r − (1− (θi + φi))B log2(1 + γ

Ri,D
) = 0. (68)

From (64) and (65), we obtain

µ1 =
ζ(PSd

−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

)

B log2(1 + γ
S,Ri

) + (δi · r)
. (69)

Substituting (69) in (66), we find the following

µ3 =

(
σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

ln(2)d−ϑRi,D
|hRi,D|2

)

+

(
ζ(PSd

−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
)

B log2(1 + γ
S,Ri

) + (δi · r)

)
. (70)

Substituting (69) and (70) in (65), and assuming ν = 1 +
γ

Ri,D
, we obtain the following equation

ν[B log2(ν)− ln(2)] +A = 0, (71)

where A = ln(2)−
(

ζ
σ2
nD

)
(ln(2)d−ϑRi,D

|hRi,D|2)(PSd−ϑS,Ri

|hS,Ri |2 + σ2
nRi

).
The solution of the above expression can be expressed as

follows

ν = exp

(
W
(
−A
B

exp
(
− 1

B
log2(2)

)
∗log(2)

)
+
log2(2)

B

)
.

(72)
Consequently, the we obtain the following

P †Ri
= (ν − 1)

(
σ2
nD

d−ϑRi,D
|hRi,D|2

)
. (73)

From (67) and (68), and using (72), we obtain

φ†i =
r

B log2(1 + γ
S,Ri

) + (δi · r)
. (74)

Finally, substituting (41) in (68), we find the following

θ†i = 1− r

(
1

B log2(1 + γ
S,Ri

) + (δi · r)

+
1

B log2

(
1 +

P †Ri
d−ϑ
Ri,D

|hRi,D
|2

σ2
nD

)
)
, (75)

where P †Ri
, φ†i , and θ†i are the optimal values obtained for

PRi
, φi, and θi, respectively.

Case VII: µ1 6= 0 =⇒ G(θi, φi, PRi) = 0; µ2 6= 0 =⇒
H(θi, φi, PRi

) = 0; µ3 = 0 =⇒ I(θi, φi, PRi
) 6= 0

The simplified equations for this case can be represented as
follows

[ζ(PSd
−ϑ
S,Ri
|hS,Ri

|2+σ2
nRi

)+PRi
]+µ1[B log2(1+γRi,D

)]

+ µ2[PRi
+ ζ(PSd

−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

)] = 0, (76)

PRi + µ1[B log2(1 + γ
Ri,D

) + (B log2(1 + γ
S,Ri

)

+ (δi · r))] + µ2[PRi
] = 0, (77)

1 + µ1

(
ln(2)d−ϑRi,D

|hRi,D|2

σ2
nD

+ PRid
−ϑ
Ri,D
|hRi,D|2

)
+ µ2 = 0, (78)

(1− (θi + φi))B log2(1 + γ
Ri,D

)− φi[B log2(1 + γ
S,Ri

)

+ (δi · r)] = 0, (79)

(1−(θi+φi))PRi−ζθi(PSd−ϑS,Ri
|hS,Ri |2+σ2

nRi
)−Eext = 0.

(80)
From (77) and (78), and assuming µ = 1+γ

Ri,D
, we obtain

the following equation

µ(B log2(µ)+B log2(1+γS,Ri
)+(δi ·r)− ln(2))+ln(2) = 0.

(81)
Since the solution of (81) is composed of complex values,
therefore this case is not acceptable.

Case VIII: µ1 6= 0 =⇒ G(θi, φi, PRi
) = 0; µ2 6= 0 =⇒

H(θi, φi, PRi) = 0; µ3 6= 0 =⇒ I(θi, φi, PRi) = 0
The equations to be used for computation of θi, φi, and PRi

in this case can be written as

[ζ(PSd
−ϑ
S,Ri
|hS,Ri

|2+σ2
nRi

)+PRi
]+µ1[B log2(1+γRi,D

)]+

µ2[PRi
+ ζ(PSd

−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

)]

− µ3[B log2(1 + γ
Ri,D

)] = 0, (82)

PRi
+ µ1[B log2(1 + γ

Ri,D
) + (B log2(1 + γ

S,Ri
)

+ (δi · r))] + µ2[PRi ]− µ3[B log2(1 + γ
Ri,D

)] = 0, (83)

1 + µ1

(
ln(2)d−ϑRi,D

|hRi,D|2

σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

)
+ µ2

− µ3

(
ln(2)d−ϑRi,D

|hRi,D|2

σ2
nD

+ PRi
d−ϑRi,D

|hRi,D|2

)
= 0, (84)

(1− (θi + φi))B log2(1 + γ
Ri,D

)− φi[B log2(1 + γ
S,Ri

)

+ (δi · r)] = 0, (85)

(1−(θi+φi))PRi−ζθi(PSd−ϑS,Ri
|hS,Ri |2+σ2

nRi
)−Eext = 0,

(86)
r − (1− (θi + φi))B log2(1 + γ

Ri,D
) = 0. (87)

