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cSchool of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF243AA, Wales, UK.

Abstract

We discuss Bayesian inference for the identification of elastoplastic material parameters. In addition to
errors in the stress measurements, which are commonly considered, we furthermore consider errors in the
strain measurements. Since a difference between the model and the experimental data may still be present
if the data is not contaminated by noise, we also incorporate the possible error of the model itself. The
three formulations to describe model uncertainty in this contribution are: (1) a random variable which is
taken from a normal distribution with constant parameters, (2) a random variable which is taken from a
normal distribution with an input-dependent mean, and (3) a Gaussian random process with a stationary
covariance function. Our results show that incorporating model uncertainty often, but not always, improves
the results. If the error in the strain is considered as well, the results improve even more.

Keywords: Bayesian inference, Bayes’ theorem, stochastic identification, parameter identification,
elastoplasticity, plasticity, model uncertainty

1. Introduction

A frequent approach for the identification of material parameters in solid mechanics is the least squares
method (LSM; see [1]), in which the squared difference between the experimental output and the model
response is minimised with respect to the material parameters. The result of such an approach is a de-
terministic estimate of the parameter values. A true insight in the certainty of each identified parameter5

value lacks however, as only a single residual forms the measure for the quality of the ensemble of identified
values. Although some advanced formulations of LSM incorporate statistical information [2, 3], they as-
sume that the measurement error is symmetrically distributed. For nonlinear models furthermore, linearised
approximations are required to estimate the parameter distributions [4].

An alternative identification method is the Bayesian approach which allows accounting for modelling10

uncertainty and the statistical noises of the experimental devices [5]. The result of Bayesian inference (BI)
is a probability density function (PDF) as a function of the parameters of interest. This PDF is called
the posterior distribution in Bayesian terminology. Once the posterior distribution is obtained, statisti-
cal summaries of the posterior such as mean, the value at which the posterior PDF is maximal (i.e. the
‘maximum-a-posteriori-probability’ or ‘MAP’ point) and the covariance matrix need to be evaluated. With15

the exception of a few cases, numerical frameworks need to be employed for this. Markov chain Monte Carlo
(MCMC) techniques [6–9] are probably the most frequently employed approaches for sampling PDFs.

Bayesian inference (BI) was used in various previous studies to identify material parameters. The earliest
work known to the authors is that of Isenberg [10], in which it was used to identify elastic parameters
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in 1979. In other works, this framework was employed to identify elastic material parameters based on20

dynamic responses [11–13]. BI was also used to identify the elastic constants of composite laminates in
[14–17]. Spatially varying elastic parameters were furthermore identified using BI by Koutsourelakis [18].
An introduction to identify Young’s moduli employing Bayesian inference can be found in [19].

Elastoplastic parameters were also identified using BI. Parameters in linear elasticity-perfect plasticity
were identified by Most [20], while Bayesian updating via a polynomial chaos expansion for an elastoplastic25

system was considered by Rosić et al. [21]. In addition to elastoplastic material models, Bayesian updating
procedures were employed to identify material parameters of hysteretic models [22, 23] and other nonlinear
material models such as viscoelasticity and creep [24–26].

In none of the aforementioned studies, the fact that the model itself may not be perfectly equipped to
capture the experimental measurements was considered. A framework that can deal with this was neverthe-30

less introduced by Kennedy and O’Hagan [27] in 2001, which is currently known as the ‘KOH’ framework
and was employed in [18, 28–32]. Another issue that has received little attention in previous studies is that
not only the output (e.g. the stress measurements) can be polluted by statistical noise, but the input as well
(e.g. the strain measurements).

The aim of this study is to present a Bayesian identification framework for elastoplasticity that can35

treat uncertainties in both the output and the input, whilst also accounting for model uncertainty. The
framework is constructed to deal with experimental data coming from monotonically increasing, uniaxial
tensile tests. Output errors (the noise in the stress measurements) are commonly considered in identification
approaches using BI, but input errors (i.e. the errors in the strains) seem to remain untreated in Bayesian
identification approaches. They may be worthwhile to include, because of the use of the clamp displacement40

as a measure to derive strains often overestimates the measured strains due to slip in the clamps. Even if
digital image correlation (DIC) is employed to determine strains, errors may be included due to the finite
accuracy of (1) the applied pixel patterns, (2) the finite resolution of the images, and (3) the algorithms of
the DIC software, which come with different user-selected parameters (such as the size of facets) and finite
minimisation residuals.45

