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The only way to have real success in science, the field I'm familiar with, is to describe the evidence very 

carefully without regard to the way you feel it should be. If you have a theory, you must try to explain what's 

good and what's bad about it equally. In science, you learn a kind of standard integrity and honesty. 

Richard P. Feynman 
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Preface 

It has become very fashionable to talk about Mobility as a Service, multimodal transport networks, 

electrified and green vehicles, and sustainable transportation in general. Nowadays, the transportation 

field is exploring new angles to solve mobility issues, applying concepts such as using machine learning 

techniques to profile user behaviour. While for many years “traffic pressure” and “congestion 

phenomena” were the most established keywords, there is now a widespread body of research pointing 

out how new technologies alone will solve most of these issues.  

One of the main reasons for this change of direction is that earlier approaches have been proven to  be 

more “fair” than “effective” in tackling mobility issues. The main limitation was probably to rely on 

simple assumptions, such as in-elastic mobility travel demand (car users will stick to their choice), when 

modelling travel behaviour. However, while these assumptions were questionable twenty years ago, 

they simply do not hold in today's society. While it is still true that high-income people usually own a 

car, the concept of urban mobility evolved. First, new generations are likely to buy a car ten-twenty 

years later than their parents. Second, in many cases, users can choose options that are more effective 

by combining different transport modes. Wealthy people might decide to live next to their working place 

or to the city centre, rather than to buy a car. Thus, it becomes clear that to understand the evolution of 

the mobility demand we need to question some of these assumptions.   

While data can help in understanding this societal transformation, we argue in this dissertation that they 

cannot be considered as the sole source of information for the decision maker. Although data have been 

there for many years, congestion levels are increasing, meaning that data alone cannot solve the problem. 

Although successful in many case studies, data driven approaches have the limitation of being capable 

of modelling only what they observed in the past. If there is no record of a specific event, then the model 

will simply provide a biased information. In this manuscript we point out that both elements – data and 

model – are equally relevant to represent the evolution of a transport system, and specifically how 

important is to consider the heterogeneity of the mobility demand within the modelling framework in 

order to fully exploit the available data.  

In this manuscript, we focus on the so-called Dynamic Demand Estimation Problem (DODE), which is 

the problem of estimating the mobility demand patterns that are more likely to best fit all the available 

traffic data. While this dissertation still focuses on car-users, we stress that the activity based structure 

of the demand needs to be explicitly represented in order to capture the evolution of a transport system. 

While data show a picture of the reality, such as how many people are travelling on a certain road 
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segment or even along a certain path, this information represents a coarse aggregation of different 

individuals sharing a common resource (i.e. the infrastructure). However, the traffic flow is composed 

of different users with different trip purposes, meaning they react differently to a certain event. If we 

shut down a road from one day to another, commuting and not commuting demand will react in a 

different way. The same concept holds when dealing with different weather conditions, which also lead 

to a different demand pattern with respect to the typical one. This dissertation presents different 

frameworks to solve the DODE, which explicitly focus on the estimation of the mobility demand when 

dealing with typical and atypical user behaviour. Although the approach still focuses on a single mode 

of transport (car-users), the proposed formulation includes the generalized travel cost within the 

optimization framework. This key element allows accounting for the departure time choice and, in 

principle, it can be extended to the mode choice in future work.  

The methodologies presented in this thesis have been tested with a “state of the practice” dynamic 

traffic assignment model. Results suggest that the models can be used for real-life networks, but also 

that more efficient algorithm should be considered for practical implementations in order to unleash 

the full potential of this new approach.   
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Introduction 

Demand Estimation is the process of inferring the origin-destination demand flows from the available 

traffic data. This problem is considered extremely important for any application in Transport 

Engineering, as inaccurate demand flows lead to inaccurate traffic predictions, thus economic and social 

losses. 

This dissertation focuses on the structure of the Origin-Destination demand flows. The addition of a 

parametric representation of the demand results in including activity patterns and increasing the overall 

reliability of the estimation process.  

This Chapter introduces the context of this thesis, the Demand Estimation problem, the contribution of 

this dissertation and its outline. 
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1.1 Context and background 

1.1.1 Context  

Transportation is a key sector of any country’s economy, as it contributes to improve both the economic 

growth and the quality of life for the citizens. In the European Union alone, this sector sustains over 10 

million jobs and contributes approximately for 4.5% of the overall Gross Domestic Product (GDP) 

(European Commission 2014). Nevertheless, mobility also represents a major cost for our society. As 

the demand for mobility services is increasing with the economic welfare, pressure on existing 

infrastructures has reached its limits. Even without considering environmental and social externalities, 

in Europe, congestion alone costs about 1% of the total GDP (European Commission 2014). To provide 

an example, according to TomTom data, Luxembourg Ville is the 32th most congested city in Europe 

and is ranked 78th worldwide (TomTom 2017). Statistics show that the extra travel time during the rush 

hour is 40 minutes per day, meaning that, over a year, each user spends 1.7% of his life stuck in the 

queue. The challenge for the public authorities is therefore twofold: on one hand, to expand transport 

facilities in order to support the economic growth, on the other hand to reduce costs and externalities 

related to the transport sector.  

Traditionally, response measures to this phenomena can be classified into three main domains: strategic 

planning, tactical planning and operation management programs (Cascetta 2009). Strategic and tactical 

planning involves long and medium-term decisions, such as expanding or building new infrastructures 

(e.g. roads, logistic hubs), promoting emerging technologies (e.g. electric and autonomous vehicles) or 

boosting cooperative or on-demand mobility (e.g. car sharing, ride sharing). Operation management 

programs focus instead on short-term solutions to optimize the usage of existing transport facilities. 

Ramp-metering control strategies, traffic signal design and transit timetable optimization are some 

examples of management solutions. Regardless the adopted response measures, public authorities need 

support tools to quantify their effect.  One solution involves using data driven techniques to analyse the 

current situation and to predict the evolution of the system. However, these approaches are often leading 

to a biased estimation, as they do not account explicitly for user behaviour or the future evolution of the 

system (which could substantially differ from the current one). Concerning road users, a preferable 

option is to deploy Traffic Assignment (TA) models, which for many years have been successfully 

applied as supporting decision tools for the evaluation of traffic planning and managing solutions. TA 

models not only offer the opportunity to estimate and predict the traffic state on the transport network 

but also to implement the proposed solution within the model itself, in order to quantify the gain of each 

alternative and compare it with the do-nothing scenario – i.e. the current situation or its projection in the 

future. These models are composed of two main components: the choice model and the propagation 

model (Corthout 2012). The former deals with the behavioural aspect of the user that decides to travel 

from one place to another, and can account for route, location, and - in a dynamic context - departure 

time choice. The propagation model deals instead with the physical relations between vehicles and 

infrastructure. Conventional TA models assume that both the infrastructure characteristics (called 

supply) and the mobility demand are constant over a certain reference time period (within-period 

stationary case). Although this assumption is acceptable to estimate average traffic conditions on the 

network, congestion is underrepresented. Thus, last decades witnessed to an intensive research effort in 

developing new models, in which these characteristic are modelled as time dependent (within-period 

dynamics case) (Cascetta 2009).  Time dependent - or Dynamic - Traffic Assignment Models (referred 

to as DTA in the rest of this thesis) represent the state of the art in modelling transport systems, as they 

provide a realistic representation of the congestion and a wide range of time-varying outputs, such as 

length of the queue, route costs and travel times. These output measures are also extremely relevant in 

order to perform an ex-post analysis of the results and compute additional performance measures 

analysis or a cost-benefit analysis.  
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One of the essential inputs for (stationary or dynamic) TA is the mobility demand, as it results that a 

biased demand pattern will likely lead to a biased congestion pattern. Typically, mobility demand is 

represented as an Origin-Destination (OD) demand matrix, where each cell of the matrix represents the 

number of trips from one traffic zone to another, for a certain trip purpose and mode of transport.  In the 

dynamic case, time is usually discretised in a specified number of intervals, and a dedicated OD matrix 

is then associated to each of them (Figure 1.1).    

 

Fig.1.1. OD Demand Matrix for the within-period stationary (a) and dynamic (b) case; 

 

The main problem is that state of the art measurement systems are not sufficient for estimating a realistic 

OD demand matrix. Conventional monitoring systems, such as loop detectors, measure the effect of the 

demand on the network rather than the demand itself. More advanced techniques, such as GPS 

coordinates and plate number recognition, provide more insights into the number of trips between a 

certain origin and destination. However, they usually capture only a sample of the whole demand, whose 

representativeness is related to the penetration rate of the adopted technology. As a consequence, 

practitioners usually turn to demand generation models in order to approximate the demand. The most 

widely adopted demand model is the so-called Four-Step model (McNally 2007). This model is based 

on aggregate demographic data and, by means of a series of probability functions, estimates the OD 

matrix. This representation of the demand is normally called macroscopic since the demand is 

represented at a strongly aggregated level. The main limitation of this approach is that demographic 

variables are static, which means that the result will be a stationary OD matrix. However, DTA models 

need as input a dynamic OD matrix rather than a static one.  Moreover, in reality, mobility demand is 

activity rather than trip based. Each user chooses his/her departure time based on the activities he/she 

scheduled along the day.  

To take into account this element, an alternative approach is to use Activity-Based Models (ABM) and, 

specifically, Activity-Based demand generation models (Ben-Akiva and Bowman 1998), to represent 

the demand. In this case, a population is generated by census data, generating Activity Plans which 

describe the entire daily activity pattern for each user on the network. The main advantages using this 

representation are two. First, since the Activity Plan includes departing/arrival time at the destination, 

the resulting demand is dynamic in nature, which is a desirable property for DTA models. Furthermore, 

this plan includes different activities, which allows the model to consider a tour of activities rather than 

simple trips. While the relevance of the trip chain has been already investigated in the literature, 

normally this element is still missing in the macroscopic models.  

The OD matrix generated through demand generation models is usually not accurate enough to 

reproduce the expected traffic patterns when coupled with a TA model. Thus, it is required a calibration 

phase where this demand is corrected in order to reproduce the available historical traffic information. 

This problem, which is briefly discussed in the next sub-session, is indeed the main focus of this thesis 

and it is well known in the literature as Origin-Destination demand Estimation (ODE) problem. 
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1.1.2 Origin-Destination Demand Estimation using Traffic Data 

The OD Estimation (ODE) is the process of improving an existing available OD matrix by combining 

the demand generation models described in the previous section with the available traffic data. This 

process can be considered as an indirect estimation of the demand, as it relies on a model – the traffic 

assignment – in order to ensure consistency between the network performances (e.g. link flows, speeds, 

travel time) and the demand, which is the target of the estimation. As this process takes traffic data as 

an input in order to provide the mobility demand as an output, the literature often refers to it as the 

reverse assignment problem (Figure 1.2) (Cascetta 2009).   

 

 

Fig.1.2. Comparison between the Traffic Assignment (a) and the OD Estimation (b) problem; 

 

While an extensive overview of the problem is out of the scope of this chapter, this section aims at 

providing the general definition of the ODE problem and at highlighting the contribution of the current 

thesis. Demand estimation has been initially applied for the calibration of within-day stationary TA 

models and, without loss of generality, can be formulated as an optimization problem. The goal is to 

update the current values of the OD demand matrix in order to minimize the error between simulated 

and observed traffic data. By considering only the link and demand flows, for the stationary case, the 

objective function can be formulated as in Equation (1.1). 
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Subject to 

l=Mx 
(1.1b) 

Where 𝑧1 and 𝑧2 are distance functions measuring the error between current and reference values, 𝒙 is 

the vector containing the OD flows to be updated, 𝒅̂ the one with the historical values of the OD flows 

obtained through the demand model, 𝒍̂ the vector with the available traffic counts and 𝒍 the one with the 

simulated link flow. Finally, 𝒅∗ is the vector with the calibrated demand flows, which minimises the 

objective function. The optimization problem is constraint to Equation (1.1b) in order to ensure 

consistency between demand flows and simulated traffic measures. This done through the assignment 

matrix M, which maps the demand flows to the link flows. Equation (1.1) can be directly extended to 

the dynamic OD demand Estimation (DODE), with the main difference that both OD flows and traffic 

measurements will be time dependent. Based on this formulation, existing research on the DODE 

problem can be divided into five main categories:  
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1) Application domain: A first classification is between online and offline approaches. In the first 

case, the model uses real time traffic data to update the existing OD-matrix, repeating the 

process when new data are available. This model is quite common for performing real time 

traffic predictions.  Concerning the second category, offline models do not require real time data 

but calibration is based on a database which represents “typical” dynamics during the study 

period, such as the congestion during the morning peak. These models usually work together, 

as one generates the input for the other (Antoniou 2004).  

2) Objective functions: The objective function is a key building block of the DODE as measures 

the magnitude of the error related to each variable. Typical research on this direction focuses on 

including additional information. While this was proven to be a good solution for motorways or 

small networks, it is not a sufficient condition when dealing with urban or big sized networks, 

as the enormous number of OD pairs makes the problem extremely complex. To avoid this 

issue, researchers are developing new solutions for decreasing the number of variables (Djukic 

et al. 2014).  

3) DTA model: The Dynamic Traffic Assignment model is also extremely relevant during the 

DODE process. An unrealistic DTA will always lead to a poor representation of the demand, 

as, even when a perfect estimation of the demand is available, the model is not able to replicate 

the real traffic data. At the same time, if the DTA is too complicated, the computational time 

might become cumbersome. (Frederix 2012);  

4) The solution algorithm: On this point, a main classification can be done between analytical and 

DTA-based models. The former models assume that an analytical relation between OD and Link 

flows exists and it is explicitly used to update the current solution. The DTA-based are more 

general, as they do not depend on any explicit relation. The advantage is twofold. First, many 

commonly adopted models do not provide this explicit relation, meaning that analytical models 

are not an option. Second, DTA-based models are more flexible as they can deal with many 

different data sources, such as GPS coordinates and even mobile phone network data, without 

assuming any analytical relation with the decision variables.  By contrast, this flexibility comes 

with significant costs in terms of computational time (Barceló et al. 2012).  

5) Stochastic or deterministic OD flows: Traditional OD estimation techniques look for the OD 

flows that are more likely to fit the available data. The result is a deterministic number of trips 

for each OD pair. However, the mobility demand is not deterministic by nature, meaning that 

OD flows are likely to change from one day to another. Thus, a possibility is to consider the OD 

flows as stochastic variables to consider the probability of observing a certain trip (Shao et al. 

2015).   

This thesis focuses on the offline case using a DTA-based approach. The work presented in the next 

chapters investigates the opportunities of extending both the objective function and the DTA model in 

order (i) to produce more reliable estimations with respect to the base case and (ii) to incorporate user 

behaviour in both the demand and DTA model, in order to account for heterogeneous mobility patterns. 

Finally, the current manuscript still estimates deterministic OD flows, as considering stochastic 

variables would further increases the complexity of the problem.  

1.2 Objective and scope 

1.2.1 Objective 

The ideal situation would always be to directly observe the mobility demand and to feed the model with 

this direct information. Although this solution is possible from a technological point of view, it is too 

expensive in practice. Even when these data are available, their penetration rate is not enough to capture 

the entire population. For this reason, other data sources such as link counts and speeds, are always 

considered in state of the art models. Figure (1.3) shows the relation between data and demand 
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generation/estimation models. The diagonal of the table shows the direct1 measurement systems (we 

observe what we model), while other data sources can be classified as “redundant” when the information 

is more accurate than the model and “incomplete” when it is more aggregate.  As direct observations 

are rarely available, modellers showed that combining “redundant” and “incomplete” data sources 

within the objective function leads to significant improvements of the OD estimation, as the redundancy 

corrects some of the issues related to using an incomplete – or indirect – measure (Antoniou et al. 2016).  

While this assumption has been investigated for conventional data sources, such as GPS trajectories and 

plate number recognition, the main objective of this thesis is to include activity information within the 

DODE problem. Although Census Data are an incomplete and highly inaccurate source of information, 

they capture the behavioural nature of the demand.    

 

Fig.1.3. Relation between demand models and data sources; 

 

 In order to create a structure of the demand that accounts for a realistic user behaviour, the following 

research questions can be then formulated: 

- R.Q.1: How activity information can be included within the DODE problem? 

 

Mobility Demand, which has been always modelled as activity based in theory, follows a trip-

based representation in most of the state of the art DODE approaches. This work supports the 

idea that a correlation between an aggregated representation of the demand and the activity 

based user behaviour is needed in order to use macroscopic DTA models in a more efficient 

way. This research assumes that the OD dynamic demand matrix is a convolution of different 

                                                      
1 More specifically, direct information represents in this thesis the ideal source of data for a certain demand model. 

To make an example, Socio-Demographic data do not always contains information at the OD level, but still 

represent the ideal data source for the Four-Step approach.   
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activity patterns. Thus, based on partial information at the activity level, a structure for the OD 

matrix can be created and updated by considering conventional measurement systems.  

 

- R.Q.2: How can we estimate purpose dependent OD flows without increasing the number of 

parameters? 

 

While including activity information within a demand model seems reasonable, to simply 

account for activity based OD flows within Equation (1.1) is not an option. Because of the large 

number of parameters involved in the process, DODE is well-known for being a complex and 

highly nonlinear problem. In essence, if the number of variables increases in order to account 

for activity based OD flows, the DODE will very likely over fit the available traffic data. Thus, 

to reduce the problem dimension is a fundamental step in order to achieve our goal. This 

problem becomes even more relevant if considering that activity plans are tour-based, thus 

combining DTA models based on Dynamic OD matrices with a tour of activities is one of the 

main challenges of this work.  

 

- R.Q.3: How much we can increase the reliability of the OD estimation by improving the 

quality of the initial matrix? 

 

The DODE problem, as specified in the previous sub-section, estimates the OD flows by 

updating an existing dynamic OD matrix. However, there is not an established approach for 

generating a dynamic OD matrix to use as initial input. State of the practice models rely on the 

assumption that a historical matrix exists, while in reality practitioner often over impose a 

temporal profile to an existing static OD matrix. Although researchers agree that the initial 

matrix is a fundamental aspect, research effort in this direction is very limited. A major 

challenge of this research is to improve the reliability of the DODE when an existing reliable 

OD matrix is not available, which is a major issue for practical implementations of any DODE 

framework. 

1.2.2 Scope 

The research presented in the next chapters deals with the DODE problem in the case of car users. As 

this thesis focuses on the objective function and the behavioural aspects of the underlying DTA model, 

other aspects such as the efficiency of the solution algorithm, introducing new data sources and dynamic 

network loading will not be discussed in detail, but only when necessary.  

The methodologies illustrated are general and applicable to any DTA model which is based on dynamic 

OD matrices. As proposed in (Zhou and Mahmassani 2007) the OD demand is considered in this thesis 

as the convolution of three functional functions: Regular Demand Pattern, Structural Deviations and 

Random Fluctuations (Zhou and Mahmassani 2007). Regular Demand Patterns represent the typical 

demand profile, Structural Deviations take into account those phenomena, such as weather condition, 

that the analyst can model, while random fluctuation considers those deviations that cannot be explained. 

This classification results useful for identifying those conditions where activity information should be 

included within the DODE.  

Finally, online and real-time applications are out of the scope of this thesis. 

1.3 Thesis Contribution 

This thesis analyses the problem of extending the Dynamic OD demand Estimation problem, bringing 

the following practical and scientific contribution.  
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1.3.1 Practical Contribution 

- Mobility Patterns: The mobility demand is heterogeneous in nature, as it is composed of 

different users with different preferences. Part of this heterogeneity is captured within the DTA 

model. This research extends this concept by showing that the overall demand can be subdivided 

into multiple demand segments, each of them representing a different activity plan, which can 

be approximated by a simplified function. These functions can be used for representing activities 

at a macroscopic level. 

- Non-commuting demand matters: Trip based approaches works quite well when the goal is 

forecasting the impact of major transportation infrastructures but are usually inadequate in 

analysing complex transport policies (McNally, Michael G. 2007). This because the 

conventional four step approach does not link trips and activities but only considers simplified 

temporal and spatial dependencies between zones (McNally, Michael G. 2007). This 

assumption might still hold for the commuting demand, which can be approximated through a 

gravity model. However, as we will show in the next section, commuting demand is about 20% 

of the overall mobility demand. The remaining share of the mobility demand will likely be 

underestimated if trip purpose and travel behaviour are not included within the demand model. 

This thesis introduces a methodology for clustering activity patterns and including them in the 

demand estimation process, reducing this phenomenon. 

-  Dynamic Structure of the Demand: The temporal profile of the demand changes not only over 

time but over space too. First, the work presented in this manuscript shows that the temporal 

profile extrapolated from traffic loops can be more or less representative of the demand, 

depending on the road type. Specifically, while traffic flow on a motorway is very aggregate, 

primary roads are a better proxy of the temporal profile of the demand. Second, a departure time 

choice model is introduced within the DTA, which creates a different temporal profile for each 

traffic zone based on information such as the preferred departure time for the morning and 

evening commute. This allows to reduce the error within the starting point, as more realistic 

demand profiles are generated.  

1.3.2 Scientific Contributions 

- Utility-Based Departure Time Choice Model: In this thesis, a departure time choice model based 

on complex utility functions is integrated with the traffic assignment module. Thus, the choice 

model of the DTA is extended in order to jointly work on route, departure time choice and 

activity location. The main contribution in this phase is to investigate the error related to use 

different utility functions within the departure time choice model. We demonstrate that, while 

in some cases introducing a simple – or even constant – value of the utility can lead to substantial 

errors, in other cases this simplification can be accepted, speeding up significantly the process. 

- Utility-Based DODE: A Utility-Based model for the Dynamic OD estimation is presented. By 

using the parameters of the departure time choice model as decision variables, the number of 

variables strongly decreases with respect to the base case. The key contribution of this model is 

to partially fill the gap between trip based and activity based models, as it accounts for multiple 

activity types and to explicitly model activity tours, under the condition that the underlying DTA 

model accounts for tours as well.  

- Reliability issues: A new framework called “Two-Step approach” is also presented in this thesis. 

This model deals with the classical DODE problem, as it does not account for activities and 

tours, and it divides the DODE in two sub optimization problem: the first step looks for a reliable 

time dependent OD matrix to use as initial solution for the second optimization problem, which 

adjusts the OD flows in order to minimize the error with respect to the available traffic data. 

Results show that this model provides more reliable results, as it reduces the negative impact of 

having a low quality initial matrix. 
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- Regular and irregular demand patterns: This thesis highlights that two classes of models should 

be considered within the OD estimation. Many DODE models assume that a good initial OD 

matrix is available, meaning that these models mostly work on random and structural deviations 

of the demand while keeping the systematic component constant. However, if the error on the 

systematic component – i.e. the regular demand pattern – is relevant, then a model that 

explicitly accounts for activity patterns is needed. 
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1.4 Thesis Outline 

This dissertation is based on a collection of publications. Except for Chapter 2, each chapter introduces 

an original contribution, therefore it contains dedicated introduction and literature review sections. The 

manuscript is structured as follows: 

 

Fig.1.4. Thesis outline; 

While it might seems formally more correct to introduce the Regular Demand Pattern before the 

Irregular ones, this could make this manuscript complicated to read and hard to access. The reason is 

that reading Chapters 7-8, which contains the main contributions of this dissertation, requires an advance 

knowledge of the OD estimation problem. Before moving to these chapter, the reader should already be 

aware of the limitations for conventional approaches, including the quality of the initial demand matrix, 

the underdetermines of the problem and the possibility of including additional traffic data within the 

objective function, just to mention a few. This topics are discussed within the first part of this 

manuscript.  

1.4.1 Explorative Analysis 

Before moving to the theory, this section analyses empirical data in order to verify the assumption that 

a relation between activities and OD demand flows exist. Empirical evidence supports the idea that a 
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different modelling approach should be considered when dealing with regular or irregular demand 

patterns. 

1.4.2 Part I: Irregular Demand Pattern 

The first part of this thesis focuses on the estimation of irregular mobility patterns. The input is an 

existing dynamic OD matrix, while the goal is to look for the OD matrix that best fits the available traffic 

data. As this process results in just the adjustment based on empirical observations, it is likely to capture 

fluctuations from the systematic component of the demand – such as the user behaviour during a raining 

day – while is less likely to account for user preferences, such as the preferred departure time. 

1.4.3 Part II: Regular Demand Pattern 

In this case, the assumption is that a good dynamic OD matrix is not available or that we want to update 

it in order to account for new activity patterns. A departure time choice model and a parametric approach 

to the dynamic OD Estimation model are presented.  The target, in this case, is not to fit the traffic data, 

as the parametric function does not allow the same precision as the model presented in Part I, but to 

identify the activity-based structure of the demand, thus its systematic component.  
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2 

Empirical analysis of daily 

demand patterns 

This Chapter aims to show empirical support to some of the main assumptions behind the theory 

presented in this thesis. The first section introduces the concept of splitting the mobility demand in 

several “primitives”, each of those representing a certain activity. Next, an analysis of how much 

information on the day-to-day evolution of the demand can be obtained by loop detectors is presented. 

Then, the analysis focuses on the activity-based structure of the mobility demand. The discussion 

supports the idea that users with the same trip purpose can be grouped in homogeneous classes and that 

a limited number of classes represents a large share of the overall demand. Finally, the author stress that 

this analysis presents simple empirical findings, which cannot be generalized to all cases but represent 

a requirement for adopting the methodologies presented in the next chapters.  

 

The Content of this chapter has been partially presented at the following conferences and its content is 

unpublished to date: 

Cantelmo, Guido, and Francesco Viti. 2015. “Activity Demand: An Empirical Analysis on the Influence of the 

Activities on the Traffic within-Day Demand Profile.” In 4rd HEART Conference.  

Cantelmo, Guido, Francesco Viti, and Chris MJ Tampere. 2014. “Exploiting the Relation between Activity Data 

and Traffic Data within the Dynamic Demand Estimation Problem.” In 3rd HEART Conference.   



30 

 

2.1 Introduction 

In this chapter, we explore the opportunity of clustering different activities in order to observe user 

behaviour at a macroscopic level. The main idea behind the methodology proposed in this thesis is that 

a few parameters can represent a homogeneous class of users. Simply stated, it should be possible to 

model users travelling from a certain origin to a certain destination for a certain purpose through a few 

parameters, such as the preferred departure time and its variance. However, before moving to the main 

body of this research, which is presented in the next chapters, this assumption must be properly verified 

through empirical data.   

 

Fig.2.1 Mobility Demand as a convolution of different activities; 

 

While many DODE formulations have been proven to successfully estimate the demand flows when a 

trustworthy dynamic OD matrix is available, in practice, historical demand flows are often derived from 

static models and their temporal profile is extrapolated from the traffic data. When large-urban networks 

are involved in the DODE process, the problem becomes even more complex, as this error increases 

with network sizes. For example, commuters travelling from different origins to the same common 

destination will clearly have a different departure time. On this point, the analysis presented in the next 

sections focus on two main aspects. Section (2.1) investigates the correlation between traffic data and 

temporal demand profile, while Section (2.2) proposes to use probability functions for modelling activity 

patterns and generates a more realistic profile, as shown in Figure (2.1).    

The BMW (Behavioural and Mobility within the Week) database is the main source of information used 

to validate our assumptions. The dataset, collected in the region of Ghent-Belgium, contains information 

from 717 different individuals in the form of Travel Diaries. For a week, each individual provided 

information over:  

1) The Departure Time 

2) The Arrival Time 

3) The starting location of the trip 

4) The final location of the trip 

5) The kind of activities performed 

6) The number/sequence of activities 

7) The mode choice 
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8) The household composition (not used in this study) 

 

The travel survey started on the 08 September 2008 and finished on 07 December 2008, hence covering 

a period of three months. Each user has been monitored for one week period and traffic counts are 

available for the same period of time. For further information, see the full BMW report ( Castaigne et 

al. 2010)2.  

Next sections introduce some insights and conclusions about the aggregate user behaviour.  

2.1.1 Temporal and Spatial structure of the demand 

This section analyses the discrepancy between mobility demand and traffic profile. Thus, the first step 

is to compare the temporal trend of the observations obtained from traffic data with the trend of the 

aggregate Activity demand estimated from the travel diaries. Main differences between these types of 

information are: 

 Traffic Data: Direct observation about all the demand, cheap but strongly aggregated. 

 Activity Data: Sample information (user level), expensive but disaggregate. Statistically biased 

if the sample size is not sufficiently large.  

In Figure 2.2 is possible to observe the two temporal profiles, for two different days (Wednesday and 

Thursday). 

 

Fig.2.2:  (a) Aggregate plot of the observed activities for Thursday; (b) Observed traffic Flow on a 

detector. Thursday; (c) Aggregate plot of the observed activities for Wednesday; (d) Observed 

traffic Flow on the same detector; 

 

                                                      
2 Available at this link: http://www.belspo.be/belspo/SSD/science/Reports/BMW_FinRep.ML.pdf 

http://www.belspo.be/belspo/SSD/science/Reports/BMW_FinRep.ML.pdf
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Figures 2.2 (a-b) and (c-d) show that the aggregate temporal profile on Thursday results similar when 

using Activity Data or Traffic Counts, while this is not the case on Wednesday. Wednesday is a specific 

day in Belgium, as schools close earlier and people often go home after lunch in order to stay with their 

family. This behaviour, although systematic, is not captured by most of the detectors on the network 

suggesting that, if this specific detector is used for creating the time-dependent demand profile, day-to-

day dynamics are likely to be underestimated within the generated dynamic OD matrix.  While this 

observation seems obvious, the question is: which detectors should be used to create the time-dependent 

OD matrix and, even more important, which detectors are more likely to capture the different mobility 

pattern showed in Figure (2.2c)?  

On this point, we can assume traffic flows on a local road to be mostly generated by the 

incoming/outgoing users for that specific traffic zone, while regional roads and highways are composed 

by a more aggregated traffic flow.  Consider the city map of Ghent showed in Figure 2.3a. Traffic profile 

on two sections is shown, for a local road (Figure 2.3b), very close to a school, and for the inner ring 

(Figure 2.3c). 

 

 

Fig.2.3:  (a) Network of Ghent (b) Observed traffic Flow on a Local Road; (c) Observed traffic 

Flow on the Inner Ring; 

 

While temporal profile on the Local Road shows similarity with the one depicted in Figure 2.2c, the 

time profile on the inner Ring is extremely aggregated. The reason is that, while the Local Road is 

mainly used by users arriving at their destination– the place in which the activity will be consumed – 
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the ring is shared by different users, with different purposes, different departure time and different travel 

time.  

In order to investigate this effect at a network level, the time-dependent profile obtained through the 

travel survey and traffic counts have been compared for all available detectors in the area of Ghent. Each 

observation – both travel surveys and traffic counts - has been separated into three components: Morning 

Peak, Evening Peak and afternoon, and each time period has been normalized. The function obtained 

through this procedure has been then compared with the one obtained from the travel surveys. Results 

are summarized in Table 2.1., which shows the correlation in terms of r-squared between road detector 

and activity-based demand profile for each day of the week.  

Table 2.1: Relation Between Traffic Counts and Activity-Based temporal profile 

 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday  r2 r2 r2 r2 r2 r2 r2 
Regional Roads  0.35 0.34 0.37 0.4 0.32 0.38 0.13 

Provincial Roads 0.5 0.45 0.43 0.47 0.45 0.38 0.13 
Local Roads 0.51 0.49 0.47 0.52 0.48 0.37 0.12 
Inner Ring 0.42 0.33 0.38 0.41 0.37 0.39 0.14 

External Ring 0.71 0.65 0.69 0.74 0.73 0.38 0.14 
Link Road  0.79 0.53 0.65 0.77 0.58 0.4 0.08 

 

 

In Table 2.1, r2 represents the average “r-squared” over all the detectors belonging to the same road 

category. For instance, 0.51 is the average r-squared for all traffic counts of category “Local Roads” on 

Monday. However, Table 2.1 shows this value can change a lot from one detector to the other. Some 

local roads present a very high correlation, like in 2.2, while other do not. Thus, if the profile of the 

demand is known, it becomes quite easy to identify between different detectors the one providing a 

realistic demand profile for the neighbouring traffic zones. If we focus on the highways, the Inner Ring 

presents a lower value of r2 with respect to the External Link or Link Road. This is reasonable because 

the External link is a large motorway running around the city mainly used by commuters that live and 

work outside the city, while the Link Road is a segment of the highways entering directly in the city 

centre, which has only a few detectors. This allows us to observe the inflow/outflow related to all those 

activities located in the city centre.  

2.1.2 Activity-Based structure of the demand 

2.1.2.1 Activity Patterns and Activity Components 

In this section, we investigate the aggregate relation between Activity-based OD flows and traffic states. 

Specifically, we assume that the mobility demand is a convolution of different Activity Patterns. Some 

of them are rigid, like the home-work activity, while others are more flexible. It is intuitive to realize 

that rigid activities determine the network condition, while the flexible ones are influenced by the given 

traffic state – i.e. users can reschedule their activities if the cost of reaching the destination is too high. 

Thus, we can classify the mobility demand according to the definition of rigid and flexible Activity 

Demand Components.  In general, we can identify at least three groups of Activity Components: 

I. Within-Day-Systematic Activities (DSA): These are rigid activities, in which arrival and/or 

departing time is not usually flexible (i.e. going to work, returning home)   

II. Within-Week-Systematic Activities (WSA): These are flexible activities, which are not systematic 

within the day, but recur regularly, e.g. every week (i.e. swimming pool, weekly shopping).  
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III. Not-Systematic Activities (NSA): These flexible activities represent extraordinary events with 

respect to the usual user activity scheduling (i.e. visiting the doctor is an example).    

 

Fig.2.4:  From Tours to Activity Component 

 

The classification is done on the basis of the concept that, for the single user, the agenda during the 

month will be composed of DSA activities, like work, WSA activities, like the swimming pool or the 

weekly shopping, and NSA activities, like visiting the doctor. All the activities reported within the BMW 

database have been classified according to the above three groups of Activity Components by mean of 

a hierarchical cluster analysis, as shown in Figure 2.4. Four artificial functions, representing within day 

systematic (Home and Work), within week systematic and not systematic activities have been generated 

based on the aforementioned definition. The cluster analysis exploits the following rules: 

 The first activity to be grouped in a cluster is the most similar, by definition, with the artificial 

function (DSA, WSA, NSA). For instance, DSA – Home function has to be grouped, as the first 

step, with Work Purpose.  

 If two artificial functions are grouped, the procedure should be stopped 

 According to the general rule of hierarchical clustering, when by grouping two clusters too much 

information is lost, the procedure should be stopped.  

Point 2 and 3 stress that this procedure can generate no more than four activity components, the number 

of artificial functions used in this problem. For details on this procedure, and specifically how the 

artificial functions have been created, we refer the interested reader to Appendix A. Figure 2.5 reports 

the list of activities described within the BMW database and how these can be classified according to 

these four Activity Components. We can now define an Activity Pattern as the combination of two or 

more Activity Components. The main different between Activity Pattern and Activity Component in this 

thesis is that the former considers generally a series of Activity Components and their location, while the 

latter represents an aggregate purpose dependent demand flow for a specific traffic zone. 
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Fig.2.5:  Hierarchical Cluster Analysis results 

Under these assumptions, the rigid component represents a relevant share of the total demand (Figure 

2.6). The activity pattern (Home-Work) counts 12% of the total demand, while the (Home-School) the 

6%. If we consider all the point-to-point movements - which means not more than two trips during the 

day – the percentage rises up to 35%. These percentages, which are similar to other in the literature 

(Bowman and Ben-Akiva 2001), show how to consider trip chains and daily patterns is fundamental to 

capture the overall mobility demand. Another observation to report is the relevance of the commuting 

trips with respect to total amount of the demand. If disaggregate purposes are used to represent the 

demand, home-work trip represents the most important tour, according to the number of observations. 

However, if WSA activities are grouped, the Activity Pattern (Home-Leisure) becomes the second most 

relevant in terms of percentage, pointing out that the commuting based demand represents only a small 

component of the demand. 

 

Fig.2.6:  Percentage demand for Activity Pattern 
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After the cluster analysis, 375 Activity Patterns have been identified within the BMW database, but only 

four of them, showed in Figure 2.6, are able to capture 42% of the total demand. These Activity Patterns 

are: (Home-Work); (Home-Leisure) (Home-School) (Home-Leisure-Home-Leisure). If we focus on the 

number of trips, 75% of the monitored users perform between 2 and four trips during the day. This 

suggests that the demand model should be able to represent at least four Activity Patterns and till four 

trips for each user.  

2.1.2.2 Activity Scheduling and Duration 

To analyse at an aggregate level the Activity Pattern, three of the most important parameters of the 

activity chain have been evaluated: Travel Time distribution, Departing Time Distribution and Activity 

Duration. This information will be used in this section to approximate an Activity Probability Function.  

 

Fig.2.7:  Departure time, Travel Time and Activity duration distribution;  
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In Figure 2.7a, departure time, travel time and the activity duration for the Home-Work commute are 

presented, while in Figure 2.7b the same parameters are reported for the WSA-Home activity pattern. 

First, we can observe that the flexible component of the demand enters into the network after the morning 

peak when the rigid component leaves the system. Second, we can observe a different behaviour at the 

level of activity duration. While the rigid demand component presents a distribution around one single 

value (9 hours), for the flexible one we have two (9 and 2 hours), showing that the duration needs to be 

properly included in the model in order to account for the intra-cluster heterogeneity of the demand. 

Figure 2.7 also shows that the duration of the activity and the departing time can be represented by a 

probability distribution. We define Activity Probability Function the probability function which 

describes a certain Activity Pattern. Specifically, the mean value of this distribution is the average 

departing time for users within one Activity Pattern, while the covariance term shows the dispersion of 

the departing time with respect to this value. 

For the (Work-Home) tour, the chosen Activity Function in this explorative analysis is the Gaussian 

distribution. This choice is mainly related to the fact that this probability function provides a good 

approximation with respect to the available data. The equation of the Gaussian function is the following:  

𝑓(𝑥) = 𝑁 ∙ 𝑒
−(
(𝑥−𝜇)
𝜎2

)
2

 
(2.1) 

 

Where N is the number of users belonging to that specific Activity Component, 𝜇 is the average departure 

time and 𝜎 the variance. The following table contains the fitting parameters obtained by fitting departing 

time distribution and activity duration for the two Activity Component: 

Table 2.2: Fitting Parameters Work-Home Activity Components 

 

 N μ 𝝈𝟐 

Departure Time from Home in the Morning 31.54 7.521 1.139 

Departure Time from Work in the Evening 29.51 16.95 1.126 

Duration of the activity “Work” 36.28 8..89 1.015 
 

 

It is relevant to stress that every component of Equation 2.1, when used to represent the departure time, 

has a physical meaning, as it represents a different component of the demand. Specifically, the N term 

represents the volume of demand, μ the average departing time and 𝜎2 its variance.  

Here the first possibility to properly predict the traffic state in the afternoon exploring rigid demand 

properties appears. If we estimate the (correct) activity function for the morning, a good approximation 

of the evening rush hour can be performed. We can estimate the Probability of departing from Work in 

the evening by assuming that the average departure time is equal to the average departure time in the 

morning plus the duration of the activity. So we get μ= 8.89+7.521= 16.41 (instead of the real one, 

which is 16.95), while we assume all the other parameters to be constant.  By comparing this values 

with the real Activity Function the discrepancy between the parameters is extremely low.  
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Fig.2.8: (a) Activity Function of the DSA-W demand component; (b) Activity Function of the DSA-H 

demand component; (c) Comparison between the real DSA-H Activity Function (red), and the 

estimated one (blue), based on the average duration of the activities;   

 

2.1.3 Conclusions on the Explorative analysis.  

In this Chapter, an analysis on the structure of the mobility demand has been proposed. First, we 

analysed the correlation between traffic data and the temporal distribution of the demand. As only traffic 

counts were available, our analysis mostly focused on comparing the traffic profile on the detectors with 

the one obtained from the travel surveys. We observed that the time-dependent demand profile strongly 

changes over space and that some detectors are more likely to capture this difference. Second, we 

showed that only detectors located at the entrance of a traffic zone are likely to capture atypical mobility 

patterns and day-to-day evolution of the demand.  

This suggests that two options can be considered to explicitly account for this issue. One way it to tackle 

this issue from the data point of view. A possibility is to formulate the problem as a sensor location 

problem, i.e. search for those links that capture these trends or to use new data sources (Viti et al. 2014). 

A second option is to explore the possibility to use a model for generating the dynamic OD matrix that 

explicitly accounts for such dynamics. In this dissertation, we explore this second option.  

The second part of this chapter analysed the opportunity of breaking down the mobility demand from 

one unique irregular flow to several Activity-based demand patterns – called Activity Components. After 

analysing the available data, the conclusion is twofold.  
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1) The demand can be considered as the convolution of different activities, and each activity can 

be modelled as a simple function.  

2) Simple Functions, such as the Gaussian distribution, might be useful for estimating the user 

behaviour at an aggregate level. However, results show that, although the probability function 

captures the regular behaviour, the fitting with respect to the actual data is poor (Figure 2.8a-b).  

Based on these conclusions, two different models for solving the DODE should be considered. As 

proposed in (Zhou and Mahmassani 2007) the OD demand is considered as the convolution of three 

functional functions: Regular Demand Pattern, Structural Deviations and Random Fluctuations. 

Regular Demand Patterns represent the typical demand profile, Structural Deviations take into account 

those phenomena, such as weather condition, that the analyst can model, while random fluctuation 

considers that deviation that cannot be explained.  

Many DODE approaches have been proven to be efficient when a “good” Dynamic OD matrix exists. 

However, this assumption holds only if the underlying Activity-Based structure of the demand is correct, 

thus the Regular Demand Pattern is unbiased. Under this assumption, we propose a “conventional” 

framework for the DODE, which aims at correcting the Structural and Random fluctuations of the 

demand. The goal is to achieve a good fit between simulated and observed Traffic Data while at the 

same time increase the reliability of the state of the art methodologies. This model is presented in the 

first part of this manuscript, which deals indeed with estimating dynamic OD flows with Irregular 

mobility Patterns.  

The second part of this thesis deals instead with the complementary problem, thus to update the dynamic 

OD flows when the Regular Demand Pattern contains substantial errors. In this case, we propose to 

subdivide the demand into several Activity Components and to use probability functions to estimate their 

shape. Rather than fitting the data, the goal is in this case to generate a realistic dynamic OD matrix. 

This model is presented in the second part of this manuscript, which deals with the estimation of Regular 

Mobility Patterns.    
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PART I  

Irregular Mobility Patterns 
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3 

The Two-Step Approach 

As discussed in the previous Chapters, most state of the art DODE models have difficulties in 

reproducing the correct traffic regime if the initial dynamic OD matrix is not sufficiently close to the 

real one. In this chapter, a new and intuitive procedure to specify an opportune starting seed matrix is 

proposed: it is a two-step procedure based on the concept of dividing the problem into small-size 

problems, focusing at each step on specific set of OD pairs.  

The first step focuses on the optimization of a subset of OD variables. In the second step, the framework 

works on all the OD pairs, using as starting matrix the matrix derived from the first step. In this way is 

possible to use a more performing optimization method for each step, improving the performance of the 

method and the quality of the result with respect to the classical approach.  In this chapter, the procedure 

is tested on the real network of Antwerp, showing that the proposed model can avoid systematic errors 

due to adopting a certain “good” initial matrix and improve the overall performances of the model.  

The Content of this chapter has been presented in the following works: 

Cantelmo, Guido, Francesco Viti, Chris Tampère, Ernesto Cipriani, and Marialisa Nigro. 2014. “Two-Step 

Approach for Correction of Seed Matrix in Dynamic Demand Estimation.” Transportation Research Record: 

Journal of the Transportation Research Board (December): 125–33. doi:10.3141/2466-14. 

Cantelmo, Guido, Francesco Viti, Chris Tampère, Ernesto Cipriani, and Marialisa Nigro. 2014. “Two-Step 

Approach for Correction of Seed Matrix in Dynamic Demand Estimation.” Transportation Research Board 2014 
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3.1 Introduction and Literature Review 

Traffic congestion, especially in urban networks, is nowadays a relevant societal problem, and of primal 

interest in traffic engineering. Typically, congestion phenomena are due to bottlenecks that cause the 

propagation of congestion on the network, making very difficult to trace back its real causes. A correct 

representation of the spread of congestion, which is essential for the proper evaluation of management 

operations, requires tools capable of simulating and predicting time-dependent network traffic 

conditions.  

The dynamic demand estimation (or the demand adjustment, if we start from a known OD matrix usually 

derived by a combination of surveys and mathematical models) searches for temporal OD matrices that 

best fit link measurements as traffic counts. The problem is well-known in both the off-line (medium-

long term planning and design) and in the on-line (real-time management) context. Cascetta et al. (1993) 

proposed to face the problem using a sequential or a simultaneous approach: the first makes the demand 

estimation for each single time slice, holding constant the others. In the simultaneous approach the 

matrices of every time slice are perturbed simultaneously to guarantee full consistency between 

estimation periods. This approach is virtually more correct than the sequential one, as it takes into 

account the relationship among different OD pairs. On the other hand, the computational time is higher, 

so it is commonly adopted only for the off-line context. 

Different approaches and solution algorithms have been developed in the last years for both off-line and 

on-line dynamic OD estimation; it is possible to distinguish between formulating the estimation as a 

single level optimization problem (Zhou, Lu, and Zhang 2012) , or as a bi-level optimization problem, 

as in (Cipriani, Gemma, and Nigro 2013; Yang 1995); another classification distinguishes approaches 

explicitly using the assignment matrix as a link between traffic counts and demand (Cascetta, Inaudi, 

and Marquis 1993), or approaches using a linear approximation of the assignment matrix  (R. Frederix 

et al. 2011; Toledo and Kolechkina 2013), or assignment-free approaches (Cremer and Keller 1984). 

About the solution algorithms, it is well known the effectiveness of Kalman filtering, especially for 

capturing day-to-day dynamics (Zhou and Mahmassani 2007) or for on-line estimation  (Ashok 1996; 

Ashok and Ben-Akiva 2000); however, also studies on the Kalman filter for the off-line context are 

known (Balakrishna, Koutsopoulos, and Ben-Akiva 2005). New stochastic solution approaches have 

been recently proposed by (Antoniou et al. 2009) and (E. Cipriani et al. 2011). 

Different authors focused on the problem of increasing the amount of information required by the 

estimation including in the objective function of the problem adding further measures compared to the 

traditional traffic counts, which are not able alone to discriminate between the congested or uncongested 

state of the network: for example, link speed and occupancy measurements have been proposed by 

(Balakrishna 2006) and (R. Frederix, Viti, and Tampère 2010), probe data from vehicle equipped by 

AVI tags by (Dixon and Rilett 2002; Zhou 2004; Eisenman and List 2004; Caceres, Wideberg, and 

Benitez 2007; Barceló et al. 2012; Mitsakis et al. 2013), aggregate demand data such as traffic emissions 

and attractions by zones by (Iannò and Postorino 2002; E. Cipriani et al. 2011), turning movements by 

(Choi et al. 2009), trajectories data and scheduling (Kim and Jayakrishnan 2010). 

The majority of the approaches reported in literature focus on the estimation of the dynamic OD matrix 

from the assumption that a good starting matrix (here called seed matrix) is available. This is not always 

possible, although the quality of the seed matrix can deeply influence the estimation result (Bierlaire 

and Crittin 2004; Ernesto Cipriani et al. 2013). 

Starting from these remarks, this study aims at proposing a method which, based on state-of-the-art 

Dynamic OD demand Estimation (DODE) procedures, allows to build a proper dynamic seed matrix to 

be used as input in the estimation problem. Therefore, we start by presenting and testing different 

deterministic and stochastic optimization methods to solve the estimation problem; once verified the 
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difficulties of these methods in obtaining a demand able to reproduce the correct traffic regime on the 

network, as discussed in (Rodric Frederix, Viti, and Tampère 2013), a Two-Step procedure is proposed 

in order to improve the quality of the seed matrix. 

3.2 Methodology 

The dynamic demand estimation problem is generally solved as an optimization problem. Its 

formulation requires the specification of the objective function, also known as goal function, its 

variables, elements of the OD demand matrix to be estimated, and its constraints related to feasibility 

and routing conditions. Specifically, the aim of the estimation problem is to find the matrix that 

minimizes the distances with respect to both the traffic measurements and the seed matrix. Cascetta and 

Nguyen (1988) formalized the problem in the static case as: 

𝒅∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 [𝑧1(𝒙, 𝒅̂) + 𝑧2(𝒗(𝒙), 𝒍̂)] (3.1) 

 

Where: 

v(x)=Mx, with M= Static Assignment Matrix  

The corrected-estimated matrix d* is the one that minimizes its inaccuracy in replicating measurements 

𝒍̂, once assigned on the network, while trying not to move away from the seed-starting matrix 𝒅̂. The 

functions z1 and z2 are estimators of these measures. Among others, these functions are defined 

according to the maximum likelihood or generalized mean square error (GLS) theory. 

The most common traffic measurements adopted for the Dynamic Demand Estimation are flow, density 

and speed observations collected on the roads using different types of sources. Being the problem 

underdetermined (more unknowns than observations), especially when only link measurements are 

available, multiple matrices could generate the correct regime on the network. In order to overcome this 

issue, additional a priori information on demand matrix must be added in the problem: this is the reason 

why the distance with respect to the seed matrix is usually included in the goal function. The generic 

goal function, using a simultaneous approach on the variables, has the following form (Toledo and 

Kolechkina 2013): 

(𝒅1
∗ , … , 𝒅𝑛

∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛 

[
 
 
 
 
𝑧1(𝒍1, … , 𝒍𝑛 , 𝒍𝟏̂, … , 𝒍𝒏̂) +

+𝑧2(𝒒1, … , 𝒒𝑛, 𝒒𝟏̂, … , 𝒒𝒏̂) +

+𝑧3(𝒙1, … , 𝒙𝑛, 𝒅𝟏̂, … , 𝒅𝒏̂) +

+𝑧4(𝒓1, … , 𝒓𝑛, 𝒓𝟏̂, … , 𝒓𝒏̂) + ]
 
 
 
 

 (3.2) 

Where  

 l/𝐥̂ are the simulated values/measurements on the links; 

 q/𝐪̂ are the simulated values/measurements on the nodes; 

 x/𝐝̂ are the estimated/starting value of the demand; 

 r/𝐫̂ are the simulated values/measurements on the route. 

 𝒅𝒏
∗   estimated demand matrix for time interval n; 

 𝒛 is the estimator  

The dependence between simulated information in Equation (3.2) and the estimated demand is 
obtained directly performing a user equilibrium dynamic traffic assignment (DTA), so that: 

(𝒍1, … , 𝒍𝑛 , 𝒒1, … , 𝒒𝑛 , 𝒓1, … , 𝒓𝑛) = 𝐅(𝒙1, … , 𝒙𝑛) 

With F = user equilibrium Dynamic Traffic Assignment (DTA). 
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The solution of the problem (3.2) requires the definition of an optimization method and the adoption of 

an updating rule of the solution during each iteration. Different solution algorithms have been proposed 

in the past. For a detailed overview we refer to (Lindveld 2003; Balakrishna 2006). Concerning the 

optimization method, in this study, three path-search methods have been used as reference: the Finite 

Difference Stochastic Approximation (FDSA), the Simultaneous Perturbation Stochastic 

Approximation (SPSA) and the Sensitivity-Based OD Estimation (SBODE) method. These are here 

briefly introduced.  