From (85) and (87), we obtain

φi =
r

B log2(1 + γ
S,Ri

) + (δi · r)
. (88)

Similarly, from (86) and (87), we find

θi =
rPRi − EextB log2(1 + γ

Ri,D
)

ζ(PSd
−ϑ
S,Ri
|hS,Ri

|2 + σ2
nRi

)
. (89)

Substituting (88) and (89) in (87), and assuming η = 1 +
γ

Ri,D
we obtain the following equation

A−B log2(η)[B + Cη +DB log2(η)] = 0, (90)

where A = a · b · r, B = a · b+ a · r ·
(

σ2
nD

d−ϑ
Ri,D

|hRi,D
|2

)
− b · r,

C = −a · r ·
(

σ2
nD

d−ϑ
Ri,D

|hRi,D
|2

)
, and D = a · Eext, where a =

B log2(1+γS,Ri
)+(δi·r), and b = ζ(PSd

−ϑ
S,Ri
|hS,Ri

|2+σ2
nRi

).
Considering F(η) = A−B log2(η)[B+Cη+DB log2(η)],

we have a nonlinear equation of the type

F(η) = 0. (91)

Let us assume that η is a simple or one of the multiple roots
of (91), and η

0
is an initial point prediction sufficiently near to

η. Using the Taylor’s series expansion [cite], we can express
the following

F(η
0
) + (η − η

0
)F ′(η

0
) +

1

2
(η − η

0
)2F ′′(η

0
) = 0. (92)
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In order to solve the nonlinear equation F(η) = 0, an
alternative equivalence formulation has been used to develop
a class of iterative methods. Simplified form of (92) can be
re-written as
F ′′(η

0
)(η − η

0
)2 + 2F ′(η

0
)(η − η

0
) + 2F(η

0
) = 0. (93)

It is clear that the equation in (93) is of the quadratic form.
Hence, the corresponding roots can be expressed as

η − η0 =
−F ′(η0)±

√
[F ′(η0)]

2 − 2F ′′(η0)F(η0)

F ′′(η0)
. (94)

Depending on the sign of proceeding the radical term, the
formula in (94) provides the following two possibilities

η = η
0
−
F ′(η

0
) +

√
[F ′(η

0
)]2 − 2F ′′(η

0
)F(η

0
)

F ′′(η
0
)

. (95)

η = η0 −
F ′(η0)−

√
[F ′(η0)]

2 − 2F ′′(η0)F(η0)

F ′′(η0)
. (96)

Using the fixed point formulations in (95) and (96), and in
order to maximize the objective in (25), the following formula
for an approximate solution η

k+1
can be used to find the larger

root iteratively [35]

η
k+1

= η
k
−
F ′(η

k
)−

√
[F ′(η

k
)]2 − 2F ′′(η

k
)F(η

k
)

F ′′(η
k
)

. (97)

It should be noted that the denominator of (97) is indepen-
dent of F ′(η

k
) which makes it specially fit to find the largest

root of the (91).
Since the nonlinear equation in (90) involves the logarithmic

terms, the number of iterations required to find the optimal
largest root may be higher for the chosen value of η

0
. In

that case, Halley’s method (2) or the modified Chebyshev’s
method (39) in [36] may also be used to reduce the number
of iterations.

Finally, we obtain the following solutions for this case

P ∗Ri
= (η − 1)

(
σ2
nD

d−ϑRi,D
|hRi,D|2

)
, (98)

φ∗i =
r

B log2(1 + γ
S,Ri

) + (δi · r)
, (99)

θ∗i =
rP ∗Ri

− EextB log2

(
1 +

P∗Ri
d−ϑ
Ri,D

|hRi,D
|2

σ2
nD

)
ζ(PSd

−ϑ
S,Ri
|hS,Ri |2 + σ2

nRi
)

, (100)

where P ∗Ri
, φ∗i , and θ∗i are the optimal values obtained for

PRi , φi, and θi, respectively in this case.

APPENDIX C
TS FACTORS’ SELECTION FOR UNIFORMITY IN THE

ASSUMED CONVENTION

In this paper, we have investigated two problems for maxi-
mization of throughput and stored energy at the relay by using
two distinct time-conventions, respectively. This facilitates the
reader to independently adopt any of the presented conventions
for further analysis in similar directions. Herein, we intend to
accomplish the relationship between the two conventions as
presented in Fig. 3 and Fig. 4, respectively, in order to impose
uniformity in the analysis.

Assuming the TS convention as in Fig. 3, the corresponding
conventions for Fig. 4 can be represented in terms of the
metrics in Fig. 3 as follows

θi = αi · βi, and φi = (1− αi) · βi, (101)

where i is the index of the chosen relay.
Similarly, if the TS convention as in Fig. 4 is assumed

throughout, then the metrics in Fig. 3 can be represented as

αi =
θi

θi + φi
, and βi = θi + φi. (102)
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