Bayesian updating including uncertainties in both output and input was yet employed in [33] for linear
dynamic systems and was aimed at identifying modal parameters. The framework uses the assumption that
the posterior can be approximated as a Gaussian distribution at the MAP point, which may be considered as
a limitation. Studies in other fields can also be found that treat two error sources [34–39], but those studies
effectively employ linear regression.50

The KOH framework to address model uncertainty was furthermore not employed in any of the afore-
mentioned studies. Model uncertainty can be incorporated in several ways in the KOH framework. The
simplest way is to describe it with a constant variable, which is to be identified [30]. One can also use a
random variable and treat the parameters of the random variable’s distribution as unknown parameters that
need to be identified as well (and hence, they appear in the posterior) [30, 40]. Instead of incorporating a55

deterministic variable, one can include a function of which the parameters are deterministic [41]. One can
also include a random variable and assume its distribution’s parameters to be dependent on the input [40].
Model uncertainty can also be represented by a Gaussian process [27, 32, 42]. More information on different
ways to incorporate model uncertainty can be found in [40].

In this contribution, we investigate the effect of three model uncertainty formulations (i.e. a correction60

of the uniaxial material response in terms of the strain from ideal elasticity or elastoplasticity equations)
on the parameter identification in elasticity and elastoplasticity: (1) a random variable which is assumed
to come from a normal distribution with constant parameters, (2) a random variable which is assumed to
come from a normal distribution with a mean that depends on the input (i.e. the strain) and (3) a Gaussian
process with a zero mean and a stationary covariance function. On top of that, we also investigate how the65

incorporation of the input error influences the results.
The structure of the paper is as follows. Section 2 briefly discusses the expressions of the considered

material models for uniaxial, monotonic tension. In Section 3, the main concepts of Bayesian frameworks
for parameter identification are presented. In Section 4, the employed model uncertainty functions are
elaborated, including the corresponding likelihood functions. Section 5 presents the Bayesian approaches that70
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incorporate both the measurements errors in the stresses and in the strains, as well as the model uncertainty.
Indicative results are presented in Section 6. The measurement data in this section are artificially generated,
so that we can compare the identified parameter distributions with the true values. Finally, this contribution
is closed with conclusions (Section 7).

Remark. Throughout this paper bold capitals and symbols denote matrices and bold lower case letters and75

symbols are vectors or columns.

2. Material models

In this section we present the stress-strain relations of the considered material models for monotonic
uniaxial tensile tests. The material models presented in this section are: linear elasticity and linear elasticity
with linear hardening.80

2.1. Linear elasticity

In linear elasticity, the stress-strain relation is described fully linearly. This relation can be written as
follows for uniaxial tension:

σ(ϵ,x) = Eϵ, (1)

where σ is the stress, ϵ is the strain and x is the vector containing the material parameters, which here only
consists of Young’s modulus E.85

2.2. Linear elasticity-linear hardening

In a linear elastic-linear hardening material model, the elastic response is again described linearly in
terms of the elastic strain. Plastic deformation occurs with linear work hardening when the stress reaches
initial yield stress σy0. In other words, the stress continues to increase (linearly) when plastic deformation
takes place. The stress-strain relation for this model during monotonic, uniaxial tension reads:90

σ(ϵ,x) =

{
Eϵ if ϵ ≤ σy0

E

σy0 +
HE
H+E

(
ϵ− σy0

E

)
if ϵ >

σy0
E

, (2)

where H denotes the hardening modulus and hence, x =
[
E σy0 H

]T
.

3. Bayesian parameter identification

In this section some concepts of Bayesian inference are explained. First, a rather standard Bayesian
framework for parameter identification is presented. Subsequently, we present a Bayesian approach that
incorporates a generalised model error term in the KOH framework. The parametrised formulations for the95

employed model errors and their corresponding likelihood functions are presented in Section 4 in more detail.

3.1. Bayesian inference fundamentals

Let y =
[
y1 · · · ynm

]T
be a vector of nm measurements and let x be a vector of np parameters which

are to be identified. Using the Bayes’ theorem, one can write:

π(x|y) = π(x)π(y|x)
π(y)

, (3)

where π(x) denotes the prior distribution (i.e. the PDF that represents one’s assumed prior knowledge about100

the parameters, e.g. the fact that the Young’s modulus cannot be smaller than zero), π(y|x) denotes the
likelihood function (i.e. the PDF that measures the likelihood that measurements y are observed, given a
set of parameter values x), π(x|y) denotes the posterior distribution (i.e. the PDF that describes the chance
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to obtain parameters x, given the measurements y) and π(y) is called the evidence. As the measured data
(y) are already known and hence, y are not variables in the posterior (π(x|y)), the evidence is a constant105

number (π(y) = C ∈ R+) which is independent of the parameters. Consequently, Eq. (3) behaves as follows:

π(x|y) ∝ π(x)π(y|x). (4)

Since the statistical quantities of interest, such as the mean, covariance and MAP point, are the same for
Eq. (3) as for Eq. (4), it is sufficient to deal with Eq. (4). Next, we will discuss likelihood function π(y|x) in
the presence of a general model error term.