3.2.1 Finite Difference Stochastic Approximation (FDSA) 

The FDSA (Finite Difference Stochastic Approximation (Kiefer and Wolfowitz 1952)) is a method 

usually adopted when dealing with stochastic measurements.  It obtains the descent direction perturbing 

every variable (OD pair) in the matrix as in Equation (3.3):  

𝜽𝑖+1 = 𝜽𝑖 − 𝛼𝑖𝑮𝑖 (3.3) 

 

where θ is the matrix for the iteration i, α is the step length and Gi is the gradient. The gradient is obtained 

as follows: 

𝑮𝑖(𝜽𝑖) =

[
 
 
 
 
𝑧(𝜽𝑖 + 𝑐𝑖𝝃1) − 𝑧(𝜽𝑖)

𝑐𝑖

⋮
𝑧(𝜽𝑖 + 𝑐𝑖𝝃𝑟) − 𝑧(𝜽𝑖)

𝑐𝑖 ]
 
 
 
 

 (3.4) 

 

where ξ is the vector with zeros, except for the OD pair to be perturbed, and ci is the step. In this method 

every OD pair is perturbed independently, so the number of simulations required for computing the 

gradient in any iteration is equal to the number of the OD pairs plus the value of z in the starting point.  

3.2.2 Simultaneous Perturbation Stochastic Approximation (SPSA) 

The Simultaneous Perturbation Stochastic Approximation (SPSA (Spall 2012)) is a path search 

optimization method, where an approximation of the gradient is computed based on a simultaneous  

perturbation of all the variables. In the SPSA, the equation to update the matrix is the standard 

formulation reported in Eqaution (3.3).  The gradient G is obtained in this model with a numeric 

perturbation of the matrix θ, as follows: 

𝒈̂𝑘(𝜽
𝑖) =

𝑧(𝜽𝑖 + 𝑐𝑖∆𝑘) − 𝑧(𝜽𝑖)

𝑐𝑖
[
(∆1

𝑘)
⋮

(∆𝑟
𝑘)
] (3.5) 

𝑮𝒊 = 𝒈̅(𝜽𝒊) =
∑ 𝒈̂𝑘(𝜽

𝑖)
𝑮𝒓𝒂𝒅_𝒓𝒆𝒑
𝒌=𝟏

𝐺𝑟𝑎𝑑_𝑟𝑒𝑝
 

(3.6) 

With ci the perturbation step. Grad_rep is the number of the gradient replications.  

With respect to the FDSA, the gradient has a stochastic component, but the computational time to obtain 

the descent direction is smaller. In the equation above, the formulation of the SPSA model is presented 
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with the asymmetric perturbation. The model formulated in this way takes the name SPSA-AD 

(Asymmetric Design (E. Cipriani et al. 2011)). The advantage of using this formulation is that the 

number of assignment needed to compute the gradient is reduced of the 50% with respect to the basic 

SPSA with symmetric design (SD). Both these variants (SPSA, SPSA AD) will be tested on the case 

study. 

3.2.3 Sensitivity-Based OD Estimation (SBODE) 

The last method that has been considered in this study is the Sensitivity-Based OD Estimation model 

(SBODE (Rodric Frederix et al. 2011)). The SBODE model is based on the idea of perturbing every OD 

pair as in the FDSA method. The first step, after the initialization of the variables, is the simulation of 

the starting matrix, to obtain the goal function value and the link flows on the network. Then, the 

Jacobian is obtained from the starting matrix, perturbing every OD pair. In this case, the higher the 

dimension of the OD matrix is, the longer will be the computational time (the algorithm requires one 

simulation for every OD pair perturbed).   The SBODE model starts from the standard Gauss-Newton 

method to update the solution at the i-th iteration: 

𝜽𝑖+1 = 𝜽𝑖 +𝜶𝒊𝒑𝒊 (3.7) 

𝒑𝒊 = −(𝑱𝑇𝑱)−𝟏(𝑱𝑇𝑭(𝒙𝑖−1)) (3.8) 

Where F(xi-1.)  is the deviation between the measured and simulated  link flows acquired by assigning 

xi-1, while J is the Jacobian of F(xi-1.). It contains the sensitivity of every link flow deviation to each OD 

flow. In this model it is possible to include also the deviation from the a priori matrix as regularization 

term, leading to the following formulation: 

𝒑𝒊 = −(𝑱𝑇𝑱 + 𝜀𝑰)−𝟏(𝑱𝑇𝑭(𝒙𝑖−1) − 𝜀(𝒙𝑖−1 − 𝒙̃)) (3.9) 

 

with ε the weight of the regularization term  𝒑𝒊 is the update vector. It specifies both the direction and 

the size of the update.  This update vector is multiplied with step size parameter 𝜶 that is determined via 

a Line Search. So the SBODE model uses the Gauss-Newton to obtain the direction, and then uses a 

Line Search along the direction of 𝒑𝒊 to find the optimal step. In this Line Search a different goal function 

can be used, with a Boolean term to check whether the new solution is still in the correct regime. 

𝑮𝑘(𝒙) =  
‖𝒍̂ − 𝒍(𝒙𝑘)‖𝟐

𝟐

‖𝒍̂ − 𝒍(𝒙𝑘−1)‖𝟐
𝟐
+
𝐴

𝑘

‖𝒃 − 𝒃(𝒙𝑘)‖𝟐
𝟐

𝑰
 (3.10) 

 

With 𝒍(𝒙𝑘) and 𝒍̂ the simulated and measured flows on each link of the network equipped with sensors. 

Here b and b(x) are vectors of binary variables indicating whether a link flow is on the corrected branch 

of the fundamental diagram or not. 

3.3 Test of the different estimation approaches 

The test case study is related to the inner ring-way around Antwerp, Belgium. The network includes 56 

links, 39 nodes, with 46 OD pairs, all mainly connecting the different entry and exit points of this stretch 

of motorway, making rerouting options not likely. The considered morning peak period occurs between 

05:30 and 10:30. The field data – speeds and flows – were available every 5 minutes. The detectors are 

located at the on and off-ramps and on some intermediate sections. The OD flows have been estimated 



48 

 

for 15-minutes departure intervals, so the dynamic matrix contains 966 OD pairs; the seed matrix, that 

amounts to 202,200 trips, is derived from an existing static OD matrix by superimposing a time profile. 

Flows of a selection of OD pairs have been increased so obtaining a congestion pattern similar to the 

actual one. In doing so, the seed matrix implies the correct traffic regime. 

 

Fig.3.1:  (a) x,t plot of the measured speeds on the network, (b) Ring of Antwerp; 

 

For that reason, only flows have been included in the GLS goal function that assumes the following 

expression: 

min𝑓 (𝜽𝑖) =  [ℎ(𝒍 − 𝒍̂)] =∑ (𝒍 − 𝒍̂)2
lD 

 (3.11) 

 

With l and 𝒍̂ the simulated and measured flows on each link and D the subset of network links with 

sensors. 

The speed measurements have been used only for validation, since it is expected that if the initial traffic 

regime is accurately represented on any link, then the new estimated matrix reduces link errors related 

to flows while preserving such correct traffic regime.  

SPSA, SPSA AD and SBODE methods have been used to solve Equation (3.11). In the application of 

the SPSA, the step ck is a percentage of the OD pair itself. In this way it is possible to obtain a more 

representative value of ck, taking into account the different dimension of the OD pairs, as already 

reported by other authors (Balakrishna 2006; Cipriani, Gemma, and Nigro 2013; Frederix 2012). Table 

3.1 shows the results found with the different methods. Regarding the computational time, these tests 

have been obtained on computer that, for every iteration, sends the results to a server. This has increased 

the computational times, as reported in the table. Computational speed is however not a main concern 

of this study. More comprehensive information about the computational efficiency of this method can 

be found in others’ works (Cipriani, Gemma, and Nigro 2013, 200; Frederix et al. 2011; Cipriani et al. 

2011; Cipriani et al. 2013; Frederix 2012; Frederix, Viti, and Tampère 2013). In this study, the 
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computational time is used only to compare the performances of the different solutions, so it is regarded 

as only a metric. 

Table 3.1: Results for each Approach 

 

 

It is possible to observe that the SBODE model obtains the best improvement of the goal function, but 

at the same time is implies the greatest computational time. The SPSA-AD is more effective than the 

basic model. In the following tests the version of the SPSA-AD with ck equal to 1% and Grad_rep=50 

– about the 5% of the Demand Matrix dimension -  is used. The SPSA AD with Grad_rep=1 obtained 

good results, close to the version with Grad_rep=50. Anyway by using 50 gradient replications the 

method results more stable with respect to the basic one.  

 

Fig.3.2:  (a) x,t plot of the differences between simulated and measured speeds on the network for 

the solution of the SPSA AD, (b) x,t plot of the differences between simulated and measured speeds 

on the network for the solution of the SBODE; 

 

Concerning the results, it is important to highlight that a congestion pattern very close to the real one 

(Figure 3.1a) has been obtained with all the tested methods. At the same time, all the methods present 

an offset in the congestion pattern.  This offset is shown in Figure (3.2). In this figure the time-space 

plots of the vector of the differences between simulated and measured speeds are presented. The red 

zone on the left, representing an overestimation of the speeds, implies that congestion is estimated to 
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begin later in time with respect to the actual congestion pattern. On the other hand, the blue zone on the 

right, representing a significant underestimation of the speeds, implies longer recovery time with respect 

to actual one. This error is present in both the models, deterministic SBODE and stochastic SPSA AD, 

although they differ from each other significantly, mainly in the congestion recovery part. If the offset 

is clearly defined in the SPSA AD, this difference is less evident in the SBODE. 

3.4 The Two-Step Approach 

Both the deterministic SBODE and the stochastic SPSA AD procedures underline the same problem at 

the end of the estimation: an offset in the representation of the congestion pattern. This result leads to 

think that the final error is not related to the model adopted, but to the specific case study and in particular 

of the specific seed matrix, so highlighting the importance of a proper starting point. 

As a consequence, a new approach for solving the problem is proposed: this approach – called “Two-

Step Approach”- aims at improving the quality of the seed matrix, performing a prior step preceding the 

optimization process for the estimation of the final matrix. The basic idea is to divide the problem in 

two small-sized problems, and solve them separately. The procedure is generic and thus applicable to 

both the SPSA AD and the SBODE method, so gathering information about its general properties. The 

approach works as follows:  

 FIRST STEP: The first step is focused on the optimization of a subset N of the OD pairs. The 

result of this step is to obtain a new matrix with respect to the starting seed matrix (in the 

remaining of this Chapter called “wrong seed matrix”) to be used as input in the second step. 

The matrix obtained solving the first step is called in the remaining of the Chapter “correct seed 

matrix”.  

 SECOND STEP: In the second step, the usual estimation procedure of the OD matrix is 

performed (the same used to obtain the results presented in Table 1), starting from the new 

“correct seed matrix” obtained from the first step.  

Before carrying on the experiments, it is necessary to define the subset N of variables. Two ways have 

been explored in this work. One based on the data analysis (Approach 1) and another one more generic 

(Approach 2) based on the network analysis. 

3.4.1 Approach 1 

In this approach the subset N is defined as the subset of OD pairs that generate the greater link flows on 

the network. The goal function is the same presented in (3.11), so the subset N is expected to contain 

OD pairs related to the most important descent directions for the starting seed matrix. Sometimes a great 

error is present on the links with high flows. In this situation a wrong matrix – worse with respect to the 

seed – that generate a correct flow only on the links with the greater link flows could aim to a reduction 

of the goal function value.  This reduction is due to an irregularity of the goal function that generates a 

local minimum in correspondence to a matrix strongly different from the real one. So it is possible to 

select the OD pairs that have more influence on this links, correct them and reduce the number of 

minimum points generating a more clear descent direction to the global minimum of the function. 

Furthermore, in the specific case study, the greater errors of the wrong seed matrix were on the higher 

links flows, so by doing so, we focus on the part of the goal function that contributes to the largest gain. 

An analogous approach was recently proposed by (Djukic et al. 2012), where Principal Component 

Analysis is proposed for lowering the number of OD demand variables, as it is proposed in this study. 

In the first step, 126 OD pairs out of 966 have been selected to be included in the optimization method. 

The selected OD pairs are responsible of the flows higher than 8000 veh/h, the highest on the network. 

This OD pairs are an important quote of the wrong seed matrix, generating 40,480 trips on 202,000. 
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Taking into account the smaller number of variables, and the will to obtain a good gradient to correct 

the wrong seed matrix along the main descent direction, the method chosen for the optimization is the 

deterministic gradient FDSA. Starting from the results of the FDSA, both the SPSA AD and the SBODE 

are then applied. The matrix obtained by the optimization of the second step is called in the rest of the 

article “final matrix”. The results are presented in Table 3.2.    

Table 3.2: Results for the Two-Step Approach 1 

 

 

Fig.3.3:  x,t plot of the differences between simulated and measured speeds on the network for the 

solution of the two-step approach for the SPSA AD (a) and the SBODE (b); 

The results of the Two-Step approach using Approach 1 can be summarized as follows:  

1) Using SPSA-AD: 

a. The final deviation is greater with respect to the basic one step SPSA-AD.  

b. The best congestion pattern is obtained, as shown in Figure 3.3b.  

c. The speeds RMSE is equal to 13.67, which is lower than the basic SBODE and all the 

others models. 

d. The absolute distance between the final matrix and the wrong seed matrix is equal to 

6.29E+04; the absolute distance between the wrong and the correct seed matrix was 

equal to 5.10E+04. In the basic SPSA-AD the distance between the final matrix and the 

wrong matrix was equal to 9.18E+06, so the result obtained by the two step approach 

is closer to the seed matrix. 

e. The congestion pattern has a longer duration than the real one as shown in Figure 3.3a.  

2) Using SBODE: 

a. Also in this case the final deviation of the goal function is greater with respect to the 

basic one step version.  

b. The congestion pattern is better than the basic SBODE, as shown in the Fig. 3.3b, and 

by the RMSE of the link speed, equal to 16.76. 
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c. The final matrix is closer to the wrong seed matrix. The absolute distance between the 

final matrix and the wrong seed matrix is equal to 1.75E+05 travellers; The distance 

between the wrong and the correct seed was equal to 5.10E+04. For the “one step” 

approach the distance between the SBODE final matrix and the wrong seed matrix was 

equal to 1.89E+05, so in the second step the algorithm is closer to the seed matrix. 

d. The congestion pattern has a longer duration than the real one and the offset disappeares 

(Fig.3.3b).  

In both situations, using the SBODE or the SPSA AD in the second step, the offset disappears, but the 

error on the congestion patter is again on the boundary of the congestion period. In the Two-Step case 

the congestion is slightly longer with respect to the real one, anyway the error is smaller than the one 

obtained with the basic approach, as demonstrated by the values of RMSE/RMSN of the speeds. 

For both the SPSA AD and the SBODE method, the Two-Step results present a smaller error both on 

the speeds both on the distance from the wrong seed matrix. Typically these terms are included in the 

goal function, while in this experiment are used only to verify the quality of the results. It is important 

to observe as this two measurements, not directly included in the goal function, have been reduced using 

a “two-step” approach and correcting the wrong seed matrix. 

Using SBODE in the second step, the computational time is lower than the computational time for the 

SBODE in the one step approach.  The adoption of the two-step approach allows a lower improvement 

of the goal function (96.24% against 97.08% with the basic SBODE) with a significant reduction of the 

computational time (from 11.67 to 3.88 days). 

However, we have to underline that it is not possible to completely solve the problem with simply the 

introduction of the two-step with respect to the “one-step” approach, since we have adopted a first-order 

network loading model, which has inherent simplifications in the way traffic back propagates and 

congestion discharges. Furthermore it also to observe how the error in the boundary will be ever the 

highest; to delete this error it is necessary that the matrix reproduces exactly the real speeds on the 

network. 

3.4.2 Approach 2 

The Approach 1 relies on the basic assumption that bigger OD demand flows, corrected in the first step, 

are mainly accountable of the descent direction. Despite this approach is faster than the basic method, it 

is not however proven that the main descent directions imply a final matrix closer to the real one. In 

order to generalize such property, another subset N of OD pairs can be proposed. The idea is to obtain 

the correct regime on the bottleneck in the first step, and to use the second step to obtain the final demand 

estimation. Specifically, in the first step, the only variables considered in the optimization procedure are 

the OD demand flows passing on the links where bottlenecks are located. In the second step, as in the 

previous case, the global optimization is performed. In summary, in this second approach 630 OD pairs 

out of 966 are perturbed with the FDSA in the first step, while in the second step all the 966 OD pairs 

are included in the optimization, using both the SPSA AD and the SBODE. 

The main problem of this Approach 2 is the FDSA itself, since the number of variables to be optimized 

is very high and, differently from SBODE, the model uses a constant step (not line search). For this 

reason the computational time is very high and equals to 9 days. The value of the goal function for the 

matrix obtained from FDSA in the first step is similar to the value obtained in the basic SPSA AD, while 

the error on the speeds is smaller. The only optimization with a better RMSE/RMSN of the link speeds 

is the optimization obtained in the Approach 1 using the SPSA AD in the second step (Table 3.2).  

The absolute distance of the correct seed matrix obtained with the Approach 2 from the wrong seed 

matrix is equal to 6.24E+04, so it is smaller than the distance obtained with both the basic one step 
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models. Starting from the result of the FDSA, the second-step optimization is obtained with both the 

SPSA AD and the SBODE.  

 

Table 3.3: Results for the Two-Step Approach 2 

 

 

Fig.3.4:  x,t plot of the differences between simulated and measured speeds on the network for the 

solution of the two-step approach for the SPSA AD (a) and the SBODE (b); 

 

Figure 3.4b shows the x-t plots of the differences between simulated and measured speeds for the 

solution of the second step, obtained using the SPSA AD as optimization method. The error of the speed 

is very high and the offset in the congestion pattern is greater than in the solution of the FDSA. Table 

3.3 shows the results for the first and the second step. 

With respect to the basic SPSA AD the final value of the goal function is smaller. The distance between 

the wrong seed matrix and the final matrix is the highest and is equal to 1.15E+05. As it is possible to 

observe in Table 3, the error in the speeds and the offset in the congestion pattern is greater than in the 

previous cases. As for the SPSA AD, also the SBODE has obtained the best value of the goal function, 

but the computational effort is quite high (14 days for the SBODE while 24 days for the SPSA AD). It 

is necessary to highlight as the convergence criterion for the SPSA AD is stronger than the convergence 

criterion for the SBODE. For the SBODE the convergence was obtained fixing the maximum distance 

between iterations equal to 1. Using this criterion the SPSA AD arrived to the convergence after few 

iteration obtaining a not satisfactory results, so the maximum distance in the SPSA AD was set to 0.1.  

Anyway is possible to set the stop criterion as a maximum number of iterations to solve the problem. 

After 250 iteration the final value of the goal function is 1.96E+08. The high computational time of this 

approach is related to the first step, the FDSA. One way to solve this problem is to use the SBODE itself 

in the first step. 
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3.4.3 Summary of the results 

With reference to the results above, the following considerations and conclusions can be done: 

Approach 1: 

 It is possible to improve the effectiveness and efficiency of the classical “one step” optimization 

passing to a “Two-Step” approach, that work in a first moment only on the most important 

descend directions of the goal function, using an optimization method more suitable, and in a 

second step, starting from the correct seed matrix, obtain the final matrix using a different and 

more appropriate optimization method.  

 Dividing the problem in two problems leads to a better result, reducing the noises in the goal 

function and so the errors in the measurements not directly included in the goal functions. So, 

in this approach, two fundamental indicators, the speed and the seed matrix, not directly 

considered in the goal function, are improved thanks to the use of the “Two-Step” approach.  

This is the demonstration that it is possible to work in a first step on the correction of the seed 

matrix, and only in a second time on the estimation problem 

 There is a strong reduction of the computational time for the SBODE method, related to the new 

starting matrix. 

Approach 2: 

 It is possible to correct the starting matrix working only on the OD pairs that have a greater 

influence on the bottleneck, obtaining a very good matrix, close to the real one, as shown from 

the final value of the goal function 

 The improvement with respect to the “one step” approach is low and not satisfactory taking into 

account the total computational time. 

 Taking into account the results of the second experiment, and especially for big-size networks 

with a large number of OD pairs, it is possible to select a subset of them where to perform OD 

estimation.  

 It is necessary to highlight as the high computational time is related not to the SPSA AD or the 

SBODE, but to the FDSA itself. FDSA has previously been rejected for calibration for this 

reason. In this case study it is used for simplicity and because it is a well-known algorithm. It is 

not advisable to use this method in other applications. One way to solve this problem, if an exact 

gradient is required in the first step, is to use the SBODE method itself in the first step. 

 

Both the approaches show as dividing the space of the solutions, and solving with different methods the 

Two-Step could lead to better results. It is possible to see the first step as a way to obtain a new correct 

seed matrix, that is simpler to study and less influenced from the noise of the goal function. 

3.5 Conclusions and Future Research 

The main goal of the present Chapter is to propose a method for determining a starting demand that, 

when utilized in the dynamic demand estimation problem, improves the accuracy of the estimated matrix 

in reproducing the correct traffic regime on the network. 

In this Chapter, different deterministic and stochastic solution procedures commonly adopted in 

literature are firstly presented and tested for the off-line dynamic demand estimation on the real case 

study of the inner ring of Antwerp in Belgium.  
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Both the deterministic and the stochastic procedures underline the same problem at the end of the 

estimation: an offset in the representation of the congestion pattern, with high differences in the 

congestion recovery part. This result leads to think that the final error is not related to the model adopted, 

but to the specific case study and in particular of the specific seed matrix adopted so highlighting the 

importance of a proper starting point. 

Following a Two-Step procedure, the wrong seed matrix was modified to obtain a new correct matrix 

for the estimation problem. Specifically, the first step of the procedure focused on the optimization of a 

subset of OD variables, adopting two different approaches: the first approach considered as variables 

only those relative to ODs that generate the higher flows, while in the second approach only ODs 

generating bottlenecks on the network. In the second step, the optimization works on all the OD pairs, 

using as starting matrix the matrix derived from the first step. Using the new starting matrix from step 

1 implies results that differ according to the adopted approach: specifically, using the deterministic 

method in the Two-Step procedure it was possible to obtain better solutions with the same of the goal 

function and with a reduction of the computational time. It was also possible to obtain a better result, 

with a higher improvement of the goal function, but with an increment in the computational time.  

Working on the subset N is possible to arrive closer to the real demand matrix. If the computational time 

to obtain the final matrix from the correct seed matrix depend only from the adopted optimization 

method, is possible to choose in the first step how to obtain this new matrix. It is possible to arrive to 

the correct seed matrix following a “faster” way, as proposed by the approach 1, or it is possible to arrive 

to the correct seed matrix working only on the most important OD pairs, as in the Approach 2. It is 

possible, carefully choosing which elements insert into the N, to work on the effectiveness and 

efficiently of the results.  

The most important result, however, is that it is possible to improve the quality of the estimated matrix 

without introducing new measurements or developing new models, but only working in different ways 

on the different OD pairs. In conclusion, it is necessary to highlight that using a two-step method it is 

possible to combine different kind of models, using not only path-search methods, but combining also 

random search and pattern search methods, based on the specific configuration of the network and of 

the problem. 

Future developments will deal with more complex networks, because the case study focuses on 

highways, so the problem results quite simple with respect to an urban network. Moreover the goal 

function takes into account only the link flows, so it is necessary to understand if the method confirms 

the same features also if other measurements, more representative of the congestion state, are considered 

inside the goal function. Finally it is important not only to understand on which OD pairs is preferable 

to work, but also to develop a proper goal function that could take into account other information on the 

real matrix as a good OD trip distribution. 
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Enhanced Two-Step Approach 

This chapter focuses on extending the Two-Step approach proposed in the previous Chapter in order to 

further improve the reliability of the demand matrix and boost the robustness of the solution with respect 

to typical “Single-Step” formulation. This enhanced version of the Two-Step approach corrects 

sequentially generations and distributions in the demand matrix, reducing solution space size and the 

variance in the solutions of the calibration process. The proposed approach is again applied to the real 

network of Antwerp. 

Content of this chapter has been presented in the following works: 

Cantelmo, G., F. Viti, E. Cipriani, and N. Marialisa. 2015 “A Two-Step Dynamic Demand Estimation Approach 

Sequentially Adjusting Generations and Distributions.” In 2015 IEEE 18th International Conference on Intelligent 

Transportation Systems, 1477–82. doi:10.1109/ITSC.2015.241 
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4.1 I Introduction  

Simulation of traffic conditions requires, as main input, the knowledge of the travel demand. When 

dealing with transportation networks, traffic conditions are usually not stationary, hence it is 

recommended to adopt time-dependent profiles of the travel demand to best represent congestion and 

its propagation. If this information is not available or incorrect, the simulation output performances are 

compromised. In this chapter a Two-Step procedure that sequentially adjusts demand generations and 

distributions for improving its reliability is presented. In the first part of this introduction, a short 

overview of the demand estimation is provided, while in the second part the concept of the Two-Step 

procedure is introduced.  

4.1.1 Literature Review 

The problem of estimating travel demand in case of non-stationary conditions is well known in literature 

as the Dynamic Origin-Destination demand Estimation Problem. DODE searches for time-dependent 

Origin-Destination (OD) matrices able to best fit measured data. It can be applied for both within-day 

(intra-period) and day-to-day (inter-period) dynamic frameworks, as well as for offline (medium-long 

term planning and design) and on-line (real-time management) contexts.  DODE is commonly classified 

in sequential, i.e. OD flows are estimated as sequence of separated intervals within which the estimated 

demand of one period is used to find the demand for the next period, or simultaneous approaches, where 

demand flows are estimated all at once (Cascetta, Inaudi, and Marquis 1993). Usually, the first is suited 

for online applications as it adopts a rolling-horizon approach, while the second for offline applications. 

Online solution algorithms, based on different state-space representations of traffic flow propagation, 

and tuned with advanced regression methods such as Kalman filtering (Ashok and Ben-Akiva 2002), 

are very popular for capturing within-day dynamics and calibrating traffic models (Zhou and 

Mahmassani 2007) using real-time data (Ashok and Ben-Akiva 2000); however, studies on Kalman 

filtering are also proposed for the offline context (Zhou and Mahmassani 2007; Ashok and Ben-Akiva 

2002). In offline applications DODE is generally formulated as a bi-level optimization problem, where 

in the upper level demand matrices are corrected using measured data while in the lower level Dynamic 

Traffic Assignment (DTA) simulation is performed to obtain the synthetic data (Yang 1995; Tavana 

2001). Generally, the upper level problem is solved using stochastic or deterministic path search 

approaches (Frederix 2012). Recently, stochastic solution approaches were proposed along this 

direction, as in (Antoniou et al. 2009; Cipriani et al. 2011).   

Another classification of the DODE can be done according to the type of observed data adopted for the 

estimation: usually traffic counts are adopted, but recently also other measures such as speeds and 

occupancies are introduced to take into account the congestion state of the network (Balakrishna 2006). 

These data, as the traffic counts, are commonly link-based, while also other path-based data can be 

added as probe data from vehicle equipped by AVI tags (Balakrishna 2006; Dixon and Rilett 2002; 

Caceres, Wideberg, and Benitez 2007; Barceló et al. 2013). When only traffic counts are adopted for 

the estimation, the link between dynamic travel demand and measurements is usually captured by the 

assignment matrices (explicitly, as in (Cascetta et al. 2013), or by a linear approximation (Frederix et 

al. 2011; Toledo and Kolechkina 2013). Given the non-linear structure of the (bi-level) problem 

formulation, the complex mapping between OD flows, path flows and link flows represented by the 

assignment matrices, and the variety of solution algorithms available, one of the drawbacks of current 

dynamic demand estimation techniques is the reliability of its outcomes, i.e. often the solutions found 

by varying slightly the input, as well as the estimation approach, results in significant variations of the 

results, i.e. the resulting estimated demand flows can be significantly different even if observed link 

flows are not changing dramatically, and in case of stochastic solution approaches may even not change 

at all. 
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The reliability of demand estimation is well known to depend on the location of sensors as well as on 

the quality of the data (Cascetta et al. 2013). Focusing on link-based sensors, such as traffic counts, the 

number and position has a clear relation with the size and exploration possibilities of the demand 

estimation solution space (Yang, Iida, and Sasaki 1991; Djukic, Van Lint, and Hoogendoorn 2012). 

Approaches that work on the analysis of the solution space dimension are for instance the one of (Djukic, 

Van Lint, and Hoogendoorn 2012), which applies Principal Component Analysis (PCA) to study the 

high-dimensional data structure, and  (Flötteröd and Bierlaire 2009), who propose to improve DODE 

using a new linearization of the network loading map in order to overcome the inadequacy of a 

proportional assignment in congested conditions. We have also recently investigated the opportunity to 

include information related to link flow observability, i.e. how a certain sensor can provide information 

about unobserved flows, to further reduce the solution space and therefore increase the solution 

reliability (Viti et al., 2015.). Due to the high number of approaches and algorithms for dealing with the 

DODE, recently a common evaluation and benchmarking platform has been proposed (Constantinos 

Antoniou et al. 2016)  to allow for their comparison. 

4.1.2 The Two-Step concept 

To partially reduce the impact of the solution space and the consequent variety of possible solutions, 

classical methods, called Single-level in this chapter, often include information about a reference OD 

demand matrix (usually known as seed matrix) within the mathematical formulation of the problem. 

This demand works as constraint for the model, which provides solutions with similar demand levels 

with respect to the starting one. The Single-level DODE formulated in this way leads generally to a local 

calibration of the starting demand matrix. Therefore, if the seed matrix demand level is different from 

the real one, this localism can lead to significant errors (Rodric Frederix 2012). The need for methods 

dealing with the correction of the seed matrix in such applications was pointed out recently by (Guido 

Cantelmo et al. 2014), who proposed a Two-Step approach where the first step was focused on correcting 

the seed matrix by focusing on the OD flows having largest impact on the measured link counts, so the 

largest error according to the model. This Two-Step procedure demonstrated its ability in correcting the 

starting demand value without introducing new traffic measures, apart from traffic counts, or developing 

new models, and effectively improved the results on congested networks by correcting the seed matrix 

in the first step and directing it towards the real demand values. Though effective, the developed method 

can hardly be applied on large-sized networks, where the number of OD pairs to be selected in the first 

step may become significantly large. Moreover, identifying a subset of origin destination flows to 

modify it is not always easy. In (Guido Cantelmo et al. 2014), when different flows are used in the first 

step, the outputs of the model presented differences both in terms of quality of the results, and in terms 

of computational time. 

To overtake this issue, in this chapter, the authors propose an enhancement of the previously developed 

Two-Step approach by exploiting temporal information on aggregated demand data such as generation 

data by zones. Specifically, the first step searches, in any time interval, for generation values that best 

represent the measurements (traffic counts); hence, in the first step, the variables are not the dynamic 

OD trips, but the total production values for any time interval, thus reducing the dimension of the 

problem considerably. In the second step, the classical DODE procedure is performed improving 

temporal and spatial matrix distributions. Framing the problem as such, one benefits of the right demand 

level identified in the first phase, avoiding the single-step localism problems previously mentioned. 

The proposed Two-Step approach has been later applied on a real network case, resulting more robust 

in terms of goal function trends, link flows and traffic state representations. Conclusions and future 

research directions conclude this Chapter. 
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4.2 Methodology 

The DODE is generally solved as an optimization problem. Its formulation requires the specification of 

the objective function (O.F.), its variables, the elements of the OD demand matrix to be estimated, and 

its constraints, related to feasibility and routing conditions. Considering different types of measures and 

by adopting a simultaneous approach the problem can be formulated as: 

(𝒅1
∗ , … , 𝒅𝑛

∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛 

[
 
 
 
 
𝑧1(𝒍1, … , 𝒍𝑛 , 𝒍𝟏̂, … , 𝒍𝒏̂) +

+𝑧2(𝒒1, … , 𝒒𝑛, 𝒒𝟏̂, … , 𝒒𝒏̂) +

+𝑧3(𝒙1, … , 𝒙𝑛, 𝒅𝟏̂, … , 𝒅𝒏̂) +

+𝑧4(𝒓1, … , 𝒓𝑛, 𝒓𝟏̂, … , 𝒓𝒏̂) + ]
 
 
 
 

 (4.1) 

Where  

- l/𝒍̂ are respectively the simulated values and the corresponding measurements on the links; 

- q/𝒒̂ are respectively the simulated values and the corresponding measurements on the nodes; 

- x/𝒅̂ are respectively the estimated value and a-priori information on the dynamic demand (seed 

matrix); 

- r/𝒓̂ are respectively the simulated values the and corresponding measurements on routes; 

- dn
*  the estimated demand matrix for time interval n; 

 z :{z1, z2, z3, z4} is the estimator represented by the deviations between the simulated/estimated and the 

corresponding measured/a-priori values. The dependence between simulated information in Equation 

(4.1) and the estimated demand is obtained directly by simulation performing a dynamic traffic 

assignment (DTA). 

4.2.1 Generation-Distribution adjustment process 

In the proposed Two-Step procedure, the first step aims at optimizing the generation values of each zone 

in each time interval, while maintaining constant the dynamic trip distributions derived by the seed 

matrix. The objective function in Equation (4.1) can be generally rewritten for the first step as: 

(𝑬1
∗ , … , 𝑬𝑛

∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛 

[
 
 
 
 
𝑧1(𝒍1, … , 𝒍𝑛 , 𝒍𝟏̂, … , 𝒍𝒏̂) +

+𝑧2(𝒒1, … , 𝒒𝑛, 𝒒𝟏̂, … , 𝒒𝒏̂) +

+𝑧3(𝒙1, … , 𝒙𝑛, 𝒅𝟏̂, … , 𝒅𝒏̂) +

+𝑧4(𝒓1, … , 𝒓𝑛, 𝒓𝟏̂, … , 𝒓𝒏̂) + ]
 
 
 
 

 (4.2) 

Where 𝑥𝑛
𝑂𝐷 = 𝐸𝑛

𝑂𝑑𝐷|𝑂
𝑆𝑒𝑒𝑑,𝑛

 

and with: 

- En
O = generation of origin zone O and time interval n; 

- En
* = generation vector containing generation from all origins in time interval n. 

- xn
* = trips flow from origin zone O to destination zone D in time interval n. 

- 
nSeed

OD
d ,

| = seed matrix probability distribution between traffic zone D and traffic zone O in time 

interval n. 

The idea of working on generation values in the first step, rather than on dynamic OD trips directly, 

derives by the increasing attention received by this type of aggregated information in the literature. 

Already (Iannò and Postorino 2002) proposed a generation-constrained approach for the static demand 

estimation problem where the objective function contains a specific term in order to prevent the emission 

from each origin zone to be greater than the actual one. Then, (Cipriani et al. 2011) proposed to introduce 

a generation constraint in the dynamic demand estimation. (Cascetta et al. 2013) proposed a quasi-
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dynamic approach where the main assumption is that the demand generation changes much faster than 

the distributions. Finally, in (G. Cantelmo et al. 2014)  some remarks are reported about the possible 

adoption of the generation values as a constraint in the DODE. 

The high significance given in literature to this aggregated information derives mainly by the following 

considerations: 

- Total generated trips can act by limiting a demand overestimation during the DODE; the 

overestimation can usually occur when dealing with traffic measurements collected on 

congested networks; 

- Total generated trips are more easily available than OD trips, and generation models, from 

which these data are obtained, are considered the most reliable models in transport engineering 

applications; 

- Adopting the generation values inside the DODE, as in Equation (4.2), reduces the number of 

variables (from O×D×n to O×n): The expected result of this phase is the correct level of 

generated demand for each time interval.  

The goal of the first step is to act on the seed matrix in order to obtain a reasonable generation value 

before moving to the second step, in which the dynamic distributions are corrected according to Equation 

(4.1). The present approach has analogies with the quasi-dynamic approach reported in (Cascetta et al. 

2013). In the latter, distributions are explicitly considered in terms of probabilities and approximated as 

an average over a time period greater of the time slice itself; in this approach, in the first step we assume 

them constant and equal to the ones of the seed matrix, while they are considered as unconstrained 

variables in the second, removing any assumption on them. The goal of this formulation is to correct the 

generations to move on the right demand level, using constant seed distributions as an indirect constraint 

to the original demand matrix. 

4.2.2 Solution Algorithm 

For the solution of the First Step (4.2) a Finite Difference Stochastic Approach (FDSA (Spall 2012)) 

has been adopted to find the optimal descent direction. FDSA is a method usually adopted when 

stochastic measurements are adopted. At the first step we are mostly interested in investigating the 

effectiveness of our assumption about the ability of generation values to move the optimization towards 

the “right level of demand”. Hence, the choice of using FDSA is done as it permits to obtain, at each 

iteration i, a deterministic gradient 𝑮𝑖 from a finite-difference computation. Specifically each variable 

θ is perturbed as follows: 

𝑮𝑖(𝜽𝑖) =

[
 
 
 
 
𝑧(𝜽𝑖 + 𝑐𝑖𝝃1) − 𝑧(𝜽𝑖)

𝑐𝑖

⋮
𝑧(𝜽𝑖 + 𝑐𝑖𝝃𝑟) − 𝑧(𝜽𝑖)

𝑐𝑖 ]
 
 
 
 

 (4.3) 

 

Where ξ is a vector with all zeros, except for the variable to be perturbed, ci is the step size and z the 

adopted objective function. In this method each variable is perturbed independently, so the number of 

simulations required for computing the gradient in any iteration is equal to the number of variables (in 

the first step, variables are equal to the generated trips from each origin zone O and time interval n) plus 

the value of z in the starting point. 

Once computed 𝑮𝑖, the solution is then updated at each iteration by: 

𝜽𝑖+1 = 𝜽𝑖 − 𝛼𝑖𝑮𝑖 (4.4) 
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With α the step length for the update.  

The FDSA can imply high computational times and it could become infeasible for large-scale networks: 

here, it is adopted only to validate the concept behind the Two-Step approach, since it is able to provide 

a good approximation of the exact gradient, not available in the DODE. When dealing with large-scale 

networks, it is anyway possible to substitute FDSA with other existing and less computational expensive 

gradient approximation methods as proposed in literature (Cipriani et al. 2011; R. Frederix et al. 2011; 

Constantinos Antoniou et al. 2016; G. Cantelmo et al. 2014; Lu et al. 2015). 

At the second step, given the estimated total generated demand of the first step, the optimization works 

on dynamic OD trips in a more traditional manner. For the second step, the Simultaneous Perturbation 

Stochastic Approximation (SPSA (Spall 2012)) has been adopted. SPSA is a path search optimization 

method, where an approximation of the gradient is computed based on a simultaneous perturbation of 

all the variables. This approach has been successfully applied for different large-scale traffic 

optimization problems as for the off-line and on-line calibration of dynamic traffic assignment models 

(Balakrishna 2006), as also for the DODE problem (Balakrishna 2006; Barceló et al. 2013; G. Cantelmo 

et al. 2014; Lu et al. 2015). In the SPSA, the equation to update the solution is the standard formulation 

reported in Equation (4.4), while the approximated gradient at each iteration i is obtained as follows: 

𝒈̂𝑘(𝜽
𝑖) =

𝑧(𝜽𝑖 + 𝑐𝑖∆𝑘) − 𝑧(𝜽𝑖)

𝑐𝑖
[
(∆1

𝑘)
⋮

(∆𝑟
𝑘)
] (4.5) 

𝑮𝒊 = 𝒈̅(𝜽𝒊) =
∑ 𝒈̂𝑘(𝜽

𝑖)
𝑮𝒓𝒂𝒅_𝒓𝒆𝒑
𝒌=𝟏

𝐺𝑟𝑎𝑑_𝑟𝑒𝑝
 

(4.6) 

with 𝑐𝑖 the perturbation step, Grad_rep is the number of replications to compute the average gradient, 

and Δ is a vector with elements {-1,1}. 

With respect to the FDSA, the gradient has a stochastic component, but the computational time to obtain 

the descent direction is smaller being the variables perturbed simultaneously.  It is possible, and 

recommended, to repeat the perturbation to obtain a good gradient approximation. In the equation (4.5), 

the formulation of the SPSA model is presented with the asymmetric design (SPSA-AD,(Cipriani et al. 

2010)). The advantage of using this formulation is that the number of simulations needed to compute 

the gradient is halved with respect to the basic SPSA with symmetric design (SD). 

4.2.2.1 P-SPSA 

Since the approach aims to be applicable to real-sized networks, SPSA is appropriate for solving the 

second step problem. However, although the gradient computation is not dependent on the number of 

variables, approximation increases with the number of variables N:  

∑
𝜕𝑧𝑒(𝜃

𝑘)

𝜕𝜃𝑘
𝛉̂

𝑴

𝒆=𝟏

= 𝑮𝑺𝑷𝑺𝑨(𝜃𝑘) + 𝜺𝟏(𝑁) (4.7) 

Where M is the number of terms in the goal function and 𝜺𝟏(𝑁) is the error related to perturbing all the 

N variables simultaneously. A new variant, here called P-SPSA (Partial SPSA) is proposed in the second 

approach to reduce the approximation of the SPSA with respect to this problem. In every iteration only 

a percentage P of the matrix is perturbed and updated. Elements of the Δ vector are now {-1,0,1}. 

Therefore by fixing the value of P, we regulate the share of non-zero in the Δ vector. The variables to 
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be perturbed are randomly selected in every iteration, so any of them is selected throughout the whole 

optimization process: 

∑
𝜕𝑧𝑒(𝜃

𝑘)

𝜕𝜃𝑘
𝛉̂

𝑴

𝒆=𝟏

= 𝑮𝑷−𝑺𝑷𝑺𝑨(𝜃𝑘) + 𝜺𝟏
𝒌(𝑁𝑝) (4.8) 

 

While it is easy to observe that the error 𝜺𝟏
𝒌(𝑁𝑝) < 𝜺𝟏(𝑁) where 𝑁𝑝 < 𝑁, we have to consider that the 

procedure could converge more slowly with respect to the SPSA since only a part of the variables are 

updated in an iteration. On the other hand, we know that 0 ≤ 𝑃 ≤ 1, and specifically the computational 

time is going to increase more and more the closer P gets to 0, while with P=1 is going to become the 

same of the SPSA. We can consider this problem inserting a second error in Equation (4.8) i.e.: 

{
𝜺(𝜃𝑘) =  𝜺𝟏

𝒌(𝑁𝑝)                                                 𝑓𝑜𝑟  𝜃
𝑘 ∈ 𝑁𝑝

𝜺(𝜃𝑘) = 𝒇(𝜃𝑖 − 𝜃𝑠𝑝𝑠𝑎
𝑖+𝑖 ) = 𝜺𝒌(𝑁 −𝑁𝑝)           𝑓𝑜𝑟  𝜃

𝑘 ∉ 𝑁𝑝
 (4.9) 

 

Where  𝑁𝑝 is the ensemble of perturbed variables, 𝜺𝒌(𝑁 − 𝑁𝑝) is the error related to not updated 

variables,  𝜃𝑠𝑝𝑠𝑎
𝑖+𝑖  is the value that the variable 𝜃𝑘, not updated in the current iteration, assumed in the 

next iteration when a full SPSA is performed. If i is the number of iterations, we can now assume that 

if: 

∑∑𝜺𝟏(𝑁𝑝)

𝑁𝑝𝑖

+∑ ∑ 𝜺(𝑁 − 𝑁𝑝)

𝑵−𝑵𝒑𝑖

≤∑∑𝜺𝟏(𝑁)

𝑵𝑖

 (4.10) 

 

Then the computational time of the P-SPSA is smaller or equal to the time of the SPSA. Since equality 

in Equation (4.10) is satisfied for P=1, our preliminary assumptions are that very low values of P (i.e. 

0.25) the term 𝜺(𝑁 − 𝑁𝑝) increases much more than the reduction in 𝜺𝟏(𝑁𝑝). It is reasonable to assume 

that opposite holds for high P values (i.e. 0.75). 

Preliminary results in this chapter confirm these hypothesis on P-SPSA, which are relevant on big size 

networks where solving the problem presented in Equation (4.7) is well known to be cumbersome. This 

is shown in a test network in the next section. 

4.3 Case Study 

The setup of this case study is the same presented in (Rodric Frederix 2012), and used in (Guido 

Cantelmo et al. 2014). This scenario refers to the inner ring-way around Antwerp, Belgium. The network 

includes 56 links, 39 nodes, with 46 OD pairs, all mainly connecting the different entry and exit points 

of this motorway segment, making rerouting options not likely. The considered morning peak period 

occurs between 05:30 and 10:30. The field data – speeds and flows – were available every 5 minutes. 

The detectors are located at the on- and off-ramps and on some intermediate sections. The OD flows 

have been estimated for 15-minutes departure intervals, so the dynamic matrix contains 966 OD pairs; 

the seed matrix that amounts to 202,200 trips is derived from an existing static OD matrix by 

superimposing a time profile. Flows of a selection of OD pairs have been increased obtaining a 

congestion pattern similar to the actual one. As a consequence, the seed matrix captures the correct 

traffic regimes. 
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Fig.4.1:  (a) x,t plot of the measured speeds on the network, (b) Ring of Antwerp; 

 

In order to start with the application of the two-step procedure, with respect to Equation (4.1) and (4.2), 

the objective function to be minimized contains only the z1 term, where the link measurements are the 

traffic counts. Specifically: 

min𝑓 (𝜽𝑖) =  [ℎ(𝒍 − 𝒍̂)] =∑ (𝒍 − 𝒍̂)2
lD 

 (4.11) 

With 𝒍 and 𝒍̂ respectively being the simulated and measured flows on each link and D the subset of 

network links with sensors. The speed measurements have been used only for validation, since it is 

expected that if the initial traffic regime is accurately represented on any link, then the new estimated 

matrix reduces the link errors related to flows while preserving the correct traffic regimes. The 

simulations required to compute simulated flows on each link have been conducted adopting the Link 

Transmission Model described in (Corthout 2012). 

4.3.1 First-Step Application 

In the first step, the generation values for each zone and each time interval have been optimized using 

FDSA. In this first step, generations are corrected using increasing values for α: [3,6,12]. Since no line 

search is used, smaller step-sizes are expected to provide better solutions with higher computational 

times.  In Table 4.1, it is possible to observe the results for different values of α. These have been 

compared with those obtained using the Two-Step Formulation proposed in (Guido Cantelmo et al. 

2014), named “Data Based” in the table. (Details on the experiment set-up can be found in the Previous 

Chapter, Approach I, Table 3.2). 
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Table 4.1: Experiment Results 

 

 

 

Fig.4.2:  Goal Function Trend for α= [3,6,12] and Data Based 

 

The reference Data Based model implies the best improvement, but as reported in the previous chapter 

(G. Cantelmo et al. 2014) it works on a specific subset of variables (the OD pairs that generated the 

highest error with respect to traffic counts). This sub-set of variables is not easy to capture in all the 

networks and changing the subset of variables, the quality of results and the computational time can 

present high variance. In the first step here proposed, there is not this type of problem since the subset 

of variables to correct is uniquely defined. To evaluate the reliability of the solutions with respect to the 

inputs, the error has been evaluated also in terms of r-square between simulated and observed flows. For 

α=3 after 91 iterations, the r-square is quite similar to the one obtained for α=12, after 31 iterations, 

changing from 0.838 to 0.854. This is also confirmed by RMSN values in Table 4.1. Moreover, in this 

case, we are working indirectly on all the variables, using distributions derived from the seed matrix as 

a constraint. Thus, it is reasonable to obtain a higher value for the goal function, while the greatest 

reduction is expected in the second step. 

4.3.2 Second-Step Application 

In this second step, the correction is mainly focused on distributions. The experiments are performed 

adopting as starting matrix the solution obtained using a step size of α=12, tested in the previous stage. 

Such solution is considered the most interesting case for two main reasons. First of all, it was the 

 α=3 α=6 α=12 Data Based 

Final O.F. value 1.14E+09 1.33E+09 1.43E+09 5.8E+08 

O.F. improvement [%] 45.02 36.48 30.04 72.26 

Link flows RMSE 1031.5 1108.9 1163.7 730.3 

Link flows RMSN [%] 31.91 34.31 36.55 22.6 

Link speeds RMSE 19.00 15.75 17.48 18.47 

Link speeds RMSN [%] 29.49 24.44 27.13 28.67 

#  iterations 91 71 58 53 
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configuration for which the convergence has been reached earlier, finding the solution after 30 iterations 

(Fig. 4.3a).  Since the matrix presents the highest value of the goal function, and since results are robust 

with respect to both link flows and speeds data, if matrices obtained with α value 3 or 6 are used, then 

the result should not be worse. Before performing the second step optimization, results from the single 

step are shown. In Table 4.2-A it is possible to observe results obtained applying conventional SPSA 

and P-SPSA in a single-step classical DODE. While for the SPSA the stop criterion is the convergence, 

P-SPSA is stopped after approximately 190 iterations. Since several single-step SPSA optimizations 

were performed, in table 4.2-A “best” represents the best value for each parameter, “worst” the worse 

value while “avg” is the average solution. 

Results suggest that the hypothesis done in Equation (4.10) about computational time is reasonable: 

when the perturbation P≥0.5 computational time is not going to increase. Furthermore it is recommend 

to never use P<0.5: when P is small, the probability to work on all the variables during the optimization 

largely decreases. However, these results are experimental. P-SPSA allows to reduce the number of 

variables of the problem up to 50%, which is a fundamental property for big-sized networks, without 

affecting the quality of the results. Since the interest is to apply the Two-Step approach to all the 

networks, both SPSA and P-SPSA are tested.  The most interesting goal for the P-SPSA is to reach the 

same result of SPSA without increasing the computational time, so the case with P=0.5 is considered to 

perform the second step. 

Table 4.2: Experiment Results 

 

 

Concerning the Second-Step, all models use the same goal function presented in Equation (4.11). 

Furthermore, the enhanced algorithm is also tested using the demand matrix in the goal function. So 

equation becomes: 

min𝑓 (𝜽𝑖) =  ∑ (𝒍 − 𝒍̂)2
lD 

+∑ (𝒙 − 𝒅̂)2
lD 

 (4.12) 

 

Where N is the number of OD pairs and 𝒅̂ is the target matrix, in this case the solution of the first step. 

This experiment is called “SPSA with Demand” in the rest of the Chapter. In Figures 4.3a and 4.3b goal 

 

4.2A – Single Step Results P-SPSA  

P=0.25 

P-SPSA  

P=0.50 

P-SPSA  

P=0.75 

SPSA 

BEST AVG WORST 

Final O.F. value 6.67E+08 3.86E+08 3.93E+08 3.28E+08 3.96 E+08 5.01 E+08 

O.F. improvement [%] 68.07 81.51 81.18 84.29 81.40 76.04 

Link flows RMSE 786.29 601.35 602.75 552.03 598.44 681.79 

Link flows RMSN [%] 24.32 18.60 18.60 16.58 18.39 21 

Link speeds RMSE 18.94 18.42 18.63 17.59 19.30 21.01 

Link speeds RMSN [%] 29.29 28.59 28.91 27.47 30.52 34.47 

# of iterations 187 195 195 90 160 273 
 

 

4.2B – Two Steps 

Results 

SPSA 

 

SPSA 

demand 

P-SPSA 

P=0.5 

Data 

based 

SPSA 

Statistics  results 

BEST AVG WORST 

Final O.F. value 3.29E+08 3.18E+08 3.08E+08 4.49E+08 3.08E+08 3.23E+08 3.5E+08 

O.F. improvement [%] 84.25 84.77 85.24 78.52 85.24 84.54 84.51 

Improvement in 2th [%] 77.25 78.18 78.85 20.77 78.85 77.85 75.72 

Link flows RMSE 547.42 538.20 534.75 644.82 534.34 545.76 571.92 

Link flows RMSN [%] 16.93 16.65 16.53 19.95 16.53 16.88 17.69 

Link speeds RMSE 19.98 18.44 17.29 13.67 16.22 18.69 20.7 

Link speeds RMSN [%] 34.71 28.44 26.83 21.16 25.41 29.64 34.71 

Regression coefficients Simulated Vs Real Regression coefficients 

r2 0.936 0.937 0.939 0.920 0.939 0.936 0.936 

Angular coefficient p1 0.99 1.00 0.99 0.97 1 1 0.997 

Intercept coefficient p2 49.02 43.00 43.21 103.11 34.74 44.25 50.25 

 

 

 1 
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functions trend are proposed for two independent optimizations. The trend shows again the robustness 

of the model. Results are compared with the old data-based Two-Step approach. 

 

Fig.4.3:  Goal Function Trend for α= [3,6,12] and Data Based 

 

Stop criterion is the convergence or an RMSE on the speed lower than 20. Once more, the results 

highlight the robustness of the process with respect to the Data-Based approach. In fact in the Data 

Based the main contribution was in the first step, where only 126 OD pairs out of 966 were used. In the 

second step the model just added local adjustments on the matrix. The main positive results of the Data 

Based approach are the lower error in the speeds, with respect to the original seed matrix, and the lower 

number of iterations (Figure 4.3). Unfortunately these results are not easily generalizable since the subset 

is not uniquely defined and if another subset is chosen, results are completely different. In the previous 

chapter, another approach- called “Network Analysis Based Approach (Approach 2)- was proposed 

where a different subset of variables was used. The results were completely different from the Data 

Based one. If the goal function improvement was greater (89.9%), the error on the speed increased 

(RMSE=18) as well as the distance from the seed matrix (equal to 6.26 E+04 in Data Based and 

1.15E+05 in the Network Analysis Based). The strong difference between results was the initial input 

to generate the current approach.  

In this approach we can observe the advantages having a uniquely defined subset of variables in the first 

step. Results for each method are very close to each other. Moreover scatter plots of the results are very 

similar to each other: the parameters of the regression (r2, p1, p2) are very similar. About P-SPSA it is 

possible now to make some remarks. The main goal of P-SPSA it is to reach the same solution of SPSA 

without increasing computational time whilst reducing the number of variables. In Equation (4.10) we 

assume that if the number of variables perturbed in every iteration is at least the 50% computational 

time is not going to increase. Tests show that P=0.5 is, as expected, the limit case using P-SPSA. If the 

computational time is higher than the one of SPSA, such increase is limited. Setting as stop criterion the 

number of iterations, the goal function value at iteration 243 is 3.50E+08, while at iteration 269 is 

3.32E+08. Results show that the approximation is not going to reduce the quality of the result. Although 

more tests are needed, this insight is important in real networks, where the number of variables is too 

high to use in an efficient way SPSA. P-SPSA is an appropriate alternative to manage problems two 

times bigger with respect to classic SPSA without compromising significantly the quality of the solution 

and the computational time.  

Finally, some considerations have to be done with respect to the comparison with single step approach. 

Observing Table 4.2, differences in results are significant. In 4.2-B the procedure better fits measured 
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data than the single step approach, as calibration parameters confirm.  Furthermore, a strong reduction 

in variance results is observed. In the first case difference between the best and worst goal function value 

is almost 10%, while in the second case is approximately 1%. If variance in some parameters, like 

iterations number, seems to be good, these parameters are generally related to the worst cases.  The 

number of iterations of the “best” case in Table 4.2-A is lower than those reported in figure 4.3. 

However, when convergence is reached too fast, model results in high goal functions values and not 

satisfactory solutions. Further, regression coefficients are worst with respect to the Two-Step approach 

(r2=0.934, p1=0.98, p2=71 for the best solution).  About Euclidean distance from the seed matrix, the 

average value is similar in both cases while the distance between each solution matrix is different. The 

average distance between solutions matrices found using two step approach is 3.42E+04, while is 

4.35E+04 in the single step. Further the variance of this value is higher in the single step with respect to 

the proposed approach, confirming robustness of our method with respect to the single step. 

4.4 Conclusions and Future Research 

In this Chapter, an enhanced Two-Step approach is proposed to improve performances of existing 

DODE algorithms. Since the reliability of the results in dynamics problem is one of the most critical 

aspects in using dynamics methods for real problems, the main contribution of this approach is finding 

robust results with respect to both the single-step approach and the previous version of the Two-Step 

approach. In this Chapter, a combination of deterministic and stochastic algorithms is used to perform 

offline estimation on the inner ring of Antwerp, Belgium. Speeds are used to validate quality of the 

solution and as stop criterion.  

The main motivation in developing the proposed approach is obtaining accurate and reliable results by 

operating an adequate solution space reduction. Since the number of possible solutions generally 

increases with the size and the complexity of the network, it is relevant introducing general procedures 

to reduce step by step the solution space without increasing the problem complexity. The Two-Step 

approach is based on the correlation between the aggregate demand data – named generation data -, the 

disaggregate demand data – i.e. the OD flows – and supply data as link speeds and flows. Since, 

generally, aggregate data from statics models are more reliable with respect to the disaggregate one, it 

is natural to fix them in an aggregate level.  

Following a Two-Step procedure, as initially proposed in previous studies by the authors, in the first 

step the total flow generated for each traffic zone is corrected. The demand at aggregate level can be 

used to catch the right demand level keeping constant the distributions. In this first phase, distributions 

are used as an indirect constraint for the demand, reducing the possible solutions for the problem without 

introducing new measurements or data. Vice versa, since aggregate data works as an indirect constraint, 

it is possible to eliminate the demand term from the goal function. In this way it is possible to strongly 

reduce the localism of the DODE. Results show the reliability of the approach with respect to the most 

important parameter, the step size. Is it so possible to increase the speed of the problem without having 

significant errors in the solution of the first step.  

In the second step, correction of the demand is performed using SPSA algorithm obtaining good results. 

The used method is generally adopted to solve problem on big sized networks, since it is not dependent 

on the number of variables. On the other hand the stochastic nature of the model increases with the size 

of the problem. In the specific case study, SPSA obtains stable results. A variant of that model, called 

P-SPSA, is also presented. It should be pointed out that results are experimental and preliminary, since 

no test on other networks are still available; the model was tested together with the SPSA in the second 

step. P-SPSA reaches, in the case study, the same result of the SPSA, while working on no more than 

50% of the OD pairs simultaneously. So in the current case study we are able to perform a full 

satisfactory OD estimation reducing the number of the variables to the only generation in the first step 

and to the 50% of the OD pairs in the second. The possibility to reduce number of variable is one of the 
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most relevant aspects in DODE, since often in real practice is not possible to work on all of them. Results 

highlight the robustness of the proposed approach with respect to the classical single step. 

Future research will still focus on small networks where however route choice is more significant than 

the network used in this network. If results are confirmed the last step is to apply it on medium/large 

sized networks.       
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5 

Effectiveness of the Two Step 

approach on large networks 

The Two-Step approach provided excellent results for updating demand flows on the Ring of Antwerp. 

This chapter validates these findings on a general network: Luxembourg City. This network represents 

the typical mid-sized European city in terms of network dimension. Moreover, Luxembourg City has 

the typical structure of a metropolitan area, composed of a city centre, ring, and suburban areas.  

An innovative element of the experiments proposed in this Chapter is to use mobile network data to 

create a time-dependent profile of the generated demand inside and outside the ring. To support the 

claim that the model is ready for practical implementation, it is interfaced with PTV Visum, one of the 

most widely adopted software tools for traffic analysis. Results of these experiments provide a solid 

empirical ground in order to further develop this model and to understand if its assumptions hold for 

urban scenarios.  

Content of this chapter has been presented in the following work: 

Cantelmo, G., Viti, F. & Derrmann, T. “Effectiveness of the two-step dynamic demand estimation model on large 

networks”.  5th IEEE International Conference on Models and Technologies for Intelligent Transportation 

Systems (MT-ITS) 356–361 (2017). doi:10.1109/MTITS.2017.8005697 
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5.1 Introduction  

Dynamic Traffic Assignment (DTA) models represent the current state of the practice for managing 

transportation systems. To be able to make accurate predictions about the network condition or the effect 

of new traffic policies, these models require a good knowledge of the travel demand, which is usually 

represented in the form of an origin-destination (OD) matrix.(Caceres, Wideberg, and Benitez 2007). 

In order to generate this matrix, while traditional demand generation models combine survey data and 

statistical tools (E Cascetta 2009; McNally 2007),  more recent approaches have done a significant 

progress into including new data sources, such as Call Detail Records (CDR), GSM data, sensing data 

and geospatial data (Toole et al. 2015; Donna, Cantelmo, and Viti 2015). Although these works showed 

that big data can largely improve the overall quality of the result, the estimated demand matrix is at most 

a concise representation of the regular demand patterns. Unfortunately, since dynamics of traffic systems 

are complex and depend on partially predictable phenomena such as weather conditions, daily demand 

patterns can substantially differ from the regular ones, because of structural and random deviations 

(Zhou and Mahmassani 2007).  

These deviations can be corrected by using traffic measurements, such as loop detectors, to update the 

existing (a-priori) OD matrix. This problem, which is known in literature as the Dynamic Demand 

Estimation Problem (DODE), searches for time-dependent OD demand matrices able to best fit 

measured data. It can be applied for both within-day (intra-period) and day-to-day (inter-period) 

dynamic frameworks (Ennio Cascetta, Inaudi, and Marquis 1993), as well as for offline (medium-long 

term planning and design) and on-line (real-time management) (C. Antoniou et al. 2009). While for a 

detailed overview, the interested reader can refer to (Constantinos Antoniou et al. 2016), we limit our 

discussion to recent works related to the off-line DODE. 

Classical approaches solve two interconnected optimisation problems, according to a bi-level 

formulation: in the upper level, time-dependent OD matrices are corrected in order to replicate the 

observations, while the lower level relates OD with path and link flows (Constantinos Antoniou et al. 

2016). However, the resulting optimisation problem is highly underdetermined (Marzano, Papola, and 

Simonelli 2009), and provides an accurate prediction only when the ratio between unknown and known 

variables (OD flows and traffic measurements, respectively) is close to one. From the modelling point 

of view, the easiest solution is to formulate the optimisation problem in a different way, in order to 

reduce the number of variables. This can be done, for instance, by introducing a parametric 

representation of the demand, as proposed in (Lindveld 2003), or performing a Principal Component 

Analysis (PCA) (Djukic et al. 2012). Recently, Ennio Cascetta et al. (2013) introduced the so-called 

“quasi-dynamic assumption”, which assumes that the generated demand for a certain OD pair is time 

dependent, while its spatial distribution is constant. Under this assumption, as demonstrated in (Ennio 

Cascetta et al. 2013), the DODE problem becomes less underdetermined and more likely to find more 

robust results. Nevertheless, the authors point out that the resulting matrix will be “intrinsically biased”, 

since this assumption introduces an “intrinsic error”. To solve this problem Cantelmo et al. (2015) 

introduced a Two-Step procedure, which separates the problem in two sub-optimization problems. 

Through this procedure, authors correct sequentially generations and distributions in the demand matrix. 

In essence, the first step exploits the quasi-dynamic assumption in order to perform a broad evaluation 

of the solutions space, while in the second step the estimated OD flows are further updated in order to 

reduce the intrinsic error. 

From the data-driven point of view, the most widely adopted procedure is to include new data sources, 

such as measured speeds (Yamamoto et al. 2009), link density (Frederix, Viti, and Tampère 2010) and 

route travel time (Nigro, Cipriani, and Del Giudice 2017), within the Objective Function (OF) to be 

minimised. As expected, by increasing the number of knowns in the optimisation problem, and by 

including information on the actual route choice, the solution reliability largely increases.  
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Driven by these considerations, in this Chapter we implement the Two-Step approach, already presented 

in (Cantelmo et al. 2015), to the network of Luxembourg, and we extend the goal function in order to 

include mobile network data within the DODE. The contribution is twofold. On one hand, we show that 

the Two-Step approach outperforms the standard formation on a real-life network. To support the claim 

that the model is ready for practical implementation, it is interfaced with PTV Visum, one of the most 

widely adopted software tools for traffic analysis. The second contribution regards the mobile network 

data. While these data have been widely adopted for generating dynamic OD matrix (Toole et al. 2015), 

their use within the OD/route flow estimation is still limited (Calabrese et al. 2011). The main reason is 

the low level of precision of this information, which makes the match between observations and road 

segments quite challenging. In the proposed work, mobile network data are used to directly estimate the 

time-dependent demand profile, thus no matching is required 

5.2 Methodology 

5.2.1 MAMBA-DEV Matlab Package 

To be able to solve a DODE on a large real-sized network, we developed a Matlab package for solving 

the DODE using PTV Visum as DTA model (Demand Estimation for Visum - DEV).  

The package allows performing assignment-free dynamic or static OD estimation, using a deterministic 

and/or stochastic approximation of the gradient (Cantelmo et al. 2015). The model also includes the 

Two-Step approach, which is presented in the next section. While the MAMBA-DEV package has been 

designed for Luxembourg City, it can work with any network. 

5.2.2 The Two-Step Approach 

While for a detailed overview of this model we refer to the previous chapter (Cantelmo et al. 2015), in 

this section we briefly present its main characteristics.  

The standard DODE, called “Single-Step” in this thesis, is generally solved as an optimisation problem. 

Its formulation requires the specification of the OF, its variables and its constraints, which are related to 

feasibility and routeing conditions. Considering different types of measures and by adopting an offline 

approach, the OF can be formulated as: 

(𝒅1
∗ , … , 𝒅𝑛

∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛 

[
 
 
 
 
𝑧1(𝒍1, … , 𝒍𝑛 , 𝒍𝟏̂, … , 𝒍𝒏̂) +

+𝑧2(𝒒1, … , 𝒒𝑛, 𝒒𝟏̂, … , 𝒒𝒏̂) +

+𝑧3(𝒙1, … , 𝒙𝑛, 𝒅𝟏̂, … , 𝒅𝒏̂) +

+𝑧4(𝒓1, … , 𝒓𝑛, 𝒓𝟏̂, … , 𝒓𝒏̂) + ]
 
 
 
 

 (5.1) 

 

Where l/ l̂  are the simulated values and the corresponding measurements on the links, n/ n̂  are the 

simulated values and the corresponding measurements on the nodes, x/ x̂  are the estimated values and 

a-priori information on the dynamic demand, r/ r̂  are the simulated values the and the measurements on 

routes, dn
* is the estimated demand matrix for time interval n and, finally, z :{z1, z2, z3, z4} is the 

estimator of the deviations between the simulated/estimated and the corresponding measured/a-priori 

values. The consistency between simulated traffic performances and the estimated demand is obtained 

directly by performing a Dynamic Traffic Assignment (DTA).  

The applicability of Equation (5.1) is general, but has its shortcomings. Among others, when dealing 

with a large number of variables, Equation (5.1) collapses to a local adjustment of the a-priori OD flows, 

rather than a real estimation. As discussed in the introduction, this is one of the main reasons for which 

introducing the quasi-dynamic assumption sounds reasonable. On the one hand, this introduces an 

approximation, while on the other it allows the algorithm to avoid local minima.  
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In the proposed Two-Step procedure, the first step aims at optimising the generation values of each zone 

in each time interval, while maintaining constant the dynamic trip distributions derived by the seed 

matrix. To achieve this goal, the objective function in Equation (5.1) can be generally rewritten for the 

first step as: 

(𝑬1
∗ , … , 𝑬𝑛

∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛 

[
 
 
 
 
𝑧1(𝒍1, … , 𝒍𝑛 , 𝒍𝟏̂, … , 𝒍𝒏̂) +

+𝑧2(𝒒1, … , 𝒒𝑛, 𝒒𝟏̂, … , 𝒒𝒏̂) +

+𝑧3(𝒙1, … , 𝒙𝑛, 𝒅𝟏̂, … , 𝒅𝒏̂) +

+𝑧4(𝒓1, … , 𝒓𝑛, 𝒓𝟏̂, … , 𝒓𝒏̂) + ]
 
 
 
 

 (5.2) 

Where 𝑥𝑛
𝑂𝐷 = 𝐸𝑛

𝑂𝑑𝐷|𝑂
𝑆𝑒𝑒𝑑,𝑛 ∀𝑂, ∀𝐷, ∀𝑛 

Where En
O is the generation of origin zone O and time interval n, En

* is the generation vector containing 

generation from all origins in time interval n, Xn
* is the number of trips originated in O with destination 

D in time interval n and 
nSeed

OD
d ,

|  is the matrix probability distribution between traffic zone D and traffic 

zone O in time interval n.  

The goal of the first step is to act on the seed matrix in order to obtain a reasonable generation value 

before moving to the second step, in which the dynamic distributions are corrected according to Equation 

(5.1) in order to reduce the intrinsic error. 

5.2.3 Including Mobile Network Data in the Objective Function 

As pointed out in the introduction, it is commonly accepted that including more information within the 

goal function leads to a more robust result for the DODE. Clearly, this cannot be considered a general 

rule since, when different data sources are combined, the solution space of the OF can become more 

irregular. In this sense, mobile network technology, because of its spatial/temporal coverage and because 

of the great volume of information, seems a promising data source for the DODE. While the correlation 

between traffic demand and mobile data is well known (Toole et al. 2015), this source of information is 

hard to implement within the DODE. When dealing with GPS information, one of the most critical 

elements is to match the GPS coordinates and the road network. Mobile network data provide at most 

the geographic position at connected antenna level, so no direct road network match is possible. 

However, by clustering antennas located on the border of each traffic zone, it is possible to count active 

connections that are entering or exiting the zones (i.e. the number of handovers). Unfortunately, mobile 

network data cannot be considered as the sole source of information for the DODE, as they are subject 

to intrinsic errors such as the split of the user base between multiple network operators and the degree 

of activity on the network as well as the general mobile penetration rates. In this work, we use aggregated 

handover counts between antennas of 2G, 3G and 4G radio technologies of Luxembourg mobile network 

operator POST Luxembourg. The data consists of the hourly counts of connections being handed off 

between pairs of antennas, thus respecting users’ privacy.  

We propose the following two criteria to exploit demand emission flows estimated through the mobile 

network data: 

- Antenna clusters need to be large enough to minimise the “ping-pong” effect, i.e. repeatedly 

counting the same users ‘bouncing’ back and forth between two antennas; 

- Cluster edges shall be positioned so as to maximise the difference between number of people 

entering and leaving the study area;  

 

Since we are focusing on Luxembourg City, we created two different clusters. One cluster captures the 

trips generated from the city to the external zones, while the other one captures those entering 

Luxembourg City, as shown in Figure (5.1). 
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Fig.5.1:  (a) Internal and External antenna clusters for Luxembourg City; (b) Emission flow from 

and to Luxembourg City; 

This procedure can be easily extended to any urban area, in which mobile connection handovers can be 

used to calculate the flows exchanged between the study area and the external centroids. Although the 

profile showed in Figure 1b looks realistic, we do believe that to simply include the emission flows 

within the goal function may still lead to a biased estimation, since it is equivalent to over-imposing a 

certain time-dependent profile to the demand. As pointed out in Chapter 2, this leads to substantial errors 

in the estimated mobility demand. Instead, we propose to use the difference between entering and exiting 

flow, as in Equation (5.3): 
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    (5.3) 

Where 
IntZonesGSM

nE 
and 

ExtZonesGSM

nE 
are the mobile connection handovers to the internal and external 

zones, respectively. Figure 5.2 show the profile of 
GSM

nE for the real data (5.2a) and the a-priori OD 

matrix (5.2b). 

 

Fig.5.2:  (a) Profile obtained through the real-data; (b) Profile obtained through the 4-step 

approach; 
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As showed in Figure (5.2), the profile obtained by combining the classical Four-Step approach with a 

departure time choice model (5.2b) is comparable to the one obtained with the (real) mobile network 

data (5.2a). We can also identify quite easily the two errors within the a-priori OD matrix. First, the 

average departure time for the morning peak is wrongly shifted in time. Second, there is a difference in 

the scale, on the y-axis. The reason is that, in this application, we calculate the OD flows for the morning 

and evening commute, thus the demand in the afternoon is highly underestimated. This suggests that, 

by including Equation (5.3) within the OF of the DODE, we can use mobile network data as a soft 

constraint to correct the demand obtained through classical demand generation models. 

5.3 Case Study  

Synthetic experiments have been conducted on the urban network of Luxembourg City (Figure 5.3). 

While real traffic measures are available in Luxembourg, authors believe that assessing the quality of 

the proposed algorithm in a controlled experiment is a fundamental step before moving to the practical 

implementation. 

 

Fig.5.3:  Network of Luxembourg City, Luxembourg ; 

 

The network, which consists of 2744 active links, 1480 nodes and 17 traffic zones, represents the typical 

middle-sized European city in terms of network dimension. Moreover, Luxembourg City has the typical 

structure of a metropolitan area, composed of the city centre, ring, and suburb areas. OD flows are 

estimated over 24 hours assuming a 30-minutes departure interval. Under this assumption, the dynamic 

matrix contains 13872 variables to be estimated. The real matrix amounts to 239.966 trips, and with 

such an amount no congestion is expected on the network. Simulated measures for this network are 

available on a total of 32 counting sections – the links containing these sections are shown in red. Finally, 

the a-priori OD matrix, hereafter simply called Seed matrix, amounts to 171.060 trips, thus it 

significantly underestimates the number of trips in the network. 



81 

 

The DDEP is solved using both the Single-Step (SS) and Two-Step (TS) approaches. In both cases, the 

well-established Simultaneous Perturbation Stochastic Approximation (SPSA) is the numerical solution 

method adopted for the optimisation. In order to reduce the computational time, we adopted the one-

sided version of this model. The interested reader can refer to (Cantelmo et al. 2015) for more details on 

the solution algorithm. Similarly, we performed two different sets of experiments: 

Scenario 1. Only traffic counts are included within the OF. 

Scenario 2. Traffic counts and mobile data are included within the OF. 

Finally, the Root Mean Square Error (RMSE) metric is the estimator adopted to quantify the error.  

5.3.1 Scenario I: Only Traffic Counts 

We opted for an uncongested scenario to primarily assess the capability of the model in handling a large 

number of variables, while at the same time considering a smooth goal function. The gradient is 

calculated as the average of 300 stochastic perturbations of the current matrix for the SS and 100 

stochastic perturbations for the TS model. As shown in Figure (5.4), results confirm that, when the 

number of variables is large, SS model performs a quite local adjustment of the OD demand. 

Specifically, to obtain a reliable estimation of the gradient, the number of stochastic perturbations should 

be approximately 10% of the number of variables (Cipriani et al. 2011). This entails 1382 DTA 

simulations for each iteration (~46 hours). 

 

Fig.5.4:  Goal Function trend; 

By contrast, introducing the strict quasi-dynamic assumption, there are only 816 variables to update. As 

a consequence, even with fewer replications of the gradient, the estimation is more robust, and the 

improvement is network wide. This is shown in Figure (5.5), where the scatter of the link flows is 

presented, and in Table 5.1. Specifically, in Table 5.1 we reported the error with respect to real link 

speed and real OD flows, which are used for validation purposes. 

Table 5.1: Experiment Results 

 
Seed Two-Step Single Step 

RMSE Speed (Km/h) 
 

3.73 2.47 3.66 

RMSE OD (Veh/h) 

 
42.25 37 43.00 
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It should be pointed out that, while the RMSE of the Seed may be considered low, we are considering 

in this experiment only morning and evening commute, thus a large number of OD/measures during the 

off-peak hours present a low error. 

 

Fig.5.5:  (a) Simulated vs Real link flows on the detector for the Two-Step; (b) Simulated vs Real 

link flows on all links for the Two-Step; (c) Simulated vs Real link flows on the detector for the 

Single Step; (d) Simulated vs Real link flows on all links for Single Step; 

 

However, the resulting traffic pattern during the rush hour is substantially wrong, as shown in Figure 

5.5, where we can clearly see that the Seed demand matrix is both overestimating and underestimating 

link flows. 

Finally, results in Table 5.1 provide another important insight on the quality of the results.  The SS 

model not only performed a local adjustment of the link flows but also increased the error with respect 

to the real matrix. By contrast, the proposed model is reducing the error according to all the performance 

measures. 

5.3.2 Scenario II: Including Mobile Network Data 

In this subsection, we show the improvement related to using the mobile network data within the goal 

function. In this case, the synthetic profile illustrated in Figure (5.2b) has been used to simulate the 

mobile network data for the synthetic experiment. Results of this experiment are quite unexpected. 
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Table 5.2: Experiment Results 

 
Seed TS SS 

RMSE Speed (Km/h) 
 

3.73 2.98 3.66 

RMSE OD (Veh/h) 

 
42.25 40.01 66.02 

 

 

As showed in Table 5.2, the error in terms of OD flows is, at the end of the estimation, larger than in the 

previous case, showing that, for this uncongested network, the TS approach manages to find a better 

solution without the mobile data. However, as reported in Figure 5.6, when mobile data are included 

within the OF, the number of iterations required for solving the DDEP strongly decreases. 

 

Fig.5.6:  Goal Function trend, with and without GSM data; 

As predictable, the same property is not observed for the SS model, which simply collapses on the 

closest local minima. However, when this model is combined with the mobile network data, the error 

on the link flows decreases with respect to the base case presented in Scenario I (the RMSE is 3% lower).  

A second and fundamental result concerns the stability of the estimated matrices. The RMSE of the OD 

flows between the solution of Scenario I and II are 27 and 48 veh/h for the TS and SS model, 

respectively. Although the Single-Step model has a small OF improvement, the distance between the 

two estimated matrices is twice the distance of those estimated through the Two-Step approach. This 

means that the Two-Step approach not only manages to have a larger OF improvement but also to 

provide more reliable results. These findings are in line with the conclusions already presented in 

(Cantelmo et al. 2015). In general, we can claim that, since the Two-Step approach sequentially reduces 

the dimension of the solution space while keeping a lower number of variables with respect to the 

conventional Single-Step approach, it will provide a more reliable estimation (Marzano, Papola, and 

Simonelli 2009). 

5.4 Conclusions and Future Research  

The motivation for the research conducted in this chapter is twofold. First, we aimed to generalise the 

effectiveness of a two-step approach for the Dynamic Demand Estimation Problem already introduced 
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in Chapter 4 (Cantelmo et al. 2015) for a general urban network. Second, we performed a systematic 

assessment for the network of Luxembourg City, a fundamental step in order to use the proposed 

methodology for real applications. More specifically, the proposed Two-Step approach is a simple 

procedure to iteratively reduce the solution space without increasing the problem complexity. Results 

presented in this Chapter suggest that this methodology is suited for improving the reliability of the 

estimated travel demand and for performing a broader analysis of the solution space with respect to the 

conventional approach. While this model has some similarity with the quasi-dynamic approach proposed 

by Cascetta et al. (Ennio Cascetta et al. 2013), by performing a double-optimization, it also manages to 

overcome limitations related to the so-called “intrinsic error” of the quasi-dynamic assumption.  

From a practical point of view, the proposed model has been implemented within the MAMBA-DEV 

Matlab package for the OD estimation, which exploits PTV Visum as traffic assignment module. Thus, 

the proposed model can be easily implemented with other networks, and we can conclude that the model 

is ready for practice. On this point, authors incorporated GSM data as a soft constraint within the 

objective function, showing that this information largely increases the convergence speed.  

Straightforward steps to future work are (i) validating the proposed results for a congested network and 

(ii) using the real data for performing the Dynamic Demand Estimation on Luxembourg City. More 

long-term objectives are to further extend MAMBA-DEV, in order to account for a larger set of models, 

including algorithms suited for solving on-line estimation and prediction problems. 

Acknowledgements 

We wish to acknowledge the COST Action TU1004 ‘TransITS’, which has partly sponsored the 

collaboration between the authors. We wish also to acknowledge Ruben Corthout, Rodric Frederix and 

Willem Himpe for the assistance in the preparation of the tests and in the implementation of the 

algorithms. 

  



85 

 

5.5 References  

Antoniou, C., R. Balakrishna, H.N. Koutsopoulos, and M. Ben-Akiva. 2009. “Off-Line and on-Line 

Calibration of Dynamic Traffic Assignment Systems.” In , 104–11. doi:10.3182/20090902-3-US-

2007.0056. 

Antoniou, Constantinos, Jaume Barceló, Martijn Breen, Manuel Bullejos, Jordi Casas, Ernesto Cipriani, 

Biagio Ciuffo, et al. 2016. “Towards a Generic Benchmarking Platform for Origin–destination Flows 

Estimation/Updating Algorithms: Design, Demonstration and Validation.” Transportation Research 

Part C: Emerging Technologies, Advanced Network Traffic Management: From dynamic state 

estimation to traffic control, 66 (May): 79–98. doi:10.1016/j.trc.2015.08.009. 

Caceres, N., J.P. Wideberg, and F.G. Benitez. 2007. “Deriving Origin-Destination Data from a Mobile 

Phone Network.” IET Intelligent Transport Systems 1 (1): 15–26. doi:10.1049/iet-its:20060020. 

Calabrese, F., M. Colonna, P. Lovisolo, D. Parata, and C. Ratti. 2011. “Real-Time Urban Monitoring 

Using Cell Phones: A Case Study in Rome.” IEEE Transactions on Intelligent Transportation Systems 

12 (1): 141–51. doi:10.1109/TITS.2010.2074196. 

Cantelmo, G., F. Viti, E. Cipriani, and N. Marialisa. 2015. “A Two-Step Dynamic Demand Estimation 

Approach Sequentially Adjusting Generations and Distributions.” In 2015 IEEE 18th International 

Conference on Intelligent Transportation Systems, 1477–82. doi:10.1109/ITSC.2015.241. 

Cascetta, E. 2009. Transportation Systems Analysis. 2nd ed. Vol. 29. Springer. 

http://www.springer.com/us/book/9780387758565. 

Cascetta, Ennio, Domenico Inaudi, and Gerald Marquis. 1993. “Dynamic Estimators of Origin-

Destination Matrices Using Traffic Counts.” Transportation Science 27 (4): 363–73. 

Cascetta, Ennio, Andrea Papola, Vittorio Marzano, Fulvio Simonelli, and Iolanda Vitiello. 2013. 

“Quasi-Dynamic Estimation of O–d Flows from Traffic Counts: Formulation, Statistical Validation and 

Performance Analysis on Real Data.” Transportation Research Part B: Methodological 55 (September): 

171–87. doi:10.1016/j.trb.2013.06.007. 

Cipriani, E., M. Florian, M. Mahut, and M. Nigro. 2011. “A Gradient Approximation Approach for 

Adjusting Temporal Origin-Destination Matrices.” Transportation Research Part C: Emerging 

Technologies 19 (2): 270–82. doi:10.1016/j.trc.2010.05.013. 

Djukic, T., G. Flötteröd, Lint Van, and S. Hoogendoorn. 2012. “Efficient Real Time OD Matrix 

Estimation Based on Principal Component Analysis.” In , 115–21. doi:10.1109/ITSC.2012.6338720. 

Donna, S. A. Di, G. Cantelmo, and F. Viti. 2015. “A Markov Chain Dynamic Model for Trip Generation 

and Distribution Based on CDR.” In 2015 International Conference on Models and Technologies for 

Intelligent Transportation Systems (MT-ITS), 243–50. doi:10.1109/MTITS.2015.7223263. 

Frederix, R., F. Viti, and C. M. J. Tampère. 2010. “A Density-Based Dynamic OD Estimation Method 

That Reproduces within-Day Congestion Dynamics.” In 13th International IEEE Conference on 

Intelligent Transportation Systems, 694–99. doi:10.1109/ITSC.2010.5625220. 

Lindveld, K. 2003. “Dynamic O-D Matrix Estimation: A Behavioural Approach.” PhD Thesis, TU 

Delft. 

Marzano, V., A. Papola, and F. Simonelli. 2009. “Limits and Perspectives of Effective O-D Matrix 

Correction Using Traffic Counts.” Transportation Research Part C: Emerging Technologies 17 (2): 

120–32. doi:10.1016/j.trc.2008.09.001. 



86 

 

McNally, Michael G. 2007. “The Four-Step Model.” In Handbook of Transport Modelling, 1:35–53. 

Handbooks in Transport 1. Emerald Group Publishing Limited. doi:10.1108/9780857245670-003. 

Nigro, M., E. Cipriani, and A. Del Giudice. 2017. “Exploiting Floating Car Data for Time-Dependent 

O-D Matrices Estimation.” Journal of Intelligent Transportation Systems: Technology, Planning, and 

Operations under review. 

Spall, James C. 2012. “Stochastic Optimization.” In Handbook of Computational Statistics, edited by 

James E. Gentle, Wolfgang Karl Härdle, and Yuichi Mori, 173–201. Berlin, Heidelberg: Springer Berlin 

Heidelberg. http://link.springer.com/10.1007/978-3-642-21551-3_7. 

Toole, Jameson L., Serdar Colak, Bradley Sturt, Lauren P. Alexander, Alexandre Evsukoff, and Marta 

C. González. 2015. “The Path Most Traveled: Travel Demand Estimation Using Big Data Resources.” 

Transportation Research Part C: Emerging Technologies, Big Data in Transportation and Traffic 

Engineering, 58, Part B (September): 162–77. doi:10.1016/j.trc.2015.04.022. 

Yamamoto, Toshiyuki, Tomio Miwa, Tomonori Takeshita, and Takayuki Morikawa. 2009. “Updating 

Dynamic Origin-Destination Matrices Using Observed Link Travel Speed by Probe Vehicles.” In 

Transportation and Traffic Theory 2009: Golden Jubilee, 723–738. Springer. 

http://link.springer.com/chapter/10.1007/978-1-4419-0820-9_35. 

Zhou, Xuesong, and Hani S. Mahmassani. 2007. “A Structural State Space Model for Real-Time Traffic 

Origin–destination Demand Estimation and Prediction in a Day-to-Day Learning Framework.” 

Transportation Research Part B: Methodological 41 (8): 823–40. doi:10.1016/j.trb.2007.02.004. 



6 

Application to real large 

congested networks 

In the previous chapter, synthetic and real-life experiments demonstrated that the proposed Two-Step 

framework is suited for performing the DODE problem on uncongested urban networks and congested 

motorways.  

In this chapter, we move one-step further, by testing this methodology with real data on the network of 

the Grand Duchy of Luxembourg, which includes the capital, Luxembourg City, the motorway network 

and the most important road arteries within the national borders.   

Traffic counts and average speeds have been used to compare results obtained through the proposed 

methodology with the one obtained by using a standard bi-level formulation. Results show how the 

proposed model outperforms the standard one, as breaking the optimisation process in two parts strongly 

reduces the localism of the problem.  

Content of this chapter has been presented in the following work: 

Cantelmo, Guido, and Francesco Viti. 2018. “Assessing the Performances of a Two-Step Prediction Model on a 

Large Scale Congested Network Using Real Traffic Data.” Transportation Research Board 2018. 
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6.1 Introduction  

Dynamic Traffic Assignment (DTA) models represent essential tools for managing transportation 

systems. DTA models take as input the demand from each origin and destination and at each time period, 

and in turn estimate and/or predict route and link flows on transportation networks.  

In order to generate the mobility demand, usually represented in the form of Origin-Destination (OD) 

matrices, traditional approaches combine survey data and mathematical tools (McNally 2007). 

Additionally, more recent works have done a significant progress into including new data sources, such 

as Call Detail Records (CDR), GSM data, sensing data and geospatial data (Toole et al. 2015). 

Unfortunately, the estimated demand matrix is at most a concise representation of the systematic 

component of the demand – such as the typical behaviour during a working day. However, daily demand 

patterns can substantially differ from the systematic ones because of several elements, including weather 

conditions or road works, as well as because of the inherent stochasticity of the travel demand. 

Deviations between estimated and actual demand patterns can be mitigated by using traffic 

measurements, which can be used to update an existing (a-priori) OD matrix. This problem, which is 

known in the literature as the Dynamic Origin-Destination Estimation (DODE) problem, exploits a 

properly specified objective function for estimating the time-dependent OD flows. 

While the DODE problem has been initially treated as an extension of its static counterpart, the last 

decades have witnessed to a considerable effort by researchers in order to develop methodologies able 

to deal with the dynamic case (K. Ashok and Ben-Akiva 2002). As DTA models are applied in both 

offline (medium-long term planning and design) and online (real-time management) contexts, DODE is 

commonly classified between sequential or simultaneous approaches, where usually the first is adopted 

for online while the second for offline applications (K. Ashok and Ben-Akiva 2002). By limiting our 

focus to the offline case, DODE is usually formulated as a bi-level optimisation problem. In the upper 

level, OD flows are updated by minimising the error between simulated and observed traffic data, while 

in the lower level the DTA solves the combined Route Choice (RC) and Dynamic Network Loading 

(DNL) problems (Tavana 2001).  

Earlier DODE models explicitly accounted for the assignment matrix – i.e. the set of rules linking OD 

and link flows - for updating the demand vector. However, this matrix assumes a linear relation between 

demand and supply parameters, assumption that does not hold for congested networks (Rodric Frederix, 

Viti, and Tampère 2013). In order to overcome this issue, Balakrishna, Ben-Akiva, and Koutsopoulos 

(2007) proposed a bi-level formulation that does not rely on this information. Instead, the authors 

suggested using a simulation-based DTA model to generate traffic measures and to include additional 

information, such as link speed, within the objective function, in order to represent the 

congested/uncongested network conditions. Following this seminal work, many researchers developed 

new and more robust assignment-free algorithms able to properly capture the non-linearity between link-

flow propagation and time-varying OD demand (R. Frederix et al. 2011; Cipriani et al. 2011; Antoniou 

et al. 2015; Tympakianaki, Koutsopoulos, and Jenelius 2015). Despite this intense effort, the resulting 

optimisation problem remains highly non-linear and non-convex. To reduce the number of possible 

solutions, classical methods often include information about a reference OD demand matrix (usually 

known as historical or “seed” matrix) within the objective function. Therefore, if the structure of this 

seed matrix is different from the real one, this localism can lead to substantial errors (Rodric Frederix, 

Viti, and Tampère 2013).  

Recently, Marzano, Papola, and Simonelli (2009) pointed out that DODE is generally unable to provide 

an effective estimation when the ratio between unknown and known variables (OD flows and traffic 

measurements, respectively) is greater than one. Hence, the easiest solution is to reformulate the 

objective function in order to reduce the number of variables. This can be done, for instance, by using 

Principal Component Analysis (PCA) (Djukic, Van Lint, and Hoogendoorn 2012). Alternatively, 
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Cascetta et al. (2013) introduced the so-called “quasi-dynamic assumption”, which assumes that the 

generated demand for a certain OD pair is time dependent, while its spatial distribution is constant. 

Under this assumption, as demonstrated in (Cascetta et al. 2013), the DODE problem becomes less 

underdetermined and more likely to find more robust results. Nevertheless, the authors point out that the 

resulting matrix will be “intrinsically biased” since this assumption introduces an “intrinsic error”. 

Similarly, Cantelmo et al. (2015) proposed a Two-Step procedure, which separates the DODE in two 

sub-optimization problems. The first step searches for generation values that best fit the traffic data 

while keeping spatial and temporal distributions constant. In the second step, the standard bi-level 

procedure searches for a more reliable demand matrix.  

Although the model has been tested on a simple or synthetic networks, the Two-Step approach has three 

characteristics that make it an ideal candidate for applications on large-scale networks. First, as pointed 

out by Antoniou et al. (2016), the starting matrix is still a key input for all state-of-the-art DODE models. 

The first step of this formulation improves the historical demand matrix by performing a broad 

evaluation of the solution space and estimating a “good” updated seed matrix to be used in the second 

step. Secondly, the proposed model reduces the number of variables in the first step, increasing the 

overall reliability of the results (Marzano, Papola, and Simonelli 2009; Cantelmo et al. 2015). On this 

point, the idea of performing successive iterations and linearization has been already introduced and 

validated in (Kalidas Ashok 1996) for the online DODE, showing that the reliability of the results 

generally increases.  

Driven by these considerations, the contribution of this chapter is twofold. First, we apply the Two-Step 

approach to the real metropolitan network of Luxembourg. While the previous studies (Cantelmo et al. 

2015, in press) tested the algorithm on a simple motorway, this chapter shows that the Two-Step 

approach outperforms the standard formulation on a real-life network. We numerically demonstrate that 

properties of robustness and reliability hold for a general network, and that the localism of the model 

strongly decreases. The test-network represents most of the country of Luxembourg, including urban 

roads, motorways and primary roads. Real traffic counts extracted from loop detectors are used within 

the calibration process to update the demand. 

Second, as speed profiles on the counting stations were not available, we extend the objective function 

by including the average speeds over the analysis period, which have been calculated through Floating 

Car Data (FCD). We show that, when combined with a standard DODE procedure, this information 

leads to a poor calibration of the demand, as the DODE overfits the data within the objective function. 

However, as the Two-Step approach over-imposes a linear relation between distribution and generation 

for a certain traffic zone, it is more likely to capture congestion dynamics at network level, such as the 

systematic overestimation or underestimating of the demand, thus to avoid this issue.   

Finally, to support the claim that the model is ready for practical implementation, it is interfaced with 

PTV-Visum, one of the most widely adopted software tools for traffic analysis (PTV-GROUP 2014). 

The chapter is structured as follows. The next paragraph defines the methodology, including the 

“conventional” model (called Single-Step OD estimation in the rest of this chapter) and the proposed 

Two-Step approach. The chapter then describes the case study, including the network, the dataset used 

for the experiments and the results. Finally, in the last section conclusions are drawn. 

6.2 Methodology 

The DODE is usually formulated as a constrained optimisation problem, which requires the formulation 

of: 
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i. An objective function, which is composed of variables and constraints related to routeing 

conditions and behavioural assumptions; 

ii. An optimisation method, which can be classified in Path Search, Pattern Search or Random 

Search approaches (Balakrishna, Ben-Akiva, and Koutsopoulos 2007); 

iii. A parameter updating rule; 

The remaining part of this section describes the set of functions and algorithms used for performing 

Single-Step and Two-Step demand estimation. 

6.2.1 The Objective Function 

6.2.1.1 Standard Simultaneous Generalized Least Squared 

The most widely adopted goal function for solving the offline DODE is the Generalized Least Squared 

(GLS) proposed in (Cascetta, Inaudi, and Marquis 1993). Considering different types of measures and 

a simultaneous approach, the problem can be formulated as: 

(𝒅1
∗ , … , 𝒅𝑛

∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛 

[
 
 
 
 
𝑧1(𝒍1, … , 𝒍𝑛 , 𝒍𝟏̂, … , 𝒍𝒏̂) +

+𝑧2(𝒒1, … , 𝒒𝑛 , 𝒒𝟏̂, … , 𝒒𝒏̂) +

+𝑧3(𝒙1, … , 𝒙𝑛 , 𝒅𝟏̂, … , 𝒅𝒏̂) +

+𝑧4(𝒓1, … , 𝒓𝑛 , 𝒓𝟏̂, … , 𝒓𝒏̂) + ]
 
 
 
 

 (6.1a) 

 

Where l/𝐥̂ represent, respectively, simulated and measured link performances, q/𝐪̂ calibrated and 

observed values on the node, x/𝐝̂ indicate the estimated and historical value for the OD flows (seed 

matrix) and r/𝐫̂ the simulated and observed route performances. Finally, 𝒅𝒏
∗   designates the estimated 

demand matrix for time interval n, while 𝑧: {𝑧1, 𝑧2, 𝑧3, 𝑧4} is the estimator of the error between 

simulated/estimated and measured/a priori values. 

The dependence between supply and demand in Equation (6.1a) is obtained directly by simulation 

performing a dynamic traffic assignment (DTA), so that: 

𝒍1, … , 𝒍𝑛 = 𝐅(𝒙1, … , 𝒙𝑛) 

 𝒒1, … , 𝒒𝑛  = 𝐅(𝒙1, … , 𝒙𝑛) 

𝒓1, … , 𝒓𝑛 = 𝐅(𝒙1, … , 𝒙𝑛) 

(6.1b) 

with function F representing the Dynamic Traffic Assignment (DTA) function. The objective function 

presented in Equation (6.1a) presents a series of agreeable properties that make it an ideal candidate for 

assignment-matrix free algorithms. First, apart from the traffic counts, the function may account for 

different sources of information, such as link speeds and densities – which have been proved to capture 

the non-linear relation between demand and supply parameters (Balakrishna, Ben-Akiva, and 

Koutsopoulos 2007; R. Frederix, Viti, and Tampère 2010). Moreover, recent works showed how more 

elaborate information, such as point-to-point data, can also be included in this function, largely 

improving the overall estimation accuracy (Barceló and Montero 2015; Mitsakis et al. 2013; Antoniou 

et al. 2016). An additional advantage of the simultaneous GLS presented in Equation (6.1a) with respect 

to the sequential case is that all variables are jointly estimated, which is formally more correct as OD 

flows over different time intervals are likely to be correlated (Rodric Frederix, Viti, and Tampère 2013). 

However, for large networks, this approach becomes less reliable and, if not enough traffic data is 

available (Marzano, Papola, and Simonelli 2009), the sequential approach is preferred. 
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6.2.1.2 Strict Quasi-Dynamic Simultaneous Generalized Least Squared 

As suggested in (Cascetta et al. 2013), the objective function described in Equation (6.1) can be 

enhanced by exploiting information on aggregated socio-demographic data such as generation data by 

traffic zones. The objective function (6.1a) can be then reformulated as: 

(𝑬1
∗ , … , 𝑬𝑛

∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛 

[
 
 
 
 
𝑧1(𝒍1, … , 𝒍𝑛 , 𝒍𝟏̂, … , 𝒍𝒏̂) +

+𝑧2(𝒒1, … , 𝒒𝑛 , 𝒒𝟏̂, … , 𝒒𝒏̂) +

+𝑧3(𝒙1, … , 𝒙𝑛 , 𝒅𝟏̂, … , 𝒅𝒏̂) +

+𝑧4(𝒓1, … , 𝒓𝑛 , 𝒓𝟏̂, … , 𝒓𝒏̂) + ]
 
 
 
 

 (6.2a) 

S.t. 

𝑥𝑛
𝑂𝐷 = 𝐸𝑛

𝑂𝑑𝐷|𝑂
𝑆𝑒𝑒𝑑,𝑛

 (6.2b) 

Where: 

- En
O = generated flow from traffic zone O and time interval n; 

- 𝑬𝑛
∗  = generation vector containing the generated flow from all zones in time interval n. 

- 𝑥𝑛
𝑂𝐷 = demand flow from origin zone O to destination zone D in time interval n. 

- 𝑑𝐷|𝑂
𝑆𝑒𝑒𝑑,𝑛

 = seed matrix spatial/temporal distribution to move in traffic zone D from traffic zone 

O in time interval n. 

Constraint (6.2b) is the main difference between the general quasi-dynamic formulation proposed in 

(Cascetta et al. 2013) and the one proposed in Equation (6.2). The former explicitly considers a 

probability function that captures the correlation between generation and distribution over a certain sub-

period of time. As a consequence, 𝑑𝐷|𝑂
𝑆𝑒𝑒𝑑,𝑛

 is updated during the optimization process. Instead, constraint 

(6.2b) assumes a constant value of the distribution, resulting in a smoother objective function. Equation 

(6.2b) presents two major advantages with respect to the simultaneous GLS. First, as the number of 

unknown variables strongly decreases, the simultaneous approach can be applied to larger networks. 

Second, this approach does not necessarily require to explicitly account for historical OD flows within 

the objective function. As pointed out in the introduction, historical OD flows are usually included 

within equation (6.1a) in order to reduce the number of possible solutions. However, this information is 

already considered within constraint (6.2b), that over-impose, to the estimated matrix, the 

spatial/temporal structure of the historical demand. However, a main drawback of this formulation is 

that it is likely to provide a poor fit of the traffic data with respect to equation (6.1) or to the general 

quasi-dynamic formulation, as pointed out in (Cantelmo et al. 2015). Thus, it is an ideal candidate for 

being used in the first phase of the Two-Step approach, where the main purpose is to have a broad 

evaluation of the solution space, rather than to best fit the observations. 

6.2.2 Optimization method: The SPSA 

The optimisation method adopted in this work is the Simultaneous Perturbation Stochastic 

Approximation (SPSA) algorithm proposed in (Spall 2012). While we adopt the original model in this 

Chapter, as has been proven to be very effective for tackling the DODE problem, many authors proposed 

enhanced versions (Antoniou et al. 2015; Tympakianaki, Koutsopoulos, and Jenelius 2015; Cipriani et 

al. 2011), which can also be combined with the proposed framework. The SPSA is a stochastic 

approximation of the deterministic finite difference gradient method, which has been proved to be very 

effective for tackling the DODE, but becomes computationally too expensive for large networks (R. 

Frederix et al. 2011). By assuming a one-sided perturbation (Cipriani et al. 2011), the SPSA computes 

the approximated gradient 𝑮𝒊 at each iteration –i as:  
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𝒈̂𝑘(𝜽
𝑖) =

𝑧(𝜽𝑖 + 𝑐𝑖∆𝑘) − 𝑧(𝜽𝑖)

𝑐𝑖
[
(∆1

𝑘)
⋮

(∆𝑟
𝑘)
] (6.3a) 

𝑮𝒊 = 𝒈̅(𝜽𝒊) =
∑ 𝒈̂𝑘(𝜽

𝑖)
𝑮𝒓𝒂𝒅_𝒓𝒆𝒑
𝒌=𝟏

𝐺𝑟𝑎𝑑_𝑟𝑒𝑝
 

(6.3b) 

With 𝜽𝑖 the vector with the estimated variables, 𝑧(𝜽𝑖) the objective function value in 𝜽𝑖, ci the 

perturbation step, Grad_rep the number of replications to compute the average gradient and Δ is a vector 

with elements {-1,1}. Given the stochastic nature of the model, it is recommended to repeat the 

perturbation multiple times in order to obtain a good approximation. If only one replication is used, then 

𝑮𝒊 = 𝒈̂𝑘. In Equation (6.3a), the asymmetric design (SPSA-AD) model is showed. The main advantage 

of using this formulation is that it allows to reduce the number of simulations needed while still 

providing a proper approximation of the gradient (Cipriani et al. 2011). 