3.2. Likelihood function110

In the KOH framework, the relation between a stress measurement and the model response is written as
[40]:

y = σtrue + ωy, (5)

with

σtrue = σ(ϵ,x) + d(ϵ), (6)

where ωy denotes the error in the stress measurement (output error), which is considered to be a realisation
from the PDF that we call here the stress noise distribution. Furthermore, d denotes the model uncertainty115

which can be assumed to be dependent on the input (i.e. strain ϵ here). Assuming that we know the form
of the noise distribution, the likelihood function for a deterministic model uncertainty reads:

π(y|x,xd,xωy ) = πωy (y − σ(ϵ,x)− d(ϵ)), (7)

where xd denotes the parameter vector of the model uncertainty and xωy denotes the vector of parameters of
the stress noise distribution. Often, the stress noise distribution is assumed to be a Gaussian distribution with
s2ωy variance and zero mean. Frequently, the parameters for both the model uncertainty (d) and the stress120

noise distribution (i.e. sωy for the Gaussian distribution with zero mean) are unknown and consequently, they
must also be identified, i.e. they appear as variables in the posterior. As uniaxial tensile tests are generally
performed in well-controlled tensile testers of which the parameters the noise distribution of the load cell
can be rather straightforwardly calibrated, we assume that the stress noise distribution and its parameters
can be defined through a noise calibration process.125

Using Eqs. (4) and (7), the posterior distribution for a single measurement can be written as:

π(x,xd|y) ∝ π(x)π(xd)πωy (y − σ(ϵ,x)− d(ϵ)), (8)

where π(x) denote π(xd) are the prior PDFs for the model parameters and the model uncertainty parameters,
respectively. Clearly, we have assumed here that the probabilities of the model parameters and of the model
uncertainty are independent (π(x,xd) = π(x)π(xd)). Furthermore, π(x,xd|y) denotes the joint PDF for x
and xd. For the case of nm independent measurements, the final likelihood function is a product of the130

likelihood functions for each output yi (coming with input ϵi):

π(y|x,xd) =
nm∏
i=1

πωy (yi − σ(ϵi,x)− d(ϵi)). (9)

Once the posterior is established, one can employ numerical sampling techniques to approximate the
posterior’s statistical summaries (e.g. mean value, MAP point or covariance matrix). In this contribution
the adaptive Metropolis algorithm [43] is employed to sample the posterior. The algorithm is elaborated in
Appendix A.135
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4. Model uncertainty

In Section 3, Bayesian inference for a general model uncertainty was discussed. In this section, we present
the likelihood functions for the three formulations of model uncertainty (d(ϵ)), see Eq. (6). As mentioned
before, these three formulations are: (1) a random variable coming from a normal distribution with a constant
mean and variance, (2) a random variable which comes from a normal distribution with a constant variance140

and a mean which is a polynomial function in terms of the input (the strain), and (3) a Gaussian random
process with a stationary covariance function.

Important to realise again is that the stress noise distribution is described by a normal distribution with
zero mean and s2ωy variance, i.e. ωy ∼ N(0, s2ωy ). As mentioned before, we assume that sωy is known (see
Subsection 6.1).145

4.1. Random variable coming from a normal distribution with constant parameters

In the first case, we describe the difference between the material model and the true response as reali-
sations from a normal distribution with mean d and variance s2d, i.e. N(d, s2d). d and s2d are unknown and
must be identified by the Bayesian updating process. Prior knowledge about them can be incorporated in
the prior distribution. The likelihood function of for nm measurements, previously expressed in Eq. (9), can150

now be written as:

π(y|x,xd) = N(σ(ϵ,x) + d1nm , (s
2
ωy + s2d)Inm), (10)

where σ(ϵ,x) denotes the vector of model responses for each input
[
σ(ϵ1,x) · · · σ(ϵnm ,x)