6.2.3 Parameter updating rule 

Given a properly specified objective function and a descent direction – the gradient 𝑮𝑖– the parameters 

are updated at each iteration according to: 

𝜽𝑖+1 = 𝜽𝑖 − 𝛼𝑖𝑮𝑖 (6.4) 

Where 𝛼𝑖 is the stepsize and  𝜽𝑖 is again the vector of parameters to be updated, the OD or the Generation 

flows if we are minimizing, respectively, objective function (6.1) or (6.2). Concerning the value of 𝛼𝑖, 
we proposed to use a line search to find the optimal value in order to reduce the overall computational 

time.  

6.2.4 Single-Step and Two-Step approaches 

The Single-Step OD estimation is formulated in this work as a single constrained optimisation problem, 

which minimises Equation (6.1) according to a certain optimisation method, the SPSA, and the 

parameter updating rule showed in Equation (6.4). Results of this, quite general, optimisation framework 

depend on the overall quality of the initial seed matrix (Antoniou et al. 2016). While a more elaborate 

algorithm may improve the performances of the standard SPSA when applied to large networks, this 

critical element still remains (Antoniou et al. 2016, 2015). The main contribution of breaking the 

optimisation problem in two phases is to relax this strong limitation. 

 The proposed Two-Step approach combines the set of rules, functions and algorithms described in the 

previous sub-sections. Specifically, the first step minimises Equation (6.2) in order to optimise the 

generated demand flows for each zone in each time interval. Hence, in the first phase, the variables are 

the total generated demand flows, which reduces the dimension of the problem considerably. In the 

second step, the classical DODE procedure is performed by minimising Equation (6.1), improving 

temporal and spatial matrix distributions. Breaking the problem as such, one benefits of the right demand 

level identified in the first phase. As the objective function presented in (6.2) reduces the number of 

variables used, it becomes less sensitive to the network size. Thus, the estimated matrix can be used in 

the second level of the Two-Step approach, where the optimisation can exploit a better initial point in 

order to achieve overall better results. 
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The idea of updating the generation in the first step derives from the increasing attention received by 

this type of aggregated information in the literature (Cipriani et al. 2011; Cascetta et al. 2013). This high 

significance derives mainly by the following considerations: 

 

- Total generated trips can limit a demand overestimation during the DODE, which is otherwise 

likely to occur when dealing with congested networks; 

- As generation models are considered the most reliable models in transport engineering 

applications, total generated trips are more easily observable than OD trips; 

- Adopting the generation values inside the DODE, as in (2), reduces the number of variables.  

The goal of the first step is to act on the seed matrix in order to obtain a “right level of demand”, then 

moving to the second step in order to optimise the dynamic distributions OD trips as in (6.1). However, 

it should be stressed out that the main advantage in using the generation is not related to the nature of 

the data – i.e. we have a better knowledge of the generated demand with respect to the number of trips. 

The main advantage of the proposed methodology is instead exploiting the mathematical relation 

between OD demand and generated trips in order to reduce the number of variables and create a 

smoother objective function. 

6.3 Case Study: Luxembourg 

We now test both approaches to the real large-sized network of Luxembourg, showed in Figure (6.1). 

The Grand Duchy of Luxembourg is a small country placed in the heart of Europe, bordered by Belgium 

to the west, Germany to the east and France to the south. As most of the activities are located in the 

capital, Luxembourg City,  the country is facing mobility challenges, which are being made worse by 

the 170.000 workers - about 43% of the commuting demand (Sprumont, Astegiano, and Viti 2017) - 

coming every day to Luxembourg City from the neighbouring countries.  

The main goal of the case study proposed in this section is to model the complex interaction between 

the cross-borders – commuters coming from France, Germany and Belgium – and the road users living 

within the Grand Duchy’s borders. This latter demand segment can be further divided into people living 

in the capital and people living in the countryside, where the second one is the predominant component 

of the commuting demand. The ring of Luxembourg City represents the bottleneck for this system, as 

its capacity is not sufficient to properly serve the high volume of demand moving to the capital during 

the rush hour, hence major congestion patterns are reported every day. 

The network, showed in Figure (6.1), includes all national motorways, which go from the city of 

Ettelbruck to Luxembourg City in the north, and from the capital to the east, west and south borders. 

Additionally, the network includes also primary and secondary roads, as they are commonly used by 

commuters. 
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Fig.6.1:  The Grand Duchy of Luxembourg network, with detail of Luxembourg City; 

 

6.3.1 Description of the Data 

As part of the initiative “Digital Luxembourg”, the Grand Duchy is developing a new open-data portal 

(https://data.public.lu), which gathers different sources of information including socio-demographic 

data. These data, collected by the National Institute of Statistics (STATEC), include the growth of the 

population for each year, the population for each canton and number of cross-borders. Based on these 

statistics, a static matrix for the morning commute has been estimated through the classical Four-Step 

demand generation model. A departure time choice model based on the Vickrey/Small (Small 2015) 

formulation has been then used to derive a dynamic OD matrix from the static one. This dynamic matrix 

accounts for 46 traffic zones and represents the historical demand (Seed Matrix) for the experiments 

presented in the next sub-sections. 

Concerning the supply side, the Luxembourgish Road Administration agency collects and provides 

traffic counts on most of the motorways and primary roads of the Grand Duchy. Unfortunately, these 

data present two major limitations. The first main limitation is that, based on the publicly available data, 

only three detectors are located inside the ring of Luxembourg. This means that we can expect to have 

a realistic representation of the demand on the regional network and on the ring, but it is not possible to 

validate the estimated solution inside the city. The second problem concerns the time interval 

aggregation for these data, as traffic counts are aggregated on an hourly basis. This time interval is 

clearly too large for a network with an average free-flow travel time of 20 minutes since basic congestion 

dynamics could not be properly captured. Finally, neither the open-data portal nor the Luxembourgish 

Road Administration provides information on the speed, which is an essential input when dealing with 

large congested networks such as the one proposed in Figure (6.1).  

To deal with this lack of information, additional data have been provided by Motion-S Luxembourg. 

The company provided average speeds on the ring of Luxembourg for each time interval, which have 

been calculated by using Floating Car Data (FCD). The obtained information, depicted in Figure (6.2), 

is based on the average of all available information and does not contain specifications about time and 

location.  

https://data.public.lu/
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Fig.6.2:  Measured Average Speed  on the ring way around Luxembourg City; 

 

FCD data carry definitely more information than just the average speed, as demonstrated in (Nigro, 

Cipriani, and Del Giudice 2017), but privacy laws do not allow sharing sensible data in Europe. 

Nevertheless, Figure (6.2) shows that the average speed properly capture the expected behaviour on the 

ring way at a network level, as we see a clear drop in the speed that is slowly recovered at the end of the 

peak hour.. The downside is that many possible solutions exist, which can create congestion on the ring. 

As a consequence, the most logical solution for the DODE should be to keep the demand as close as 

possible to the historical demand, while at the same time reproducing the speed profile. However, as 

this information is strongly aggregate, the Single-Step approach has the tendency to over-fit the average 

speed, while the Two-Step approach manage to provide more reliable results by exploiting the link flows 

as a constraint within the objective function. This claim is numerically illustrated in the next section. 

6.3.2 Experiment Setup 

The network introduced in the previous section consists of 3700 links and 1469 nodes. Luxembourg 

City, located in the heart of the system, represents the typical middle-sized European city in terms of 

network dimension and has the typical structure of a metropolitan area, composed of a city centre, the 

ring, and suburb areas. Considering the speed profile and that the infrastructure is composed of 

highways, primary roads and urban roads, we can classify this system as a large-sized heavily congested 

network. In this study, we consider the morning peak between 5 AM and noon (8 hours). After some 

data cleaning, 54 counting stations have been retained, all located on the main arterial roads going to 

Luxembourg City and on the ring. The seed-matrix accounts for 307.544 trips and 16928 time dependent 

OD pairs. Both traffic counts and the average speed are included in the objective function, where the 

Root Mean Squared Error (RMSE) is the chosen estimator 𝑧: {𝑧1, 𝑧2}: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑙𝑖 − 𝑙𝑖)2
𝑁
𝑖=1

𝑁
 (6.5) 

Where N is the number of observations, 𝑞̂𝑖 is the observed value for the measured data and 𝑞𝑖 is the 

simulated one. In order to have a reliable estimation of the gradient, we performed 40 gradient 

replication for the first phase of the Two-Step approach, and 300 replications for both the second-phase 
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of the Two-Step framework and the Single-Step approach. Although these settings lead to a high 

computational time, the SPSA is expected to produce an accurate approximation of the gradient. In terms 

of computational time, each model took about 3-4 days of simulation. Considering the size of the 

network, we consider this estimation time acceptable. However, it is possible to reduce the 

computational time by decreasing the number of gradient replication. Finally, the second phase of the 

Two-Step approach has the same parameters as the Single-Step, while the first phase has a larger 

perturbation step size.  

Finally, to be able to solve the DODE on the network of Luxembourg, we developed a Matlab package 

for solving the dynamic O-D estimation using PTV Visum as DTA model. The package, named 

MAMBA-DEV, allows performing assignment-free dynamic or static OD estimation, using a 

deterministic and/or stochastic approximation of the gradient. The package also includes the Two-Step 

approach discussed in this thesis. While the MAMBA-DEV package has been designed for 

Luxembourg, it can work with any network in Visum, supporting the idea that the model is ready for 

practical implementation. Each simulation takes about 2 minutes. 

6.3.3 Results 

6.3.3.1 Comparison between Single-Step and Two-Step approaches 

The first experiment proposed in this section aims to numerically validate two properties of the Two-

Step approach formulated in the methodology section: 

- The Two-Step approach outperforms the standard one on big sized networks; 

- The first step is likely to find a good initial point to be updated through the objective function 

presented in Equation (6.1); 

The starting point of this experiment is not a “good initial point”, as it derives from a static matrix and 

has not previously been calibrated. The initial matrix provides in fact a rather poor fit with the traffic 

counts (𝑟2 = 0.2686 and 𝑅𝑀𝑆𝐸𝑙𝑖𝑛𝑘−𝑓𝑙𝑜𝑤𝑠 = 452.61 𝑉𝑒ℎ/ℎ). In order to reduce this error, weights 

have been considered so that the traffic counts are responsible for 70% of the overall error within the 

objective function, while the average speed is responsible for the remaining 30%, thus a relatively poor 

representation of the average speed is expected.   
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Fig.6.3:  (a) Objective Function trend; (b) Estimated and Observed Average Speed; (c) Scatter 

Estimated and Observed Link Flows for the Two-Step; (d) Scatter Estimated and Observed Link 

Flows for the Single-Steps; (e) Spider Chart of the relative error for the estimated matrix in terms of 

Link-Flows, Distance from the Historical OD flows (Seed Matrix) and Average Speed; 
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 As showed in Figure (6.3), the Two-Step approach clearly outperforms the Single-Step in terms of 

estimation results, as the latter just collapses on the closest local minima. While the model reduces error 

on the traffic counts (𝑟2 = 0.3194), these results are far from being acceptable for any practical 

application (𝑅𝑀𝑆𝐸𝐿𝑖𝑛𝑘−𝐹𝑙𝑜𝑤
𝑆𝑖𝑛𝑔𝑙𝑒−𝑆𝑡𝑒𝑝

= 438.89 𝑉𝑒ℎ/ℎ). 

By contrast, results from the Two-Step approach seem more reasonable and similar to the expectations 

(𝑟2 = 0.7097, 𝑅𝑀𝑆𝐸𝐿𝑖𝑛𝑘−𝐹𝑙𝑜𝑤
𝑇𝑤𝑜−𝑆𝑡𝑒𝑝

= 241.31 𝑉𝑒ℎ/ℎ). During the first phase, the model exploits Equation 

(6.2) to explore the solution space by updating only the generations. After finding a local minimum, the 

model switches to Equation (6.1) in order to find the best fit with the observations. 

It should be pointed out that the second step of the model is basically adopting the same algorithm as 

the Single-Step approach. The only difference is the starting point, which has been updated during the 

first step of the algorithm. While this framework collapsed in a few iterations when coupled with the 

historical seed-matrix, exploiting the more reliable demand matrix estimated through Equation (6.2) 

gives a relevant contribution to the overall optimisation, stressing how both phases of the Two-Step 

approach are complementary and, thus, necessary.  

Figure (6.3e) depicts the Spider Chart plot of the estimation error for speeds, flows and seed-matrix – 

i.e. the initial point. For each measure, this relative error has been calculated as: 

𝑅𝑒𝑙𝑒𝑟𝑟𝑜𝑟 =
𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙

max (𝑅𝑀𝑆𝐸𝑇𝑤𝑜−𝑆𝑡𝑒𝑝, 𝑅𝑀𝑆𝐸𝑆𝑖𝑛𝑔𝑙𝑒−𝑆𝑡𝑒𝑝)
 (6.6) 

 

Figure (6.3e) intuitively shows the dynamics behind the optimization. The Single-Step approach does 

not manage to move from the initial point, thus to reduce the error on the Link Flows.  

As the Two-Step approach moves to a new solution during the first phase of the optimization, the 

distance with respect to the initial matrix is larger, while the error on the link flows is two times smaller 

than the one for the Two-Step. In terms of estimated demand, the demand matrix estimated through the 

Two-Step approach accounts for 220.360 trips, while the one estimated through the conventional Single-

Step approach accounts for 343.000 trips, supporting the claim that the Two-Step approach is capable 

do perform a broader exploration of the solution space avoiding local optima. The initial demand was 

307.544 trips. 

 Although the Two-Step approach outperforms the Single-Step one, it also increases the error on 

the speeds, which was expected as this information has a low weight in the goal function. Thus, in the 

section we introduce a second experiment, which aims at finding a consistent solution for both counts 

and speeds. 

6.3.3.2 Improving the results obtained: Good Starting Matrix 

The second experiment presented in this section aims at demonstrating that, even when a “good” a prior 

demand matrix is available, the Single-Step approach is more likely to over-fit the data with respect to 

the proposed methodology. Results illustrated in Figure (6.3) show how using the Two-Step approach 

reduces the localism of the standard single-step DODE, relaxing the dependency on the starting matrix. 

However, although the model outperformed the Single-Step formulation, the overall estimation is still 

unsatisfactory. While the model largely reduced the error on the link flows, increasing the 𝑟2 from 

0.2686 to 0.7097, the estimated OD matrix significantly underestimates the congestion on the ring. Thus, 

we performed a second experiment to correct this error. The OD matrix obtained through the Two-Step 

approach in the previous estimation is now used as initial point for this second experiment, simulating 

the situation for which a “good” a priori OD matrix is available. The objective function still accounts 

for both traffic counts and average speed, but this time the latter accounts for 70% of the error, while 
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former are mostly used as a constraint to reduce the search space, avoiding the model to move too far 

from the current solution.   

Results, shown in Figure (6.4), prove that both Two-Step and Single-Step methods estimate a reasonable 

approximation of the congestion pattern. While congestion between 8 AM and 9 AM is still slightly 

underrepresented, the average speed on the ring seems more realistic, as the congestion period begins 

and terminates approximately at the same time for both models.  
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Fig.6.4:  (a) Objective Function trend; (b) Estimated and Observed Average Speed; (c) Scatter 

Estimated and Observed Link Flows for the Two-Step; (d) Scatter Estimated and Observed Link 

Flows for the Single-Steps; (e) Spider Chart of the relative error for the estimated matrix in terms of 

Link-Flows, Distance from the Historical OD flows (Seed Matrix) and Average Speed; 
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However, the Single-Step clearly approximates the average speed on the ring better than the Two-Step 

approach. By contrast, the error on the link flows clearly shows that the Single-Step is overfitting the 

speed data, which was expected given the aggregate nature of this information, while strongly increasing 

the error with respect to the link flows (𝑅𝑀𝑆𝐸𝐿𝑖𝑛𝑘−𝐹𝑙𝑜𝑤
𝑆𝑖𝑛𝑔𝑙𝑒−𝑆𝑡𝑒𝑝

= 338.61 𝑉𝑒ℎ/ℎ). 

Instead, the Two-Step approach manages to provide a realistic fitting for both traffic counts and speed. 

Although the error on the Link Flows increases with respect to the starting point (𝑅𝑀𝑆𝐸𝐿𝑖𝑛𝑘−𝐹𝑙𝑜𝑤
𝑇𝑤𝑜−𝑆𝑡𝑒𝑝

=

291.10 𝑉𝑒ℎ/ℎ), the difference is not as big as for the Single-Step approach, as the 𝑟2 shows in Figure 

(6.4). This brings to a second important consideration. In this second experiment, no improvement is 

observed in the second step of the Two-Step approach.  

Constraint (6.2b) imposes a linear relation between temporal and spatial distribution, meaning that the 

spatial and temporal structure of the demand is constant during the first step of the optimisation. The 

direct consequence of that is that the matrix estimated through Experiment II keeps the same structure 

as the one obtained through Experiment I, while the total demand is different. Although the real OD 

matrix is not available, as we are dealing with real traffic information, we can easily calculate the error 

in terms of Euclidean distance with respect the initial matrix, as we would like to keep the distance with 

respect to the “good” historical OD flows as small as possible. While the Euclidean distance between 

the estimated matrix and the initial one is only 718 trips for the Two-Step approach, this error increases 

up to 6449 trips when using the Single-Step approach as optimization framework.    

In essence, we may argue that the Two-Step approach kept the structure of the demand from the Seed-

Matrix, but sensed and increased the demand in order to move the traffic state on the ring from the 

uncongested to the congested branch of the fundamental diagram. This suggests that the Two-Step 

approach is more likely to exploit aggregate data, without altering the structure of the demand in order 

to overfit the available data.  

This is further illustrated in the Spider Chart (Figure (6.4e)). While the Single-Step provides a substantial 

improvement with respect to the Two-Step in terms of speeds, Figure (6.4e) shows that it clearly alters 

the structure of the demand, moving to a new local minimum and increasing the error on the link flow. 

Instead, the Two-Step estimation seems more robust. Although it does not provide an extremely accurate 

fit of the speed, it keeps the original structure of the demand and provides a reasonable approximation 

for both speeds and traffic counts, which is in line with the expectations. This is demonstrated by 

checking the difference between the “good” initial matrix and the estimated one. The final demand 

matrix estimated through the proposed Two-Step approach amounts at 232.500 trips, against 244.490 

estimated with the conventional Single-Step approach. While these numbers seem similar, the root mean 

square error between estimated and historical seed matrix is ten time higher when using the Single-Step 

approach (49.57 trips/hour against 5.53 trips/hour). This supports the claim that the model is more likely 

to provide more robust results 
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PART II 

Regular Mobility Patterns 

  





7 

Combining Utility and Dynamic 

Traffic Assignment Theories 

The second part of this thesis deals with the estimation of the regular component of the demand. As 

pointed out in the introduction, the model presented in this thesis is based on two components. First, the 

DTA model is paired with a Utility-Based Departure Time Choice model in order to account for 

heterogeneous user behaviour when different activity patterns are considered. Then, the parameters of 

this departure time choice model are updated together with the demand flows within a DODE framework 

in order to estimate the mobility demand.   

This chapter introduces the problem of jointly modelling activity scheduling/duration within a DTA 

problem framework and the effect of the underlying model assumptions.   

Content of this chapter has been presented in the following works: 

Cantelmo, Guido, and Francesco Viti. 2016. “Effects of Incorporating Activity Duration and Scheduling Utility 

on the Equilibrium-Based Dynamic Traffic Assignment,” Proceeding of the 6th Symposium on Dynamic Traffic 

Assignment 

Cantelmo, Guido, and Francesco Viti. 2016. “Effects of Incorporating Activity Duration and Scheduling Utility 

on the Equilibrium-Based Dynamic Traffic Assignment,” Submitted to Transportation Research Part B: 

Methodological journal (Second round of review) 
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7.1 Introduction  

Dynamic Traffic Assignment (DTA) models are important tools in the analysis of congested networks 

since, differently from their static counterpart, they properly consider network capacity constraints and 

the propagation of demand flows and traffic congestion over time, providing relevant insights into 

optimising the network usage. Seminal works (Merchant and Nemhauser 1978; Carey 1986) proposed 

to exploit analytical approaches to solve this problem and to demonstrate their essential properties (see 

e.g. Peeta and Ziliaksopoulos, 2001, or Viti and Tampere, 2010 for an overview). Properties of existence 

and uniqueness of a solution could be derived, hence guaranteeing algorithmic convergence and 

stability. However, in order to ensure such properties, these formulations usually lack realism and are 

generally not applicable for analysing big-sized networks. Hence, researchers developed new 

simulation-based DTA models (e.g. Mahmassani and Herman 1984; Ben-akiva et al. 1998), which focus 

on having a more realistic on-route behaviour.  

Simply stated, DTA models provide an approximation of the network conditions for a given demand 

according to two main sub-components: the travel choice model and the Dynamic Network Loading 

model (DNL). The former deals with pre-trip/en-route user decisions, while the latter with the physical 

propagation of the vehicles on the network. While in early approaches the choice model was mainly 

limited to the routeing strategy, while considering other decision-making levels as “exogenous”, 

researchers stressed that both departure time (Mahmassani and Herman 1984), and mode of transport 

(Fu and Lam 2014) should be explicitly considered within the assignment process. In general, authors 

agree that these decisions are strongly interconnected, and the DNL model could provide inaccurate 

predictions if these three elements are not explicitly represented within the choice model (Peeta and 

Ziliaskopoulos 2001).   

Additionally, many researchers stressed the relevance of shifting from a single trip-based approach to a 

tour/schedule-based representation, able of capturing more complex activity patterns (Adnan 2010; 

Abdelghany and Mahmassani 2003; Lam and Yin 2001; Lin et al. 2008; Zockaie et al. 2015). Empirical 

studies (Bowman and Ben-Akiva 2001; Zhang et al. 2005) show that the advantage is twofold. First, 

trips are intrinsically correlated: according to a trip-based representation, the choice to perform or not a 

specific trip is independent with respect to the other trips in the analysis period. However, users have 

the tendency to change their activity pattern as a response to the growing congestion levels and/or 

policies, meaning that a dependency upon different trips might exist. For example, decisions such as the 

departure time for the morning and evening commute are intrinsically interconnected. Secondly, “travel 

decisions are activity based” (Bowman et al. 1999), meaning that each user travels in order to reach 

his/her destination and perform a certain activity. For this reason, the correlation between different trips 

depends on the duration of such activities, as well as their spatial and temporal distributions (e.g. opening 

hours of shops), meaning that trip-based DTA models, which rely only on the disutility of travelling, 

are likely to provide inaccurate predictions of the traffic state. In contrast, by taking advantage of a more 

reliable choice model, DTA models increase their responsiveness when dealing with, for instance, large-

scale events, activity relocation problems and, in general, for short/long term planning applications.  

One of the most classical and widely adopted procedures to account for a more complex choice model 

is adopting Utility Maximisation Theory (UMT), which assumes that users (re-)schedule their activities 

in order to maximize their perceived utility (Yamamoto et al. 2000; Ettema and Timmermans 2003). 

Although many works exploit UMT within the DTA framework (Balmer et al. 2008; Fu, Lam, and 

Xiong 2016), not enough attention has been given to understanding how the different assumptions on 

UMT will affect the simulation outputs. Since departure time, activity duration and location are 

intrinsically correlated, we can expect that the assumptions we make on each of these elements have 

direct implications on the predicted traffic states.  

 



109 

 

In this chapter, the authors show that, by relaxing the assumptions of the UMT model, the Activity-

Based DTA framework can turn into a trip-based, tour-based or schedule-based approach. While many 

authors already assess the results of the UMT-based choice model under specific conditions, this chapter 

generalizes these findings, showing the conditions in which UMT is able of capturing this dependency. 

To reach this goal, the authors contribute to the state of the art by: 

(i) Formulating a set of properties, which allow predicting the effect of a certain activity function on 

the departure time choice module; 

(ii) In order to evaluate the effect of the utility functions on the departure time choice model, we extend 

the bottleneck model proposed in (Li, Lam, and Wong 2014), initially formulated only for 

commuting trips, in order to account for all type of activities; 

(iii) We introduce a new utility function which properly captures activity duration and can be adapted to 

model different activities, including special events; 

(iv) We introduce a new metric to calculate the Degree of Correlation ¬– the DoC – between different 

activities. 

We test the proposed set of rules with an analytical formulation for simple – i.e. constant – values of the 

utility, while we use a simulation-based approach to show that the proposed general rules hold for non-

linear utility functions. 

It is important to stress that the main goal of this work is not just to compare different utility functions 

in order to test their performances. The more general purpose of the proposed study is instead to assess 

the implications of using a certain UMT framework. Different assumptions within the choice model lead 

to a different congestion pattern. While simple functions might be sufficient when dealing with simple 

dynamics, it is still useful to investigate the error behind this assumption. 

7.2 Literature review 

7.2.1 Dynamic Traffic Assignment 

When it comes to choose in the broad range of existing models, DTA approaches can be categorised as 

analytical or simulation-based models. The analytical models (Merchant and Nemhauser 1978; 

Ziliaskopoulos 2000) provide strong theoretically sound mathematical structures in terms of analytical 

tractability, focusing on finding conditions for solution uniqueness and convergence. While formulating 

the DTA as a rigorous mathematical problem, these approaches usually yield unrealistic congestion 

patterns when applied to real sized networks. Some authors (Mahmassani and Herman 1984; 

Hendrickson and Kocur 1981) pointed out how the simultaneous choice of route and departure time is 

responsible for the length of the congestion period. Taking inspiration from transport economic models 

(Vickrey 1969; Small 1982), many authors developed (analytical) DTA frameworks able to properly 

capture this phenomenon (Arnott, de Palma, and Lindsey 1990; Noland and Small 1995; Ben-Akiva, de 

Palma, and Kanaroglou 1986; Ben-Akiva, Cyna, and de Palma 1984; de Palma et al. 1983; De Palma 

and Arnott 1986; Lindsey and Verhoef 2000; Li, Lam, and Wong 2014a; Jiang et al. 2016). However, 

while these models provide useful insights to evaluate transport policies (e.g. tolling) on simple 

networks, they still lack of realism when dealing with real networks under the user equilibrium 

assumption. To overcome the abovementioned shortcomings, new simulation-based algorithms have 

been developed over the last decades in order to reproduce realistic traffic patterns (Ben-akiva et al. 

1998, 1998; S. Peeta and Mahmassani 1995; Gentile 2015; Lu et al. 2015). While these models 

efficiently reproduce congestion phenomena, most of these approaches assume that departure time is 

exogenous and fixed, hence including only the route choice dimension in the choice model. If departure 

time is considered exogenous, we might assume that the choice model is mostly based on the route cost, 

which, from a theoretical point of view, is an incorrect assumption (Zhang et al. 2005). Two alternatives 

have been explored to overcome this critical issue: 1) simultaneously calibrating the DTA parameters 

and the demand model, hence changing the departure time and the route choice parameters 
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simultaneously (Balakrishna 2006), or 2) explicitly considering the departure time choice within the 

DTA (Mahmassani and Herman 1984; Abdelghany and Mahmassani 2003).  

 

A second key distinction in the DTA approaches is related to the choice model type. In the last decades, 

many authors stressed how the complex congestion dynamics are derived from complex activity patterns 

(Adnan 2010): since users change activity schedule as a consequence of congestion, if equilibrium does 

not include this interdependence the DTA might lead to biased results. Lam and Yin (2001) developed 

an activity-based time-dependent traffic assignment model, where time-dependent utility at the 

destination is used in a discrete choice formulation to understand the sequence of activities. Lam and 

Huang (2002) extended this model to consider the elasticity of the demand with respect to changing the 

activity pattern by having a new non-work location. While this framework properly captures activity 

sequences, it does not take into account activity duration, which has been considered of paramount 

relevance to model activity interdependence (Zhang et al. 2005). Abdelghany and Mahmassani (2003) 

proposed a stochastic microsimulator including activity scheduling. The input demand is the travel plan 

at the user level, including origin, preferred arrival time, activity duration, intermediate and final 

destination. Polak and Heydecker (2006) proposed a traffic assignment formulation where users choose 

a tour constrained to a base point, home, where the tour starts and ends. At the equilibrium, the utility 

of each user with the same activity pattern has to be identical. Ramadurai and Ukkusuri (2010) proposed 

a model to estimate simultaneously activity scheduling, route choice, activity duration and departure 

time using a supernetwork representation of the problem subject to a dynamic user equilibrium 

condition. Adnan (2010) presented a macroscopic framework, showing that UMT is capable of capturing 

activity correlation for the daily commuting. Li et al. (2014) modelled the utility at the user level, using 

macroscopic equilibrium conditions to constrain the single user decision level. Liu et al. (2015) have 

recently developed a new model where the link representing the activity is modelled through a cost 

function. User (dis-)utility is then calculated through a waiting time term, which measures the gap 

between preferred and actual activity starting time, and a duration time term, measuring the gap between 

preferred and actual activity duration. This concept has been also considered in a more general 

framework, called ATS-SAM network (Fu and Lam 2014), which takes into account two streams of 

research in one single framework. The supernetwork platform integrates activity-time-space (ATS) and 

state-augmented-multimodal (SAM) networks. The first one is an expanded network, where activity 

links are considered, as in Ramadurai and Ukkusuri (2010), to represent activity and travel choices 

together. The second one takes into account the multi-modal aspect in a realistic way. While all the 

aforementioned studies are based on the UMT, it should be pointed out that other models have been 

developed to generate realistic dynamic activity patterns through different approaches originating from 

activity-based modelling theory. One of the most famous examples is Albatross (Arentze and 

Timmermans 2004), which is based on decision trees and time constraints. Similarly, Pendyala et al. ( 

2012) propose an integrated model that takes into account location choices, activity-travel choices and 

individual vehicles on networks. Differently from other works, where these choices are modelled 

through a sequential approach, the proposed approach integrates the activity-travel module, dynamic 

traffic assignment module, and land use model within a unique framework. Specifically, it integrates 

minute-by-minute the ABM – which provide the list of trips to be routed during the current time interval 

- and the DTA model – which provide the list of users who finished their trip during that specific time 

interval. However, the focus in these cases is more on generating more comprehensive activity patterns 

for planning purposes rather than to analyse the network congestion 

 
While we considered only the distinction between analytical and simulation-based DTA together with 

the choice model type, it should be pointed out that DTA models can be further classified according to 

the type of assignment (user equilibrium vs. system optimum), aggregation level (macroscopic, 

mesoscopic and microscopic models), and user equilibrium principle (stochastic vs. deterministic). 

While for a detailed overview we refer to other works (Peeta and Ziliaskopoulos 2001; Viti and Tampere 

2010; Barceló 2010), we introduce the following categorization of DTA models, which will be used 

throughout this thesis: 
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- Trip-Based Dynamic Traffic Assignment (TB-DTA): if the decision of travelling for each trip is 

independent from all other trips and is based only on the travel costs related to that trip; 

- Activity-Based Dynamic Traffic Assignment (AB-DTA): if the decision of travelling for each 

trip is independent from all other trips and depends on the benefit of performing an activity at 

the destination and the travel costs; 

- Trip-Chain based Dynamic Traffic Assignment (TC-DTA): if decisions of performing certain 

trips during the analysis period are interdependent; 

- Schedule-Based Dynamic Traffic Assignment (SB-DTA): if decisions of travelling for different 

trips during the analysis period are interdependent and time constraints are explicitly considered.  

 

7.2.2 Utility Maximization Theory 

Many studies show how activity scheduling is strongly related to the satisfaction of performing a specific 

activity at a certain time. While for an extensive literature review we refer to other authors (Dick Ettema 

and Timmermans 2003; D. F. Ettema et al. 2007; Small 2015), we focus here on a specific key issue: 

the final daily activity pattern is a function of travel time, activity duration and the preferred arrival time 

at the destination (Zhang et al. 2005). Hence, there are (at least) three main motivations which drive our 

activity scheduling approach: 

1) The departure/arrival time influences the time each user allocates to a specific activity; 

2) If a certain time constraint exists for a certain activity (i.e. fixed schedule), the user could skip 

a specific activity if he/she has scheduling constraints;  

3) The level of congestion of the system influences the departure time. This is an additional 

constraint for the user, who might not be able to perform an activity when congestion levels 

rise.  

Different authors (D. Ettema and Timmermans 2003; D. F. Ettema et al. 2007, among others), assume 

that the utility varies with the time of the day and that it can be modelled through a continuous function, 

meaning that the marginal utility (MU) would change with the time of the day. Hereby, and in the 

following of this chapter, we will refer to this time-of-day-dependent marginal utility as clock-based 

MU. The advantage of clock-based MU is to properly represent the connection between time of the day 

and utility. A well-known limitation of these functions is however that they assume no correlation 

existing between marginal utility value and activity duration, meaning that they do not consider the 

satisfaction (or, inversely, fatigue) effect of performing the same activity for several hours. 

 

A second utility function can be defined as duration-based MU. In this case, the utility is assumed to be 

proportional to the duration of the activity (Yamamoto et al. 2000). Duration-based MU models 

consider the fatigue effect, but they are not able to fully represent the evolution of the utility over time. 

For this reason, researchers agree that both these ingredients are relevant for properly modelling the 

choice process in a dynamic setting and hence they should be properly combined (D. F. Ettema et al. 

2007; Adnan 2010).  

 

According to the classical formulation proposed by Yamamoto et.al (2000), each user chooses a 

departure time that maximizes his/her utility U: 

 

𝑈𝑛 = (𝑈𝑡 + 𝑈𝑎); (7.1) 

where  𝑈𝑛 is the utility for a certain user n, 𝑈𝑡 represents the disutility of travelling, while 𝑈𝑎 the utility 

of performing one or more activities. This quite general formulation has been broadly used in the 

literature (Dick Ettema and Timmermans 2003; Zhang et al. 2005; Kim, Oh, and Jayakrishnan 2006; 

Polak and Heydecker 2006; D. F. Ettema et al. 2007; Adnan 2010; Li, Lam, and Wong 2014a; Fu and 

Lam 2014). The first component of Equation (7.1) has been analysed in both traffic engineering and 
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transport economics research. Specifically, in order to calculate 𝑈𝑡, the classical schedule delay-based 

formulations (Vickrey 1969; Small 1982) are useful tools in dealing with activity scheduling and 

disutility of travelling. While on one hand they consider the disutility of travelling, on the other they 

allow a flexible behaviour, since users can change their departure time, hence losing some utility. 

Furthermore, when MU is considered a continuous function, the schedule based formulation provides 

time constraints which lead to more realistic conditions (Ettema et al. 2007).  

Focusing on the second term, Ua, Ettema and Timmermans (2003) proposed a clock-dependent utility 

function. In this model, each user has a different utility by performing a specific activity at a different 

time of the day. However, an additional parameter, which considers the flexibility of the user to change 

the starting time of the activity, is introduced. This parameter considers if the activity is clock dependent 

or time-dependent. If the value is equal to 0, the maximum utility of the activity is clock dependent, 

while if equal to 1 it is considered duration dependent, i.e. independently from the activity starting time, 

the user can reach the maximum utility.  

One of the main problems of this formulation and, in general, of the clock-based MU function, is that it 

does not consider the component of satisfaction related to performing an activity for a certain period of 

time. This leads to the fact that the utility of performing an additional hour of activity is assumed to be 

not related to how many hours the user already performed that activity. Furthermore, the satisfaction 

related to one more hour of activity decreases when the duration increases due to a fatigue effect. This 

issue has been considered for the first time by Becker (1965) as a time allocation problem and formulated 

as an optimization problem where the user tries to allocate the resource time in the best possible way. 

Other authors (Yamamoto et al. 2000; Bhat and Misra 1999) assume that, in order to consider the fatigue 

effect, the utility decreases according to a logarithmic scale. A model including all these elements is 

proposed by Ettema et al (Ettema et al. 2007) as an extension of their previous work (Ettema, Ashiru, 

and Polak 2004). To consider heterogeneity in the users’ classes, authors take into account two elements. 

An “observed” heterogeneity is modelled through socio-demographic data, in terms of wages and habits. 

The authors consider also a “non-observed” heterogeneity, related to users, which are in the same social 

class but exhibit different preferences. This element is considered by directly including an error 

component in the utility function.  

7.2.3 Remarks and conclusions 

The literature review presented so far provides useful insights into identifying advantages and 

opportunities in pairing UMT and DTA models, in terms of route choice, mode choice, departure time 

choice modelling and activity scheduling.   

With respect to the DTA model, two main considerations should be pointed out. Firstly, if a UMT-based 

choice model is considered, both flow based (Adnan 2010) and microscopic traffic simulators (Balmer 

et al. 2008) can account for activity patterns. Secondly, since our goal is of evaluating the effect of a 

specific DTA sub-component - the (departure time) choice model - properties of convergence and 

uniqueness of the adopted DTA model are of paramount relevance. Thus an analytical approach is more 

suited than a simulation-based one for the current study. 

Concerning the critical issue of the utility functions effect on the DTA, previous works highlighted the 

following shortcomings: 

1) Adnan (2010) demonstrates mathematically and numerically that, if only clock-based MU 

functions are considered, the DTA models become AB-DTA, according to the above-mentioned 

classification. As a consequence, the author concludes that duration-based utility functions 

should be considered for modelling the work activity; 
2) Li, Lam, and Wong (2014) demonstrate that, for the home-work commuting, if flexibility is 

considered in the clock-based MU, departure ratios for the morning and evening commute are 

correlated. In this case, the models can be considered as a fully-fledged SB-DTA; 
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3) Feil, Balmer, and Axhausen (2009) show that, if the standard duration-based MU formulation 

proposed by Yamamoto et al. (2000) is implemented for modelling longer activities (i.e. work), 

then the model is very likely to provide biased estimations. 

By following these shortcomings, we can easily observe that there is a contradiction in the literature on 

when a model can be categorized as a Scheduled-based or an Activity-Based DTA. The reason is that, in 

these works, the authors analyse a very specific framework, thus their findings cannot be directly applied 

to other frameworks. Thus, the challenge is to propose a new set of conditions that hold for all Utility-

Based DTA frameworks and, even more important, when a different activity type or duration is included 

in the system. 

7.3 Methodology 

In this section, we introduce our methodology for evaluating the effect of the UMT-based choice model 

on the DTA. The first section introduces a general DUE formulation, which takes into account departure 

time, route choice, mode of transport and activity location. Then, in Section 7.3.2, we introduce the 

utility functions for representing activity participation and travel cost. Table 7.1 reports the most relevant 

notations. 

7.3.1 Utility based Dynamic User Equilibrium 

Following traditional UMT (Yamamoto et al. 2000) already introduced in Equation (7.1), we assume 

that each user maximises his/her own utility. The decision variables are 1) the departure time, 2) the 

mode of transport and 3) the route.  

Thus, knowing the set of departure times, modes of transport and routes, for each user, the total utility 

can be calculated. We assume that, at equilibrium, the overall utility is maximal, and can be calculated 

through the following set of equations: 

𝑈𝑛(𝒕,𝒎, 𝒓) = max
𝒕,𝒎,𝒓

(𝑈𝑛
𝑇(𝒕,𝒎, 𝒓) + 𝑈𝑛

𝐴(𝒕))   ∀ 𝑛 ∈ 𝑁 (7.2) 

 

Where 

𝑈𝑛
𝐴(𝒕) = ∑𝑈𝑛,𝑝

𝑎 (𝒕(𝑝, 𝑛));

𝑃

𝑝=1

 (7.2a) 

𝑈𝑛
𝑇(𝒕,𝒎. 𝒓) =  ∑𝑈𝑛,𝑠

𝑡 (𝒕(𝑝, 𝑛),𝒎(𝑝, 𝑛), 𝒑(𝑝, 𝑛));

𝑆

𝑠=1

 (7.2b) 

 

With P and S the number of activities and number of trips, respectively, N the number of users, 

𝑈𝑛
𝑇(𝒕, 𝒓,𝒎) the overall dis-utility of traveling and 𝑈𝑛

𝐴(𝒕) the overall utility of performing activities for 

user n. Lastly, 𝒕 is the vector of the selected departure times, 𝒎 the vector of the selected transport 

modes and r the vector of the selected routes.  

Equation (7.2) might lead or not to a pure Nash equilibrium, based on the assumptions we make on 𝑈𝑡, 

𝑈𝑎 and, in general, on the mobility demand in our system. For a general transport system, we have 

different users with different goals. Let us consider, for the sake of illustration, two classes of users: 

workers and shoppers. 
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Table 7.1: Notations 

Notations 

U = Total net utility 

𝑈𝑡= Disutility of travelling for a specific trip in the system 

𝑈𝑎= Utility related to performing a certain activity 

𝑈𝑇= Overall disutility of travelling 

𝑈𝐴= Overall utility of performing activities 

n = Subscript for the  user 

N = Number of users 

p = Subscript for the number of activities/purposes 

P = Number of activities/purposes 

s = Subscript for the trip 

S = Number of trips 

m = Subscript for the mode of transport 

M = Set of feasible modes of transports 

r = Subscript for the route 

R = Set of feasible routes 

t = Analysis time interval 

𝑡0= Preferred arrival time 

𝑡𝑑−0= Departure time for which user n arrives on time at the destination 

𝑡𝑝
𝑠= Actual starting time for a specific activity p 

𝑡𝑝
𝑒= Actual ending time for a specific activity p 

EA =Scheduling delay - Early Arrival 

LA =Scheduling delay  – Late Arrival 

𝑉𝑜𝑇= Value of Time of unit duration for the travel time 

𝑉𝑜𝐸= Value of Time of unit duration for arriving early 

𝑉𝑜𝐿= Value of Time of unit duration for arriving late 

𝑈𝑀𝐴𝑋 is the maximum accumulated utility for an activity p 

𝛽𝑝 , 𝛼𝑝, 𝛾𝑝 =  parameters for the clock-based MU for an activity p 

𝜏𝑝= Parameter considering the flexibility of an activity p 

𝜂𝑝= Parameter for the duration-based MU for an activity p 

T = Travel Time 

𝑇𝑓= Free flow travel time 

𝑇𝑏= Time spent at the bottleneck 

D(t) = length of the queue during time interval t 

S = Capacity of the bottleneck 

𝜀 time interval in which congestion is observed on the network 

G= parameters accounting for the fatigue effect 
 

 

The maximum net utility for these two different classes will be different since, even when they join the 

same activity, their gain in terms of utility will be different. However, these users will share the same 

common resource, which is the capacity of the transport network. We define here an ideal-activity-

pattern as the activity pattern each user chooses regardless of the travel time spent to reach the activities. 

In other words, the ideal-activity-pattern corresponds to maximise (7.2) when 𝑈𝑛
𝑇 = 0, hence each user 

can allocate his/her time to different activities without considering any constraint related to transport 

costs. The latter costs will be instead controlled by the disutility of travelling as explained later. 



115 

 

We assume that users with the same ideal-activity-pattern belong to the same class. Hence, for each 

class of users, we assume that 𝑈𝑡 and 𝑈𝑎 are evaluated through the same functions, while different 

functions might be considered for different classes. However, equilibrium may not exist for users of the 

same class. In fact, utility 𝑈𝑎 captures the utility of performing an activity, but it does not consider other 

elements, among others, the travel time to reach the zone where the activity takes place, i.e. two 

commuters might live/work in different zones of the city, hence the disutility of travelling 𝑈𝑡 will be 

different even in free flow conditions. For TB-DTA, the most straightforward way to consider this issue 

is to assume that equilibrium exists for each OD pair. However, if we consider multiple destinations and 

complex tours this solution becomes unfeasible. One possible solution could be to assume that 

equilibrium exists for users having the same tour – thus same ideal-activity-patterns and activity 

location. However, we need in this case to explicitly map all the possible alternative tours for each user. 

Instead, we exploit the concept of “base-point” introduced in (Polak and Heydecker 2006). In this case, 

rather than having one single base-point (home), we consider that multiple base-points may exist. For 

commuters, this is the OD pair related to the home-work commuting. Given the base-points, we assume 

that these users might change the other locations in order to increase their utility. In order to consider 

the above-mentioned elements, we can now formulate the following general definition: 

Definition: For a given class of users with the same base-points and ideal-activity-pattern, at 

equilibrium, each combination of 𝒕,𝒎 and 𝒓 leads to the same net utility. 

Following and generalizing (Li, Lam, and Wong 2014a), equilibrium can be now formulated as a 

complementarity problem:   

{
𝑁(𝒕, 𝒓,𝒎)[𝑈𝑛(𝒕, 𝒓,𝒎) − 𝑈∗] = 0                      

𝑁(𝒕, 𝒓,𝒎) ≥ 0, 𝑈𝑛(𝒕, 𝒓,𝒎) − 𝑈∗ ≤ 0     ∀ 𝒕, 𝒓,𝒎
 (7.3) 

Where N(𝒕, 𝒓,𝒎) is the number of user for a certain class, 𝒕, 𝒓  and 𝒎 is their set of chosen departure 

times, routes and transport modes, 𝑈𝑛(𝒕, 𝒓,𝒎) is the utility related to this set of choices, and 𝑈∗ is the 

maximum net utility. 

7.3.2 Modelling the utility for performing an activity 

In this section, we introduce the positive component of the utility for Equation (7.2). In order to evaluate 

the clock-based utility 𝑈𝑛,𝑝
𝑎  related to performing an activity p for a generic user n, the following function 

is considered (Ettema and Timmermans (2003)):  

𝑈𝑛,𝑝
𝑎 (𝑡) =  

 𝛾𝑝𝛽𝑝𝑈
𝑀𝐴𝑋

exp [𝛽𝑝(𝑡 − (𝛼𝑝 + 𝑡𝑝
𝑠𝜏𝑝))](1 + exp [−𝛽𝑝(𝑡 − (𝛼𝑝 + 𝑡𝑝

𝑠𝜏𝑝))])
𝛾𝑝+1

 (7.4) 

 

Where: 

- 𝑈𝑀𝐴𝑋 is the (calibrated) maximum accumulated utility for activity p; 

- 𝛽𝑝, 𝛼𝑝, 𝛾𝑝 and 𝜏𝑝 are parameters to be calibrated; 

- 𝑡𝑝
𝑠  is the starting time for activity p; 

The term 𝑈𝑀𝐴𝑋  in Equation (7.4) scales the utility distribution. Specifically, the parameters 𝛽𝑝, 𝛼𝑝 and 

𝛾𝑝 are responsible of the (bell) shape of the function, while 𝜏𝑝 allows to identify the flexibility with 

respect to the arrival time. If 𝜏𝑝 is equal to 1, the maximum value of the utility 𝑈𝑛,𝑝
𝑎 (𝑡) can be obtained 

for any value of 𝑡𝑝
𝑠 . If 𝜏𝑝= 0, the formulation becomes a standard clock-based MU formulation.  

To capture the fatigue effect, we use the duration-based formulation originally proposed by Yamamoto 

et al. (2000):  
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𝑈𝑛,𝑝
𝑎 (𝑡, 𝑡𝑝

𝑠) = 𝜂𝑝 ln (𝑡 − 𝑡𝑝
𝑠) (7.5) 

 

Where 𝜂𝑝 is a scale parameter to be calibrated. Equations (7.4) and (7.5) will be used to evaluate the 

effect of using a pure clock-based or duration-based MU function on the DTA. The main reason is that 

Equations (7.4) and (7.5) (or similar versions of the same utility functions) have been used in many 

utility-based frameworks (Zhang et al. 2005; Adnan 2010; Fu and Lam 2014; Li, Lam, and Wong 2014a; 

Feil, Balmer, and Axhausen 2009). 

Additionally, Ettema et al. (2007) proposed a utility function which is clock-based and, in the same time, 

duration-based: 

 

𝑈𝑛,𝑝
𝑎 (𝑡, 𝑡𝑝

𝑒 , 𝑡𝑝
𝑠) =

𝑤𝑈𝑀𝐴𝑋

𝜋
((arctan (

𝑡𝑝
𝑒 − 𝛼𝑝

𝛽𝑝
)) − (arctan (

𝑡𝑝
𝑠 − 𝛼𝑝

𝛽𝑝
))) − 𝜂𝑝(1 − 𝑤) ln (𝑡 − 𝑡𝑝

𝑠) (7.6) 

 

Where 𝑡𝑝
𝑒 is the ending time for activity p. Equation (7.6) presents a minor difference with respect to the 

original version proposed in Ettema et al. (2007). The authors did not consider the weight w in the 

original formulation, since they include this term in 𝜂 and 𝑈𝑀𝐴𝑋. Here we prefer to explicitly include 

this weight for having an intuitive comparison with the other methods by explicitly representing the 

trade-off between clock-based and duration-based components. The main problem of Equation (7.6) is 

that the duration-based and clock-based components are considered as additive functions. As we show 

in the next sections, this may lead to an overestimation of the utility for those time intervals in which 

the clock-based component is negligible. Thus, we suggest here a new equation to jointly model the 

time dependent and duration dependent utility.  

Let us consider Equation (7.5). By computing the partial derivative over time, we get the marginal (time-

dependent) utility for each value of t:  

𝑈𝑛,𝑝
′𝑎 (𝑡, 𝑡𝑝

𝑠) =
𝜕

𝜕𝑡
(𝑈𝑛,𝑝

𝑎 (𝑡, 𝑡𝑝
𝑠)) = 𝜂𝑝  

1

(𝑡 − 𝑡𝑝
𝑠)

 (7.7) 

 

Specifically, after the first hour of work, when 𝑡 = 𝑡𝑝
𝑠 + 1, the utility will be 𝜂𝑝, then it will start 

decreasing according to a logarithmic scale for any additional hour of work. Equation (7.7) assumes that 

the utility of the modelled activity, for instance shopping, is constant during the day, i.e. 𝑈𝑛,𝑝
𝑎 (𝑡) =

𝜂𝑝 ∀ 𝑡, but decreases with time according to a logarithmic trend. After one hour of shopping, the user 

might decide to perform a different activity. If the same concept is applied to a time dependent utility 

function, in which the utility in certain time interval t is calculated through a function 𝑈𝑛,𝑝
𝑎 (𝑡), we get: 

𝑈′𝑛,𝑝
𝑎 (𝑡, 𝑡𝑝

𝑠) = 𝑈𝑛,𝑝
𝑎 (𝑡)

1

(𝑡 − 𝑡𝑝
𝑠)

 (7.8) 

 

According to this formulation, we might simply consider that 𝑈𝑛,𝑝
𝑎 (𝑡) is a general clock-dependent utility 

function – such as the one presented in Equation (7.4), while 𝑈′𝑛,𝑝
𝑎
(𝑡, 𝑡𝑝

𝑠) is the same function, when 

the fatigue effect is considered. If the utility is constant and equal to 𝜂𝑝, we obtain Equation (7.7). While 

Equation (7.8) sounds correct from a mathematical point of view, behaviourally speaking, it is biased. 

As pointed out in (D. F. Ettema et al. 2007), the effect of fatigue should be weighted according to the 
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specific activity. While, in Equations (7.5) and (7.7), 𝜂𝑝 includes this weight, it has to be explicitly 

modelled in Equation (7.8). If not, activities with a longer duration will be penalized (Feil, Balmer, and 

Axhausen 2009).  

The overall utility for an activity p, for a given value of 𝑡𝑝
𝑠  and 𝑡𝑝

𝑒 can be estimated as: 

𝑈𝑛,𝑝
𝑎 (𝑡𝑝

𝑠 , 𝑡𝑝
𝑒) = ∫ 𝑈𝑛,𝑝

𝑎 (𝑡) (
1

(𝑡 − 𝑡𝑝
𝑠)
)

𝐺

𝑑𝑡
𝑡𝑝
𝑒

𝑡𝑝
𝑠+1

 (7.9) 

 

Where G is a parameter to be calibrated. Specifically, if G is equal to 0, then Equation (7.9) is the integral 

of the original clock-based formulation if G=1 the fatigue effect will be dominant, as shown in Figure 

7.1. 

 

Fig.7.1:  Marginal utility obtained using equation 7.8 (𝑡𝑝
𝑠= 9); 

 

The main advantage of Equation (7.9) is to be able to consider the effect of the satisfaction within a 

clock-based approach. While Adnan (2010) points out that a duration-based function should be used 

when dealing with such activities like work, Feil et. al. (2009) show that the duration-based formulated 

in Equation (7.5) can hardly model activities with a relevant duration. Hence, equation (7.9) is a good 

compromise for modelling such activities. Note that, for G=1 and 𝑈𝑛,𝑝
𝑎 (𝑡) = 𝜂𝑝 ∀ 𝑡, Equation (7.9) and 

Equation (7.5) are the same.  

It should also be pointed out that Equations (7.4-7.9) are here assumed error-free. This is possible when 

they are used to model a population of synthetic identical users travelling on a certain network. However, 

these functions are usually calibrated through survey data, where clearly different users have different 

preferences. To account for this problem, in the calibration phase, the modeller should consider a 

perception error for each variable, which accounts for the idiosyncrasy of the population. Clearly, 

different assumptions of the distribution of the error term will lead to a different calibration result. While 

we do not dive further in this direction, should be pointed out that, in the literature, Equations (7.4-7.9) 

are usually calibrated using Logit-type models, and assuming a Weibull/Gamble distribution of residuals 

(Bowman and Ben-Akiva 2001). An example of the different outputs we can obtain when calibrating 

Equation (7.4-7.9) is proposed in Appendix C.1. 
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7.3.3 Modelling the disutility of travelling: the Bottleneck Model 

In order to evaluate the disutility of travelling, the cost function 𝑈𝑡 in Equation (7.2) for the user n 

during a generic trip s with purpose p can be defined as: 

𝑈𝑛,𝑝,𝑠
𝑡 = 𝑉𝑜𝑇𝑠,𝑝 ∙ (𝑇(𝑡𝑛,𝑚𝑛, 𝑟𝑛)) + 𝑉𝑜𝐸𝑠,𝑝 ∙ (𝐸𝐴(𝑡𝑛,𝑚𝑛 , 𝑟𝑛)) + 𝑉𝑜𝐿𝑠,𝑝 ∙ (𝐿𝐴(𝑡𝑛,𝑚𝑛, 𝑟𝑛)) (7.10) 

Where T is the travel time, EA and LA are scheduling costs for the early and late arrival, respectively. 

𝑉𝑜𝑇𝑠,𝑝, 𝑉𝑜𝐸𝑠,𝑝 and 𝑉𝑜𝐿𝑠,𝑝 are parameters to calibrate, which are purpose/trip dependent. These 

parameters take into account the value of time related to travel and arrive late/early. For simplicity of 

notation we refer to the parameters {𝑉𝑜𝑇𝑠,𝑝, 𝑉𝑜𝐸𝑠,𝑝, 𝑉𝑜𝐿𝑠,𝑝} as {𝑉𝑜𝑇, 𝑉𝑜𝐸, 𝑉𝑜𝐿} for the rest of this 

chapter. This function is the same proposed by Vickrey (1969) and Small (1982), and presents two main 

advantages: it deals with the problem of departure time rescheduling and it tackles problems related to 

having continuous clock-based MU functions, which do not capture the rigid scheduling of specific 

activities. 

To calculate the disutility function presented in Equation (7.10), under the assumption of user 

equilibrium, we apply a recent extension of the classical bottleneck model introduced by Li et al. (2014). 

While using a bottleneck model might look simplistic, the following considerations endorse this 

decision: 

1) Zhang et al. (2005) show that the bottleneck model is able to capture the correlation between 

morning and evening congestion; 

2) Li et al. (2014) analyse the analytical properties of the bottleneck model, when the utility of 

performing an activity is considered in the equilibrium problem. The properties of convergence 

and uniqueness make this model an ideal candidate for a preliminary analysis; 

3) By definition, the bottleneck model is able to consider the interaction between users related to 

the capacity constraint; 

4) Utility at the destination can be considered as an additional component in the trip costs. The 

bottleneck model is the most suited model for evaluating the sensitivity with respect to different 

utility functions; 

5) We might imagine that a simulation-based DTA will incur at least in the same shortcomings of 

a bottleneck model, hence the bottleneck model can provide useful insights into the conditions 

under which a utility-based equilibrium model provides realistic outputs.  

Lastly, the bottleneck model matches the requirements of the DUE formulated in Equation (7.2). The 

bottleneck model represents the connections between the base-points through a single link-route. Figure 

7.2 shows the model for the home-work commuting.  

 

 

 

 

 

 

Fig.7.2:  Bottleneck model for the Home-Work commuting; 

 

By focusing on only car users, we obtain that the only decision variable is the vector of departure times 

t. While for a detailed overview of this model, authors refer to Li et al. (2014), here we present the 

A B 

Base1 (Home) Base2 (Work) 
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fundamental equations, based on the seminal work of Arnott, de Palma, and Lindsey (1990). We define 

S as the capacity of the link AB, which is expressed in vehicles per hour (veh/h). Assume to have a 

single class of N users, with N>S, travelling between the two base-points. Since the demand exceeds 

the capacity, a queue will occur on the link A-B, which is the bottleneck of our system. The travel time 

from A to B can be calculated as: 

𝑇(𝑡) = 𝑇𝑓 + 𝑇𝑏(𝑡) (7.11) 

 

where t is the departing time,  𝑇𝑓 is the free flow travel time and 𝑇𝑏 is the time spent at the bottleneck, 

given a certain departing time t. The free flow travel time is here considered equal to 0 for illustration’s 

sake, meaning that the travel time between A and B is equal to the time spent at the bottleneck. The time 

spent at the bottleneck can be calculated given the length of the queue, according to Little’s law (Little, 

1961), i.e. Equation (7.12): 

 

𝑇𝑏(𝑡) =
𝐷(𝑡)

𝑆𝐵
 (7.12) 

 

Where D(t) is the length of the queue and SB is the capacity at the bottleneck. The maximum length of 

the queue is calculated as the integral of all vehicles queuing after a certain time interval 𝑡∗, which 

represents the last time interval in which no queue was observed at the bottleneck. Defined as r(t) the 

departing rate for a certain time interval t, we can obtain the length of the queue as follows:  

𝐷(𝑡) = ∫ 𝑟(𝑡)𝑑𝑡
𝑡

𝑡∗
− 𝑆𝐵(𝑡 − 𝑡∗) (7.13) 

 

The derivative with respect to the departure time provides the number of vehicles queuing in the time 

interval t. 𝑠𝑏(𝑡 − 𝑡∗) represents the capacity during the time interval (𝑡 − 𝑡∗).   

𝜕 𝐷(𝑡)

𝜕𝑡
= 𝑟(𝑡) − 𝑠𝑏      𝑓𝑜𝑟 𝐷(𝑡) > 0 (7.14) 

 

For each class of users, we assume the same preferred arrival time 𝑡𝑜. We can define the 𝑡𝑑−𝑜 the 

departure time for which the user arrives at work on time:  

𝑡𝑑−0 = 𝑡0 − 𝑇𝑏(𝑡𝑑−0) (7.15) 

 

Therefore, we can now quantify the early and late departure times as: 

{
𝐸𝐴 = 𝑡0 − 𝑇𝑏(𝑡) − 𝑡     𝑓𝑜𝑟 𝑡 < 𝑡𝑑−0

𝐿𝐴 = 𝑡 + 𝑇𝑏(𝑡) − 𝑡0     𝑓𝑜𝑟 𝑡 > 𝑡𝑑−0
 (7.16) 

 

The cost function of one specific trip s is a linear combination of the following three elements, as showed 

in Equation (7.10), and can be now formulated as: 
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𝑈𝑛,𝑠
𝑡 =  𝑉𝑜𝑇 ∙ (𝑇) + 𝑉𝑜𝐸 ∙ (𝐸𝐴) + 𝑉𝑜𝐿 ∙ (𝐿𝐴) =

=  𝑉𝑜𝑇 ∙ (𝑇𝑏(𝑡)) + 𝑉𝑜𝐸 ∙ 𝑚𝑎𝑥(0; 𝑡0 − 𝑡 − 𝑇𝑏(𝑡) ) + 𝑉𝑜𝐿 ∙ (𝑡 + 𝑇𝑏(𝑡) − 𝑡0)
 (7.17) 

 

The parameters 𝑉𝑜𝑇, 𝑉𝑜𝐸 and 𝑉𝑜𝐿 usually change and should be calibrated according to the activity 

located in the origin or destination of the trip s. 

While the equilibrium point can be analytically derived for the standard bottleneck model (Arnott, de 

Palma, and Lindsey 1990), Li et al. (2014) show that, when utility is explicitly considered, an analytical 

solution is available only for constant values of the utility. Thus, in order to evaluate complex functions, 

they suggest to find the equilibrium through the well-known method of successive averages (MSA) 

algorithm. We also apply here the same numerical scheme: 

Step 0: Define an initial departure flow value: 𝑁𝑘(𝒕) by setting 𝑡 = 𝑡0 ∀ 𝑛 ∈ 𝑁 and the iteration 

number k=1; 

Step 1: Load the demand on the network, obtaining the travel time T; 

Step 2: Calculate the Utility 𝑈𝑛 = (𝑈𝑡(𝑡) + 𝑈𝑎(𝑡)) ∀ 𝑛; 

Step 3: Perform an all-or-nothing assignment in order to obtain the auxiliary flows 𝑁𝑘
∗(𝒕); 

Step 4: Update the solution through the MSA algorithm as  𝑁𝑘+1(𝒕) = 𝑁𝑘(𝒕) +
1

𝑘+1
(𝑁𝑘

∗(𝒕) −

𝑁𝑘(𝒕)) 

Step 5: Check the convergence. If  max (𝑎𝑏𝑠(𝑞𝑘+1(𝒕) − 𝑞𝑘(𝒕)) > 𝜺, where 𝜺 is the vector 

containing   precision tolerance, then k=k+1, and go to Step 1.   

This numerical procedure will be used for evaluating the different utility functions in the numerical 

experiments. As pointed out in section (7.2.3), an analytical model is more suited for this study than a 

simulation-based one. Since properties of convergence and uniqueness of the model have been already 

discussed in the original paper (Li, Lam, and Wong 2014b), this framework seems ideal for analysing 

the effect of using different utility functions to model the activity purpose. However, the model proposed 

in the original paper focuses on the commuting trip only, while in this thesis we are interested in 

modelling all types of activity, thus we expect our model to be able to capture more reliably congestion 

dynamics. To achieve this goal, in the next chapter we generalize the conditions introduced in (Li, Lam, 

and Wong 2014b) in order to hold for all activity types. 

7.4 Properties of the Utility-Based DTA 

In this section, the bottleneck model is combined with the proposed utility functions in order to evaluate 

the effect of dynamic travel time and congestion on the departure time. To do so, we study the behaviour 

of a homogeneous population of drivers, travelling on the network shown in Figure 7.2. Users are 

assumed to maximise Equation (7.2) using as decision variable the vector t. First, we generalize the 

Bottleneck model in order to account for different activities. Then, we analyse the conditions under 

which a TB-DTA turns to be an AB-DTA and, lastly, we focus on the scheduled based case. 

7.4.1 Extending the Activity-Based DTA 

To capture the effect that utility at the destination has on the congestion pattern, we analyse the critical 

moment in which users switch from one activity to another. Let Activity 1 be performed at the origin of 

a trip, while Activity 2 is to be performed at the destination. 
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Fig.7.3:  (a) clock-based MU for consequent activities; (b) Departure and arrival time; 

 

In an ideal situation, when N<S and T=0, the arrival time at destination and the departure time from the 

origin are equal to the preferred arrival time 𝑡0 = 𝑡𝑑−0, which is purely determined by maximising (the 

positive components of) the utility.  

In a congested case, this option is not feasible anymore, and each user will choose between arriving at 

𝑡0 while incurring in some congestion, or changing his/her scheduling. Considering that the length of 

the congestion period will be equal to 
𝑁

𝑆
, let 

𝑁

𝑆
= 𝜀2 − 𝜀1, where 𝜀1 and 𝜀2 are the first and last moment 

in which congestion occurs according to the bottleneck model presented in section 7.3.3.  

As demonstrated in (Li, Lam, and Wong 2014), a queue occurs at the bottleneck, for the home-work 

morning commute, when: 

{
𝑈1
𝑎(𝑡) − 𝑈2

𝑎(𝑡) > −𝑉𝑜𝐸     𝑓𝑜𝑟   𝑡 ∈ (𝜀1, 𝑡
0] 

𝑈1
𝑎(𝑡) − 𝑈2

𝑎(𝑡) < 𝑉𝑜𝐿      𝑓𝑜𝑟  𝑡 ∈ [𝑡0, 𝜀2)
 

(7.18a) 

(7.18b) 

 

Where 𝑈1
𝑎(𝑡) and 𝑈2

𝑎(𝑡) are the utilities lost with respect to the activity Activities 1 and 2, respectively. 

Equation (7.18) has been demonstrated to hold for the home-work commute, but does not hold for 

general activities since it relies on the assumption that the first and the last user will not face congestion. 

In general, we cannot accept this assumption in this study. While there will always be a first user not 

facing congestion, for many activities (such as special events or concerts) it can happen that different 

users will arrive together and face some congestion. Specifically, Equation (7.18a) has been 

demonstrated under the assumption that the first user does not face congestion, while Equation (7.18b) 

under the assumption that the last user in the system does not face congestion. Thus, while it is intuitive 

to accept that Equation (7.18b) does not hold for the type of analysis carried on in this thesis, we might 

argue that Equation (7.18a) still holds (i.e. the assumption that the first user does not face queue is 

accepted). Thus, through a simple example, we show that Equation (7.18a) alone it is not sufficient when 

the last user faces congestion.  

Consider that the first commuter entering in the system at 𝑡 = 𝜀1 will face no queue, while for any 

departure time 𝑡 = 𝑡̂, users will face congestion and/or some schedule delay. Considering the case of 

early penalty, we calculate the utility until 𝑡 = 𝜀2 as: 
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𝑈(𝜀1) = ∫ 𝑈2
𝑎(𝑡)𝑑𝑡

𝜀2

𝜀1

−𝑈𝑡 (𝜀1) (7.19a) 

𝑈(𝑡̂) = ∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝑡̂

𝜀1

+∫ 𝑈2
𝑎(𝑡)𝑑𝑡

𝜀2

𝑡̂+𝑇𝑏(𝑡̂)

− 𝑈𝑡 (𝑡̂) 
(7.19b) 

 

Where 𝑈𝑡 (𝑡) represents the disutility of travelling. In the condition in which 𝑈1
𝑎(𝑡) = 0 𝑓𝑜𝑟 𝑡 ∈

(𝜀1, 𝜀2), 𝑈2
𝑎(𝑡0) =∞ and 𝑈2

𝑎 = 0   ∀ 𝑡 > 𝑡0, we have that at equilibrium the total net utility is infinite 

for both users, thus we have:  

𝑈(𝜀1) − 𝑈(𝑡̂) = [∫ 𝑈2
𝑎(𝑡)𝑑𝑡

𝜀2
𝜀1

−𝑈𝑡 (𝜀1)] − [∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝑡̂

𝜀1
+ ∫ 𝑈2

𝑎(𝑡)𝑑𝑡
𝜀2
𝑡̂+𝑇𝑏(𝑡̂)

−𝑈𝑡 (𝑡̂)] =

−𝑈𝑡 (𝜀1) + 𝑈
𝑡 (𝑡̂)= 

= [−𝑉𝑜𝐸 ∙ (𝑡0 − 𝜀1)] + [𝑉𝑜𝑇 ∙ (𝑇
𝑏(𝑡̂)) + 𝑉𝑜𝐸 ∙ (𝑡0 − 𝑡̂ − 𝑇𝑏(𝑡̂))] = 0 

(7.22) 

As for the standard bottleneck model, the equilibrium conditions depend upon the schedule delay and 

the travel time. However, at equilibrium we expect ∫ 𝑈2(𝑡)𝑑𝑡
𝜀2
𝑡̂+𝑇𝑏(𝑡̂)

=∞ ∀ 𝑡̂ . In order to achieve this 

goal, the last user entering in the network chooses the departing time in order to be at destination just in 

time: 𝑡̂ + 𝑇𝑏(𝑡̂) = 𝑡0. Since the user does not face late penalty, Equation (7.20) becomes:  

𝑈(𝑡̂) − 𝑈(𝜀1) = − 𝑉𝑜𝐸 ∙ (𝑡
0 − 𝜀1) + 𝑉𝑜𝑇 ∙ (𝑇

𝑏(𝑡̂)) = 0 (7.21a) 

 
𝑉𝑜𝐸

𝑉𝑜𝑡
=
(𝑇𝑏(𝑡̂))

(𝑡0 − 𝜀1)
 (7.21b) 

As we can see, the case in which the utility is infinite in 𝑡0, the last user will face congestion while no 

user will arrive late. For the special case 𝑉𝑜𝐸 = 𝑉𝑜𝑇, the equilibrium solution is (𝑡̂ =  𝜀1 ∀ 𝑛 ∈ 𝑁). 

This is shown in Figure 7.4, where the y-axis shows the cumulative of the departure ratio, and the x-axis 

the time. In this case all the demand (in the example N=5000 users) chooses the same departure time 

interval 𝑡 = 𝜀1. The length of the congestion period is, as previously indicated, equal to N/S, where S is 

the saturation flow, 2000 veh/h in this case. 

 

Fig.7.4:  Cumulative of the departures for the case  𝛼= 𝛽, when 𝑡 = 𝜀1∀ 𝑢 ∈ 𝑁; 
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Equations (7.19-7.21) show that the Equation (7.18a) alone does not hold when we accept that the last 

user might face some queue. Thus, we introduce a new and more general condition to explicitly take 

into account this phenomenon: 

Proposition 1: Given the preferred departure time 𝑡𝑑−0, the departure time of the first user 𝜀1 and of 

the last user 𝜀2, a queue must exists at the bottleneck if and only if at least one of the two following 

conditions is satisfied: 

{
 
 

 
 ∫ (𝑈2

𝑎(𝑡) − 𝑈1
𝑎(𝑡))𝑑𝑡

𝑡0

𝜀1

< 𝑉𝑜𝐸 ∙ (𝑡0 − 𝜀1)                                    

∫ (𝑈2
𝑎(𝑡) − 𝑈1

𝑎(𝑡))𝑑𝑡
𝜀2

𝜀1

<  𝑉𝑜𝐸 ∙ (𝑡0 − 𝜀1) − 𝑉𝑜𝐿 ∙ (𝜀2 − 𝑡
0)

 

(7.22a) 

(7.22b) 

Equation (7.22a) takes into account the modelled behaviour already discussed in (Li, Lam, and Wong 

2014b), while Equation (7.22b) considers that the last user might face congestion. It should be pointed 

out that the system of equations (7.22) is a generalization of the system of equations (7.18). While 

Equation (7.22a) is basically the same as Equation (7.18a), Equation (7.22b) it seems to point in the 

opposite direction with respect to Equation (7.18b). There are three main reasons to explain this 

difference. First, as we said at the beginning of this section, Equation (7.18b) holds under the assumption 

that there is no queue at time interval 𝜀2. By removing this assumption, the equation does not hold. 

Second, Equation (7.22) specifies if a queue exists or not, while Equations (7.18) divide the system in 

queue before and after the preferred arrival time 𝑡0. This assumption is unreasonable for the current 

study since we want to model the case for which all users decide to leave before the preferred departure 

time, as we showed in Figure 7.4. Lastly, in Equations (7.22) we accept that the condition  𝑇𝑏(𝑡̂) <

𝑇𝑏(𝑡0) ∀ 𝑡̂  ∈ (𝜀1, 𝜀2) does not hold. Thus, the system of equations (7.22) is more general to identify if 

a queue exists in the period (𝜀1, 𝜀2). The proof of Proposition 1 is discussed in Appendix C.2. 

7.4.2 Activity-Based DTA 

After identifying the conditions under which a queue is expected at the bottleneck, we investigate in this 

section the effect of the utility on the dimension of the rush hour in terms of the length of the queue and 

beginning of the congestion period. With respect to Figure 7.3 we can calculate the utility lost as: 

𝑈𝑙𝑜𝑠𝑡 = 𝑈1
𝑎(𝜀1, 𝑡

0) + 𝑈2
𝑎(𝜀2, 𝑡

0) = ∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝑡0

𝜀1
+ ∫ 𝑈2

𝑎(𝑡)𝑑𝑡
𝜀2
𝑡0

  (7.23) 

Where 𝑈1
𝑎(𝜀1, 𝑡

0) and 𝑈2
𝑎(𝜀2, 𝑡

0) are the utilities lost with respect to the ideal activity pattern for 

Activities 1 and 2, respectively.  𝑈𝑙𝑜𝑠𝑡 represents the maximum possible amount of lost utility in the 

system. In general, we can argue that the size of 𝑈𝑙𝑜𝑠𝑡 will affect the departure ratio. When 𝑈𝑙𝑜𝑠𝑡 tends 

to zero, the model calculates the departure ratio by taking into account scheduled delay and travel time, 

i.e. it coincides with the standard bottleneck model. Considering instead 𝑈𝑙𝑜𝑠𝑡 > 0, we can calculate ∆𝑈 

as: 

∆𝑈(𝜀1, 𝜀2, 𝑡
0) = 𝑈1

𝑎(𝜀1, 𝑡
0) − 𝑈2

𝑎(𝜀2, 𝑡
0)  (7.24) 

This consideration suggests one reflection, i.e. the bigger ∆𝑈(𝜀1, 𝜀2, 𝑡
0) is, the more the utility-based 

equilibrium will diverge with respect to the trip based one. 

Equations (7.23-7.24) capture only the positive effect of the utility on the rush hour, neglecting the effect 

that the disutility has on the duration of the rush hour. However, the two terms 𝜀1 and 𝜀2 depend on the 

early and late penalty coefficients VoE and VoL.  Specifically, if VoE=VoL, then we have a symmetric 

distribution of the demand around the preferred departure time, and Equations (7.16-7.17) properly 
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capture the trade-off between departure time and utility. Otherwise, we need to explicitly consider this 

trade-off when calculating ∆𝑈(𝜀1, 𝜀2, 𝑡
0). Given this motivation, we can re-formulate the first property 

of the Activity Based DTA models as: 

∆𝑈(𝜀1
𝑇𝐵 , 𝜀2

𝑇𝐵) = 𝑈1
𝑎(𝜀1

𝑇𝐵, 𝜀2
𝑇𝐵) − 𝑈2

𝑎(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵)  (7.25) 

𝑈1
𝑎(𝜀1

𝑇𝐵, 𝜀2
𝑇𝐵) = ∫ 𝑈1

𝑎(𝑡)𝑑𝑡
𝜀2
𝑇𝐵

𝜀1
𝑇𝐵

 (7.25) 

𝑈2
𝑎(𝜀1

𝑇𝐵, 𝜀2
𝑇𝐵) = ∫ 𝑈2

𝑎(𝑡)𝑑𝑡
𝜀2
𝑇𝐵

𝜀1
𝑇𝐵

 (7.25) 

Where coefficients 𝜀1
𝑇𝐵 and 𝜀2

𝑇𝐵 in Equation (7.25) are calculated with the TB-Bottleneck model, thus 

without considering the positive effect of the utility. The main advantage is that they can be calculated 

easily through the equations of the standard bottleneck model (Arnott, de Palma, and Lindsey 1990).   

Given Equation (7.25), we can now formulate three properties for the Activity-Based DTA: 

Property  1: If  𝑈𝑙𝑜𝑠𝑡 ≠ 0, the congestion period may shift. Specifically, TB-DTA anticipates 

the congestion if ∆𝑈 > 0, while for ∆𝑈 < 0 the congestion period is postponed; 

Property  2: If   𝑈𝑙𝑜𝑠𝑡 > 0 and ∆𝑈 = 0, then TB models underestimate/overestimate the 

queue with respect to AB models, while congestion shift is not observable; 

Property  3: Under condition (22), when 𝑈1
𝑎(𝑡) > 𝑈2

𝑎(𝑡) ∀ 𝑡 ∈ (𝜀1, 𝜀2), the queue will reach 

its maximum length sooner or in the same time with respect to the case in which 𝑈1
𝑎(𝑡) <

𝑈2
𝑎(𝑡) ∀ 𝑡 ∈ (𝜀1, 𝜀2).  

Since an analytical solution exists for constant utilities, in order to demonstrate this concept, Figure 7.5 

shows the results for constant values of 𝑈1
𝑎(𝑡) and 𝑈2

𝑎(𝑡). The numerical experiments will then 

generalize our findings for non-constant utility functions.     

 

Fig.7.5:  (a) Congestion as a function of ∆𝑈(𝜀1, 𝜀2, 𝑡
0); Difference between TB and AB model when 

(b) 𝑈𝑙𝑜𝑠𝑡 ≠ 0 and ∆𝑈 = 0, (c) ∆𝑈 < 0 and (d) ∆𝑈 > 0; 
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Figure 7.5 shows the typical cumulative representation for the standard bottleneck model. In Figure 7.5a, 

we can see the general effect of 𝑈𝑙𝑜𝑠𝑡 on the congestion. If Proposition 1 holds, congestion occurs. In 

Figure 7.5b, the curve 𝐶𝐴𝐵 represents the cumulative departure ratio for the standard TB bottleneck 

model, while 𝐶𝐴∗𝐵 is the cumulative departure ratio for the AB version. The curve 𝐶𝐵 represents the 

cumulative arrival ratio, which is the same for the AB and TB model, and depends upon the capacity of 

the bottleneck. Before moving to the next step, which is considering that activities are interconnected, 

we provide here some numerical analysis to prove Properties (1-3) to hold.  

Remarks on property 1: Considering the TB-bottleneck model, we can easily calculate that, at 

equilibrium, the following equation has to be satisfied:  

−𝑉𝑜𝐸 ∙ (𝑡0 − 𝜀1
𝑇𝐵) = −𝑉𝑜𝐿 ∙ (𝜀2

𝑇𝐵 − 𝑡0)  (7.26) 

At the equilibrium, both the first and last user does not face congestion and the overall utility is related 

to the late/early arrival penalty. Introducing a positive cost component in the system, Equation (7.26) 

becomes:  

∫ 𝑈2
𝑎(𝑡)𝑑𝑡

𝜀2
𝑇𝐵

𝜀1
𝑇𝐵 − 𝑉𝑜𝐸 ∙ (𝑡0 − 𝜀1

𝑇𝐵) = ∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝜀2
𝑇𝐵

𝜀1
𝑇𝐵 − 𝑉𝑜𝐿 ∙ (𝜀2

𝑇𝐵 − 𝑡0)  (7.27) 

Or, substituting Equations (7.26,7.25b, 7.25c) within Equation (7.27): 

𝑈2
𝑎(𝜀1

𝑇𝐵, 𝜀2
𝑇𝐵) = 𝑈1

𝑎(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵)  (7.28) 

Equation (27) holds if and only if the overall utility at the origin and at the destination during the time 

interval (𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵) is the same. In all other conditions, equilibrium is not satisfied. As a consequence, 

users will have to reschedule their activities in order to reach an equilibrium point. There are two options. 

The last user is anticipating his trip, thus anticipating the beginning of the rush-hour, or the last user will 

postpone his/her own departure time. Equation (7.27) can be written as a difference, obtaining again 

Equation (7.25). If 𝑈2
𝑎(𝜀1

𝑇𝐵 , 𝜀2
𝑇𝐵) > 𝑈1

𝑎(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵) , then ∆𝑈(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵) < 0, meaning that the 

utility at the destination is larger than at the origin. Thus, demand in time interval 𝜀1
𝑇𝐵 will increase, 

while decreasing in time interval 𝜀2
𝑇𝐵. Since the assumption that the first user will never face 

congestion, the only solution is that at equilibrium  𝜀1 < 𝜀1
𝑇𝐵. The opposite phenomena can be observed 

if ∆𝑈(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵, 𝑡0) > 0. 

Remarks on property 2: Equation (7.27) shows that, when 𝑈2
𝑎(𝜀1

𝑇𝐵, 𝜀2
𝑇𝐵) = 𝑈1

𝑎(𝜀1
𝑇𝐵 , 𝜀2

𝑇𝐵), then 

Equation (7.26) holds, meaning that there is no shift in the congestion period, i.e. 𝜀1 = 𝜀1
𝑇𝐵 and 𝜀2 =

𝜀2
𝑇𝐵. However, travel costs during the time interval (𝜀1

𝑇𝐵, 𝜀2
𝑇𝐵) will still change. Intuitively, we thus 

expect that the following assumption to be true:  

If 

𝑈2
𝑎(𝜀1

𝑇𝐵, 𝜀2
𝑇𝐵) = 𝑈1

𝑎(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵)  (7.29) 

Then the output of the TB and AB Bottleneck model is the same.  

However, this is not necessarily the case. In fact, users will still perceive a benefit at the 

origin/destination, which will still influence the departure time choice within the interval (𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵). 
This can be easily observed for the situation in which we have constant utility functions, under the 

assumption that equation (7.29) holds.  

The analytical solution for the problem is described through the following system of equations (7.30). 

Given the preferred arrival time 𝑡𝑎−0 for a certain activity, 𝜀1, 𝜀2 and 𝑡𝑑−0 can be calculated as follows 

(Li, Lam, and Wong 2014b) 
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𝜀1 = 𝑡
𝑎−0  −

𝑈2 − 𝑈1 + 𝑉𝑜𝐿

𝑉𝑜𝐸 + 𝑉𝑜𝐿
∙
𝑁

𝑆
 (7.30) 

𝜀2 = 𝑡
𝑎−0  +

𝑈1 − 𝑈2 + 𝑉𝑜𝐸

𝑉𝑜𝐸 + 𝑉𝑜𝐿
∙
𝑁

𝑆
 (7.30) 

𝑡𝑑−0 = 𝑡𝑎−0 −
(𝑈2 − 𝑈1 + 𝑉𝑜𝐿)(𝑈1 − 𝑈2 + 𝑉𝑜𝐸)

(𝑉𝑜𝐸 + 𝑉𝑜𝐿)(𝑉𝑜𝑇 + 𝑈1)
∙
𝑁

𝑆
 (7.30) 

We can clearly see that, if 𝑈2 = 𝑈1, the utility disappears from Equations (7.29a-7.29b). Specifically, 

the equation to identify 𝜀1 and 𝜀2 become the same as the one of the TB-Bottleneck model, confirming 

what already showed in Equations (7.26-7.28). However, even if Equation (7.29) holds, the utility does 

not disappear in equation (7.30c). We can calculate then the preferred departure time for both the TB 

and AB Bottleneck model: 

𝑡𝑇𝐵
𝑑−0 = 𝑡𝑎−0 −

(𝑉𝑜𝐿)(𝑉𝑜𝐸)

(𝑉𝑜𝐸 + 𝑉𝑜𝐿)(𝑉𝑜𝑇)
∙
𝑁

𝑆
 (7.31) 

𝑡𝐴𝐵
𝑑−0 = 𝑡𝑎−0 −

(𝑉𝑜𝐿)(𝑉𝑜𝐸)

(𝑉𝑜𝐸 + 𝑉𝑜𝐿)(𝑉𝑜𝑇 + 𝑈1)
∙
𝑁

𝑆
 (7.31) 

Since the utility is only present in the denominator, this leads to: 

𝑡𝑇𝐵
𝑑−0 < 𝑡𝑇𝐵

𝑑−0        ∀ 𝑈1 > 0  (7.32) 

Equation (7.32) also implies that 𝑇(𝑡𝑇𝐵
0 ) > 𝑇(𝑡𝐴𝐵

0 ), thus that the TB-DODE is overestimating the length 

of the queue. This proofs property 2. 

Remarks on property 3:   

Again, we adopt the assumption to have constant utility functions, since this assumption has an 

analytical solution. The departure time between time interval (𝜀1, 𝑡
0) can be calculated as: 

𝐷𝑒𝑃(𝜀1, 𝑡
0) =

𝑉𝑜𝑇+𝑉𝑜𝐸+𝑈1

𝑉𝑜𝑇+𝑈2
  (7.33) 

We can easily observe that 𝐷𝑒𝑃(𝜀1, 𝑡
0) increases for increasing values of 𝑈1, while decreases for 

increasing values of 𝑈2. This show that Property (3) holds.  

7.4.3 Schedule-Based DTA 

The discussion so far focused on the critical difference between AB-DTA and TB-DTA models. As 

pointed out in the introduction, considering the utility at the origin and at the destination is not a 

sufficient condition for linking different purpose-specific trips. According to the literature, clock-based 

MU functions are not able of capturing the correlation between morning and evening commute since 

arrival time and departure time for the same location are independent (Adnan 2010). However, if this 

correlation is explicitly included, for example by assuming 𝜏 ≠ 0 in equation (7.3), clock-based 

functions can capture this dependence (Li, Lam, and Wong 2014). We can thus formulate the following 

property: 

Property 4: Trips belonging to the same tour of activities are independent if and only if: 

1) 𝑈𝑙𝑜𝑠𝑡 is constant.  

2) If an equilibrium solution for users travelling from Activity 1 to Activity 2 exists, as shown in 

equation (7.22); If does not, equilibrium might exist over multiple trips.  

Then the AB-DTA model is trip based, i.e. is not able to capture the dependency between different trips. 

All utility functions proposed in Section 7.3.2 violate condition (1). It should be pointed out that, 
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according to this condition, the utility function presented in Equation (7.5) is the least appropriate with 

respect to modelling the working activity. In general, the working activity takes about 8 hours. As 

observed in (Feil, Balmer, and Axhausen 2009), according to Equation (7.5), the best option is to 

perform more activities with a shorter duration (2-3 hours). If the duration is higher, then the utility of 

working one more hour is almost zero. Thus, we introduce a new metric to measure the Degree of 

Correlation (DoC) between activities. First, we define 𝑑𝑈(𝑡̂) as the utility related to last hour at the 

origin: 

𝑑𝑈(𝑡̂) = {∫ 𝑈𝑎(𝑡)𝑑𝑡
𝑡̂

𝑡̂−1
                𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑈𝑙𝑜𝑠𝑡

 0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    
    (7.34) 

In Equation (7.34), 𝑡̂ represents the departure time from the origin and 𝑈𝑎(𝑡) the utility at the origin. 

Thus, 𝑑𝑈(𝑡̂ − 1, 𝑡̂) measures the utility during the last time interval before the departure. In general, the 

smaller 𝑑𝑈(𝑡̂) is, the weaker is the correlation between activities. Then, the proposed metric measures 

the impact of the last time interval of activity with respect to the overall activity duration: 

𝐷𝑜𝐶 =
𝑑𝑈(𝑡̂)

∫ 𝑈𝑎(𝑡)𝑑𝑡
𝑡̂

𝑡𝑎−0

 (7.35) 

To demonstrate why the DoC can properly capture the degree of correlation, let us consider the utility 

of the activity pattern Home – Work – Home for a generic user, departing from home in 𝑡̂1, and from 

the working place at 𝑡̂2: 

𝑈(𝑡̂1, 𝑡̂2) = ∫ 𝑈𝑀𝐻(𝑡)𝑑𝑡
𝑡̂1
0

+ ∫ 𝑈𝑊(𝑡)𝑑𝑡
𝑡̂2
𝑡̂1+𝑇1

𝑏(𝑡̂1)
+ ∫ 𝑈𝐸𝐻(𝑡)𝑑𝑡

24

𝑡̂2+𝑇2
𝑏(𝑡̂2)

− 𝑈𝑡(𝑡̂1) − 𝑈
𝑡(𝑡̂2) =  

= ∫ 𝑈𝑀𝐻(𝑡)𝑑𝑡
𝑡̂1

0

+∫ 𝑈𝑊(𝑡)𝑑𝑡
𝑡̂2−1

𝑡̂1+𝑇1
𝑏(𝑡̂1)

+∫ 𝑈𝑊(𝑡)𝑑𝑡
𝑡̂2

𝑡̂2−1

+∫ 𝑈𝐸𝐻(𝑡)𝑑𝑡
24

𝑡̂2+𝑇2
𝑏(𝑡̂2)

− 𝑈𝑡(𝑡̂1) − 𝑈
𝑡(𝑡̂2) = 

= ∫ 𝑈𝑀𝐻(𝑡)𝑑𝑡
𝑡̂1

0

+∫ 𝑈𝑊(𝑡)𝑑𝑡
𝑡̂2−1

𝑡̂1+𝑇1
𝑏(𝑡̂1)

+ 𝑑𝑈(𝑡̂2 − 1, 𝑡̂2) + ∫ 𝑈𝐸𝐻(𝑡̂1)𝑑𝑡
24

𝑡̂2+𝑇2
𝑏(𝑡̂2)

− 𝑈𝑡(𝑡̂) − 𝑈𝑡(𝑡̂2) 

(7.36) 

Where 𝑈𝑀𝐻, 𝑈𝑊 and 𝑈𝐸𝐻 are respectively the utility of staying home in the morning, working in the 

afternoon and staying home in the evening. ∫ 𝑈𝑊𝑑𝑡
𝑡̂2
𝑡̂2−1

=  𝑑𝑈(𝑡̂2) represents the utility related to the 

last hour for Activity “Work”. If the utility related to the last hour of the activity “work” is extremely 

low, then 𝑑𝑈(𝑡̂2) ≈ 0:  

𝑈(𝑡̂1, 𝑡̂2) = ∫ 𝑈𝑀𝐻(𝑡)𝑑𝑡
𝑡̂1
0

+ ∫ 𝑈𝑊(𝑡)𝑑𝑡
𝑡̂2−1

𝑡̂+𝑇𝑏(𝑡̂)
+ 𝑑𝑈(𝜀3, 𝑡̂2) + ∫ 𝑈𝐸𝐻(𝑡)𝑑𝑡

24

𝑡̂2+𝑇2
𝑏(𝑡̂2)

− 𝑈𝑡(𝑡̂) − 𝑈𝑡(𝑡̂2)  

≈ [∫ 𝑈𝑀𝐻(𝑡)𝑑𝑡
𝑡̂1
̂

0
+ ∫ 𝑈𝑊(𝑡)𝑑𝑡

𝑡̂2−1

𝑡̂1+𝑇1
𝑏(𝑡̂1)

− 𝑈𝑡(𝑡̂)] + [∫ 𝑈𝐸𝐻(𝑡)𝑑𝑡
24

𝑡̂2+𝑇2
𝑏(𝑡̂2)

− 𝑈𝑡(𝑡̂2)]= 

= 𝑈𝑀𝑜𝑟𝑛𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑢𝑡𝑒 + 𝑈𝐸𝑣𝑒𝑛𝑖𝑛𝑔 𝐶𝑜𝑚𝑚𝑢𝑡𝑒 

(7.37) 

Equation (7.37) shows that the assumption over 𝑑𝑈 allows to separate the two trip costs. This has been 

demonstrated to be a sufficient condition for modelling the two trips as separate trips (Adnan 2010). 

Hence, duration-based MU might not be the best function to model this correlation, since, for 𝜂 =

18£/min (Yamamoto et al. 2000; Adnan 2010), the utility of working 7 hours is about 2% less than 

working 8 hours. As a consequence, we can conclude that Equation (7.5) captures this interdependence, 
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but the resulting degree of correlation is fairly weak, which suggests that the conclusions reported in 

(Adnan 2010) and (Feil, Balmer, and Axhausen 2009) are complementary.  

7.5 Numerical analysis 

In this section, by adopting the numerical method presented in Section 7.3.3, we perform an in-depth 

sensitivity analysis of the effects of using the different utility functions presented in Section 7.3.1 

through a set of numerical experiments. Specifically, we show in this section that: 

1. Properties (1, 2, 3) hold for general functions and under general conditions. While we used an 

analytical model to demonstrate that these properties hold when an analytical solution exists, in 

this section we use the MSA algorithm to support the claim that these properties hold when the 

uniqueness of the (DTA) solution is not guaranteed; 

2. The situation identified in Proposition 1 – i.e. the last user faces congestion – is a possible 

solution when the utility is properly considered within the DTA model; 

3. The Utility Function (7.22) is more suited for modelling different type of activities; 

4. The DoC metric presented in Equation (7.35) properly captures the degree of correlation;  

5. When the degree of correlation DoC is low, AB-DTA can properly approximate SB-DTA 

models. 

We replicate the experiment proposed in Li, Lam, and Wong (2014), for sake of comparability. In the 

proposed example, we assume to have a single class of users (N=5000 vehicles), performing the home-

work-home commuting trip chain on the simple network shown in Figure 7.2. Demand and supply 

parameters are introduced in Table 7.2. The decision variables for each user are the arrival time at work 

(preferred arrival time 𝑡0 = 9) and the departure time in the afternoon (preferred departure time 𝑡𝑑
0 = 

17). A detailed overview of the parameters for the utility function is presented in Appendix C.3, while 

hereafter we introduce the most important characteristics for each case we analysed.  

Table 7.2: Experiment Setup 

Table 7.2: Supply and Demand Parameters 

 

N = 5000 veh 

𝑡0= 9 
 

 𝑡𝑑
0 = 17  

 S = 2000 veh/h  

 

 

Case 1: We model the standard bottleneck model, i.e. without considering the utility at the destination. 

Case 2: We consider constant utilities at the destination (𝑈𝑊𝑜𝑟𝑘 > 𝑈𝐻𝑜𝑚𝑒−𝐸𝑣𝑒𝑛𝑖𝑛𝑔 > 𝑈𝐻𝑜𝑚𝑒−𝑀𝑜𝑟𝑛𝑖𝑛𝑔). 

Case 3: Home and work activities are modelled through Equation (7.4), as clock-based (𝜏𝑝 = 0).   

Case 4: As in the previous case, we model all the activities through Equation (7.4), but considering the 

flexibility term (𝜏𝑝 = 0.5).   

Case 5: In order to observe E1 with respect to Case 3, the utility of the activity work is increased, in 

order to observe a shift of the congestion period. 

Case 6: Home and work activities are modelled through Equation (7.9), assuming that the fatigue effect 

is greater for the working activity (𝐺𝑤𝑜𝑟𝑘 > 𝐺ℎ𝑜𝑚𝑒).  

Case 7: As in the previous case we calculate the utility through Equation (7.9). We increased 

significantly the utility for the second activity, simulating a special event, in order to observe 

the phenomena described in Equations (7.22-7.23). 
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Case 8: As proposed in Adnan (2010), we represent the home activitiy as clock-based and the work 

activity through Equation (7.5). 

Case 9: Home and work activities are modelled through Equation (7.6), for the case in which w=0.5. 

7.5.1 Activity-Based case 

At this stage, our interest is to test the Properties (1, 2, 3) presented in Section 7.4.2. These conditions 

can be verified only for clock-based functions since it is not possible to uniquely define ∆𝑈(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵) 
for schedule-based utility functions. In fact, when the duration is considered, different users perceive 

different utilities. For this reason, we first focus on analysing the results for Cases 1 until 5. In Figure 

7.6, the most important parameters are shown. Specifically, Table 7.3, shows the value of 

∆𝑈(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵) for morning and evening commute, while Figures 7.6a-b the starting and ending time 

of the congestion period and the length the queue. Clearly when no utility, at the origin/destination is 

considered (Case 1), ∆𝑈 is equal to 0.  

Again, this setup is the same presented in (Li, Lam, and Wong 2014b) in order to be replicable. In that 

paper, the authors also calculated the analytical solution for the model, which is properly approximated 

in Figure (7.6a), showing that the solution is a reliable approximation of the analytical result. In our 

study results have been divided into two sections. Figure (7.6a) shows the results when no utility or 

constant utility at the destination is used, while Figure (7.6b) shows the results when time-dependent 

(clock-based) utility functions are considered. 

 

Table 7.3: ∆𝑈𝐶𝑜𝑚𝑚𝑢𝑡𝑒
𝑀𝑜𝑟𝑛𝑖𝑛𝑔

 ∆𝑈𝐶𝑜𝑚𝑚𝑢𝑡𝑒
𝐸𝑣𝑒𝑛𝑖𝑛𝑔

 

Case 1 0 0 

Case 2 -7.5 2.5 

Case 3 48* -72.86 

Case 4 48 -72.86* 

Case 5 68.34 -93.07 
 

 

 



130 

 

 

Fig.7.6:  Queue length during the morning and evening commute for (a) Case 1-2 and (b) Case 3-4-

5; 

We first analyse Property 1. Through Figure 7.6, we can observe that in all cases in which a utility at 

the origin/destination is considered, there is a shift in the congestion period. If we focus on the morning 

commute, when ∆𝑈 is negative (Case 2), we can see that the rush hour begins 20 minutes before with 

respect to the TB-DTA bottleneck model (𝜀1
𝑀𝑜𝑟𝑛𝑖𝑛𝑔

= 7.1). In all the other cases, in which ∆𝑈 is 

positive, the congestion period is shifted to a later time period. Similar considerations can be done for 

the evening commute. There is one main exception, where Property 1 cannot be observed, which is Case 

4 in the evening commute. In this case, although ∆𝑈(𝜀1
𝑇𝐵 , 𝜀2

𝑇𝐵) is negative, the congestion period is 

postponed (𝜀1
𝐸𝑣𝑒𝑛𝑖𝑛𝑔

= 16,7). However, we set the parameter 𝜏𝑝 = 0.5. As a consequence, 

𝑈𝑙𝑜𝑠𝑡(𝜀1, 𝜀2, 𝑡
0) is not constant, since the utility for the morning and evening commute are chained, and 

the model turns to be an SD-DTA. This condition is also confirmed checking the ∆𝑈(𝜀1
𝑇𝐵 , 𝜀2

𝑇𝐵) values 

in Table 7.3, which is the same for Cases 3 and 4. This is because the flexibility with respect to the 

activity work neglects Properties (1-2-3), which are applicable if and only if 𝑈𝑙𝑜𝑠𝑡(𝜀1, 𝜀2, 𝑡
0) is constant 

(as discussed in Property 4). 

Concerning Property 2, when the utility at origin/destination is considered, the standard bottleneck 

model systematically overestimates the congestion. As we are going to show in the next section, TB-

DTA models can also underestimate the length of the queue in certain conditions, such as special events.  

Lastly, we focus on Property 3. Pointing out that the utility functions respect the condition listed in 

Equation (7.20), it is possible to observe that for all Cases 2, 3 and 5, when ∆𝑈(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵) is positive, 

the queue reaches its maximum value sooner with respect to the case in which ∆𝑈(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵) is 

negative.  

This result supports the claim that the properties discussed in Section 7.4.2 hold for general functions, 

even when a uniqueness of the solution is not guaranteed. 

7.5.2 Schedule-Based case 

The last part of this chapter aims at demonstrating the generalization proposed in Equation (7.22) and 

Equations (7.34-7.37). Hence, we focus on those utility functions that include the fatigue effect. In order 

to show the contribution, we applied Equation (7.9) to simulate activity work (Case 6) and to simulate a 

special event, e.g.  a concert (Case 7). In the second case, the utility is extremely high in a single time 

interval. This leads to have a very high value of the utility in a specific time of the day (α=13 am). As 

shown in Figure 7.7b, the consequence is that users adapt their scheduling in order to arrive just in time 

at the concert. Moreover, since the value of the utility strongly decreases after a few hours because of 

the logarithmic effect, a similar behaviour is observed during the evening, where users spread around 
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the preferred departure time, in order to still arrive at home when the utility is maximum. Simply stated, 

everybody wants to be there when the main star is starting the show, while most of the people wish to 

leave immediately after.  

Figure 7.7a shows the interesting effect of considering activity duration within the utility work. As first 

consideration, it is important to compare Cases 6 and 7 with Cases 3 and 5 previously discussed. In fact, 

the parameters {𝛽𝑝, 𝛼𝑝, 𝛾𝑝} of the utility functions are the same, with the major difference that, in Cases 

6 and 7, the fatigue (or duration) effect is considered. When comparing Cases 3 and 5, although we 

observed a shift in the congestion period, the behaviour of the users in the two experiments was similar, 

and both cases have been used to simulate the activity work. When duration is properly considered in 

the problem, Equation (7.22) allows modelling a completely different behaviour, which allowed us to 

model a different activity.   

A second consideration regards the activity work. Although the model considers a single, homogeneous 

class of users, Equation (7.7) identifies two different behaviours in the evening commute. Before and 

after 16,75 pm, the departure ratio presents two different trends. The reason is that for those users that 

arrived too early, the fatigue effect is dominant, thus these users are highly motivated to leave the 

workplace and return home. Since the utility at 12-13 am is very high, those users that arrived late takes 

a higher utility in the beginning, thus they are not motivated to leave work before 17 – which is the 

preferred departure time. The different trend in the evening commute shows that this model properly 

represents this phenomenon. 

Concerning Case 7, it should be stressed out how the last user is facing congestion, and, specifically, 

the last user is the one experimenting the largest delay. This supports the idea that, if non-working related 

activities are considered, the assumption that the last user does not face congestion is unrealistic. 

Moreover, we can also notice that all users in this experiment have a similar departure time both in the 

morning and in the evening. This means that, for this type of activity, all users would prefer to have the 

same activity duration, and utility before and after is near zero. This means that Case 7 can be probably 

approximated by a simplified model, like the one proposed in Equations (7.19-7.21) and showed in 

Figure (7.4). 
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Fig.7.7:  Cumulative departure/arrive ratio according to the setting presented in Case 6 (a) and in 

Case 7 (b); 

7.5.3 Comparison with previous works 

While we discussed so far the general difference between AB-DTA and SB-DTA, we pointed out in 

Section 7.2 that other solutions have been proposed in the literature (Adnan 2010; Feil, Balmer, and 

Axhausen 2009; Li, Lam, and Wong 2014b). From a theoretical point of view, we can now point out 

that all these approaches satisfied the condition for which  𝑈𝑙𝑜𝑠𝑡(𝜀1, 𝜀2, 𝑡
0) is not constant, showing that 

the general conditions proposed in this thesis hold. However, for the sake of comparability, we are now 

interested to (i) compare their result with the one proposed in Case 6 and (ii) investigate the DoC for all 

these cases, in order to understand the effectiveness of the proposed metric in estimating the degree of 

correlation between activities. In, Figure (7.8) the evolution of the queue is shown, while in Table 7.4 

the DoC value for activity work is reported for each Case. 
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Table 7.4: 𝐷𝑜𝐶𝑤𝑜𝑟𝑘   

Case 6 4.84 %  

Case 7 1.45 %  

Case 8 1.87 %  

Case 9 2.11 %  
 

  

 

Fig.7.8:  Cumulative departure/arrive ratio according to the setting presented in Case 6 (a) and in 

Case 7 (b); 

Case 8 reproduces the UMT framework similar to the one proposed in (Adnan 2010), while the Case 9 

exploits the utility function presented in (D. F. Ettema et al. 2007), which could replace Equation (7.9) 

for modelling the joint choice of activity time and duration. Results are shown in Figure 7.8. 