]T
, 1nm denotes

the unit vector of size nm×1, Inm denotes the identity matrix of size nm×nm and xd denotes the parameter

vector for the model uncertainty i.e. xd =
[
d sd

]T
. Eq. (10) clearly shows that this model uncertainty adds

a correction to the mean and increases the likelihood’s variance by s2d.155

4.2. Random variable coming from a normal distribution with an input dependent mean

In the second case, we describe the difference between the model response and the true response as a
random variable, that originates from a normal distribution of which the mean is a function of the input.
We use polynomial functions to describe the relation between the mean and the input, d(ϵ) =

∑L
l=0 alϵ

l,

resulting in L+2 model uncertainty parameters: xd =
[
a0 a1 · · · aL sd

]T
. Consequently, the likelihood160

function reads:

π(y|x,xd) = N(σ(ϵ,x) + d(ϵ), (s2ωy + s2d)Inm), (11)

where d(ϵ) =
[
d(ϵ1) · · · d(ϵnm)

]T
. Note that increasing the polynomial order can lead to model noniden-

tifiability [40].

4.3. Gaussian process with a stationary covariance function

In the work of Kennedy and O’Hagan [27], model uncertainty was described by a Gaussian process [44],165

entailing that the error between the model and the true response is nonlocal in terms of the strain (i.e. the
input). Following [27] and [42] describing a Gaussian process (GP) with a zero mean, we write:

d ∼ GP(0, λ2c(·, ·|ψ)), (12)

where c is the squared exponential correlation function:

c(ϵi, ϵj |ψ) = exp
(
− (ϵi − ϵj)

2

2ψ2

)
, (13)

where λ2 denotes the variance and ψ the length scale, yielding xd =
[
λ ψ

]T
. ϵi and ϵj furthermore denote

two input values which may be the same (i, j ∈ {1, · · · , nm}). Note that the zero mean in the Gaussian170
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process implies that no bias is included that increases the chance for d(ϵ) to be positive or negative. The
likelihood function now reads:

π(y|x,xd) = N(σ(ϵ,x),ΓGP + s2ωyInm), (14)

where

ΓGP =

 λ2c(ϵ1, ϵ1|ψ) · · · λ2c(ϵ1, ϵnm |ψ)
...

. . .
...

λ2c(ϵnm , ϵ1|ψ) · · · λ2c(ϵnm , ϵnm |ψ)

 . (15)

Eq. (15) clearly shows that the errors in the stress measurements are correlated in a GP. This implies that
the updating procedure is not performed by a multiplication operator as in Eq. (9). Instead, we consider y to175

be a realisation from a multivariate Gaussian distribution with non-zero off-diagonal components (unlike the
cases in Subsections 4.1 and 4.2, in which the covariance matrix of the likelihood function only has non-zero
components on its diagonal).

5. Model uncertainty and noise in the strain

In the previous sections, we have assumed that the strain measurements are perfect (i.e. they are not180

polluted by noise). In this section, we reformulate the framework such that it can also treat errors in the
strain. The errors in the stress and in the strain are assumed to be independent of each other, as the devices
to measure the forces and strains or clamp displacements are independent of each other (e.g. if a load cell and
digital image correlation are used). We first give the general likelihood function in case model uncertainty
and the noise in the strain is incorporated (besides the commonly incorporated noise in the stress). Then,185

we specify the likelihood functions for the three material descriptions for monotonically increasing uniaxial
tension, if only the error in the noise is incorporated. Subsequently, we include model uncertainty for the
two material descriptions.

5.1. General likelihood function

In this subsection, a general likelihood function is presented that incorporates model uncertainty as well190

as the input error (and the output error obviously). As mentioned in Subsection 3.2, the experimental output
in the KOH framework [27] can be written as follows:

y = σ(ϵ,x) + d(ϵ) + ωy. (16)

We now assume that each strain measurement, ϵ∗, is also polluted by some statistical error, ωϵ∗ , in an
additive manner:

ϵ∗ = ϵ+ ωϵ∗ , (17)

where ϵ is the true strain. Similar to the error in the stress measurements, we assume that the strain errors195

are realisations from a Gaussian distribution with a zero mean and variance s2ωϵ∗ . Using Bayes’ theorem, we
can now write:

π(x,xd, ϵ|y, ϵ∗) =
π(y|x,xd, ϵ)π(ϵ|ϵ∗)π(x)π(xd)π(ϵ∗)

π(y|ϵ∗)π(ϵ∗)
, (18)

or

π(x,xd, ϵ|y, ϵ∗) ∝ π(y|x,xd, ϵ)π(ϵ|ϵ∗)π(x)π(xd). (19)
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The joint distribution of the material parameter vector x and model uncertainty parameter vector xd
reads:200

π(x,xd|y, ϵ∗) ∝
∫ b

0

π(y|x,xd, ϵ)π(ϵ|ϵ∗)dϵ π(x)π(xd), (20)

where b denotes the physical upper bound of the tensile tester (i.e. the ratio of the original length of
the specimen and the maximum distance that the clamps can displace). Assuming again that the noise
distributions for both the stress and strain measurements are known, Eq. (20) for a deterministic model
uncertainty reads:

π(x,xd|y, ϵ∗) ∝
∫ b

0

πωy (y − σ(ϵ,x)− d(ϵ))πωϵ∗ (ϵ
∗ − ϵ)dϵ π(x)π(xd), (21)

where πωy denotes the noise distribution for a stress measurement and πωϵ∗ denotes the noise distribution205

for a strain measurement. Note again that one may assume a form for both noise distributions and then
treat the parameters of both distributions as unknowns, which are to be identified together with the material
parameters and the model uncertainty parameters in the Bayesian updating procedure. However, we assume
that these noise parameters can be identified using a separate calibration procedure (see Subsection 6.1).

For nm measurements, the posterior reads:210

π(x,xd|y, ϵ∗) ∝
∫ b

0

· · ·
∫ b

0︸ ︷︷ ︸
nm

π(y|x,xd, ϵ)π(ϵ|ϵ∗)dϵπ(x)π(xd), (22)

where y =
[
y1 · · · ynm

]T
, ϵ∗ =

[
ϵ∗1 · · · ϵ∗nm

]T
. We furthermore use now π(ϵ|ϵ∗) = N(0, s2ωϵ∗ Inm). Inm

denotes the identity matrix of size nm × nm. In case of nm independent measurements, the posterior reads:

π(x,xd|y, ϵ∗) ∝
nm∏
i=1

∫ b

0

πωy (yi − σ(ϵ,x)− d(ϵ))πωϵ∗ (ϵ
∗
i − ϵ)dϵ π(x)π(xd). (23)

The integrals in Eqs. (20)-(23) are either numerically approximated (e.g. using Monte Carlo integration [45])
or analytically determined (see next subsection).

5.2. The likelihood function considering input error215

5.2.1. Linear elasticity

In case of linear elasticity during monotonically increasing, uniaxial tension, Eq. (1) provides the model
response, whilst the model uncertainty in Eq. (21) is ignored for now. Considering that ωy ∼ N(0, s2ωy ) and

ωϵ∗ ∼ N(0, s2ωy ), the likelihood function for a single measurement reads:

π(y|x, ϵ∗) = 1

2πsωysωϵ∗

∫ b

0

exp

(
−
[ (y − Eϵ)2

2s2ωy
+

(ϵ∗ − ϵ)2

2s2ωϵ∗

])
dϵ. (24)

By computing the integral in Eq. (24) analytically, it can be rewritten as follows:220

π(y|x, ϵ∗) =
√
p3

2
√
2πsωysωϵ∗

exp
(
− p2 − p21

2p3

)[
erf

(b− p1√
2p3

)
− erf

( −p1√
2p3

)]
, (25)

where erf(·) is the error function [46] and p1, p2 and p3 are formulated as follows:

p1 =
E ys2ωϵ∗ + s2ωyϵ

∗

E2s2ωϵ∗ + s2ωy
, p2 =

s2ωy (ϵ
∗)2 + s2ωϵ∗ y

2

E2 s2ωϵ∗ + s2ωy
, p3 =

(sωysωϵ∗ )
2

E2 s2ωϵ∗ + s2ωy
. (26)

In case of nm measurements, π(y|x, ϵ∗) is obtained using the product in Eq. (23).
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5.2.2. Linear elasticity-linear hardening

For linear elasticity-linear hardening, the unknown parameters are x =
[
E σy0 H

]T
. Again substitut-

ing Eq. (2) in Eq. (21) results in the following likelihood function for a single measurement:225

π(y|x, ϵ∗) = 1

2
√
2πsωysωϵ∗

(
√
p3 exp

(
− p2 − p21

2p3

)[
erf

( σy0
E − p1√

2p3

)
− erf

( −p1√
2p3

)]
+

1√
p∗1

exp
(
− p∗1p

∗
3 − p∗22
2p∗1

)[
erf

(√p∗1a−
p∗2√
p∗1√

2

)
− erf

( σy0
√
p∗1

E − p∗2√
p∗1√

2

)]
, (27)

where p1, p2 and p3 are again given by Eq. (26) and p∗1, p
∗
2 and p∗3 are expressed as follows:

p∗1 =

(
HE
H+E

)2

s2ωy
+

1

s2ωϵ∗
, p∗2 =

(y − σy0)
HE
H+E +

(
HE
H+E

)2
σy0
E

s2σ
+

ϵ∗

s2ωϵ∗
,

p∗3 =
(y − σy0)

2 + 2(y − σy0)
HE
H+E

σy0
E +

(
HE
H+E

)2(
σy0
E

)2

s2ωy
+

(ϵ∗)2

s2ωϵ∗
.