First, we calculate the DoC coefficient for all Schedule-Based approaches tested so far. Results, showed 

in Table 7.4, show that the correlation is weak in all cases, with exception of Case 6. Specifically, when 

adopting Equation (7.8) to model the Activity Work, the correlation is almost 5 - i.e. the last hour 

contributes about 5% to the overall utility. For all the other cases, the DoC coefficient is less than half, 

meaning that the influence of the last hour is limited, and users are more likely to anticipate their trip. 

As we already discussed, this is expected for Case 7, which model a special event where all users have 

approximately the same activity duration and the utility in the last time interval is naturally low. 

However, Case 8 and 9 are supposed to model the Home-Work commute, so a higher value of the DoC 

is expected.  

If we consider the results obtained applying Case 8, results look similar to the results for Case 3 (Figure 

7.6d), with the main difference that the maximum number of vehicles queuing is lower, while we can 

observe that the shift of the congestion is more significant. The main reason is again in the dimension 

of ∆𝑈(𝜀1
𝑇𝐵, 𝜀2

𝑇𝐵) and 𝑈𝑙𝑜𝑠𝑡(𝜀1, 𝜀2, 𝑡
0). Although we cannot calculate analytically this number, because 

𝑈𝑙𝑜𝑠𝑡(𝜀1, 𝜀2, 𝑡
0) is not constant, we can easily observe that if we were to calculate ∆𝑈(𝜀1

𝑇𝐵 , 𝜀2
𝑇𝐵) for a 

single user, this will always be positive for the morning commute and negative for the evening commute. 

In fact, when Equation (7.5) is used to model the work activity, the utility is not time dependent – i.e. is 

a constant utility combined with a fatigue effect. Thus, while users lose utility for the activity home, this 

is not the case for activity work. Moreover, by applying Equation (7.5) to model activity work, as 

discussed in section 7.4.2, if a certain user has an activity duration of 7 hours – instead of 8 – the 

reduction in the utility is relatively small compared to the utility lost at home in the evening. To support 
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this claim, we in Figure 7.9 we show that we can approximate Case 8 by adopting an AB-DTA. 

Specifically, by exploiting Properties (1-2-3) of the AB-DTA, we can modify Case 3 in order to shift 

the congestion period and reduce the queue. Although the approximation is far from been perfect, these 

results do not derive from an optimization process but by simply implementing the properties showed 

in Section 7.4.2, and to support the claim that these properties can be used to adapt the available Utility-

Functions to different applications.  

 

Fig.7.9:  Cumulative departure/arrive ratio according to the setting presented in Case 6 (a) and in 

Case 7 (b); 

It should be pointed out that results showed in Figure 7.8 for the evening commute are different from 

those presented in (Adnan 2010). The main reason is that, in the original paper, the framework was 

considering a schedule-based utility function for capturing the dis-utility of travelling only for modelling 

the morning commute, while we also applied the equation to the evening commute.  

Lastly, let focus on Case 9. Also in this case, results look similar to the results for Case 3. The major 

difference is that the queue has the triangular shape typical of constant utility functions (Figure 7.6a). 

This result can be explained by analysing the structure of Equation (7.6), which is the linear sum of the 

clock based and duration based components.  

If we were to consider only the clock-based component, then we would expect to observe again the same 

result as in Case 3. This is actually the case when we observe that the congestion period shifted and the 

maximum length of the queue is lower. However, when we sum the duration-based component, the 

function has the tendency to overestimate the utility for all those time intervals in which the clock-based 

component is low. This is shown also in the calibration results presented in Appendix C.1. Since the 

duration-based component is constant over time, as long as the duration is fixed, the final result is a 

congestion pattern that fallows the time-dependent utility – because of the clock based component – 

with a more linear shape – because of the duration based component. Also in this case, if we were to 

use a clock based function – although the model turns to be an AB-DTA – the predicted congestion 

pattern would not be too different from the real one. 

7.6 Conclusions 

This chapter studied the effect of combining Dynamic Traffic Assignment (DTA) models and Utility 

Maximization Theory (UMT) to model within-day traffic patterns. This research contributes to the state 

of the art by: 1) establishing that a correlation exists between the utility lost and the overall level of 

congestion; 2) extending the Bottleneck model in order to consider different type of activities; 3) 
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establishing the condition under which a model can be considered as Trip-Based, Activity-Based, Trip-

Chain Based or Schedule-Based; 4) Measuring the degree of correlation between multiple activities; 5) 

Defining a new Utility-Function, which allows to model different activities while considering activity 

duration in a realistic way. This has been proven analytically, by formulating a set of Properties and 

Propositions for the bottleneck model, and through numerical experiments.  

We also showed that – under certain conditions - activity-based DTA can properly approximate 

scheduled-based models. This is extremely relevant since, from an algorithmic point of view, it is 

possible to significantly simplify the problem. To support this conclusion, we showed that, although 

some quite popular utility functions capture the correlation between different trips, the degree of 

correlation and/or the effect on the congestion pattern are fairly low. The proposed method shows how 

to calculate this degree of correlation so that DTA modeller can have a better understanding of the 

consequences of oversimplifying the choice model.  

Following this concept, the novel utility function proposed in this chapter matches the above-stated 

conclusions. By jointly modelling clock-based and duration-based utility, the proposed function not 

only simulates a more realistic behaviour, but it is also able of modelling different activities such work 

or special events and capturing in a realistic way the correlation between arrival time and departure time.  

Future research focuses on generalizing these findings to more complex scenarios. First, we showed that 

a simple Activity-Based DTA can approximate a Schedule-Based DTA. However, we need to also 

analyse if the approximation holds when new traffic policies -such as tolling – are applied. It can be that 

the approximated model will lead to a different result. Another key issue is also to further extend the 

choice model in order to take into account other decision dimensions which also influence the travel 

decision, such as weather conditions, accessibility of a certain area or the household composition. Then, 

we will test the properties analysed in this thesis with a more realistic Simulation-Based DTA, and 

generalize the problem for different routes, locations and transport modes. 
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8 

Utility-Based OD Estimation 

This chapter proposes a DODE framework that explicitly accounts for activity scheduling and duration. 

By assuming a Utility-Based departure time choice model, the time-dependent OD flow becomes a 

function, whose parameters are those of the utility function(s) within the departure time choice model. 

In this way, the DODE is solved using a parametric approach, which, on one hand, has less variables to 

calibrate with respect to the classical bi-level formulation while, on the other hand, it accounts for 

different trip purposes. Properties of the model are analytically and numerically discussed, showing that 

the model is more suited for estimating the systematic component of the demand with respect to the 

standard GLS formulation. 

Content of this chapter has been presented in the following works: 

Cantelmo, Guido, Francesco Viti, Ernesto Cipriani, and Marialisa Nigro. 2018. “A Utility-Based Dynamic 

Demand Estimation Model That Explicitly Accounts for Activity Scheduling and Duration.” Transportation 

Research Procedia, Papers Selected for the 22nd International Symposium on Transportation and Traffic Theory 

Chicago, Illinois, USA, 24-26 July, 2017., 23 (Supplement C): 440–59. doi:10.1016/j.trpro.2017.05.025. 

Cantelmo, Guido, Francesco Viti, Ernesto Cipriani, and Marialisa Nigro. 2017. “A Utility-Based Dynamic 

Demand Estimation Model That Explicitly Accounts for Activity Scheduling and Duration.” Accepted for 

publication to Transportation Research Part A 
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8.1 Introduction  

Simulation of traffic conditions requires accurate knowledge of the travel demand. In a dynamic context, 

this entails estimating time-dependent demand matrices, which are a discretized representation of the 

dynamic origin-destination (OD) flows. This problem, referred to as Dynamic OD Estimation (DODE) 

in literature, seeks for the best possible approximation of OD flows which minimize the error between 

simulated and available traffic data (Cascetta 1984; Cascetta, Inaudi, and Marquis 1993).  

Traditional DODE models solve two interconnected optimization problems, according to a bi-level 

formulation: in the upper level, time-dependent OD matrices are corrected in order to replicate the 

observations, while the lower level relates OD with path and link flows. For an extensive overview of 

these models one can refer to (Antoniou et al. 2016; Cascetta, Inaudi, and Marquis 1993).  

An important role in DODE problems is assigned to the Dynamic Traffic Assignment (DTA), which has 

the paramount role of determining the relation between link flows and OD flows. This is typically done 

by specifying a (dynamic) process for assigning OD flows to the routes connecting each OD pair, and 

by dynamically propagating the route flows onto the links. The combination of both processes 

determines the dynamic relation between link and OD flows, which is commonly known as the 

assignment matrix. Restricting our discussion on only the bi-level approach, the vast majority of the 

existing works uses a deterministic or a stochastic user equilibrium formulation to assign the time-

dependent OD flows to the routes (Maher, Zhang, and Vliet 2001; Zhou, Lu, and Zhang 2012). The 

resulting dynamic OD matrices are therefore assumed to satisfy equilibrium principles at each time 

period. To guarantee consistency across time periods, sequential and simultaneous estimation 

approaches have been proposed and compared (Cascetta, Inaudi, and Marquis 1993; H. Yang, Iida, and 

Sasaki 1991). Consistency between the time-dependent route flows and link flows is instead guaranteed 

by choosing an opportune Dynamic Network Loading (DNL) model. Examples of DNL approaches 

used in DODE problems are those based on exit flow functions (Cremer and Keller 1984), on Kinematic 

Wave Theory (R. Frederix et al. 2011) or using simulation-based DTA models (Lu 2013; Tympakianaki, 

Koutsopoulos, and Jenelius 2015). In the last decades many researchers developed utility-based DTA 

models, which consider both the utility of performing an activity and the disutility of traveling. 

Microscopic agent-based DTA focus on generating comprehensive activity patterns (Flötteröd, Chen, 

and Nagel 2012), while flow-based models stress the correlation between morning and evening 

commute, hence their effect on congestion (Li, Lam, and Wong 2014). In this case, DODE research is 

relatively poor, and only a few works are available for estimating comprehensive demand patterns 

capable of reproducing realistic traffic conditions (Flötteröd 2009). 

The DODE problem is usually underdetermined because of the high number of unknown variables and 

their mutual dependencies (Marzano, Papola, and Simonelli 2009). Spatial dependencies are related to 

the multiple mapping between OD, route and link variables and therefore depend on the complexity of 

the network topology, on the chosen route set and on the number and location of sensors (Simonelli et 

al. 2012; Viti, Verbeke, and Tampère 2008; Hai Yang and Zhou 1998). Under determinedness can also 

characterise DODE solutions because of the nonlinear relation between link and demand flows, which 

is related to congestion propagation phenomena such as spillback (Zhou, Lu, and Zhang 2012). Rodric 

Frederix, Viti, and Tampère (2013) analyse the effect of congestion, pointing out that, if link flows are 

assumed to be separable, biased solutions are likely to be found. To deal with these problems, many 

authors recommend that good starting values of the demand (seed matrices) should be available (Cipriani 

et al. 2013), and that a distance measure between these values and the estimated OD flows should also 

be included in the upper level. In existing DODE problems, seed matrices are often coarse adaptations 

of static matrices, which are derived from socio-demographic data. However, the more the network is 

complex and congested, the more this condition becomes tight, meaning that the DODE procedure 

collapses to local adjustments of the demand (Marzano, Papola, and Simonelli 2009). In addition, static 

matrices are often calibrated in order to match specific traffic patterns (e.g., the morning rush hour), 
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while empirical evidence shows that spatial and temporal distribution of demand flows changes 

considerably along the day and in between days. Hence a good static matrix may be suited only for a 

relatively short evaluation time period. 

We argue in this study that not enough attention is drawn on identifying and estimating reliable time-

dependent seed matrices, which should take into account the underlying daily and weekly activity-travel 

patterns. Our research hypothesis is that incorporating information about daily activity scheduling and 

duration is of paramount importance to derive dynamic OD flows, which are consistent across time 

periods. We do so by first formulating the lower level of the traditional bi-level problem as a utility 

maximisation problem where the departure time choice to perform a certain set of activities is 

endogenously estimated. Then we extend the proposed model to consider also activity location and 

duration information. 

We demonstrate that, if we extend the bi-level approach by taking into account such information, the 

number of free parameters in the DODE problem systematically decreases, reducing the under 

determinedness of the solution. In this Chapter we demonstrate that the proposed utility-based 

formulation brings the following scientific and practical contributions: 

- By adopting a parametric approach, the number of decision variables is systematically reduced, 

and a smoother objective function is obtained by exploiting the relation between utility and 

dynamic user equilibrium (DUE); 

- By extending the utility-based approach to account for activity scheduling, location and 

duration, richer information can be contained in the generated demand matrices; 

- By estimating the demand as simultaneous route and departure time choice, the localism of the 

general DODE formulation is reduced, hence the reliability of the estimated dynamic OD 

matrices is improved. 

We will show how the above contributions are achieved by means of a theoretical analysis and with 

numerical tests performed on toy networks. 

8.2 Methodology 

This work focuses on extending the classical DODE problem to account for the utility of performing 

different activities. For each considered activity, users are assumed, in this study, to maximize their own 

utility, which represents the perceived net benefit of performing the activity at some location. Hence, 

while most of the DODE models consider only the cost of travelling, the utility at the destination 

represents the main reason for travelling and significantly determines travellers’ decisions such as where 

and when to perform the said activity.  

We first formulate the joint route and departure time choice model as a utility maximisation problem 

within a bi-level formulation. We adopt the “classical” Generalised Least Squares (GLS) estimator 

presented in (Cascetta, Inaudi, and Marquis 1993), which is widely adopted in practice, as the 

benchmarking model in the next sections. In order to properly extend the bi-level formulation, both the 

upper level and lower level need to be modified for explicitly considering heterogeneous demand and 

user behaviour. Two sources of information are considered in the goal function: historical OD flows and 

traffic counts. The motivation is twofold. On one hand, a mathematical relation between these measures 

exists, which is relevant for demonstrating the properties of the proposed formulation. On the other 

hand, these data have been widely used in the literature as, even with the great advancements in 

telecommunications and sensor technologies, they still represent the most commonly used sources of 

information in practice. All the advantages related to using other sources of information data, such as 

probe vehicles or link densities, hold for both models. 
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8.2.1 Lower Level – the DTA model 

DTA models aim to describe the mutual interaction between demand and supply systems. A key building 

block of DTA is the assignment process, which is often characterised by a choice model. Many authors 

stressed that travellers jointly choose route and departure time with respect to an (expected) experienced 

travel time (Arnott, de Palma, and Lindsey 1990; Mahmassani and Herman 1984; Zockaie et al. 2015) 

and a preferred arrival time at the destination (Vickrey 1969). Thus, we consider, as an explicit 

requirement for the DTA, which is used in the lower level of our DODE formulation, to include a 

Departure Time choice Model (DTM) as simultaneous decision process to the route choice. In this 

section we assume that the destinations of where to perform the activities are known, hence the location 

of the activities is assumed fixed and assigned a-priori. We will relax this assumption in Section 3. 

The advantage of formulating a DTM within the DODE is twofold: first, given a number of users, 𝑁𝑜𝑑, 

travelling along an origin-destination pair, od, the DTM will estimate the temporal distribution of the 

𝑁𝑜𝑑  users within the DTA model. Second, we argue that utility-based DTM models are suited for 

estimating activity scheduling and duration, since the activity pattern is a function of activity type, 

duration, travel time, and the preferred arrival time at the destination (Zhang et al. 2005). Hence, 

including a DTM is seen in this study as a natural step to include the utility of performing an activity in 

the DTA model.  

The utility-based DTM is assumed to depend on the joint choice of departure time and route, and it is 

formulated as follows: 

𝑈𝑛
𝑠,𝑝(𝑡, 𝑟) = 𝑈𝑛

𝑠, + 𝑈𝑛
𝑝
= [𝑉𝑛

𝑠(𝑡, 𝑟) + 𝜀𝑛
𝑠(𝑡, 𝑟)] + [𝑉𝑛

𝑝(𝑡, 𝑟) + 𝜀𝑛
𝑝(𝑡, 𝑟)]       𝑛 ∈ 𝑁𝑜𝑑, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅

𝑜𝑑 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 (8.1) 

 

Where  𝑈𝑛
𝑠,𝑝

 is the utility for a certain user n, 𝑈𝑛
𝑠 represents the (dis-)utility of performing a travel s, 𝑈𝑛

𝑝
 

the (positive) component of the utility of performing an activity p, t the departure time at the origin and 

r the route chosen to reach the destination, which for the time being we consider pre-determined. P and 

S are, respectively, the set of all activities and trips for a certain user n, whose locations are all known. 

The utility is a random variable, which is generally expressed as the sum of an observable (or systematic) 

component, and an unobservable component (or error). In Equation (8.1), the two terms 𝑉𝑛
𝑠 and 𝑉𝑛

𝑝
 

represent the systematic component, while 𝜀𝑛
𝑠 and 𝜀𝑛

𝑝
 the random components of the utility, i.e. the 

perception error in the costs associated to the trip and the benefits for performing the activity, 

respectively.  Following the general theories of individual choice behaviour (Ben-Akiva and Lerman 

1986), for a certain trip s with purpose p, the probability Pr𝑛 [(𝑡
𝑠, 𝑟𝑠)|(𝜏, 𝑝, 𝑠)] of jointly choosing the 

departure time-route couple (𝑡𝑠, 𝑟𝑠) within the set of time intervals  Θ and the set of routes 𝑅𝑜𝑑, can be 

obtained as (Ben-Akiva and Lerman 1986): 

Pr𝑛 [(𝑡
𝑠, 𝑟𝑠)| (𝜏𝑝, 𝑝, 𝑠)] = Prob

[
 
 
 
 

𝑉𝑛
𝑠,𝑝(𝑡𝑠, 𝑟𝑠) + 𝜀𝑛

𝑠,𝑝(𝑡𝑠, 𝑟𝑠) ≥ max
𝜃∈Θ
𝑟∈𝑅𝑜𝑑

(𝜃,𝑟)≠(𝑡𝑠,𝑟𝑠)

(𝑉𝑛
𝑠,𝑝(𝜃, 𝑟) + 𝜀𝑛

𝑠,𝑝(𝜃, 𝑟))

]
 
 
 
 

 (8.2) 

 

Where 𝑅𝑜𝑑 is the set of feasible routes for a certain od and Θ the set of simulation time intervals, 𝑡𝑠 is 

the actual departure time and 𝑟𝑠 the route. Usually Equation (8.2) is solved using a Discrete Choice 

modelling approach. In fact, the alternatives can hardly be represented within a continuous space and 

are usually mutually exclusive. The error term is included in the utility function to account for the fact 

that the analyst is not able to completely and correctly model or identify all attributes that determine 

travellers’ behaviour. Many distributions could be used to represent the distribution of error terms over 

individuals and alternatives, such as the multivariate-normal or the Weibull-Gumble distribution, which 

lead to a different DTM.  
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Many functional forms have been proposed for calculating the 𝑉𝑛
𝑠 and 𝑉𝑛

𝑝
. To calculate the disutility of 

travelling, the bottleneck model formulation proposed by Vickrey and extended to a more general 

scheduling problem by Small (Vickrey 1969; Small 1982), looks suitable for the purpose of estimating 

the temporal distribution of the demand. This model is reformulated in Equation (8.3):  

𝑉𝑛
𝑠(𝑡𝑝, 𝑟𝑝) =  𝛼𝑜𝑑

𝑝
∙ (𝑇𝑇(𝜏𝑜𝑑

𝑝
, 𝑡𝑜𝑑
𝑝
, 𝑟𝑜𝑑
𝑝
)) + 𝛽𝑜𝑑

𝑝
∙ (𝐸𝐴(𝜏𝑜𝑑

𝑝
, 𝑡𝑜𝑑
𝑝
, 𝑟𝑜𝑑
𝑝
)) + 𝛾𝑜𝑑

𝑝
∙ (𝐿𝐴(𝜏𝑜𝑑

𝑝
, 𝑡𝑜𝑑
𝑝
, 𝑟𝑜𝑑
𝑝
)) (8.3) 

 

 

Where TT is the travel time, EA and LA are scheduling delay for the early and late arrival, respectively, 

while 𝛼𝑜𝑑
𝑝

, 𝛽𝑜𝑑
𝑝

 and 𝛾𝑜𝑑
𝑝

 are purpose and OD-dependent parameters to be calibrated, representing 

respectively the cost of travelling, of early arrival and late arrival. Finally, 𝜏𝑜𝑑
𝑝

 represents the preferred 

arrival (or departure) time for activity p. Equation (8.3) differs from the original version formulated in 

(Vickrey 1969), since we include here different values of the parameters for different purposes and 

different OD pairs. The original version was assuming a homogeneous population travelling on a simple 

network with one single OD pair and purpose. While it is intuitive to observe that parameters {𝛼𝑜𝑑
𝑝
,

𝛽𝑜𝑑
𝑝
,  𝛾𝑜𝑑

𝑝
, 𝜏𝑜𝑑

𝑝
} are purpose-dependent, we might expect them not to depend on different OD pairs, e.g. 

the penalty for arriving late at work is assumed to be the same for all the users. However, this penalty is 

different for different users, belonging to different classes. In the literature, more elaborated utility 

functions exist, which assume a heterogeneous user behaviour for users with the same trip purpose 

(Small 2015). While these utility functions can be adopted with the proposed model, at the current stage 

we assume having homogeneity between users travelling to/from a certain traffic zone. For instance, the 

preferred arrival time for all the users working in the business district is the same, but might be different 

from the preferred arrival time for users working in the city centre. Thus, the current model considers 

both a geographical and purpose-dependent heterogeneity of the demand. For simplicity of notation we 

refer to the parameters {𝛼𝑜𝑑
𝑝
, 𝛽𝑜𝑑

𝑝
,  𝛾𝑜𝑑

𝑝
, 𝜏𝑜𝑑

𝑝
} as 𝛡 ={𝜶, 𝜷, 𝜸, 𝝉} in the rest of this Chapter.  

For the utility at the destination, we do not suggest any specific function in this thesis. In the literature, 

many different formulations have been proposed for calculating 𝑈𝑛
𝑝
 (D. Ettema and Timmermans 2003; 

Yamamoto et al. 2000). The most widely adopted functions are time-dependent and/or duration-

dependent, meaning that they are not linear-in-parameters. Moreover, they assume different levels of 

correlation between time of the day, activity duration and departure time across different trips. If these 

choices are modelled as independent, a simple function with few parameters can be used for modelling 

the utility, while more parameters need to be considered for properly capturing their correlation. 

Regardless of their number, the utility function parameters are usually calibrated through survey data. 

Specifically, the most established way is to formulate Equation (7.2) as a Logit-type model, and then to 

calibrate the parameters through the maximum-log-likelihood estimation approach (Ben-Akiva and 

Lerman 1986; D. Ettema and Timmermans 2003). Since utility functions are not linear, nonlinear 

programming approaches should be implemented to solve the log-likelihood estimation. For further 

details on the correlation between duration/departure time 𝑈𝑛
𝑝

, the interested reader can refer to (D. F. 

Ettema et al. 2007). 

The model presented in Equations (7.1-7.2) can be extended to represent the daily activity pattern. By 

assuming that 𝑈𝑛
𝑠 and 𝑈𝑛

𝑝
 include their idiosyncratic term, for a generic user n, given a departure time t 

and a route r, the overall utility over the entire study period (e.g., a day), can be calculated as: 

𝑈𝑛 (𝒕, 𝒓) = max
𝒕,𝒓
(𝑈𝑛

𝑆(𝒕, 𝒓) + 𝑈𝑛
𝑃(𝒕, 𝒓));         𝑛 ∈ 𝑁𝑜𝑑, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅

𝑜𝑑  (8.4) 

Where 

𝑈𝑛
𝑆(𝒕, 𝒓) = ∑𝑈𝑛

𝑠(𝑡𝑠, 𝑟𝑠);

𝑠∈𝑆

   (8.4a) 

𝑈𝑛
𝑃(𝒕, 𝒓) = ∑𝑈𝑛

𝑝(𝑡𝑠, 𝑟𝑠);

𝑝∈𝑃

 (8.4b) 

 

Where 𝑡𝑠 and 𝑟𝑠 are the chosen departure time and route for performing a certain travel s. We also 

assume that the user n has a preferred departure time 𝜏𝑝  for each activity p. Alternatively, one can 

assume a preferred arrival time without affecting the model generality. To explain the relation between 
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the preferred departure time 𝜏, the actual departure time t, and the simulation time interval 𝜃, we 

schematically depicted an example in Figure 8.1.  

Simply stated, the simulation time interval 𝜃 is an input of the Dynamic Network Loading (DNL) model, 

which requires the duration of the analysis period (e.g. 24 hours), and how many time intervals we want 

to simulate; relatively smaller simulation time periods (such as 5 minutes) lead to more accurate 

simulation results. The DNL provides outputs for each simulation time interval 𝜃, where if no vehicle 

is loaded on the link, the link flow will be equal to zero. Non-zero OD demand flows will propagate to 

reach the link represented in Figure 7.1 after some time. Since often the time intervals chosen for the 

OD matrices are different than those chosen for simulating the link flows, and since travel times to 

propagate flows are continuous variables, then fractions of OD flows stemming from two or more OD 

matrices can result in the same link flow at a time interval 𝜃. By contrast, in our research, 𝜏 is a parameter 

of the departure time choice model. In this example, 𝜏 represents the most likely preferred departure 

time from the origin chosen by user n to reach the location where to perform the activity p. At 

equilibrium, and for a set of users, if travel times are flow-dependent, then the departure time choice 

model will spread the demand around the preferred value, providing as output the actual departure time 

t. Potentially, each simulation time interval 𝜃 could be an actual departure time, and the relation between 

t and 𝜃 is the one formulated in a generic way in Equation (8.2).   

 
Fig.8.1:  Relation between the preferred departure time  𝜏, the actual departure time t, and the 

simulation time interval 𝜃, their relation is showed; 

 

Li et al. (Li, Lam, and Wong 2014) formulated the problem presented in Equation (8.4) as 

complementarity problem: 

{
𝑁𝑆,𝑃(𝒕)[𝑈𝑑(𝒕, 𝒓) − 𝑈𝑑

∗] = 0                      

𝑁𝑆,𝑃(𝒕) ≥ 0, 𝑈𝑑(𝒕, 𝒓) − 𝑈𝑑
∗ ≤ 0     ∀ 𝒕, 𝒓

 (8.5) 

 

Where 𝑁𝑆,𝑃
 is the number of users with set of activities P and trips S, for a certain set of departure times 

t. System of Equations (8.5) leads to the user equilibrium condition, where any used set of departure 

times t leads to the same utility.   

If we consider a single trip s with a single purpose p, then 𝑁𝑆,𝑃
 is equal to the time dependent OD flow  

𝑁𝑆,𝑃(𝑡) = 𝑥𝑜𝑑
𝑡 . 𝑈𝑑

∗ is the equilibrium maximum utility for those sets of trips/activities, and 𝑈𝑑(𝒕, 𝒓) the 

utility related to a certain set of departure times and routes.  

Before moving to the next section, it should be pointed out that many functional forms exist for 

calculating 𝑈𝑠 and 𝑈𝑝, which lead to different DTM output. For a detailed overview on the properties 

of the utility functions we refer to (Adnan 2010; Cantelmo and Viti 2016; Li, Lam, and Wong 2014). 
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However, without loss of generality, we can observe that when the marginal utility of an activity 𝑈𝑛
𝑝
 is 

considered as a function of the time-of-the-day only, system of Equations (8.4) detaches different trips 

(i.e. they are not correlated). When duration is explicitly considered, system of Equations (8.4) jointly 

estimates departure time and activity duration. As a consequence, when the proposed Utility-Based 

DTM is considered within the DTA in the lower level, DODE estimates demand flows that are consistent 

with the scheduling estimated in the lower level. 

8.2.2 Upper Level – the DODE Formulation 

At the upper level, the decision variables used to determine the objective function values represent the 

main difference between the proposed formulation and the classical DODE formulation. According to 

the original formulation proposed in (Cascetta, 1984), the OD flows for each time interval are the 

unknown variables to be estimated. However, when a parametric relation between OD pairs across a 

reference time period is assumed, the number of unknown variables decreases, leading to a more 

effective estimation of the time-dependent OD flows (Cascetta et al., 2013; Marzano et al., 2009). In the 

proposed formulation, the DTA model, formulated in Section 8.2.1, explicitly accounts for a parametric 

relation through the departure time choice model. As a consequence, we might expect that the only 

variable to be estimated is the number of users 𝑁𝑜𝑑∀ 𝑜𝑑 ∈ 𝑂𝐷, where OD is the set of all the (physical) 

OD pairs in the network. By extending this intuition to multiple activities, the overall number of 

variables becomes 𝑛𝑝 ∙ 𝑛𝑜𝑑, where  𝑛𝑝 is the number of activities and  𝑛𝑜𝑑 the number of (physical) OD 

pairs. However, this condition holds if the departure time choice parameters are assumed to be known 

and constant. Balakrishna (2006) demonstrated that, if the route choice parameters are not estimated 

together with the demand flows, the DODE leads to unrealistic results and biased estimations. Since we 

expect this condition to hold for the departure time choice model, also the vector 𝛡, including all the 

most relevant parameters {𝛼, 𝛽, 𝛾, 𝜏} of the departure time choice model, needs to be calibrated. As for 

the parameters of the utility function 𝑈𝑛
𝑝
, a reasonable solution is to calibrate off-line the utility function 

parameters, i.e. through surveys data or using values from the literature (Adnan, 2010; Ettema and 

Timmermans, 2003). In this work, we consider the parameters of the dis-utility function presented in 

Equation (8.3), which properly models the mean and the variance of the departure time distribution 

when congestion occurs on the network. When no congestion occurs, we can use a different approach 

as proposed in (Ettema and Timmermans, 2003). Simple statistical tests, such as the likelihood-ratio 

test, can be used for evaluating the improvement due to considering more parameters in the model. 

Defined 𝑛𝜃 the number of simulation time intervals, the DODE problem can be formulated as: 

(𝒙1,1(𝛡, 𝒏)… 𝒙𝑛𝑝,𝑛𝜃(𝛡, 𝒏)) = 

= min
𝛡,𝒏

[𝑧1(𝒅
1,1… 𝒅𝑛𝑝,𝑛𝜃 , 𝒙1,1(𝛡, 𝒏)… 𝒙𝑛𝑝,𝑛𝜃(𝛡,𝒏)) ∙ 𝑤1 + 𝑧2(𝒇

𝑒,1… 𝒇𝑒,𝑛𝜃 , 𝒇̂1… 𝒇̂𝑛𝜃) ∙ 𝑤2] 
(8.6a) 

Subject to: 

(𝒇𝑒,1… 𝒇𝑒,𝑛𝜃) =max
𝒕,𝒓
(𝑈𝑆(𝒕(𝛡, 𝒓, 𝒏)) + 𝑈𝑃(𝒕(𝛡, 𝒓, 𝒏))); (8.6b) 

Where: 

- 𝒅𝑛𝑝,𝑛𝜃/ 𝒙𝑛𝑝,𝑛𝜃 is the vector including the starting/estimated demand values for each activity p 

and time interval 𝜃;  

- 𝒇𝒆,𝜽/𝒇̂𝜽 represents the simulated/observed link flows during time interval 𝜃; 

- 𝑧1, 𝑧2 are the functions measuring the error between current and target OD flows and link flows, 

respectively; 

- 𝑤1, 𝑤2 are the weights assigned to each error component depending on the trust one has on 

either the seed matrix or on the traffic data; 

- n is the vector including the total number of users over the entire analysis period for each 

od/activity; 
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- 𝛡 is the vector with the DTM parameters {𝛼, 𝛽, 𝛾, 𝜏} to be calibrated, for each od/activity; 

- 𝒕 is the vector with the actual departure time, which is function of the departure time choice 

model; 

- 𝜃 is the simulation time interval; 

The vector n is a column vector including the demand for each OD and each purpose for the entire 

analysis period. Similarly, 𝛡 is the vector of the parameters of the DTM, for each OD and each trip 

purpose.  

8.3 Properties of the model 

In this section we show the advantages of the new Utility-Based model for solving the demand 

estimation (UB-DODE) with respect to the classical GLS, and the opportunity it offers to include 

additional information on activity location and duration. To do so, we divided this section in two parts. 

First, we consider the simple case of only one purpose and no utility at destination. This represents the 

classical situation in which only historical OD flows and traffic counts data are available, without any 

information on the activity done at destination. The model becomes therefore a standard trip-based 

approach. Thus we consider at this stage only a geographical heterogeneity for the user travelling on the 

network. Advantages of including scheduling information and/or parameters with respect to the classical 

approach are highlighted in this section. Then, we assume that activity location and duration are known 

or can be estimated within the DTA, thus we extend the UB-DODE model to include also the positive 

component in the utility function for performing an activity at destination.    

8.3.1 Single-purpose: Including schedule function 

In this section, we consider that the demand travelling on the network has one single purpose p, while 

the DTM model considers only the dis-utility of traveling 𝑈𝑠. As a consequence, the UB-DODE can be 

formulated as: 

(𝒙1,1(𝛡, 𝒏)… 𝒙𝑛𝑝,𝑛𝜃(𝛡, 𝒏)) = 

= min
𝛡,𝒏

[𝑧1(𝒅
1,1… 𝒅𝑛𝑝,𝑛𝜃 , 𝒙1,1(𝛡, 𝒏)… 𝒙𝑛𝑝,𝑛𝜃(𝛡,𝒏)) ∙ 𝑤1 + 𝑧2(𝒇

𝑒,1… 𝒇𝑒,𝑛𝜃 , 𝒇̂1… 𝒇̂𝑛𝜃) ∙ 𝑤2] 
(8.7a) 

Subject to: 

(𝒇𝑒,1… 𝒇𝑒,𝑛𝜃) =max
𝒕
(𝑈𝑠(𝒕(𝛡, 𝒓, 𝒏))); (8.7b) 

    

The standard trip-based approach adopted in this thesis, which we will refer to as Assignment-Based 

DODE (AB-DODE), is detailed in Equation (8.8): 

(𝑥1… 𝑥𝑛𝜃∙𝑛𝑜𝑑) = min
𝐱
[𝑧1(𝑑

1… 𝑑𝑛𝜃∙𝑛𝑜𝑑, 𝑥1… 𝑥𝑛𝜃∙𝑛𝑜𝑑) ∙ 𝑤1 + 𝑧2(𝒇
𝑒,1… 𝒇𝑒,𝑛𝜃 , 𝒇̂1… 𝒇̂𝑛𝜃) ∙ 𝑤2] 

(8.8a) 

Subject to: 

(𝒇𝑒,1… 𝒇𝑒,𝑛𝜃) =𝑴(𝒙)𝒙 (8.8b) 

    

Where 𝑴(𝒙) is the assignment matrix and x the column vector containing all the time-dependent OD 

flows. While the utility-based approach still relies on the assignment matrix, since has been developed 

to work with macroscopic DTA, the difference is that an AB-DODE relies only on the assignment matrix 

in the lower level for ensuring consistency between the demand and link flows. By contrast, the Utility-

Based formulation is schedule based, i.e. each trip has a specific time schedule.  
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Assuming that 𝑈𝑛
𝑠 is calculated according to Equation (8.3), then the decision variables to be estimated 

for each OD pair are 𝛼, 𝛽, 𝛾, 𝜏 and the total demand 𝑁𝑜𝑑 for the whole analysis period, thus the UB-

DODE approach has a number of free parameters equal to [𝑛𝑣𝑎𝑟_𝑈𝐵−𝐷𝑂𝐷𝐸 = 𝑛𝑜𝑑 ∙ 5], while for the AB-

DODE is [𝑛𝑣𝑎𝑟_𝐴𝐵−𝐷𝑂𝐷𝐸 = 𝑛𝑜𝑑 ∙ 𝑛𝜃], where 𝑛𝜃 is the number of time intervals and 𝑛𝑜𝑑 the number of 

(physical) OD pairs. In general, by defining 𝑛𝜔 the number of variables to estimate for each OD 

according to the schedule based approach, when 𝑛𝜃 > 𝑛𝜔, then 𝑛𝑣𝑎𝑟_𝑈𝐵_𝐷𝑂𝐷𝐸 < 𝑛𝑣𝑎𝑟_𝐴𝐵_𝐷𝑂𝐷𝐸. This 

observation leads to the following property: 

Property 1- If the number of time intervals in which the demand is divided is larger than the number of 

parameters of the Utility-Based formulation, then the number of variables of the Utility-Based Approach 

is lower than the one of the Assignment-Based.  

The most important consequence of this property is that the number of parameters 𝑛𝜔 is not dependent 

on the number of time intervals 𝑛𝜃. As a consequence, the Utility-Based formulation can be considered 

a parametric approach, in which the DTM is the parametric relation between different time intervals for 

the same OD pair. This condition leads to an important advantage. On one hand, as observed in (Marzano 

et al., 2009), an effective estimation is achievable when the unknown/equation ratio is close to one. On 

the other hand, as pointed out in (Cascetta et al., 2013), for the UB-DODE, when a longer analysis period 

is adopted, e.g. the entire day, and shorter simulation time intervals are considered, then the number of 

equations increases considerably, while the number of parameters to be estimated in our approach stays 

constant. Consequently, the value of the unknowns/equations ratio increases, and a better estimation is 

obtained.  

Apart from the systematic reduction of the number of free parameters for all cases in which 𝑛𝜃 > 𝑛𝜔, 

two more properties should be highlighted, which are related to the spatial and temporal propagation of 

the OD flows. More specifically 

i) The first property is related to the observation by Frederix et al. (2010), who point out that, if a 

linear correlation between OD-flows and link flows is assumed, there will be a biased estimation 

of the gradient of the goal function. We show that this bias is reduced using the UB-DODE 

approach; 

ii) The second property is related to the fact that, if there exists a relationship between time-

dependent flows for a specific OD pair, then the solution space of the OD estimation problem 

is reduced. To demonstrate the latter, we will make use of the Maximum Possible Relative Error 

(MPRE) metric, originally introduced by Yang et al. (1991). 

The consequence of the combined effect of (i) and (ii) is that the AB-DODE formulation properly 

approximates the total demand, while has a hard time in estimating its temporal and/or spatial 

distribution.  

Equations (8.7) and (8.8) are constrained optimization problems, which can be solved through well-

known methods such as the gradient projection method. For a detailed overview we refer to other works 

(Balakrishna, 2006; Lindveld, 2003), while hereafter we stress that one of the key problems with these 

approaches is the calculation of the gradient Gr, which can be formulated as the explicit gradient of the 

objective function (Cascetta, 2009; Cascetta et al., 1993) or as a numerical approximation (Cantelmo et 

al., 2014; Lu, 2013).  

Equation (8.8b) assumes that a linear relation between OD and link flows exists. As a consequence, by 

assuming an explicit approximation of the gradient, we assume that the link flow on a certain section 

and during a certain time interval can change always and only by changing the OD flows passing on that 

link and in that time interval. However, in a dynamic environment this assumption cannot be accepted, 

since it does not consider basic dynamics such as congestion spillback and flow interactions at the 

intersections. Numerical approaches (Antoniou et al., 2015; Cantelmo et al., 2014; Frederix et al., 2011) 
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might overcome this issue (Frederix et al., 2013), however there are two drawbacks: firstly, these 

methods are usually computationally more expensive because of the high number of variables, secondly, 

for an increasing number of variables, the effect of the numerical perturbation on the goal function 

decreases. 

The gradient numerical approximation for Equation (8.8) can be generally assumed to be, for instance: 

𝑮𝒓 =

[
 
 
 
 
𝜕z(𝑥)

𝜕𝑥1

⋮
𝜕z(𝑥)

𝜕𝑥𝑛𝜃∙𝑛𝑜𝑑]
 
 
 
 

≅

[
 
 
 
 

𝑧(𝑥1 + 𝑐) − 𝑧(𝑥1 − 𝑐)

2𝑐
⋮

𝑧(𝑥𝑛𝜃∙𝑛𝑜𝑑 + 𝑐) − 𝑧(𝑥𝑛𝜃∙𝑛𝑜𝑑 − 𝑐)

2𝑐 ]
 
 
 
 

 
(8.9) 

Equation (8.9) properly approximates the real gradient if the numerical perturbation c is small. This 

perturbation in the demand flow leads to a new route flow, thus a new generalized cost for each link l 

belonging to that route. This new cost triggers a rerouting effect for all the OD pairs 𝑜𝑑 ∈  𝑂𝐷𝑙, where 

𝑂𝐷𝑙 is the set of OD pairs passing for link l. By assuming that the numerical perturbation is a small 

proportion “𝜌” of the overall demand flow, thus 𝑐 = 𝜌 ∙ 𝑥𝑜𝑑
𝜃 , the magnitude of the effect of the 

perturbation on network can be expressed as: 

𝑀𝐴𝐺𝐴𝐵_𝐷𝑂𝐷𝐸,(𝑜𝑑,𝜃) =
𝜌 ∙ 𝑥𝑜𝑑

𝜃

∑ ∑ ∑ 𝑥𝑜𝑑
𝜃

𝑜𝑑∈ 𝑂𝐷𝑙𝜃∈Θ𝑙∈𝑟

 
(8.10) 

Where 𝜌 is a proportional factor and 𝑙 ∈ 𝑟  is the set of links in the network belonging to route r. Equation 

(8.10) shows, for one OD and one time interval 𝜃, that the effect of perturbation is inversely proportional 

to the number of links and OD pairs. In other words, the larger the network, the lower will be the effect 

of the numerical perturbation on the link flows, which is usually the case for urban networks. As a 

consequence, the only option to increase the impact of the perturbation is to increase the parameter 𝜌, 

which however leads to an incorrect approximation of the gradient in Equation (8.9). On the other hand, 

by assuming a UB-DODE formulation, the perturbation becomes c= 𝜌 ∙ ∑ ∙ 𝑥𝑜𝑑
𝜃

𝜃∈Θ , leading to:  

𝑀𝐴𝐺𝑈𝑇_𝐷𝑂𝐷𝐸(𝑜𝑑) =
𝜌 ∙ ∑ ∙ 𝑥𝑜𝑑

𝜃
𝜃∈Θ

∑ ∑ ∑ 𝑥𝑜𝑑
𝜃

𝑜𝑑∈ 𝑂𝐷𝑙𝜃∈Θ𝑙∈𝑟

 
(8.11) 

Equation (8.11) shows that the classical bi-level formulation, even under the conditions in which a 

numerical derivative is assumed, is not able to properly calibrate the spatial-distribution – i.e. the 

distribution of trips over multiple OD pairs – for a given time period when multiple OD flows cross the 

same link. The main reason is that in Equation (8.10) the time interval is fixed, while in (8.11) we perturb 

the demand across the entire analysis period. As a consequence, not only the perturbation is larger, but 

the DTM will provide a different temporal distribution, which affects more time intervals and the overall 

duration of the rush hour. This property is analysed in more detail in Appendix D.1.  

While Equations (8.10)-(8.11) measure the effect of the perturbation c on the entire network, the goal 

function is sensible only to a subset of observed links, for which traffic counts are available. If the 

perturbation affects only links that are not within this set, then the change in the link flow does not 

influence the goal function value. For this reason, link number and location have a significant impact 

on the DODE problem.  

Concerning this issue, to measure the error of using the normal formulation, we exploit the MPRE 

proposed by Yang et al. (1991). This method allows estimating the maximum possible relative deviation 

between a given estimated matrix and the real one – therefore its Maximum Possible Relative Error 

(MPRE). First, we introduce hereafter the concept of observability of a variable, which is used in this 

thesis: 
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Definition of observability: We refer to observability of a variable as the probability of that variable of 

being observed at at least one counting station. 

The MPRE can be estimated by solving a quadratic programming problem (See Yang et al. (1991) for 

more details). One of the main problems with the AB-DODE is that, since time-dependent OD flows 

are treated as free parameters, the correlation between different OD flows derives only by congestion 

phenomena. As a consequence, the problem becomes highly non-linear, thus it is very easy to have 

extremely high values of the MPRE. Specifically, if one variable is not captured at at least one counting 

station, then the variable is not observable. In this case, the MPRE is unbounded and evolves to infinity. 

In the UB-DODE, the DTM constrains the solution space of the MPRE, since the only feasible solutions 

are those for which the OD flows are consistent with the departure time choice model. Since this 

constraint reduces the solution space size, the following property can be formulated: 

Property 2- Under the user equilibrium assumption, if a departure time choice model based on the only 

dis-utility of traveling is considered in the lower level of the demand estimation, and this single function 

is a concave continuous function, then the MPRE is less than or equal to the case where the departure 

time is exogenous.  

Demonstration of property 2 is provided in Appendix D.2. A second property derives from the OD-

coverage rule. Regardless of the estimation model, if one variable is not observed at any counting station, 

then the MPRE is infinite. If, for instance, an OD pair is observable for 𝑛𝜃-1 time intervals, then the 

AB-DODE MPRE goes to infinite. However, if a relation exists between OD flow belonging to different 

time intervals –i.e. the DTM – then the variable is still observable. According to this observation, the 

missing time interval can be estimated. 

Property 3- By assuming a parametric relation between different time intervals, the demand flows 

observability increases. 

As a consequence, if an OD flow has been observed in at least one time interval, then the MPRE is not 

infinite. This property is analysed in Appendix D.3.   

8.3.2 Multiple-purpose: Including activity location and duration 

In this section we study the model when including multiple activity locations and duration. Many studies 

show how the trip/activity scheduling is strongly related to the utility of performing a specific activity 

at a certain time. As a result, the final activity pattern is a function of travel time, activity duration and 

the preferred arrival time at destination (Zhang et al., 2005).  

Before analysing the consequences of considering the activity duration within the DODE, we relax the 

assumption imposed in Section 8.2.1, for which the location of all the activities is known. First, we 

categorize the activities in two classes: rigid and flexible.  Activities such as work and home, where the 

location is fixed, belong to the first class (rigid), while those activities in which each user can choose 

multiple locations, such as daily shopping, belong to the second one (flexible). According to this 

categorization, the following information is needed for mapping the demand:  

a) Activity location for the rigid activities, for each user; 

b) Candidate locations for the flexible activities, assigning to each location the appropriate utility 

function; 

If a sufficient amount of data is available, activity location can be derived through collected data such 

as travel surveys and/or probe vehicles (Cipriani et al., 2015; Eisenman and List, 2004). Alternatively, 

they can be estimated within the DTA itself (Fu and Lam, 2014; Polak and Heydecker, 2006; Ramadurai 

and Ukkusuri, 2011). These approaches can be used to estimate the sequence of rigid and flexible 

activities for each user. Then, users can be grouped in macroscopic activity patterns 𝜈, based on the 

activity scheduling and the location of the rigid activities: 
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𝜈 = {(𝑔1 , 𝜏1 , 𝜗1),… , (𝑔𝑃 , 𝜏𝑃 𝜗𝑃)} 
(8.12) 

For a group of users, the macroscopic activity pattern 𝜈 is the list of all activities P, their locations (or 

node) g, and the preferred departure times 𝜏. The variable 𝜗 is a Boolean variable indicating whether 

the activity is rigid or not. Thus, all the users belonging to a macroscopic activity pattern 𝜈, will have 

the same activity pattern in terms of activity scheduling, constrained to the same location only for rigid 

activities (𝜗 = 1). For the flexible activities, the activity location can be modelled as a route choice 

problem, where users choose jointly route and activity location for which they maximize their own 

utility according to Equation (1). An equilibrium model that can take into account this type of activity 

pattern is proposed in (Cantelmo and Viti, 2016). The main consequence is that, instead of estimating 

the number of users for each OD pair, we can estimate the number of users for each activity pattern. 

The advantage is twofold. On one hand, the number of decision variables decreases with respect to 

estimating the demand flow for each activity, on the other hand, by considering daily patterns, estimating 

the demand for a certain activity pattern brings consistency in the system. Given the last location visited 

during the day 𝑔𝑛
𝑓𝑖𝑛𝑎𝑙

, we can write: 

{
𝑡𝑛
𝑝 ≤ 𝑡𝑛

𝑝+1                        ∀ 𝑛 ∈ 𝑁

𝑔𝑛
𝑜𝑟𝑖𝑔𝑖𝑛−1 = 𝑔𝑛

𝑓𝑖𝑛𝑎𝑙          ∀ 𝑛 ∈ 𝑁
 

(8.13) 

Where 𝑡𝑛
𝑝

 is the departure time for the trip with purpose p, for a certain user n, and 𝑔𝑛
𝑜𝑟𝑖𝑔𝑖𝑛−1

 is the 

origin zone for the first trip in the activity pattern. Equation (8.13) assumes that there is conservation of 

users in the system, and imposes a constraint that each user will return to his/her original location (home) 

at some point in time. If travel time 𝑇𝑇𝑠 and the activity duration for activity p  Δ𝑡𝑝 = (𝑡𝑛
𝑝+1

− 𝑡𝑛
𝑝
−

𝑇𝑇𝑠) are considered, then Equation (8.13) becomes: 

{
Δ𝑡𝑝+ 𝑡𝑛

𝑝+𝑇𝑇𝑠 ≤ 𝑡𝑛
𝑝+1                        ∀ 𝑛 ∈ 𝑁

𝑔𝑛
𝑜𝑟𝑖𝑔𝑖𝑛−1 = 𝑔𝑛

𝑓𝑖𝑛𝑎𝑙                                 ∀ 𝑛 ∈ 𝑁
 

(8.14) 

 

Equation (8.14) can be formulated for the macroscopic activity pattern detailed in Equation (8.12) as: 

𝑁𝑜𝑑
𝑝,𝜈
≥ 𝑁𝑜𝑑

𝑝+1,𝜈 ∙ 𝜗𝑝+1             𝑝,𝑝+ 1 ∈ 𝜈,    1< 𝑝 < 𝑃−1 (8.15) 

Where, for a given activity pattern 𝜈, 𝑁𝑜𝑑
𝑝,𝜈

 represents the demand for a certain OD, 𝑁𝑜𝑑
𝑝+1

 the OD demand 

for the activity p+1.  Equation (8.15) shows that if both activities at origin and destination for a certain 

OD pair are rigid, for a certain activity pattern 𝜈, then the OD flow from to the next activity location(s) 

is less than or equal to 𝑁𝑜𝑑
𝑝,𝜈

.  As a consequence, the number of unknowns further decreases, resulting in 

a more consistent estimation of the demand flows. Based on this discussion, we can now extend Property 

3 into the following property 4: 

Property 4- By assuming a parametric relation between different time intervals, if activity duration is 

estimated within the DTA, the demand flow observability increases with respect to a trip based 

approach.  

This property depends on Equation (8.15), which creates a relation between demand flows belonging to 

the same activity pattern. If we can observe this demand in at least one trip, then the MPRE for all the 

OD pairs belonging to that activity pattern is not infinite. This consideration is discussed in Appendix 

C, while Figure 8.2 shows intuitively an example of the macroscopic activity pattern {Work-Shopping-

Leisure-Home} on a simple network, for a demand of 𝑁𝑣 = 100 users. 