(28)

In the following subsection we discuss the formulations of the likelihood functions if model uncertainty
is incorporated as well.

5.3. The likelihood function considering input error and model uncertainty

Adding input-dependent model uncertainty renders even the likelihood function of the linear elastic230

material model impossible to analyse analytically. Consequently, we employ Monte Carlo integration to
numerically approximate the integral of Eq. (20). π(y|x,xd, ϵ) for all formulations of model uncertainty are
given in Eqs. (10), (11) and (14).

Note that in the case of the GP, the components of the measurement vector y are correlated. This
means that updating, according to the multiplication operation in Eq. (23), is not possible. Instead, we235

consider that measurement vector y is a realisation from a multivariant Gaussian distribution with non-zero
off-diagonal components. In this case, Eq. (22) is used to construct the posterior.

6. Results

This section presents some examples of the Bayesian framework for the elastic and elastoplastic material
models and uniaxial tensile data. The main points we aim to investigate are: (1) the influence of incorporating240

the input error, (2) the influence of incorporating the three types of model uncertainty and (3) the influence
of incorporating both the input error and model uncertainty. (Naturally, the output error is considered in
all results as well.)

For this purpose the measurements are generated numerically using responses which deviate from the
constitutive responses. Next, Bayesian inference is used to identify the parameters of the material models245

given in Section 2. To investigate the effect of incorporating the input error and model uncertainty on the
identification results, posteriors and posterior predictions (see Appendix B) are furthermore presented for
various cases and compared with the true parameter values and measurements. However, we first start with
the calibration of the two measurement noises for uniaxial tensile tests. Note that all results are obtained
using the adaptive Metropolis method for 5× 104 samples, whilst burning the first 1.5× 104 samples.250

6.1. Noise calibration

We start the noise calibration procedure by acquiring measurement data without the use of actual spec-
imens. Stress-strain measurements as schematically presented in Fig. 1. They show that both noises can be
represented as individual normal distributions with zero means and their own variances. In this contribution
we have assumed sωy = 0.01 GPa and sωϵ∗ = 5× 10−5.255
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ϵ

σ

πnoise(ω)

Figure 1: Schematic of the stress-strain measurements (red circles) of the ‘noise calibration experiments’, including an isoline
if both noise distributions would be represented by a bivariate normal distribution (dashed).

6.2. Linear elasticity

6.2.1. Input error

In the first example, the added value of including the strain error is investigated for linear elasticity. The
measurement data are generated using the following non-linear expression:

σ(ϵ, a, E) =
Eϵ

1 + ϵ
a

, (29)

where E = 210 GPa and a = 0.015. 20 measurements are generated using the same noise distributions as260

identified in the previous subsection. Parameter a in Eq. (29) is chosen such that the difference between the
non-linear expression used to generate the measurements and its linear approximation in the neighbourhood
of ϵ = 0 (i.e. σ = 210ϵ) is not too large (see Fig. 2(a)). We consider the following prior for the Young’s
modulus:

π(E) ∝

exp
(
− (E−Eprior)

2

2s2
Eprior

)
if E ≥ 0

0 otherwise
, (30)

with Eprior = 150 GPa and sEprior
= 50 GPa.265

Fig. 2(b) presents the marginal posterior PDF of the Young’s modulus for in case the output error alone
is included (red curve) and for the case in which both the output and input errors are included (blue curve).
Incorporating both error sources clearly results in a wider posterior. However, none of the resulting posteriors
contains true value E = 210 GPa. The posterior mean and variance are given in Table 1.

The posterior predictions are shown in Fig. 3. One can observe that incorporating both error sources270

results in a wider envelope. This wider envelope includes more measurements, meaning that incorporating
both error sources results in a more likely result.

6.2.2. Input error and model uncertainty

The effect of model uncertainty on the resulting posterior is studied now. First, we only include the case
with output error but without input error. The prior used for the Young’s modulus is the same mentioned275
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(a) (b)

Figure 2: Linear elasticity: (a) The experimental data generated for the first example, including the curve from which the data
points are generated and its linearisation at ϵ = 0. One can see that parameter a is chosen such that the difference between line
210ϵ and the true model is not large for small strains. (b) The marginal posterior PDF of the Young’s modulus if the stress
error alone is incorporated (red curve) and if the stress and strain errors are incorporated (blue curve). Considering both errors
results in a wider distribution of the Young’s modulus, but none of the distributions contain the true value.

previously. For the case in which model uncertainty is considered as a random variable coming from a
Gaussian distribution with an input-dependent mean, we consider the following expression for its mean:

d(ϵ) = a0 + a1ϵ+ a2ϵ
2. (31)

In case model uncertainty is modelled as a random variable, either coming from a Gaussian distribution
with constant parameters or coming from a Gaussian distribution with an input-dependent mean, infinitely
wide uniform distributions are used as prior distributions for the model uncertainty parameters (xd). How-280

ever, for the case in which model uncertainty is described as a Gaussian process with a stationary covari-
ance function, we have considered the following prior distributions for the model uncertainty parameters

(xd =
[
λ ψ

]T
):

π(λ) ∝

exp
(
− (λ−λprior)

2

2s2
λprior

)
if λ ≥ 0

0 otherwise
, (32)

and,

π(ψ) ∝

exp
(
− (ψ−ψprior)

2

2s2
ψprior

)
if ψ ≥ 1.578× 10−5

0 otherwise
, (33)

where λprior = 0.025 GPa, sλprior
= 0.0083 GPa, ψprior = 0.0006 and sψprior

= 0.0003.285

It must be noted that if infinitely wide uniform distributions are used for the model uncertainty parameters
of the Gaussian process, the MCMC algorithm fails to converge. Using the fact that the model uncertainty
function (d(ϵ)) is a smooth function, we have chosen the mean of the prior for the length scale parameter
(ψprior) to be half of the maximum occurring strain. The standard deviation is chosen to be relatively large.
To prevent negative length scale parameters and length scale parameters smaller than the minimum distance290

between two consecutive strains to be realised from the prior distribution, we have set a lower bound on
the prior distribution. We have chosen the value of the mean of the variance of the GP (λprior in Eq. (32))
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(a) Error in the stress measurements only (b) Error in both the stress and strain measurements

Figure 3: Linear elasticity: The measurements, the posterior mean response and the posterior predictions. One can observe
that the incorporation of both error sources results in a wider envelope, thereby including more measurements.

as 10% of the maximum occurring stress and the standard deviation such that 99.7% of the realisations
coming from the prior distribution remain below 20% of the maximum occurring stress. A lower bound is
also included (Eq. (32)).295

Fig. 4(a) shows that the incorporation of model uncertainty increases the widths of the posteriors, such
that the true value is possible to be generated from it. On the other hand, the MAP point (point estimator)
when model uncertainty is not incorporated is closer to the true value than all the other posteriors’ MAP
points.

An important point to mention here is that in case model uncertainty is incorporated as a random300

variable coming from a normal distribution with an input-dependent mean, the marginal posterior PDF is
approximately the same as the prior of the Young’s. The reason for this is the linear term that is present in
the input-dependent mean (a1ϵ in Eq. (31)), which is also present in the model (Eϵ). If we ignore the linear
term and instead use the following expression for the input-dependent mean:

d(ϵ) = a0 + a2ϵ
2, (34)

we obtain the PDF presented in Fig. 4(b). The figure shows that the marginal posterior includes the true305

value of the Young’s modulus. The MAP point has furthermore moved substantially closer to the true
value. This can be caused by the fact that the true response (Eq. (29)) is not highly nonlinear and hence,
its difference with the linear approximation (here Eϵ) can be rather accurately described by the remaining
terms of the Taylor expansion of the true model.

The posterior predictions for the three kinds of model uncertainty are presented in Figs. 5(a), 5(c) and310

5(e). The diagrams show that if model uncertainty is considered as a random variable coming from a normal
distribution, either with constant parameters or an input-dependent mean, more measurements are included
in the envelope than if model uncertainty is represented by a Gaussian process. By comparing Figs. 3
and 5(e) furthermore, it becomes clear that more measurement data is present in the posterior prediction’s
envelope if both errors in the stress and strain are considered than if model uncertainty is considered as a315

Gaussian process without input error. This can be caused by the fact that, although the posterior is wider,
the mean and MAP point are further from the true value if model uncertainty is described by a Gaussian
process (see Fig. 4(a) and Table 1).