153 

 

 

𝜈 = {𝒈, 𝝉,𝝑} 
 

𝝉 = {

8

17
18

19

} 

 

𝒈 = {

3
0
1
2

} 

 

𝝑 = {

1

0
1

1

} 

1) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒  𝑁𝑜𝑑
𝑝

 

𝑁2−3
𝑊𝑜𝑟𝑘 =∑𝑥2−3

𝑡 = 100

𝑡

 

𝑁3−4
𝑆ℎ𝑜𝑝

=∑𝑥3−4
𝑡 = 50

𝑡

 

𝑁3−5
𝑆ℎ𝑜𝑝

=∑𝑥3−5
𝑡 = 50

𝑡

 

𝑁5−1
𝐿𝑒𝑖𝑠 =∑𝑥5−1

𝑡 = 50

𝑡

 

𝑁4−1
𝐿𝑒𝑖𝑠 =∑𝑥5−1

𝑡 = 50

𝑡

 

𝑁1−2
𝐻𝑜𝑚𝑒 =∑𝑥1−2

𝑡 = 100

𝑡

 

2) 𝐴𝑝𝑝𝑙𝑦 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 18 
 

𝑁2−3
𝑊𝑜𝑟𝑘 ≥ 𝑁3−4

𝑆ℎ𝑜𝑝(0)  →   100 ≥ 0 

𝑁2−3
𝑊𝑜𝑟𝑘 ≥ 𝑁3−5

𝑆ℎ𝑜𝑝(0)  →   100 ≥ 0 

𝑁3−4
𝑆ℎ𝑜𝑝

≥ 𝑁4−1
𝐿𝑒𝑖𝑠(1)  →   50 ≥ 50 

𝑁3−5
𝑆ℎ𝑜𝑝

≥ 𝑁5−1
𝐿𝑒𝑖𝑠(1)  →   50 ≥ 50 

𝑁5−1
𝐿𝑒𝑖𝑠 ≥ 𝑁1−2

𝐻𝑜𝑚𝑒(1)  →   100 ≥ 100 

 

Fig.8.2: Example of consistency for the activity Demand 

In Figure (8.2), we first define the macroscopic activity pattern v, which is composed of the set of 

preferred departure times 𝝉 for each activity, the geographical information g for the rigid activities and 

the variable 𝝑.  Then, by taking all the OD flows for each time interval together, we calculate the value 

of 𝑁𝑜𝑑
𝑃  for each “spatial” OD and each activity.  Clearly all the 100 users will visit those locations for 

which 𝜗 = 1, while they will choose one location among the possible candidates when 𝜗 = 0. In this 

symmetric network, the demand for the “shopping” activity is equally distributed among nodes 4 and 5. 

Finally, we can verify that, when the macroscopic activity pattern is formulated as in Equation (8.12), 

Equation (8.15) is satisfied for all OD pairs.  

8.4 Numerical analysis 

8.4.1 Solution algorithm 

In this section, two test networks are used to illustrate the properties of the proposed UB-DODE model. 

The DTA model adopted is the Iterative Link Transmission Model (I-LTM) introduced in (Himpe et al., 

2016; Tampère et al., 2011), which allows a realistic network loading which properly reproduces 

complex traffic dynamics such as congestion spillback. While the AB-DODE assumes exogenous 

departure times, i.e. each OD pair is a free parameter to be calibrated, the Utility-Based formulation 

implements the DTM presented in Section 8.2.1 within the DTA, which is solved through the well-

known Method of Successive Averages (MSA), as described in (Cantelmo and Viti, 2016; Li et al., 

2014).  

Step 0: Define an initial departure flow value 𝒙𝑖 by setting 𝑥𝑜𝑑
𝜏 = 𝑁𝑜𝑑   ∀ 𝑜𝑑, and set the iteration 

number i=1; 

Step 1: Load the demand on the network, obtaining the travel times TTod; 

Step 2: Calculate the Utility 𝑈𝑛 = (𝑈𝑠 + 𝑈𝑝) ∀ 𝑛; 

Step 3: identify the time interval 𝜃∗in which 𝑈𝑛 is maximum, and estimate the auxiliary flows 

𝒙̈𝑜𝑑
𝜃∗  by setting 𝑥̈𝑜𝑑

𝜃∗ = 𝑁𝑜𝑑   ∀ 𝑜𝑑 

Step 4: Update the solution through the MSA algorithm as  𝒙𝑖𝑡𝑒+1 = 𝒙𝑖𝑡𝑒  +
1

𝑖𝑡𝑒+1
(𝒙̈𝑜𝑑

𝜃∗ − 𝒙𝑖𝑡𝑒) 

Step 5: Return to Step 1; 

Different solution algorithms have been proposed to tackle the different task of estimating the demand 

from the traffic counts. In this work we apply an iterative path-search method for solving the DODE. 
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Specifically, we apply a Gradient Descent method, which assumes that, if the multi-variable objective 

function(s) (8.6a)-(8.7a)-(8.8a) are defined and differentiable, then the goal function decreases in the 

direction of the gradient: 

𝒁𝑖+1 = 𝒁𝑖 − Λ𝑖𝑮𝒓𝑖 (8.15) 

Where 𝒁𝑖 is the set of variables to be updated at iteration i, Λ𝑖 is the step size and 𝑮𝒓𝑖 is the gradient. 

As pointed out in Section 8.3.1, the gradient can be obtained through an explicit calculation of the 

gradient of the objective function or as a numerical approximation. While the first one is very popular 

when only link-flows/demand-flows are used in the goal function, and when the dynamic assignment 

matrix M is known, it may lead to biased estimations, as discussed in section 8.3.1 of this work and in 

(Frederix et al., 2013). Thus we get its numerical approximation by applying two different approaches, 

the FDSA and the SPSA, which have been widely adopted in the literature.  

The FDSA (Finite Difference Stochastic Approximation, Kiefer and Wolfowitz (1952)) is a method 

usually adopted when there is stochasticity in the measurements. It obtains the descent direction by 

perturbing every variable in 𝒁𝑖: The gradient is obtained as follows 

𝑮𝑖(𝒁𝑖) =

[
 
 
 
 
𝑧(𝒁𝑖 + 𝑐

𝑖𝝃1) − 𝑧(𝒁𝑖 − 𝑐
𝑖𝝃1)

𝑐𝑖

⋮
𝑧(𝒁𝑖 + 𝑐

𝑖𝝃𝒏𝒗) − 𝑧(𝒁𝑖 − 𝑐
𝑖𝝃𝒏𝒗)

𝑐𝑖 ]
 
 
 
 

 
(8.16) 

where ξ is the vector with all zeros, except for the variable to be perturbed, ci is the perturbation and 𝑛𝑣 

the number of variables to be perturbed. In this method each variable is perturbed independently, so the 

number of simulations required for computing the gradient in any iteration is equal to the number 

variables times two. For big-sized networks, if each OD pair is assumed to be an independent variable 

to be calibrated, this approach becomes unfeasible. As a consequence, for many real-life applications, 

the SPSA (Simultaneous Perturbation Stochastic Approximation, Spall, 2012) is usually adopted. The 

SPSA is a stochastic approximation of the FDSA, formulated as follows: 

𝒈̂𝑘(𝒁𝑖) =
𝑧(𝒁𝑖 + 𝑐

𝑖∆𝒋) − 𝑧(𝒁𝑖 − 𝑐
𝑖∆𝑗)

𝑐𝑖
[
(∆1

𝑗
)
⋮

(∆𝑛𝑣
𝑘 )
] 

(8.17a) 

𝑮𝒊 = 𝒈̅(𝒁𝑖) =
∑ 𝒈̂𝑗(𝒁𝑖)
𝑱
𝒋=𝟏

𝐺𝑟𝑎𝑑_𝑟𝑒𝑝
 (8.17b) 

With J the number of the replications to compute the average gradient and Δ is a vector with elements 

{-1,1}. The SPSA perturbs all the variables at the same time, thus decreasing the number of simulations 

required. Since one single perturbation leads, usually, to a wrong approximation of the real gradient, J 

stochastic approximations are performed, and then the real gradient is calculated of their average, as 

detailed in Equation (8.17b). 

The step Λ in equation (8.15) is assumed to decrease at each iteration according to the rules detailed in 

(Spall, 2012). For the Utility-Based approach, we use three different values, specifically one for updating 

the number of trips 𝑵, a second value for updating the departure time 𝝉 and a third one for the parameters 

of the utility functions. Lastly, the demand weight term 𝑤1 is settled equal to 0, so that only the link 

flow error is considered in the optimization.  

The function used to assess the estimation results is the Root Mean Square Normalized Error (RMSN) 

metric: 
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𝑅𝑀𝑆𝑁 =
√χ∑ (𝑓𝑖

𝑒 − 𝑓𝑖)
2χ

𝑖=1

∑ 𝑓𝑖
χ
𝑖=1

 (8.18) 

Where χ is the number of measured variables.  

8.4.2 Numerical results 

8.4.2.1 Utility-Based Demand Estimation – Single destination case (Trip-Based) 

The first experiment is performed on the network shown in Figure 8.3, which is composed of 5 nodes 

and 4 links. Traffic counting is done only on link 3. The network, whose details are reported in Figure 

3, consists of a two-lane motorway with two origins, i.e. node 1 and node 2, and one common destination 

located in node 5. This network is similar to the one analysed in (Frederix et al., 2013). However, in this 

case the network is not symmetric, i.e. the free flow travel time from 1 to 5 is higher than the one from 

2 to 5, since link 1 is two times longer than link 2. By applying the FDSA method, the UB-DODE 

formulated in 4.1 is tested on this network through two experiments:  

Scenario I. Right temporal distribution, wrong spatial distribution: The seed matrix has the correct 

temporal distribution with respect to the real matrix to be estimated, while the spatial distribution is 

biased. Specifically, the demand from node 2 is 1.5 times the real one, while from node 1 is 0.5 the 

real demand flow.  

Scenario II. Wrong temporal distribution and spatial distribution: The spatial distribution keeps the 

same error as in Scenario (I), while considering a second perturbation to the temporal distribution. 

 

Link ID Length (Km) free Speed (Km/h) Capacity (Veh/h) Jam Density (Veh/Km) 

1 120 120 5000 300 

2 60 120 5000 300 

3 60 120 7500 450 

4 60 120 4000 240 

Network characteristics 

 

Figure 8.3: Test network and network characteristics for the trip-based case. Nodes 1 and 2 are origins, Node 5 is 

destination. The counting station is located on link 3; 

Scenarios I and II are solved using both the UB-DODE and the AB-DODE. However, the starting matrix 

for the two scenarios is different. In the case of the UB-DODE, to have the correct temporal distribution 

we assume that the DTM parameters are correct. That leads to have a realistic departure time choice 

model, thus a correct temporal distribution. Even if DTM parameters are correct, they are still variables 

of the optimization model –i.e. they are updated in order to match the observations. If we assume an 

exogenous departure time, we assume that the percentage of users leaving in a certain time interval is 
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correct, but not their number. As a consequence, the generated seed matrix is not the same. Similarly, 

in Scenario II we strongly perturb the real solution, thus we assume wrong demand and wrong DTM 

parameters for the UB-DODE. For the AB-DODE, we assume that the demand is uniformly distributed 

over different time intervals.  

Figures 8.4-8.5 introduce the results. They show clearly that, both for Scenarios I and II, according to 

the goal function, the UB-DODE finds a solution that fits well the observed link flows (although not as 

well as the AB-DODE) (Figure 8.4-8.5e, 8.4-8.5f), while at the same time moving closer to the real 

solution with respect to the AB-DODE case. Furthermore, as expected, when a more reliable seed matrix 

is available, i.e. in the case of Scenario I, then a better estimation is achieved both in terms of OD flows 

and of link flows. Scenario I shows how the concept of temporal distribution is completely different 

when applied to AB-DODE or UB-DODE. In the first case, the two OD pairs overestimate or 

underestimate the demand in each time interval. In the second case, when we increase/decrease the 

demand, we have a longer/shorter period in which the demand flow for that OD pair has high values 

(Figure 8.4b-8.4d). This depends on the properties of the dis-utility function presented in Equation (3). 

According to the DTM, the demand will spread around the preferred departure time. However, according 

to Equation (8.3), and in general to the bottleneck model, for a given capacity i.e. 5000 veh/h, the DTM 

suggests the users to anticipate or postpone the trip, rather than starting the trip when the network is 

already congested. For this reason, in the UB-DODE we have more time intervals in which the demand 

flow is close to the capacity, but it is not possible to observe time intervals in which this value is too 

high with respect to the road capacity, differently from the AB-DODE, in which the maximum demand 

is around 8000 veh/h. In the standard bottleneck model, by increasing the number of users, we increase 

the length of the congestion period; since the length of link 1 is two times the length of link 2, while the 

departure time is the same, there is a first time interval at 8.5 h in which only the demand from 2 is 

loaded on the network, and a last time interval at 9.25 h in which only the demand from 1 is observable. 

By identifying this error, the UB-DODE identifies the right demand. By contrast, the AB-DODE is not 

able to identify this problem, estimating a solution, which is completely biased for one OD (Figure 8.4a), 

while keeping constant the other one (Figure 8.4c). 
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Fig.8.4:  Results for Scenario I– (a-b) Demand Profile from 1 to 5; (c-d) Demand Profile from 2 to 

5; (e-f) Goal Function trend with respect to the iteration number; 

 

In Scenario II (Figure 8.5), although the demand profile is far from the real one, AB-DODE performs 

better than in the previous case, offering a reasonable estimation of the demand in the first time intervals 

for one OD (Figure 8.5b) and in the last time intervals for the other one (Figure 8.5c). The reason is, 

again, that in these time intervals the correlation between the two OD flows is limited because of the 

difference in the travel time. However, in the other time intervals the demand estimation is not able to 

improve the starting situation. On the other hand, the UB-DODE is able to estimate a reasonable 

solution, although not as precise as in the previous case. It should also be pointed out that the error on 

the link flows is still higher for the UB-DODE, indicating that the goal function is more representative 

of the error between real and estimated OD flows. A last comment considers the computational time: it 

looks clear that the number of iterations needed for the UB-DODE is smaller with respect to the AB-

DODE. This is related to the fact that we have less variables and a relatively smoother problem. 

However, when the DTM is combined with I-LTM, and solved through the MSA algorithm, the single 

simulation becomes up to 100 times more expensive. By considering this issue, together with the 

reduction in the number of variables and number of iterations, the computational time for the AB-DODE 

and UB-DODE is respectively of 28 and 18 hours. The reason is that, again, FDSA is an effective but 

not efficient algorithm for this problem. Scenario I and II numerically show Properties 1, 2 and 3 to 

hold. Specifically, we show that UB-DODE has a lower number of variables (10 for the UB-DODE and 



158 

 

42 for the AB-DODE), and that the proposed formulation is more sensitive with respect to errors in the 

spatial distribution. While Frederix et al. (2013) identified that, already on symmetric toy networks, 

conditions in which AB-DODE provides a proper estimation are tight and usually unrealistic for 

applications on real-sized networks, the proposed Utility-based formulation, instead, by taking into 

account the travel time in the utility function, is able to move closer to the real demand matrix in more 

relaxed conditions. 

 
Fig.8.5:  Results for Scenario I– (a-b) Demand Profile from 1 to 5; (c-d) Demand Profile from 2 to 

5; (e-f) Goal Function trend with respect to the iteration number; 

 

8.4.2.2 Utility-Based Demand Estimation – Including activity location and duration 

The second network, showed in Figure 8.6, presents a more comprehensive case, and it is used to show 

the improvement related to considering the activity duration as formulated in Section 3.2. The network 

has five OD pairs {1-4, 4-5, 4-6, 5-1, 6-1}. Links 1 and 5 are connectors, thus link jam density and 

capacity are infinite. Traffic counting is done only on link 3. Nodes 1 and 4 represent, respectively, 
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home and work locations, while secondary activities, such as fitness activity, are located on nodes 5 and 

6. We have one macroscopic activity pattern {work-leisure-home} on this network, where home and 

work are rigid activities. For this network the secondary activity has constant duration, equal to one 

hour, and the same (constant) utility. Under this assumption, for both the AB-DODE and UB-DODE 

the activity location problem turns out to be equivalent to a route choice problem, where two alternative 

routes, connecting nodes 4 and 1, have the same cost. In this case, the two models have the same starting 

value of the demand. Utility of performing the activity work is, instead, calculated through equation 

8.19: 

𝑈𝑛,𝑝
𝑎 (𝑡𝑛

𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑛
𝑒𝑛𝑑) = ∫ 𝑈𝑛

𝑝(𝑡) (
1

(𝑡 − 𝑡𝑛
𝑠𝑡𝑎𝑟𝑡)

)

0.5

𝑑𝑡
𝑡𝑛
𝑒𝑛𝑑

𝑡𝑛
𝑠𝑡𝑎𝑟𝑡+1

 
(8.19) 

Where 𝑡𝑛
𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑛

𝑒𝑛𝑑 are the starting and ending time for the activity “work”, 𝑈𝑛
𝑝(𝑡) is the bell-shaped 

time-dependent utility function proposed in (Ettema and Timmermans, 2003), while the second term 

include the duration – or fatigue – effect. For more details on this function, we refer to (Cantelmo and 

Viti, 2016). Results of this experiment are presented in Figure 7.  

 
Fig.8.6:  Test Network for the activity-based approach. The counting station is located on link 3; 

 

The analysis period covers 24 hours with a simulation time interval of 15 minutes. The AB-DODE uses 

the SPSA since, already for this simple toy-network, the number of variables is too high for using FDSA. 

The Utility-based approach has been tested instead with both FDSA and SPSA. As expected, the two 

models provide almost the same result, since SPSA is assumed to properly approximate the FDSA for 

small networks (Spall, 2012). However, for the sake of a better readability, in this Chapter we show the 

results for the FDSA. The main reason is to avoid issues related to the stochastic component of the SPSA 

when analysing UB-DODE results.   

As shown in Figure 8.7, the Utility-based estimation clearly outperforms the standard AB-DODE in this 

example. The main reason is a better consistency in the demand pattern. The extremely accurate 

estimation is fully explained by Equations (8.14)-(8.15), which impose that the same users observed in 

the morning will also return home, thus  

NHome = ∑ Nod
Leisure

od = NWork. However, the link flow on the links connecting nodes 5 and 6 are 

unobserved. The Utility-based formulation observes this flow in the morning, when estimating the 

demand from Node 1 to 4. Figure 8.7a intuitively shows this issue. The AB-DODE partially corrects the 

demand morning commute, as long as the correction leads to an improvement in the goal function. 

However, it is not able to correct the evening commute, since no detector intercepts that demand. As 

consequence, technically, the maximum error between simulated and estimated demand in the evening 

is infinite. On the other hand, the UB-DODE properly estimated both morning and evening commute 

because of the relation detailed in Equation (8.15). However, a significant error between estimated and 

observed traffic counts is observable (Figure 8.7b-8.7c).  
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Lastly, while in Section 8.3.1 we stressed that there is a consistency in the demand N, the estimation 

updated also the values of the parameters {α, β, γ} and the departure time in the evening commute. Since 

the utility of performing the activities home and work are modelled through the realistic utility function 

presented in Equation (8.19), which takes into account activity scheduling and duration, by changing 

the disutility of travelling in the afternoon we observe a different behaviour in the morning, leading to 

a different link flow on link 3. 

 
Fig.8.7:  Results for Scenario II– (a) Demand Profile for morning and evening commute; (b-c) 

Scatter Simulated vs Real link flows; (e-f) Goal Function trend wrt the iteration number; 

8.5 Conclusions 

In this Chapter, the authors presented a Utility-Based formulation for the demand estimation, which is 

able of incorporating activity scheduling and duration. The building block of this methodology is to 

adopt a utility-based departure time choice model in the DTA, and to exploit this model to derive the 

temporal distribution of the demand. Since most of the state-of-the-art DTA models do not include 

activity location, properties of the model have been evaluated in two conditions: (i) when no knowledge 

about activity purpose and location is available – i.e. the standard trip-based representation, and (ii) 

when activity location and characteristic are considered. Mathematical properties of the model are 

presented and tested on simple networks with a realistic trip-based macroscopic DTA model, showing 

that the model can be implemented in practice. Hereafter, the main properties of the model are listed: 

I. The utility-based formulation has, usually, a lower number of variables. Since the number of 

variables does not depend on the number of simulation time intervals. This is particularly true 

when the analysis period is large enough; 

II. The utility-based formulation is more sensitive to the spatial distribution of the demand, since 

the derivative of one specific variable influences several time intervals, generating a meaningful 

perturbation on the network flows; 
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III. Since the demand over different time intervals is highly correlated, the proposed model 

increases the demand flow observability over time; 

IV. If activity duration is considered in the problem, since demand over different trips is correlated, 

demand observability increases over both time and space. 

Most of these properties derive from the adopted departure time choice model, which bridges the Goal 

Function at the upper level and the DTA at the lower level. While usually the DTA model is simply a 

constraint, in this case the temporal distribution is estimated within the DTA itself. Numerical examples 

provide additional insight into the model performances. First, when a gradient approach is used, this 

model is extremely sensitive with respect to the step size. While the standard approach estimates demand 

flows, the proposed formulation estimated demand flows and departure time choice model parameters 

at the same time, meaning that different step sizes need to be considered. Thus, for more realistic 

implementations, a line search should be included in the solution algorithm, improving the quality of 

the result while reducing the computational time. Second, the last experiment shows that, when duration 

is included in the problem, if one OD flow is well calibrated, then the overall demand for the entire 

day/activity pattern can be properly estimated. This is extremely relevant for implementations on real 

networks, where due to topological reasons few OD flows are easier to be estimated than the others.  

Theoretically, the approach could be used for both online and offline demand estimation. However, as 

other approaches, it is extremely demanding in terms of computational times. Thus, is more suited for 

off-line calibration. However, this model has been developed in order to estimate the systematic 

component of the demand, thus a reasonable option is to use this methodology to create a good dynamic 

matrix, to be corrected with other approaches such as Kalman Filter or Sequential GLS. Lastly, the 

scalability of the model depends on the assumptions on the DTM. The trip-based version of the UB-

DODE presented in this Chapter can be already implemented in practice. The only needed information 

for implementing this model is the OD-travel time, while Property 1 shows that, although the number 

of parameters increase with the number of ODs, it is constant with respect to the number of time 

intervals. The tour-based version can be implemented only with those DTA that can model macroscopic 

activity patterns, such as the one proposed in (Ramadurai and Ukkusuri, 2011).  

Future research will focus on extending and to strengthening the findings presented in this work. On one 

hand, the first challenge is to test the Utility-based formulation for big sized networks, in order to 

evaluate the mathematical properties under more general conditions. A second difficult challenge is to 

properly map activity location for macroscopic activity patterns, in order to implement the multiple-

purpose version on generic networks with first-order macroscopic DTA. Once these two points have to 

be solved, the effect of considering different information, such as probe vehicles data, which carry a lot 

of information regarding activity location, should be investigated. Lastly, since the proposed formulation 

is utility-based i.e. based on the perceived utility rather than traffic performances, an interesting direction 

is the multi-modal demand estimation. 
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9 

Utility-Based OD Estimation for 

general networks 

The previous Chapter introduced the concept of Utility-Based OD Estimation, proved its properties and 

validated them on toy networks. In this Chapter, we show that the model can, in principle, be applied to 

a general network and DTA model. To achieve this goal, we test model performances by mean of a 

synthetic experiment on the network of Luxembourg City. The adopted DTA model is PTV-Visum, 

which is a widely established commercial software for Traffic Analysis, showing that the model might 

be applied in practice, 

The content of this chapter has been presented in the following works: 

Cantelmo, Guido, and Francesco Viti. 2018. “Evaluating the reliability of the Utility-Based Dynamic OD 

Estimation on Large Networks” In 7th International Conference on Transport Network Reliability (Sydney, 17-19 

January, 2018) 

Cantelmo, Guido, and Francesco Viti. 2017. “Assessing the applicability of the Utility-based Dynamic Demand 

Estimation on large, real Networks” In 6th Symposium of the European Association for Research in Transportation 

-September 12-14, Haifa (Israel) 
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9.1 Introduction  

Simulation of traffic conditions requires accurate knowledge of the travel demand. In a dynamic context, 

this entails estimating time-dependent demand matrices, which are a discretised representation of the 

dynamic origin-destination (OD) flows. This problem, referred to as Dynamic OD Estimation (DODE) 

in literature, seeks for the best possible approximation of OD flows, which minimises the error between 

simulated and available traffic data. Traditional DODE models solve two optimisation problems, 

according to a bi-level formulation: the upper level updates the time-dependent OD flows, while in the 

lower level a dynamic traffic assignment model ensures consistency between demand and supply 

models. 

Since DODE problems are usually underdetermined because of the high number of unknown variables 

(Marzano, Papola, and Simonelli 2009), researchers have dealt with the critical issue of decreasing the 

number of decision variables in order to (i) obtain a smooth approximation of objective function (Djukic 

et al. 2012) and (ii) to reduce the overall computational time (Cipriani et al. 2011). Additionally, issues 

have been addressed, among others, to the nonlinear relation between link and demand flows (Zhou, Lu, 

and Zhang 2012), pointing out how having a reliable a-priori knowledge of the demand (a-priori seed 

matrix) is of paramount relevance in order to achieve a satisfactory outcome. On this point, Zhou and 

Mahmassani (Zhou and Mahmassani 2007) highlight that, in order to provide a robust and reliable 

estimation, the demand should be considered as a convolution of three functional components: the 

“regular pattern”, the “structural deviation” and the “random fluctuation”. The regular pattern can be 

considered as the systematic component of the demand, the structural deviation is the influence of the 

specific conditions for which we are estimating/updating the OD matrix (weather conditions, road 

works,…) and, finally, the random component takes into account the random fluctuations of the demand. 

Since having a reliable knowledge of the “a-priori seed matrix” is equivalent to know the systematic 

component of the demand – or regular pattern - we can observe that the overall reliability of the DODE 

depends on how accurate the knowledge of this component is. 

The contribution of this chapter is threefold. First, we test the Utility Based on the real network of 

Luxembourg city, in order to assess its applicability to real life scenarios. Then, we assess the reliability 

of this methodology. Finally, in order to increase the reliability of the model, we propose a modification 

of the SPSA algorithm. By imposing a soft constraint to the research space of the model, we 

systematically increase results reliability in terms of how likely we are to estimate the “regular patter” 

of the OD matrix.  

9.2 Methodology 

While for a detailed overview of the model the interested reader can refer to the previous chapter, in this 

section, before introducing the proposed extension of the SPSA, we briefly recall the main features of 

the model. The main difference with respect to the standard DODE formulation is in the lower level. 

We include within lower level DTA procedure a Departure Time Choice (DTC) model that performs 

the equilibrium through the utility maximisation theory, as proposed in (Li, Lam, and Wong 2014). The 

advantage of using this approach is twofold. 
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Fig.9.1:  Illustrative representation of the UB-DODE model; 

 

Firstly, this formulation automatically decreases the number of decision variables. The reason is that the 

parameters of the departure time choice model become the decision variables of the model. As a 

consequence, the UB-DODE becomes a parametric approach in which, for each OD pair, the model 

estimates the average departure time and its variance. The second advantage is that the DTC model can 

include different parameters for different activities, thus it explicitly accounts for the trip purpose within 

the DODE. Lastly, since each parameter directly affects a large number of time-dependent OD flows, 

the locality of the optimization problem strongly decreases. Figure 9.1 shows the main steps for the 

proposed UB-DODE model.  

9.2.1 Enhanced SPSA for the UB-DODE  

The proposed methodology can be implemented with most of the existing solution algorithms, including 

the well-established SPSA. In this chapter, we proposed to use the C-SPSA (Cluster-SPSA), as it is 

intuitive to create different clusters for a different type of variables (OD flows, preferred departure 

time,…) when calculating the gradient.   

Unfortunately, many of the desirable properties of convergence of the SPSA derive from the 

assumptions that the variables are independent. Clearly, this assumption does not hold for the UB-

DODE, as OD and DTC parameters are highly correlated. Therefore, the SPSA has the tendency of 

exploring unrealistic solutions during the optimization. To avoid this behaviour, we proposed the 

following equation to update the solution at each iteration: 

𝑿𝑖+1 = 𝑿𝑖 + 𝛼 ∙ 𝑮𝑖 ∙ 𝑃(𝑿𝑖 + 𝛼 ∙ 𝑮𝑖) (9.1) 

 

Where 𝑿𝑖 is the vector of the variables to be updated at iteration i,  𝛼 is the step size and 𝑮𝑖 is the 

gradient. 𝑃(𝑿𝑖 + 𝛼 ∙ 𝑮𝑖)  represents the probability that a certain value is realistic for a certain variable. 

If for instance we are estimating the value for the preferred departure time for commuting to work in the 

morning, 𝑃(𝑿𝑖 + 𝛼 ∙ 𝑮𝑖) will have a very high value between 6 and 9 am, while will be close to zero for 

unrealistic values, such as 1 am or 17 pm. This probability, whom parameters an input for the 

optimization, acts like a constraint during the optimization, reducing drastically the number of 

unrealistic solutions.  
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9.3 Case study and results 

The aim of this section is to assess the applicability of the novel procedure, by applying the procedure 

to the network of Luxembourg City. This network, shown in Figure 9.2, consists of more than 3400 

links and 1400 nodes and represents the typical middle-sized European city in terms of network size. 

Moreover, Luxembourg City has the typical structure of a metropolitan area, composed of a city centre, 

ring, and suburb areas.  

Lastly, the simulation environment employed is PTV Visum, which is one of the most widely adopted 

software for traffic analysis. 

 
Fig.9.2:  Network of Luxembourg City; 

 

After generating a realistic starting matrix through the well-known 4-Step model, we performed the 

DODE on the network showed in Figure (9.2), comparing the results obtained through the proposed UB-

DODE and a conventional DODE procedure. Both methods use the well-established SPSA to estimate 

the gradient, and the traffic counts within the GLS-type goal function.  

9.3.1 Utility-Based vs non-Utility-Based DODE 

Results, reported in Figure 7.3, show that the proposed model outperforms the standard DODE approach 

in inferring the OD demand. Although both models fail in estimating the real demand, which is expected 

when only link flows are used in the objective function, the standard approach creates an unrealistic 

demand pattern, that can be hardly combined with any prediction model. On the other side, the demand 

profile for the proposed approach is smoother and, in general, more realistic. This suggests that the 

model is more suited for estimating the systematic component of the demand, or “regular pattern”. 
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Fig.9.2:  (a) Generated Demand For Traffic Zone 12 (Bridel) according to the standard DODE; (b) 

Generated Demand For Traffic Zone 17 (France-Longwy) according to the standard DODE; (c) 

Generated Demand For Traffic Zone 12 (Bridel) according to the UB-DODE; (d) Generated 

Demand For Traffic Zone 17 (France-Longwy) according to the UB-DODE; 

 

9.3.2 C-SPSA vs Enhanced SPSA 

In order to assess the reliability of the model, we performed three different experiments, using the UB-

DODE to estimate the systematic component of the demand. Figure (9.3) reports some of the results. 

The first test – Experiment 1 - exploits the standard C-SPSA to estimate the purpose-dependent demand. 

As shown in Figure (7.3a), the estimated OD demand does not provide an adequate approximation of 

the real demand. In the second test – Experiment 2 - we investigated the possibility of using a different 

set of parameters, which were more likely to provide a realistic result. Figure (7.3b) shows how this new 

set of parameters (step size, perturbation, weights within the goal function) leads to an extremely 

accurate estimation of the demand. 

However, in this case study, the real-demand is known, so it is relatively easy to properly calibrate the 

parameters of the model in order to improve the performances. Unfortunately, this is not always the case 

for real applications. As a third option, in Experiment 3 we applied the C-SPSA combined with the soft 

constraint reported in Equation (9.1). Results show that the constrained C-SPSA achieves a satisfactory 

estimation of the demand, even with sub optimal set of parameters.  
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Fig.9.3:  Demand generated from France to Luxembourg according to Experiment 1 (a),2 (b) and 

3(c); 

 

Figure (9.3) reports an intuitive representation of how accurate the model is in reproducing a realistic 

demand profile. However, we are interested in the behaviour of the model al network level. While 

Experiment 2 seems to outperform the other twp for that specific traffic zone, we need to analyse if this 

observation olds at a network level. Hence, we calculated the relative improvement in terms of RMSE 

(Root Mean Squared Error) for the Generated Demand Flows for each traffic zone as: 

∆_𝑅𝑀𝑆𝐸𝑧𝑜𝑛𝑒 = 𝑅𝑀𝑆𝐸𝑍𝑜𝑛𝑒
𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔

− 𝑅𝑀𝑆𝐸𝑍𝑜𝑛𝑒
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (9.2) 

 

The ∆_𝑅𝑀𝑆𝐸𝑧𝑜𝑛𝑒 term represents how close we are to reality in terms of temporal distribution. If 

∆_𝑅𝑀𝑆𝐸 is negative, it means that the error is higher for the estimated matrix than for the starting 

demand, if it is equal to zero there is no improvement, while if ∆_𝑅𝑀𝑆𝐸 >0 we improved the situation 

with respect to the initial situation. The larger ∆_𝑅𝑀𝑆𝐸 is, the bigger is the improvement in the 

Estimated matrix. Figure (9.4) report the probability (9.4a) and cumulative probability (9.4b) of having 

a certain ∆_𝑅𝑀𝑆𝐸 value for a generic traffic zone according to the three Experiments. 

 
Fig.9.4:  (a) Probability and (b) Cumulative Probability of improving the starting OD matrix for 

each Experiment; 

 

Figure 9.4 clearly shows that, at a network level, if the constraint formulation is applied, we 

systematically improve the quality of the estimated OD matrix with respect to the unconstraint scenario. 

Even when we adopt a good set of parameters – Experiment 2 – at network level the model is not as 
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good as the constrained one, meaning that for each traffic zone properly calibrated – such as the one in 

Figure 2a – there is another one with a larger error. By contrast, the constrained formulation provides a 

more reliable estimation at a network level.  

9.4 Conclusions 

This chapter provided some insights on the possibility of adopting the proposed Utility-Based DODE 

on a general network. Experiments suggest that the model can indeed provide more reliable results with 

respect to the standard approach. Nevertheless, we should point out some main limitations. First, this 

chapter shows that, from a theoretical point of view, the methodology can be implemented on a general 

network and provide reasonable results. However, as pointed out in Chapter 2, from a practical point of 

view different activity patterns have to be considered in order to properly recreate the mobility demand. 

Thus, to estimate the number of function to consider within the model and their shape is a fundamental 

step for applying this methodology in practice. A first attempt of answering this question is reported in 

(Sceffer, Cantelmo, and Viti 2017). Additionally, we can observe that additional work in integrating the 

DTC model and the adopted DTA and for creating more efficient optimization frameworks is needed in 

order to achieve reliable results in a real life application.  
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10 

Conclusions 

In this final Chapter, conclusions about this thesis are summarized, shortcomings are highlighted and 

future research is presented.  
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10.1 Research questions 

The purpose of this thesis was to develop general frameworks for solving the dynamic OD estimation. 

The proposed solution should be feasible in practice, provide robust estimation and create a good 

dynamic matrix when only static information is available. To pursue this goal, we answered three 

research questions, which have been formulated in the first chapter: 

- R.Q.1: What is the impact of considering activity information within the DODE problem? 

 

The accurate estimation of the activity-based demand is extremely important when the 

“systematic” component of the demand is unknown. Specifically, a wrong estimation of the 

activity-based demand flows, such as a wrong estimation of the morning commute, lead to a 

biased estimation of the demand. Thus there are two solutions. When a good “seed matrix” is 

available, thus the “systematic” component of the demand has been properly estimated, then we 

can achieve good results even without considering the activity dimension. Otherwise, this 

component has to be explicitly modelled within the model in order to achieve a reliable 

estimation. Given this observation, a model has been proposed in Chapter 8 for tackling this 

issue, while Chapter 9 showed that the model can be applied in practice.  

 

- R.Q.2: Can we estimate purpose dependent OD flows without increasing the number of 

parameters? 

 

Chapter 8 introduced the Utility-Based OD Estimation framework (UB-DODE). The proposed 

framework can be used to estimate the activity-based demand flows without increasing the 

number of parameters. Chapter 8 introduces the mathematical properties of the model, showing 

under which conditions the model achieve reliable solutions. Then, Chapter 9 shows that this 

parametric approach can be applied for general networks. 

 

- R.Q.3: Can we increase the reliability of the OD estimation? 

 

As reported several times in this manuscript, the DODE is a highly non-linear problem, which 

is usually solved though simple first-order optimization models. Although more sophisticated 

approaches have been proposed, no existing model can guarantee to reach the global optimum 

of the problem. Even worse, a small perturbation of the model parameters can strongly affect 

the quality of the solution, even when a reliable starting matrix is available. We proposed a 

model that separates the OD estimation in two sub-optimization problem – the Two-Step 

approach. The first problem aims at finding a reliable initial point for the second problem, which 

looks for the best fit with the available traffic data. Experiments show that this approach is more 

likely to provide a more robust estimation.  

In the next sub-sections, we recapitulate these points, highlighting the complementarity of the two 

models presented in this manuscript and the relevance of considering multiple mobility patterns within 

the DODE problem.  

10.2 Interacting mobility patterns  

One of the critical point identified in this manuscript is the need of dealing with multiple mobility 

patterns. Specifically, the demand can be classified into regular and irregular patterns. Following the 

Classification proposed in (Zhou and Mahmassani 2007), the demand can be classified in: 

- Regular Pattern: This mobility pattern represents the “systematic” component of the demand 

and accounts for its typical structure (length of the rush hour, activity scheduling, etc). This 



175 

 

component is expected to follow a day-to-day dynamic behaviour, meaning that users might 

behave differently on different days of the week, while we can assume it constant in a week-to-

week context (same behaviour for two consecutive Mondays).  

- Structural Deviation (Irregular Pattern): This component accounts for those deviations from 

the regular pattern that we can explain, for instance, a longer rush hour due to roadworks and/or 

severe weather phenomena.  

- Random Deviation (Irregular Pattern): This component takes into account the random 

deviations from the regular pattern, which cannot be explained. Although users usually go to 

work at a certain time, some unpredictable event might force them to anticipate or postpone 

their trip.  

The interaction between these mobility patterns is a trivial problem during the DODE process, as errors 

in the regular patterns lead to even larger errors in the estimated Irregular component. Additionally, the 

DODE is the last step in order to estimate the mobility demand, meaning that results inherit all the errors 

from previous demand models, as well as those within the underlying DTA model. Thus it is extremely 

relevant to explicitly account for both mobility patterns within the estimation process in order to control 

this error. 

 
Fig. 10.1:  From Static Models to Dynamic OD Estimation; 

  

 

10.2.1 Regular Demand Patterns 

As shown in Figure 10.1, this thesis aims at reducing the error by introducing the Utility-Based OD 

Estimation (UB-DODE) technique to correct the regular demand pattern. The idea is that traffic data 

can be directly used to reduce the error within the regular pattern inherited by the Demand Generation 

Model. To achieve this goal, we decide to include information at activity level within the DODE, and 

to use a probabilistic approach to estimate purpose dependent OD flows (Figure 10.2). The probabilistic 

approach assumes that, given some preferences about the activity scheduling, users will more likely 

perform activities in a certain time frame. As we pointed out in the previous section, this “preferences” 

might be affected by substantial errors that generally affect also the final estimation. To avoid this 

problem, observed preferences (such as “average departure time”) are also updated during the UB-

DODE process so that, given a set of observations, the most likely regular pattern can be estimated. 
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Fig. 10.2:  Illustrative representation of the UB-DODE model; 

 

10.2.2  Irregular Demand Patterns 

Even if a good demand matrix can be obtained through the UB-DODE, this one will hardly provide an 

accurate fit with the traffic data. There are two main reasons: 

(i) The UB-DODE approach denies “unusual” user behaviour, meaning that might be not 

sensitive enough to capture heterogeneous user behaviour. Different users will react 

differently to unexpected events such as severe weather conditions. Thus the parametric 

approach will hardly be able to replicate the observations; 

(ii) From a mathematical point of view, the Assignment-Based DODE (AB-DODE) has more 

free parameters then the UB-DODE. In essence, although the AB-DODE is more likely to 

over-fit the data, for the same reason is also more likely to provide more realistic traffic 

conditions on the network.  

Point (ii) is extremely important since, in some applications, it results more important to reproduce a 

realistic congestion pattern rather than an accurate structure for the mobility demand. For these reasons, 

the ideal solution is to combine the two models as presented in Figure 10.1, achieving the goal of having 

a correct structure for the demand and an accurate fit with the data.    

10.3 Main findings 

Here we summarize the main conclusions of this research, distinguishing between advances in the 

DODE framework, contribution in the DTA and practice oriented insights.  

Concerning the DODE framework, this thesis brings the following innovations: 

Irregular Mobility Patterns: 

a) The proposed Two-Step approach allows reducing the localism issue of the problem. It is 

possible to use Principle Component Analysis or Quasi-Dynamic estimators in order to perform 

a broader exploration of the solution space, handling larger scenario than the typical “one-step 

formulation”, while at the same time allowing the same level of fitting accuracy as the 

conventional models; 
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b) The proposed Two-Step approach allows combining different optimization algorithms – such 

as stochastic and deterministic models – improving both computational time and estimation 

performances.  

c) The Two-Step procedure present more reliable solution with respect to the typical “single-step” 

procedure. 

d) The Two-Step procedure capture demand dynamics at a network level, recreating the 

uncongested/congested dynamics on the network without significantly modifying the structure 

of the demand.  

e) Mobile phone network data can be used as a proxy for the generated/attracted demand, 

improving model performances. However, this is an option when large traffic zones are 

available. 

 

Regular Mobility Patterns: 

f) Few parameters representing the activity schedule can be used to approximate the mobility 

demand through parametric models.  

g) Activities can be explicitly included within the DODE increasing the overall reliability of the 

estimation.  

h) The proposed parametric Utility-Based DODE model accounts for activities while reducing the 

overall number of the variable. 

i) The UB-DODE can account for activity duration, creating a more consistent approximation of 

the demand over the 24 hours period.  

j) When the model explicitly accounts for the simulated travel time –as for the UB-DODE – the 

DODE framework is more sensitive to the spatial distribution of the demand, since the 

derivative of one specific variable influences several time intervals, generating a meaningful 

perturbation on the network flows 

 

Concerning the DTA model in the context of dynamic OD estimation, the main achievements are that: 

a) By assuming a departure time choice model within the DTA, the number of the relation between 

observations and unknown variables increases. 

b) Utility-functions can be used for modelling different activities in the network and their effect 

on the congestion. 

c) A new utility function has been proposed, which can be used for modelling different activities, 

from work to special events.  

d) The effect of the utility function on the DTA has been analysed, showing that including a 

positive cost not only changes the congestion in terms of timing and duration but also correlates 

it over different trips.  

 

Finally, practice oriented insights are that: 

a) Errors in both data and models need to be properly accounted when implementing DODE. A 

possible way to solve this problem is to identify regular and irregular demand components and 

fix these errors one after the other.  

b) A methodology for creating a seed matrix when a good dynamic matrix is not available is 

presented.  

c) For large networks, there is an unavoidable trade-off between accurate mobility demand and 

model capability of reproducing the available traffic data. When more heterogeneity is 

considered, the DODE is more likely to find an accurate fit with the traffic measures but the 
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problem becomes more local. Vice versa, a simple structure lead to a smooth objective function 

but will fail in reproducing the available data, as user behaviour is oversimplified.  

 

10.4 Future research  

Although this thesis answered the research questions addressed in Chapter 1, more effort is needed to 

address problems that have been listed in the previous chapters and to generalize the framework 

proposed in Figure 10.1. Existing issues can be divided into three main challenges.  

First, in order to implement the Utility-Based DODE in practice, it is important to understand how many 

activity patterns should be considered and the proper function to represent them. Although some 

explorative analysis has been presented in Chapter 2 and some functions in Chapter 7, this only partially 

answers the question. From a mathematical point of view, we need to understand the number and type 

of functions that can properly reproduce the overall mobility demand, while at the same time are 

consistent with the requirements presented in this manuscript.  

The second problem consists in the solution algorithm for the UB-DODE. This thesis focused on the 

formulation of a new objective function and its relation with the DTA model in the lower level. We just 

applied and extended existing algorithms to solve the optimization problem. Although these algorithms 

provided reasonable results, it is relevant to investigate alternative solutions. For example, Simulating 

Annealing has been proven to be less efficient than the SPSA for the normal DODE since the solution 

space is highly non-linear. However, it might provide a better estimation with UB-DODE, as the 

research space is smoother. 

Lastly, the UB-DODE has been tested for car users only in this thesis. However, transportation is moving 

towards multimodality, meaning that in the future more and more interest will be on estimating the 

mobility demand in a multimodal environment. The UB-DODE seems ideal for this purpose, as it is 

based on utility functions. The demand adjustment passes through a departure time choice model based 

on the generalized cost of travelling, thus the extension from (departure time + route choice) to 

(departure time + mode + route choice) is straightforward. However, proper utility functions have to be 

included. Moreover, the interaction between different data coming from different transport modes has 

to be properly investigated, as it is likely to make the problem even more complex.  

Future research on the Two-Step approach is more limited. This framework is the extension of well-

established models and has been deeply analysed in this thesis, on both simple and real networks. The 

main research effort in this direction is to extend the MAMBA-DEV tool, in order to include more 

algorithms, models and data. From the methodological point of view, two main questions still need to 

be investigated. First, if online and offline models can be combined with the Two-Step of the model. 

Second, to formulate the Two-Step approach in an iterative way. Experiments in Chapter 6 show that 

iterating the two step approach while updating the parameters of the goal function might lead to a 

significant improvement with respect to the current formulation. Thus update rules might be included in 

an iterative approach in order to adapt the objective function and escape local minimum.       
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Appendix A 

Cluster analysis 

A.1  Activity Classification 

In this section, we clarify the way we performed the cluster analysis in Chapter 2. Let us consider the 

definition of Daily-Systematic-Activity (DSA), Within-week-Systematic-Activity (WSA) and Not-

Systematic-Activity (NSA) provided in Chapter 2. If we observe a single user for 𝑁𝑜𝑏𝑠 days, we can 

approximate the probability to do or nor a certain activity during a certain day with the frequency of 

observation. Assume that we observe a certain user i for four weeks. Assume that user has a strongly 

systematic behaviour. Every day he goes to work (DSA), on Wednesday goes to the swimming pool 

(WSA), on Saturday does the weekly shopping (WSA) and on Sunday visits the family (WSA). During 

this month, user i goes one time to the hospital and one time to the bank (NSA). Time profile of user’s 

agenda is: 
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Fig. A.1:  Probability to observe WSA/DSA/NSA activities for a single user; 

 

In this case, the probability is assumed to be equal to the frequency of observation. This means that if 

we sum all these probabilities during the entire period, we obtain 1. Assume now that we have a 

population of users. Since it is a theoretical situation, we can assume that all users work only during the 

working days, from Monday to Friday. We can assume in this framework that all users will behave in a 

similar way to the single user, with one or more WSA activities. However, it is unrealistic to imagine 

that all the users will perform their WSA activities the same day. The aggregate version of graph plotted 

in Figure A.1 becomes: 

 
Fig. A.2:  Probability to observe WSA/DSA/NSA activities for a theoretical population; 

 

The assumptions used to build the synthetic population represented in Figure A.2 are unrealistic and 

very simples. However, interpreting the information behind this graph is not an easy task, like in the 

single user case. This suggests that a different approach should be considered to classify our data in case 

of multiple users. Let’s sort our Probability in ascending order. The x-axis does not represent anymore 

the Time Period, but the day in which a certain number of observations occur. According to our 

representation, DSA will present a constant probability. 
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𝑃𝐷𝑆𝐴 =
1

𝑁𝑜𝑏𝑠
 

(A.1) 

This probability is correct if we evaluate the probability to come back home, which every user does 

every day. Activity Work could be considered an extreme case of WSA activity since it is systematic 

five days out of seven. However, Within-Week-Systematic Activities are flexible by definition, while 

Work is a rigid component of the demand. For the activity component Home-Work, we can observe two 

probabilities equal to 0 on Sunday and Saturday and a constant probability the other days: 

{
𝑃𝑊𝑜𝑟𝑘(𝑥) =

1

𝑁𝑤𝑑
;                       ∀ 𝑥 > 𝑃𝑏 ∙ 𝑁𝑜𝑏𝑠

𝑃𝑊𝑜𝑟𝑘(𝑥) = 0;                            ∀ 𝑥 ≤ 𝑃𝑏 ∙ 𝑁𝑜𝑏𝑠

 
(A.2) 

Where 𝑃𝑏 is the percentage of not working days during the week, and 𝑁𝑤𝑑 is the number of working 

days. 

WSA activities are flexible because, generally, the user chooses to make or not that activity, based on 

different elements. Still, these activities are systematic within the week, which means that the individual 

utility is a function of performing or not the WSA activity. If the User does not perform that activity a 

certain day, the probability to perform that activity the day after increases. For this reason, the 

probability to observe or not WSA activity will increase with the number of observations. In this work, 

we assume that the probability increases linearly: 

𝑃𝑊𝑆𝐴(𝑥) = 𝑥 ∙ 𝛾;                      ∀ 𝑥 ∈ 𝑁𝑜𝑏𝑠 (A.3) 

Where 𝛾 is the angular coefficient. In the NSA case, the probability will take the shape of an exponential, 

since normally users don’t perform these activities: 

𝑃𝑁𝑆𝐴(𝑥) =
(1 + 𝑥𝛼)

𝛽
;                      ∀ 𝑥 ∈ 𝑁𝑜𝑏𝑠 (A.4) 

Where 𝛼 and 𝛽 are parameters to calibrate. Figure A.3 shows the theoretical trend of the system of 

equations 1-4, for ninety days of observations.  

  

(a) (b) 

Fig. A.3:  (a) Theoretical Probability Trend for DSA activities; (b) Theoretical Probability Trend 

for WSA and NSA activities; 
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The trend showed in Figure A.3 is purely theoretical and has been obtained through strong assumptions 

on the user behaviour. Now the same analysis is performed on the real dataset. Specifically, the 

individuals in the BMW survey can classify their trip according to twelve different purposes:  

1. Pick up/ Drop off s.o. 

2. Home 

3. Work 

4. School 

5. Eat 

6. Daily Shopping 

7. Long term shopping 

8. Personal Business 

9. Visit the family 

10. Walking/Riding/… 

11. Leisure 

12. Other 

 

 By way of example, work, home, personal business and walking/riding purposes are plotted. The 

observed probability function, as expected, is different from the theoretical one. However, we can 

observe similarity with the theoretical one. Specifically, the work probability is characterized by two 

branches, a very low probability in the beginning and a very high probability at the end. 

  

(a) (b) 

Fig. A.4:  (a) Observed Probability Trend for Home (red) and Work (blue) activities; (b) Observed 

Probability Trend for personal business (green) and walking/riding (orange) activities; 

 

The activity “Home” presents almost a constant probability. Personal business (WSA) activity presents 

linear functions, while “walking/riding” is a convolution of WSA and NSA Activity components. In 

Figure 4, the cumulative probability, for each purpose observed in the survey, is showed. The observed 

probabilities are not clearly identifiable as DSA/WSA/NSA. The trend for different activities looks like 

a convolution of the observed probabilities reported in Figure A.5.  
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Fig. A.4: Observed probabilities for each observed purpose ; 

 

Activities have been clustered according to the similarity with respect to the theoretical trend expected 

for DSA, WSA and NSA activities. 
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Appendix B 

The Bottleneck Model 

This section introduces the equations behind the bottleneck model. The equations and results reported 

derive mostly from the following woks:  

R. Arnott, A. de Palma, and R. Lindsey, “Economics of a bottleneck,” Journal of Urban Economics, 

vol. 27, no. 1, pp. 111–130, Jan. 1990. 

X. Zhang, H. Yang, H.-J. Huang, and H. M. Zhang, “Integrated scheduling of daily work activities and 

morning–evening commutes with bottleneck congestion,” Transportation Research Part A: Policy and 

Practice, vol. 39, no. 1, pp. 41–60, Jan. 2005. 

Z.-C. Li, W. H. K. Lam, and S. C. Wong, “Bottleneck model revisited: An activity-based perspective,” 

Transportation Research Part B: Methodological, vol. 68, pp. 262–287, Oct. 2014. 

B.1 The Bottleneck Model 

As the utility models presented in Chapters 7-9 are based on the Bottleneck model theory, we introduce 

in this Appendix the Bottleneck model and the activity based Bottleneck model. According to Vickrey,  

six different types of congestion exist, which can even be observed simultaneously: simple interaction, 

multiple interactions, bottleneck, trigger neck, network control and general density. The Vickrey model 

considers the bottleneck situation when a relatively small segment of a link or a route presents a smaller 

capacity with respect to the demand for that link/route.  The model has been formulated in a more 

detailed way from Arnott, de Palma and Lindsey  in the following system: 
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Assume the simple network in Figure B.1. We have one origin zone A (Home), one destination B (Work) 

connected through one link [c-d] with capacity S.  

   

 

 

 

Fig. B.1: Network ; 

 

Assume to have a population of N identical users, with N>S, traveling between A and B. Since the 

demand exceeds the capacity, a queue will occur on the link c-d, which is the bottleneck of our system. 

The travel time from A to B can be calculated as:  

𝑇(𝑡) = 𝑇𝑓 + 𝑇𝑏(𝑡) (B.1 

 

 Where t is the departing time,   𝑇𝑓 is the free flow travel time and 𝑇𝑏 is the time spent at the bottleneck, 

given a certain departing time t.  The free flow travel time is generally considered equal to 0, which 

means that the travel time between A and B is equal to the time spent at the bottleneck. The time spent 

at the bottleneck can be calculated given the length of the queue, according to equation B.2: 

𝑇𝑏(𝑡) =
𝐷(𝑡)

𝑆
 (B.2 

Where the D(t) is the length of the queue. The maximum length of the queue is calculated like the 

integral of all the vehicle queuing after a certain time interval 𝑡∗ , which is the last time interval in which 

no queue was observed at the bottleneck. Defined as r(t) the departing rate for a certain time interval t, 

we can obtain the length of the queue as follows:  

𝐷(𝑡) = ∫ 𝑟(𝑡)𝑑𝑡
𝑡

𝑡∗
− 𝑠(𝑡 − 𝑡∗) (B.3 

 

 Where 𝑠(𝑡 − 𝑡∗) is the total capacity for all the departing times between 𝑡∗and t. The derivative with 

respect to the time, provide the number of vehicle queueing in the time interval t.  

𝜕 𝐷(𝑡)

𝜕𝑡
= 𝑟(𝑡) − 𝑠      𝑓𝑜𝑟 𝐷(𝑡) > 0 (B.4 

 

Since we assume that all the travellers are identical, we define them as homogeneous population, and 

we assume that all of them wants to arrive at the same preferred time 𝑡𝑜. We can define the 𝑡𝑑−𝑜 the 

departure time for which the user arrive at work on time:  

𝑡𝑑−0 = 𝑡0 − 𝑇𝑏(𝑡𝑑−0) (B.5a 

So we can now quantify the early and late arrive as: 

{
∆𝑡 = 𝑡0 − 𝑡 − 𝑇𝑏(𝑡)     𝑓𝑜𝑟 𝑡 < 𝑡𝑑−0

∆𝑡 = 𝑡 + 𝑇𝑏(𝑡) − 𝑡0     𝑓𝑜𝑟 𝑡 > 𝑡𝑑−0
 (B.5b 

 

The cost function of one specific trip U is a linear combination of three elements: The travel time TT, 

the early arrive EA and the late arrive LA: 

c d 

B A 
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𝑈(𝑡) =  𝛼 ∙ (𝑇𝑇) + 𝛽 ∙ (𝐸𝐴) + 𝛾 ∙ (𝐿𝐴) =

=  𝛼 ∙ (𝑇𝑏(𝑡)) + 𝛽 ∙ 𝑚𝑎𝑥(0; 𝑡0 − 𝑡 − 𝑇𝑏(𝑡) ) + 𝛾 ∙ (𝑡 + 𝑇𝑏(𝑡) − 𝑡0)
 (B.5c 

 

Where the parameters α, β and γ are the coefficients representing the penalty for late or early arrival.  

Since every individual wants to maximize his own utility, and every individual is identical to the others 

by definition of homogeneous population, at the equilibrium we can argue that utility will be the same 

for all the travelers. The solution of the model to maximize U for the users is a pure Nash equilibrium 

with respect to the control variable t.  

Normally in literature, we assume α > β, both because is a relevant condition for the existence of an 

equilibria condition, both for empirical and modeling reasons.  Specifically Small suggests using β/α = 

0.5 and γ/α = 2. In this condition, all the vehicles, except for the first and the last traveler, face the 

congestion. The departure time rate is piecewise (i.e. has different segments) given by the following 

system: 

𝑟(𝑡) =

{
 

 𝑠 +
𝛽𝑠

𝛼 − 𝛽
   𝑓𝑜𝑟 𝑡 ∈ [𝑡𝑞 , 𝑡

𝑑−0)

𝑠 −
𝛾𝑠

𝛼 + 𝛾
   𝑓𝑜𝑟 𝑡 ∈ (𝑡𝑑−0, 𝑡𝑞′]

 (B.6 

 

Where 𝑡𝑞 is the time at which the queue begins and 𝑡𝑞′ is the time at which the queue ends. Equation 

(A.6) take into account that the departure time is chosen in order to balance the disutility in the travel 

time. The system of equation 6 is obtained by finding the best possible solution for equation A.5, i.e. by 

finding the value of t for which the derivative is equal to 0. The demonstration for the case of early 

arrive is here provided: 

𝑈(𝑡) = 𝛼 ∙ (𝑇𝑏(𝑡)) + 𝛽 ∙ (𝑡0 − 𝑡 − 𝑇𝑏(𝑡) ) + 𝛾 ∙ (0) =

(𝛼 − 𝛽) ∙ 𝑇𝑏(𝑡) + 𝛽 ∙ 𝑡0 − 𝛽 ∙ 𝑡
 (B.7a 

By substituting equations (B.2) in (B.7a) we get: 

𝑈(𝑡) = (𝛼 − 𝛽) ∙
𝐷(𝑡)

𝑠
+ 𝛽 ∙ 𝑡0 − 𝛽 ∙ 𝑡 (B.7b 

To find the best possible departure time t we need to maximize equation 7b, which means find t for 

which the derivative is zero. Substituting equation 4 in 7b we get: 

𝜕𝑈(𝑡)

𝜕𝑡
= 0 =

(𝛼 − 𝛽)

𝑠
∙
𝜕 𝐷(𝑡)

𝜕𝑡
+ 0 − 𝛽

(𝛼 − 𝛽)

𝑠
∙ 𝑟(𝑡) − (𝛼 − 𝛽) = 𝛽

𝑟(𝑡) = 𝑠 +
𝑠𝛽

(𝛼 − 𝛽)

 (B.7c 

 

Applying the same procedure, it is possible to find also the equation in the case of late arrival time. The 

arrival time at the bottleneck will be equal to the saturation flow S over the entire simulation period. To 

estimate the departure times 𝑡𝑞 , 𝑡
𝑑−0 and 𝑡𝑞′, Arnott, De Palma and Lindsey define the following system 

of three equations: 
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(𝑡𝑑−0 − 𝑡𝑞) (𝑠 +
𝛽𝑠

𝛼 − 𝛽
) + (𝑡𝑞′ − 𝑡

𝑑−0) (𝑠 −
𝛾𝑠

𝛼 + 𝛾
 ) = 𝑁

(𝑡𝑑−0 − 𝑡𝑞) ∙
𝛽𝑠

𝛼 − 𝛽
= (𝑡𝑞′ − 𝑡

𝑑−0) ∙
𝛾𝑠

𝛼 + 𝛾

𝑡𝑑−0 + (𝑡𝑑−0 − 𝑡𝑞) ∙
𝛽

𝛼 − 𝛽
= 𝑡0

 (B.8 

Where the first equations take into account that all the vehicles will be served during the entire period 

[(𝑡𝑑−0 − 𝑡𝑞); (𝑡𝑞′ − 𝑡
𝑑−0)] , the second equation considers that congestion disappears at instant 𝑡𝑞′. In 

fact the meaning is that all the N vehicles passed through the bottleneck in 𝑡𝑞′. The last equation is a 

consequence of equation 5a-C (plus the consideration that at equilibrium the travel time has to be equal 

to the disutility of that guy leaving earlier). In fact by substituting equation 6 in equation 3 and in 

equation 2 we get = ∫
𝑟(𝑡)

𝑠
𝑑𝑡

𝑡

𝑡∗
− (𝑡 − 𝑡∗) =  (𝑡𝑑−0 − 𝑡𝑞) ∙

𝛽

𝛼−𝛽
 . Solving the system of equations: 

𝑡𝑞 = 𝑡
0 − (

𝑁

𝑠
) (

𝛾

𝛽 + 𝛾
 )

𝑡𝑞′ = 𝑡
0 + (

𝑁

𝑠
) (

𝛽

𝛽 + 𝛾
 )

𝑡𝑑−0 = 𝑡0 − (
𝑁

𝑠
) (

𝛽𝛾

𝛼(𝛽 + 𝛾)
 )

 (B.9 

 

Constrained to 𝑡𝑞 < 𝑡
𝑑−0 < 𝑡𝑞′ . Knowing these three points it is, possible to plot the cumulative for 

arrival and departure times. Specifically, 𝑡𝑞 will be the departure time for the first user in the system, 

the queue will reach the maximum in 𝑡𝑑−0  and, since 𝛽 < 𝛼, it is decreasing after 𝑡𝑑−0 until 𝑡𝑞′. For 

arrival time, since when congestion occurs the main constraint is the capacity of the bottleneck, and 

since the travel time after the bottleneck is zero, the cumulative is starting in 𝑡𝑞, and it presents a constant 

slope S until 𝑡𝑞′, when all the demand reaches the destination. Considering the trip cost for the users 

who are leaving at 𝑡𝑞. He will not experience any congestion, which means  the cost will be equal to the 

dis-utility to arrive early: 

𝐶(𝑡𝑞) = 𝛽 ∙ (𝑡
0 − 𝑡𝑞) =

(
𝑁

𝑠
) (

𝛽𝛾

𝛽 + 𝛾
 )

 (B.10 

Since at equilibrium everyone has the same cost, the cost for all the users is obtained by multiplying 

equation B.10 times the number of users N: 

𝑇𝐶𝑒 = (
𝑁2

𝑠
) (

𝛽𝛾

𝛽 + 𝛾
 ) (B.11 
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Figure B.2: Cumulative for arrival and departure times 

(Figure From the Original Paper “Economics of a bottleneck”-Arnott de Palma Lindsey 1987) 

 

The total travel time can be computed as the area of the triangle (OBD). By multiplying the area for the 

cost (Equation B.9), we can obtain the total travel cost. It is relevant to point out that, according to the 

authors (Arnott, De Palma and Lindsey) both the total cost presented in Equation B.11 and the Total 

Travel Cost are not dependent by 𝛼. This is explained by the authors with the motivation that length of 

the rush hour is not related to the travel time. In fact, the last and the first users don’t experience travel 

time at all, but only scheduling costs and, at equilibrium, their scheduling delay has to be the same. 

Authors explain this exploiting Equation. B.9, where the departing time for the first and the last user can 

be calculated independently on 𝛼, which means is not dependent on the travel time cost. 

I fill to add something about this last point. First of all, we can immediately argue that this is true only 

because we are considering an unrealistic situation, where the only travel time is the delay at the 

bottleneck. We are not considering any physic in the propagation of the vehicles. If we consider these 

elements, results could be different. On the other side, also considering the simple case of the Vickrey 

bottleneck model, this explanation is only a mathematical trick. If we consider that: 

1) The travel time represents only the delay at the bottleneck  

2) No physic represents the vehicles moving on the network 

We can immediately understand that, given a certain departure time, the travel time will be a function 

of the number of users N and the capacity of the road S. The delay will be linearly related to these two 

terms, which is exactly what happens in Equation B.9.  This is, in my opinion, demonstrated in equations 

B.3-B.4, where the delay is related to the incoming flow and the saturation flow. In fact, by changing 

the number of users N, travel time increase for equations B.3-B.4, departure time for the earliest user 

decreases according to Equation B.9, which means that travel time directly influences the sizes of the 

rush hour period. 

It follows now the discussion on the case where a toll is applied in order to reduce the congestion during 

the rush hour. While in literature this topic is extremely popular, since Vickrey bottleneck model has 

been broadly used to evaluate the effect of pricing policies on the departure time, here we main focus 
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on the user behaviour component. This means that we are more interested in evaluating the behaviour 

of the users in the model, rather than evaluating their reaction with respect to a specific toll policy. For 

this reason, the “toll equilibrium” is explained quickly in this section. The main idea is that each user 

pays a toll directly proportional to the queue he is joining.  In this way, the users will try to avoid 

congestion in order to have a lower toll, resulting in smaller queues for a longer rush hour period. The 

idea proposed by the authors is that normally tolls are not flexibles, but only constants over a certain 

time period. In this case, the main problem is that the demand is flexible, and a “static” toll does not 

consider this flexibility. The simplest toll of this family is called “coarse” toll, and it is defined as a toll 

paid at the front of the queue for a certain time period. The goal of this problem is to find the best toll 

and the best time period. Figure B.3 shows the result by applying the optimum coarse toll (𝑡+ and 𝑡− 

represents the begin and the end of the toll): 

 
Figure B.3: Cumulative for arrival and departure times 

(Figure From the Original Paper “Economics of a bottleneck”-Arnott de Palma Lindsey 1987) 

 

Specifically, authors show how the departures/arrivals drop/start immediately before/after the toll 

(vertical and horizontal departure rate) in order to avoid the toll.  Many problems occur when we try to 

apply these models in real practice.  

1) Heterogeneity of the demand: Drivers behave in a different way during the rush hours. 

According to the activities, the wage, the destination and other elements we can have differences 

in the travel behavior, which leads to different value of 𝑡0, α, β and γ. These differences should 

be considered in the model. 

2) Stochastic Demand and Capacity: This model considers a specific value for the demand (N) and 

the road capacity (S). In reality, both this term could be dynamic. As a consequence of the 

elasticity of the demand, N can increase or decrease when the supply side change (i.e. when a 

toll is applied). On the other side, supply is dynamic too. Capacity can temporary increase or 

decrease as a consequence of traffic policy (i.e. opening the emergency lane during the rush 

hour). 

3) Road Network Complexity: The model could be too simple to represent multiple origins, 

destinations and routes.  

4) Hyper congestion: Considering urban-complex dynamics, such gridlock and stop and go 

phenomena. 
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5) Nash equilibrium: Concept of equilibrium in the basic model is based mainly on the assumption 

that users are informed. This is partially considered in more complex works. 

All the elements have been evaluated during the past decades by several authors. Many of these works 

are extremely relevant for the problem of the demand estimation.  

B.2 The Activity-Based Bottleneck Model 

In this section, we talk about extensions of the classic bottleneck model which takes into account the 

all-day scheduling of the home-work-home activity pattern.  The model here presented will be called 

ZL model, to specify that many of the assumptions are derived from two different papers. Zhang et al. 

(2005) have been the first one to extend the bottleneck model in order to consider the activity duration 

and the utility of the time spent performing a certain activity. Li et.al (2014) presented a similar 

methodology, investigating also the mathematical properties of the model.  The second one will be 

presented in this section, but the main properties of the two models are similar. While both the methods 

find an equilibrium by maximizing the utility of all the users according to an MSA methods, the main 

difference is how to calculate the auxiliary flow. While Li et al. do an “all or nothing” assignment, 

pushing all the demand for the best alternative, Zhang et al. use a logit model to estimate auxiliary flows 

based on the utility function obtained in the previous iteration.  Except for this difference, the two models 

look very similar. Anyway, the mathematic presented in this section is the one used in Li et.al (2014).   

In the ZL model, the main consideration is related to the dependency between the morning and evening 

peak for the commuting demand. While this consideration seems very logical, this correlation has not 

been investigated until now. Considering a commuting home-work-home demand, it is clear that the 

connection between the morning and evening commuting depends mainly on the duration of the activity 

“work”, the arrival time at work and the travel time to reach the destination. Considering these three 

elements, each user will try to maximize his own utility. 

Consider again the network presented in Figure B.1. This time, we have two directions, not only A-B 

but also B-A. Keeping all the assumptions we made for the classic bottleneck model, we have again 

that, given a certain departure time t, the travel time is a function of a constant term, plus another term 

depending on the length of the queue, both for the morning and evening peak. In general, the system of 

equation B.1-B.5b still fully describes the system, but this time we have the same equations both for the 

morning and evening peak. The main difference is in the equation B.5c. While in the classic model 

considers only the scheduling delay, now it considers morning and evening scheduling delay together 

with the Activity Utility. We can define the scheduling delay as:  

𝑈𝑇 = 𝛼 (𝑇𝑀(𝑡ℎ
𝑑)) + 𝛽 ∙ 𝑚𝑎𝑥(0; 𝑡𝑤

𝑎0 − 𝑡ℎ
𝑑 − 𝑇𝑀(𝑡ℎ

𝑑) ) + 𝛾 ∙ 𝑚𝑎𝑥(0; 𝑡ℎ
𝑑 + 𝑇𝑀(𝑡ℎ

𝑑) + 𝑡𝑤
𝑎0  )

+𝛼 (𝑇𝐸(𝑡𝑤
𝑑)) + 𝜇 ∙ 𝑚𝑎𝑥(0; 𝑡𝑤

𝑑0 − 𝑡𝑤
𝑑) + 𝜆 ∙ 𝑚𝑎𝑥(0; 𝑡𝑤

𝑑 − 𝑡𝑤
𝑑0  )

 (B.12 

Where: 

𝑡ℎ
𝑑 is the departure time from home to go to work in the morning. 

𝑡𝑤
𝑎0 is the preferred arrival time at work in the morning  

𝑇𝑀(𝑡ℎ
𝑑) is the travel time given a certain departure time 

𝑡ℎ
𝑑 + 𝑇𝑀(𝑡ℎ

𝑑) is the arrival time at work 

𝑡𝑤
𝑑  is the departure time from work to go home in the evening. 

𝑡𝑤
𝑑0 is the preferred departure time at work in the evening  
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𝑇𝐸(𝑡𝑤
𝑑) is the travel time given a certain departure time in the evening 

𝑡𝑤
𝑑 + 𝑇𝐸(𝑡𝑤

𝑑)  is the arrival time at work 

The utility of performing an activity depends on by the time in which we begin that activity and the 

duration. Li et. al propose the following “time of the day” based utility function:  

𝑈𝐴 = ∫ 𝑈ℎ(𝑡)𝑑𝑡 + 
𝑡ℎ
𝑑

0

∫ 𝑈𝑤(𝑡
∗)𝑑𝑡 + 

𝑡𝑤
𝑑

𝑡ℎ
𝑑+𝑇𝑀(𝑡ℎ

𝑑)

∫ 𝑈ℎ̂(𝑡)𝑑𝑡 
24

𝑡𝑤
𝑑+𝑇𝐸(𝑡𝑤

𝑑 )

 (B.13 

Where: 

𝑈ℎ is the utility to stay home in the morning 

𝑈𝑤 is the utility to stay at work 

𝑈ℎ̂  is the utility to stay home in the evening 

The utility of work is function of 𝑡∗. According to Ettema and Timmerman [53] the activity utility is 

function of two elements, the time clock dependent utility, function of t,  and the duration of the activity 

(t-𝑡𝑤
a ):  

𝑈𝑤(𝑡
∗) = 𝑈𝑤(𝑡) ∙ (1 − 𝜁) + 𝑈𝑤(𝑡 − 𝑡𝑤

𝑎 ) ∙ 𝜁 (B.14 

 

Equation 14 means that for 𝜁 = 1, the utility of work is only dependent by the duration, while for 𝜁 = 0, 

the utility is only clock dependent. The final utility is a function of the departures time from home and 

from work:  

𝑈(𝑡ℎ
𝑑 , 𝑡𝑤

𝑑) = 𝑈𝐴 − 𝑈𝑇 (B.15 

 

The elements of Equation B.15 are represented in Table B.1 

 𝑈𝑇 

Morning 
𝛼 (𝑇𝑀(𝑡ℎ

𝑑)) 𝛽 ∙ 𝑚𝑎𝑥(0; 𝑡𝑤
𝑎0 − 𝑡ℎ

𝑑 − 𝑇𝑀(𝑡ℎ
𝑑) ) 

𝛾 ∙ 𝑚𝑎𝑥(0; 𝑡ℎ
𝑑 + 𝑇𝑀(𝑡ℎ

𝑑)

+ 𝑡𝑤
𝑎0  ) 

 
Travel time 

 
Early Arrival 

 
Late Arrival 

Evening 
 

𝛼 (𝑇𝐸(𝑡𝑤
𝑑)) 𝜇 ∙ 𝑚𝑎𝑥(0; 𝑡𝑤

𝑑0 − 𝑡𝑤
𝑑) 𝜆 ∙ 𝑚𝑎𝑥(0; 𝑡𝑤

𝑑 − 𝑡𝑤
𝑑0  ) 

 
Travel time 

 
Early Arrival 

 
Late Arrival 

 

Table B.1a: dis-Utility of traveling  

 

𝑈𝐴 

∫ 𝑈ℎ(𝑡)𝑑𝑡 
𝑡ℎ
𝑑

0

 ∫ 𝑈𝑤(𝑡
∗)𝑑𝑡 

𝑡𝑤
𝑑

𝑡ℎ
𝑑+𝑇𝑀(𝑡ℎ

𝑑)

 ∫ 𝑈ℎ̂(𝑡)𝑑𝑡 
24

𝑡𝑤
𝑑+𝑇𝐸(𝑡𝑤

𝑑 )

 

 
Stay at Home 

in the 
morning 

 
Work 

 
Stay at Home in the 

evening 
 

Table B.1b: Utility of performing an activity 
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Given Equation B.15, once the departure times 𝑡ℎ
𝑑 , 𝑡𝑤

𝑑  are defined it is possible to define his utility, and 

each user will try to maximize his own utility: 

max
𝑡ℎ
𝑑,𝑡𝑤

𝑑
𝑈(𝑡ℎ

𝑑 , 𝑡𝑤
𝑑) (B.16 

 

The solution of this problem, as for the standard Bottleneck model, is a Nash equilibrium in which each 

user maximize his utility and, at the equilibrium, all the users have the same utility. According to this 

equilibrium concept, the equilibrium condition is: 

{
𝑞(𝑡ℎ

𝑑 , 𝑡𝑤
𝑑)[𝑈(𝑡ℎ

𝑑 , 𝑡𝑤
𝑑) − 𝑈∗] = 0

𝑞(𝑡ℎ
𝑑 , 𝑡𝑤

𝑑) ≥ 0, [𝑈(𝑡ℎ
𝑑 , 𝑡𝑤

𝑑) − 𝑈∗] ≥ 0 
 (B.17 

 

This equation recalls the famous variational inequality in transportation. Specifically, 𝑞(𝑡ℎ
𝑑 , 𝑡𝑤

𝑑) is the 

demand for a certain combination of (𝑡ℎ
𝑑 , 𝑡𝑤

𝑑), while 𝑈∗is the optimum value of the utility according to 

equation 15, which is the same for all users at the equilibrium. The set of equations B.12-B.17 represent 

an extension of the classic bottleneck model, where the daily based scheduling is considered. This 

system, exploiting equations 1-5, can be solved mathematically when utilities are constant, and 

iteratively when they are not.  

In case of not constant utility functions, which is the general condition, the following MSA procedure 

is suggested:  

Step 0: Choose a starting flow pattern 𝑞(𝑡ℎ
𝑑 , 𝑡𝑤

𝑑) for each combination 𝑞(𝑡ℎ
𝑑 , 𝑡𝑤

𝑑) 

Step 1: Calculate the net Utility according to equation B.15 

Step 2: Obtain the auxiliary flow patterns 𝑞̂(𝑡ℎ
𝑑 , 𝑡𝑤

𝑑) by assigning all the demand to the best option (all 

or nothing assignment) 

Step 3: Use MSA algorithm to obtain new demand flows:  

𝑞(𝑡ℎ
𝑑 , 𝑡𝑤

𝑑 )
𝑖+1

= 𝑞(𝑡ℎ
𝑑 , 𝑡𝑤

𝑑)
𝑖
+

1

𝑖 + 1
(𝑞̂(𝑡ℎ

𝑑 , 𝑡𝑤
𝑑) − 𝑞(𝑡ℎ

𝑑 , 𝑡𝑤
𝑑)

𝑖
) 

Step 4: Check the convergence 

They also show that the correlation between morning and evening commute exists only when the utility 

of the activity “work” is not constant. 
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Appendix C 

Utility-Based DTA 

This section introduces the appendices related to the results presented in Chapter 7.  

C.1  Log-Likelihood 

In this appendix, we test the proposed utility function (Equation 7.4-7.9) to evaluate their capability of 

reproducing a realistic behaviour. We exploit the data collected within the BMW (Behaviour and 

Mobility within the Week – Chapter 2) project.  

We assume that our population behaves according to the bottleneck model introduced in sub-section 

7.3.3, in the condition in which N<S and 𝑇𝑓 ≠ 0. This assumption leads to a condition in which 

congestion does not occur, while users experience some travel time while travelling from A to B. Figure 

C1 shows the typical cumulative representation of departure/arrival time, if we assume that the users in 

our database travel on the network showed in Figure 7.2. 
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Figure C.1: Cumulative ingoing/outgoing flow derived from the data  

 

After some data cleaning, and after selecting only the home-work-home commuting tours, we obtain an average 

of 60-80 users per day. The region of Ghent is not heavily congested, and, as shown in Figure C1, the assumption 

of having constant travel time should not lead to biased results for this database. For the working days, the 

following models are tested:   

 Model1: All the activities Home-Work-Home are modelled through the clock-based utility function 

presented in equation (7.4). We assume a rigid activity scheduling for the users (𝜏𝑝 = 0); 

 Model2: All the activities Home-Work-Home are modelled through the utility function presented in 

equation (7.9); 

 Model3: All the activities Home-Work-Home are modelled through the utility function presented in 

equation (7.6); 

Our goal at this stage is to estimate a realistic value for the utility function parameters. A common procedure to 

calibrate these models is the maximum likelihood approach. For each activity p, the model estimates the set of 

parameters 𝑿𝑝 {𝛽𝑝, 𝛼𝑝, 𝛾𝑝, 𝜏𝑝, … } that maximizes the probability of observing the choices made by the sampled 

users. In this work, we apply the maximum likelihood to estimate a realistic value for the utility function 

parameters. Then, we simulate the behaviour of a synthetic (homogeneous) population in order to check the 

difference with respect to the behaviour of the real (heterogeneous) population. It should be stressed that the goal 

of this appendix is not to perform an exhaustive calibration of the utility functions, since the dataset is too small, 

but to test the capability of the utility function of reproduce a realistic behaviour. The maximum log- likelihood 

algorithm applied in this study is the same presented in (Ettema and Timmermans 2003). 

Table C1 shows the Log-likelihood results. Model 1 represents the “standard” clock-based MU function introduced 

in Equation 7.4. Based on Table A1, the main conclusion is that considering both clock-based and duration-based 

MU (Model 2-3) leads to better results. However, for the proposed dataset, the difference in terms log-likelihood 

is not relevant. Thus, if we were to extrapolate from what the log-likelihood values, we would end up with 

expecting that a simple clock-based MU leads to reasonable results in most of the situations, although might not 

be the best solution.  

However, the log-likelihood evaluates the capability of the model of reproducing the real choice for the observed 

users, when real travel time and departure time are given. Instead, we are interested in investigating how good 

these models are in reproducing a realistic behaviour when paired with a homogeneous – and unrealistic - class of 

users.   
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Table C1: Log-likelihood and ratio test ; 

 
Model1 Model2 Model3 

𝑀𝑜𝑛𝑑𝑎𝑦 𝐿(𝑿)𝑀𝑜𝑛 -192.395 -191.782 -192.996 

𝑇𝑢𝑒𝑠𝑑𝑎𝑦 𝐿(𝑿)𝑇𝑢𝑒 -178.64 -175.438 -187.04 

𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 𝐿(𝑿)𝑊𝑒𝑑  -173.345 -184.184 -176.98 

𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 𝐿(𝑿)𝑇ℎ𝑢 -139.991 -138.176 -146.605 

𝐹𝑟𝑖𝑑𝑎𝑦 𝐿(𝑿)𝐹𝑟𝑖  -125.193 -133.238 -124.806 
 

 

  

(a) (b) 

  

(c) (d) 

Figure C2: (a) observed departure time for real users; Utility related to different departure time 

interval according to Model 1 (b), Model 4 (c) and Model 5 (d). 

 

We applied the estimated utility functions to model the perceived utility of a synthetic population, travelling on 

the network shown in Figure 7.2. We simulated the home-work commute for N users, which can choose their 

departure time for going work in the morning and returning home in the evening. These users will choose the 

departure time, which maximizes their own utility, thus we expect the profile of the utility over time to be similar 

to the profile of the departure time for the real population. Figure C2 shows the real departure time distributions 

for the observed users in our database (on Monday). Figures C2b-C2d show the time profile of the utility for a 

given (constant) travel time and preferred activity duration. As we can see, when Equation (7.9) is used to model 

the utility (Figure C.2c), the profile is similar to the expected departure time. If Equation (7.4) – Figure C2b- or 

Equation (7.6) – Figure C2d - are used the profile of the utility is more “symmetric”. The reason is that Equation 

(7.7) considers that different users might have a different duration for the same activity. In reality, we have that 
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users have different departure times and different activity duration. Clock-based MU properly represents the utility 

of departing at a certain time for a single user, but they do not capture the dynamics related to activity duration. 

Moreover, if we use Equation (7.6) to model the utility, we might overestimate the utility during most of the time 

intervals. This is because of the second term of the equation –which takes into account the fatigue effect– is 

constant during all time intervals.  

C.2  Demonstration of Proposition 1 

Hereafter we provide the proof that Equation (7.22) is a necessary and sufficient condition to have a 

queue on the bottleneck, under the assumption that the last user can face congestion. 

Necessity: First, we show that Equation (7.22a) is a necessary condition for having a queue. The Utility 

of the first user travelling from location 1 to location 2, which faces no congestion, can be calculated as:  

𝑈
𝜀1 = ∫ 𝑈2

𝑎(𝑡)𝑑𝑡
𝑡0

𝜀1

− 𝑉𝑜𝐸(𝑡0 − 𝜀1) (C2.1) 

While the overall utility for the user leaving at time 𝑡 = 𝑡̂ and arriving at the destination at time 𝑡 = 𝜀2,  

will face both congestion and a late arrival penalty, can be calculated as:  

𝑈
𝜀2 = ∫ 𝑈1

𝑎(𝑡)𝑑𝑡
𝜀2−𝑇

𝑏(𝑡̂)

𝜀1

− 𝑉𝑜𝐿(𝜀2 − 𝑡
0) − 𝑉𝑜𝑇(𝑇𝑏(𝑡̂)) (C2.2) 

At the equilibrium, if the last user faces some congestion, the following equation has to hold: 

∫ 𝑈2
𝑎(𝑡)𝑑𝑡

𝜀2

𝜀1

− 𝑉𝑜𝐸(𝑡0 − 𝜀1) = ∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝜀2−𝑇
𝑏(𝑡̂)

𝜀1

− 𝑉𝑜𝐿(𝜀2 − 𝑡
0) − 𝑉𝑜𝑇(𝑇𝑏(𝑡̂)) (C2.3) 

By considering that: 

∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝜀2

𝜀1

− 𝑉𝑜𝐿(𝜀2 − 𝑡
0)

> ∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝜀2−𝑇
𝑏(𝑡̂)

𝜀1

− 𝑉𝑜𝐿(𝜀2 − 𝑡
0) − 𝑉𝑜𝑇 (𝑇𝑏(𝑡̂))    ∀ 𝑇𝑏(𝑡̂) > 0 

(C2.4) 

We can write that, at the equilibrium we have that: 

{
 
 

 
 ∫ 𝑈2

𝑎(𝑡)𝑑𝑡
𝜀2

𝜀1

− 𝑉𝑜𝐸(𝑡0 − 𝜀1) < ∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝜀2

𝜀1

− 𝑉𝑜𝐿(𝜀2 − 𝑡
0)    𝑖𝑓 𝑇𝑏(𝑡̂) > 0 

∫ 𝑈2
𝑎(𝑡)𝑑𝑡

𝜀2

𝜀1

− 𝑉𝑜𝐸(𝑡0 − 𝜀1) = ∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝜀2

𝜀1

− 𝑉𝑜𝐿(𝜀2 − 𝑡
0)    𝑖𝑓 𝑇𝑏(𝑡̂) = 0

 

(C2.5) 

(C2.5) 

Since equation C2.5a holds only if 𝑇𝑏(𝑡̂) > 0, it is a necessary condition to observe congestion on the 

bottleneck. Equation (B5a) can be reformulated as Equation (22b):  

∫ (𝑈2
𝑎(𝑡) − 𝑈1

𝑎(𝑡))𝑑𝑡
𝜀2

𝜀1

<  𝑉𝑜𝐸 ∙ (𝑡0 − 𝜀1) − 𝑉𝑜𝐿 ∙ (𝜀2 − 𝑡
0) (C2.6) 

Sufficiency: Equation C2.6 is a necessary but not sufficient condition. In fact, we might have that the 

first and last users do not face congestion, which satisfies Equation C2.5, but still have all the other users 

queuing at the bottleneck, as in the case described in (Li, Lam, and Wong 2014b). However, we can 

formulate a similar equation for any user travelling in the system. If we consider the user leaving in time 
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interval 𝑡 = 𝑡0 − 𝑇𝑏(𝑡̂), we can calculate that at the equilibrium the following condition has to be 

satisfied: 

∫ 𝑈2
𝑎(𝑡)𝑑𝑡

𝑡0

𝜀1

− 𝑉𝑜𝐸(𝑡0 − 𝜀1) = ∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝑡0−𝑇𝑏(𝑡̂)

𝜀1

− 𝑉𝑜𝑇(𝑇𝑏(𝑡̂)) (C2.7) 

 

Again, we can argue that, if 𝑇𝑏(𝑡̂)=0, then: 

∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝑡𝑡
0

𝜀1

= ∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝑡0−𝑇𝑏(𝑡̂)

𝜀1

− 𝑉𝑜𝑇 (𝑇𝑏(𝑡0))   (C2.8) 

Which implies that if 𝑇𝑏(𝑡0) > 0  then 

∫ 𝑈1
𝑎(𝑡)𝑑𝑡

𝑡0

𝜀1

> ∫ 𝑈2
𝑎(𝑡)𝑑𝑡

𝑡0

𝜀1

− 𝑉𝑜𝐸(𝑡0 − 𝜀1) (C2.9) 

Which leads to: 

∫ (𝑈2
𝑎(𝑡) − 𝑈1

𝑎(𝑡))𝑑𝑡
𝑡0

𝜀1

< 𝑉𝑜𝐸(𝑡0 − 𝜀1) (C2.10) 

Equation C2.10 is a generalization of the one proposed in Lam, which was demonstrated to hold under 

the assumption that the first user travelling does not face congestion. Under the assumption that 𝑇𝑏(𝑡̂) <

𝑇𝑏(𝑡0) ∀ 𝑡̂  ∈ (𝜀1, 𝜀2), Equation C2.7 contains Equation C2.6. However, in the case of special events, 

this condition does not hold (as in the example shown in Figure 7.4). Thus, in order to observe 

congestion, at least one of the two has to be satisfied. 
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C.3  Experiment Details 

Hereafter, the details of the setting of each experiment and each utility functions are listed. Case 1 does not 

consider the utility at the destination, while for Case 2 we assumed constant utilities, specifically: 

𝑈𝐻𝑜𝑚𝑒−𝑀𝑜𝑟𝑛𝑖𝑛𝑔 = 8, 𝑈𝑊𝑜𝑟𝑘 = 11 and 𝑈𝐻𝑜𝑚𝑒−𝐸𝑣𝑒𝑛𝑖𝑛𝑔 = 10. Table C2 shows the parameters for all the other 

cases. 

Table C2 
Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 

Equation Home 
in the Morning 

4 4 4 9 9 4 6 

Equation Work 
Activity 

4 4 4 9 9 5 6 

Equation Home 
in the Evening 

4 4 4 9 9 4 6 

𝑈𝐻𝑜𝑚𝑒−𝑀𝑜𝑟𝑛𝑖𝑛𝑔
𝑜  8 8 8 8 8 8 130 

𝑈𝑤𝑜𝑟𝑘
𝑜  11 11 22 11 22 11 160 

𝑈𝐻𝑜𝑚𝑒−𝑒𝑣𝑒𝑛𝑖𝑛𝑔
𝑜  10 10 10 10 10  150 

𝛼𝑀𝑜𝑟𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒  6.5 6.5 6.5 6.5 6.5 6.5 6.5 

𝛼𝑤𝑜𝑟𝑘 13 13 13 13 13  13 

𝛼𝐸𝑣𝑒𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒 19.5 19.5 19.5 19.5 19.5 19.5 19.5 

𝛽𝑀𝑜𝑟𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒 0.02 0.02 0.02 0.02 0.02 0.02 1.5 

𝛽𝑤𝑜𝑟𝑘 0.01 0.01 0.02 0.01 0.02  1.5 

𝛽𝐸𝑣𝑒𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒 0.02 0.02 0.02 0.02 0.02 0.02 1.5 

𝛾𝑀𝑜𝑟𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒 1 1 1 1 1 1 4 

𝛾𝑤𝑜𝑟𝑘 1 1 1 1 1  4 

𝛾𝐸𝑣𝑒𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒 1 1 1 1 1 1 4 

𝜂𝑀𝑜𝑟𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒        

𝜂𝑤𝑜𝑟𝑘      18  

𝜂𝐸𝑣𝑒𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒        

𝜏𝑀𝑜𝑟𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒 0 0 0 0 0 0  

𝜏𝑤𝑜𝑟𝑘 0 0.5 0 0 0   

𝜏𝐸𝑣𝑒𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒 0 0 0 0 0 0  

𝐺𝑀𝑜𝑟𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒    0.2 0.2   

𝐺𝑤𝑜𝑟𝑘        

𝐺𝐸𝑣𝑒𝑛𝑖𝑛𝑔−ℎ𝑜𝑚𝑒        

w      4 0.5 
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For all the above-mentioned cases, the same utility functions have been used for calculating the dis-utility of 

travelling. Details are reported in Table C3:  

Table C3 
𝛼 𝛽 𝛾 𝑡0 𝑡𝑑

0 

Morning 
Commute 

10 6 19 9  

Evening 
Commute 

10 19 6  17 
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Appendix D 

Utility-Based OD Estimation: 

properties 

This Appendix discusses the Properties of the Utility Based OD estimation.  

D.1  Spatial Distribution of the demand 

Equation (8.9) properly approximates the real gradient if the numerical perturbation c is small. For a 

given path 𝑟, the generalized route cost for departure time 𝑡 = 𝜃 is 𝑔𝑐𝑟
𝜃 . This cost is function of the 

(dynamic) link flow, speed and density. The relation between link and OD flows is  

𝑓𝑙
𝜃𝑙 = ∑ ∑ 𝑀𝑜𝑑,𝑙

𝜃𝑙,𝜃(𝒙)𝑥𝑜𝑑
𝜃

𝑛𝑜𝑑

𝑜𝑑=1

𝑛𝜃

𝜃=𝜃𝑙
 

  

(D.1) 

 

Where 𝑥𝑜𝑑
𝜃  is the demand flow for a certain OD pair and a certain time interval and 𝑓𝑙

𝜃𝑙 is the link flow 

on a specific link l during a certain time interval 𝜃𝑙. The assignment matrix 𝑀𝑜𝑑,𝑙
𝜃𝑙,𝜃(𝒙) can be further 

divided in link-path incidence matrix ∆ and the route choice probability 𝚽: 

𝑀𝑜𝑑,𝑙
𝜃𝑙,𝜃(𝒙)= 𝛿𝑙,𝑟

𝜃𝑙,𝜃 ∙ 𝜙𝑟,𝑜𝑑
𝜃 ( 𝑔𝑐𝑟

𝜃(𝒙)) (D.2) 
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Where 𝛿𝑙,𝑟
𝜃𝑙,𝜃

 is a proportional factor between 0 and 1 taking into account the dynamic component of the 

assignment and 𝜙𝑟,𝑜𝑑
𝜃  is the probability for the OD pair of using route 𝑟. Since the link flow is a function of the 

new generalized route cost 𝑔𝑐𝑟
𝜃,  some rerouting for all the OD pairs in the network passing through l will occur. 

This suggests that the numerical approximation overtakes the issue presented in (i). However, the effect on the 

link-flow depends directly on 𝜙𝑟,𝑜𝑑
𝜃 (𝒙, 𝑔𝑐𝑟

𝜃), and specifically on how large is the set of OD pairs 𝑜𝑑 ∈  𝑂𝐷𝑙 , 

where 𝑂𝐷𝑙 is the set of OD pairs passing for link l. By assuming that the numerical perturbation is 𝑐 = 𝜌 ∙ 𝑥𝑜𝑑
𝜃 , 

the magnitude of the effect of the perturbation on network can be expressed as in Equation (8.10). It is intuitive 

to realize that for urban networks the set of OD pairs crossing the same link can be quite large. As a consequence, 

the only option to increase the impact of the perturbation on the network performance is to increase the 

parameter 𝜌, which however leads to an incorrect approximation of the gradient in Equation (8.9). On the other 

hand, by assuming an UB-DODE formulation, for a given value of 𝜌, the perturbation is larger. 

D.2  UB-DODE: Proof or Property II 

The MPRE as formulated in (Yang et al., 1991) is an OD coverage problem, which has been formulated 

for the static demand estimation, but can be applied to the dynamic case by assuming that the OD and 

link flows during different time interval are independent, which is usually the assumption behind the 

AB_DODE formulation. When the UB_DODE is applied instead of the standard AB_DODE, under the 

assumption of User Equilibrium (UE), any used set of departure times t leads to the same utility. Using 

the same notation as in the original paper, the MPRE is formulated as in Equations (D.3, 3a, 3b): 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝝀 ∙ 𝝀𝑻)  (D.3) 

Subject to: 

𝑷𝒅𝑿𝒅𝝀𝑻 = 0 (D.3a) 

𝜆𝑖 ≥ −1,    𝑖 = 1,2, … . 𝑘 ∙ 𝑛𝑜𝑑 (D.3b) 

𝑥𝑖
𝑡[𝑈(𝑡) − 𝑈𝑖

∗] = 0,    𝑖 = 1,2, … . 𝑘 ∙ 𝑛𝑜𝑑   𝑡 = 1,2, … , 𝑘 (D.3c) 

 

Where, 𝑷 is the matrix including the proportion of OD trips using each observed link on the network, 𝝀 

is the column vector describing the relative deviation between estimated traffic volume and real traffic 

volume for each OD pair, and 𝑿𝒅 is a diagonal matrix, whose i-j element is equal to 𝑥𝑖 when i=j. By 

considering a utility-based departure time choice model, under the assumption of user equilibrium, we 

add the constraint D.3c to the MPRE. By assuming uncapacitated links, the contradiction method is 

applied by assuming Property 2 not to hold. This implies that the formulation automatically satisfies the 

constraint (D.3c). Under the assumption of having a continuous concave utility function, constraint 

(D.3c) implies that all the points within the MPRE solution will satisfy the following condition: 

{

𝑥𝑜𝑑
𝜃 = 0 ∀ 𝜃 <  𝑡𝑠𝑡𝑎𝑟𝑡,𝑜𝑑 , ∀ 𝑜𝑑 ∈ 𝑂𝐷

𝑥𝑜𝑑
𝜃 > 0     𝑡𝑠𝑡𝑎𝑟𝑡,𝑜𝑑 ≤ 𝜃 ≤  𝑡𝑒𝑛𝑑,𝑜𝑑   ∀ 𝑜𝑑 ∈ 𝑂𝐷

𝑥𝑜𝑑
𝜃 = 0 ∀ 𝜃 >  𝑡𝑒𝑛𝑑,𝑜𝑑               ∀ 𝑜𝑑 ∈ 𝑂𝐷

 (D.4) 

Where 𝑡𝑠𝑡𝑎𝑟𝑡,𝑜𝑑 and 𝑡𝑒𝑛𝑑,𝑜𝑑 are the first and last time intervals in which one user has been observed 

travelling for a certain OD, respectively. According to MPRE, all the OD flows matching the observed 

flows are feasible solutions for the MPRE: 

𝑓𝑙
𝜃𝑙 = 𝑓𝑙

𝜃𝑙 = ∑ ∑ 𝑀𝑜𝑑,𝑙
𝜃𝑙,𝜃(𝒙)𝑥𝑜𝑑

𝜃

𝑛𝑜𝑑

𝑜𝑑=1

𝑛𝜃

𝜃=𝜃𝑙

 (D.5) 

As a consequence, keeping the notations introduced in Appendix A, any values of  𝜙𝑟,𝑜𝑑
𝜃  that satisfy 

Equation (D.5) satisfy the system of Equations (B.3), including: 

{
𝜙𝑟,𝑜𝑑
𝑡𝑠𝑡𝑎𝑟𝑡,𝑜𝑑−1 = 0

𝑥𝑜𝑑
𝑡𝑠𝑡𝑎𝑟𝑡,𝑜𝑑−1 > 0

 (D.6) 
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Since 𝜙𝑟,𝑜𝑑
𝑡𝑠𝑡𝑎𝑟𝑡,𝑜𝑑−1 = 0, this solution matches the observed flow 𝑓𝑙

𝜃𝑙, while breaking the condition 

formulated in Equation (D.6). Since this is impossible, Property 2 holds. 

D.3  UB-DODE: Proof or Property III and IV 

Property 3: The MPRE (defined in Appendix D.2) has a finite value if and only if the trips between any 

OD pair are observed at at least one counting station. Constraint (D.3a) can be written as: 

𝑿𝒅𝝀𝑻 = [

𝑥1
1 0

⋱
0 𝑥𝑛𝑜𝑑

𝑛𝜃
] [

𝜆1
1

⋮
𝜆𝑛𝑜𝑑
𝑛𝜃
]=𝑯𝑿 = [

𝜆1
1 0

⋱
0 𝜆𝑛𝑜𝑑

𝑛𝜃
] [

𝑥1
1

⋮
𝑥𝑛𝑜𝑑
𝑛𝜃
] (D.7) 

Where H is a square matrix (𝑛𝜃 ∙ 𝑛𝑜𝑑) × (𝑛𝜃 ∙ 𝑛𝑜𝑑) containing the deviation 𝜆𝑜𝑑
𝜃 , as defined in (Yang 

et al., 1991). 𝜆𝑜𝑑
𝜃  describes the maximum relative deviation between estimated traffic volume and real 

traffic volume for the OD pair 𝑥𝑜𝑑
𝜃 . If H is diagonal, as for the AB_DODE, then the maximum deviation 

for each OD flow in each time interval is independent. If, for instance, an OD pair is observable for 𝑛𝜃-

1 time intervals, then the MPRE goes to infinite.  However, if a relation exists between OD flow 

belonging to different time intervals –i.e. the DTM – than the flow during the missing time interval can 

be estimated. We can now define 𝜆od
𝜃1|𝜃

 the maximum error for an OD pair “od” with departure time 𝜃1 

, which is observable through the flow belonging to the same spatial OD pair, but with departure time 𝜃 

. Simply stated, 𝜆od
𝜃1|𝜃

 represents the co-variance of the error over different time intervals for the same 

OD pair 𝑥𝑜𝑑
𝜃1, given a certain utility function.  

𝑯𝑻_𝑫𝑶𝑫𝑬 =

[
 
 
 
 
 
 
 
 
 
 
 
[

𝜆1
1 0

⋱
0 𝜆𝑛𝑜𝑑

1
]

𝜆1
1|𝜃

0

⋱

0 𝜆𝑛𝑜𝑑
1|𝜃

𝜆1
1|𝑛𝜃 0

⋱

0 𝜆𝑛𝑜𝑑
1|𝑛𝜃

𝜆1
𝜃|1

0

⋱

0 𝜆𝑛𝑜𝑑
𝜃|1

[

𝜆1
𝜃 0

⋱
0 𝜆𝑛𝑜𝑑

𝜃
]

𝜆1
𝜃|𝑛𝜃 0

⋱

0 𝜆𝑛𝑜𝑑
𝜃|𝑛𝜃

𝜆1
𝑛𝜃|1 0

⋱

0 𝜆𝑛𝑜𝑑
𝑛𝜃|1

𝜆1
𝑛𝜃|𝜃 0

⋱

0 𝜆𝑛𝑜𝑑
𝑛𝜃|𝜃

[

𝜆1
𝑛𝜃 0

⋱
0 𝜆𝑛𝑜𝑑

𝑛𝜃

]

]
 
 
 
 
 
 
 
 
 
 
 

 

 

(C.2) 

In general, we can say that the observability of the OD flows increases with the number of non-zero 

elements in the H. In fact, the more non-zero elements we have in H, the less non zero elements in P we 

need to avoid that 𝜆𝑜𝑑
𝜃 = ∞ satisfies Constraint (D.3a).  This proves Property 3 to hold. 

Property 4: If activity duration is considered, as in Equation (8.15), a correlation between demand flows 

belonging to different spatial OD exists. Given this condition, we can further extend the matrix H, by 

considering the deviation 𝜆
𝑜𝑑1|𝑜𝑑

𝜃1|𝜃
. This element represent the deviation related to the OD pair 𝑥𝑜𝑑1

𝜃1  

observable through the OD pair 𝑥𝑜𝑑
𝜃 . In general, 𝜆

𝑜𝑑1|𝑜𝑑

𝜃1|𝜃
 represents the covariance in time and space for 

different OD pairs, and 𝜆
𝑜𝑑1|𝑜𝑑

𝜃1|𝜃
≠ 0 if the two OD pairs belong to the same activity pattern 𝜈. Since the 

number of non-zero number in the matrix H increases, Property 4 holds. 
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