The effect of treating the input error as well as incorporating model uncertainty is presented in Fig. 6 for
the marginal posteriors. Note that we have used the same priors as before. One can see that the posteriors320
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(a) (b)

Figure 4: Linear elasticity: Marginal posteriors for the Young’s modulus for different types of model uncertainty. (a) The
mean for model uncertainty as a random variable coming from a Gaussian distribution with input-dependent mean, is given by
Eq. (31). One can observe that incorporating any of the model uncertainties results in wider posterior distributions. Although
the MAP point moves further away from the true value for all model uncertainty cases, all their posteriors include the true
value, whereas the posterior for the case without model uncertainty does not include the true value. It must furthermore be
noted that the posterior for the case in which model uncertainty is treated as a random variable coming from a Gaussian
distribution with an input-dependent mean, is practically the same as the prior of the Young’s modulus. (b) The same marginal
posteriors as in (a), except that the case in which model uncertainty is modelled as a random variable coming from a normal
distribution with an input-dependent mean, Eq. (34) is used for the mean instead of Eq. (31). One can see that the MAP point
has moved considerably closer to the true value. This can be caused by the fact that the true stress-strain behaviour given in
Eq. (29) is not highly nonlinear and the difference between σ(ϵ, a, E) in Eq. (29) and linear elasticity (Eϵ) can rather accurately
be represented by the remaining terms of a Taylor expansion for σ(ϵ, a, E).
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(a) (b)
Normal distribution with constant parameters

(c) (d)
Normal distribution with an input-dependent mean

(e) (f)
Gaussian process

Figure 5: Linear elasticity: The measurements, the posterior mean responses and the posterior predictions. Left: without input
error and right: including input error. One can see that if model uncertainty is described by a random variable coming from
a normal distribution either with constant parameters or an input-dependent mean, more measurements are present inside
the posterior’s predictions interval than if a Gaussian process is considered. In case model uncertainty is a Gaussian process
furthermore, one can see that including the input error results in more measurements to be present inside the posterior prediction
bounds (cf. Figs. 5(e) and 5(f)).
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(a) Normal distribution with constant parameters (b) Normal distribution with an input-dependent
mean

(c) Gaussian process

Figure 6: Linear elasticity: Marginal posteriors of the Young’s modulus for three kinds of model uncertainty including input
error. One can see that if model uncertainty is described by a random variable coming from a normal distribution (either with
constant parameters or an input-dependent mean) the marginal posterior becomes wider if the input error is incorporated. In
case model uncertainty is represented by a Gaussian process, the marginal posterior gets slightly narrower.

become wider if the input error is incorporated, except for the Gaussian process. That posterior has however
changed such that the true value is less in its tail, than if the input error is not incorporated.

The posterior predictions for all three model uncertainties if the input error is also considered are shown
in Figs. 5(b), 5(d) and 5(f). One can see that for both cases in which model uncertainty is a random
variable, the posterior mean responses move closer to the measurement data. In case model uncertainty is325

considered as a Gaussian process, including the input error results in a wider envelope that includes more
data (cf. Figs. 5(e) and 5(f)). Also the only data point not present in the envelope is still closer to the
envelope if the input error is considered. The numerical values for the marginal posteriors mean, MAP point
and standard deviation are given in Table 1.

6.3. Linear elasticity-linear hardening330

For linear elasticity, we have shown that considering the error in the strain and model uncertainty leads
to wider marginal posteriors of the Young’s modulus (except if model uncertainty is treated as a Gaussian
process). This can generally be considered as an improvement, because either the true value was present
inside the wider distributions or the MAP point has moved towards the true value. For this case we have
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Table 1: Linear elasticity: The numerical values of the mean, the MAP point and the standard deviation of the marginal
posterior PDFs of the Young’s modulus for all considered cases.

Model uncertainty Mean (GPa) MAP (GPa) Standard deviation (GPa)

Error in the stress only

None 193.5201 193.5201 3.0861
Random variable from
a normal distribution

with constant parameters
184.7892 185.6223 10.7162

Random variable from
a normal distribution

with an input-dependent mean
198.3326 209.6297 33.5192

Gaussian process with a stationary
covariance function

173.8981 191.6519 21.5282

Error in the stress and strain

None 193.7848 193.6629 4.3032
Random variable from
a normal distribution

with constant parameters
209.7249 208.3623 15.9041

Random variable from
a normal distribution

with an input-dependent mean
180.6751 187.1383 42.6510

Gaussian process with a stationary
covariance function

179.6355 184.3772 19.4364

generated the data using relations that are not too different from the model response of interest. This has335

allowed us to compare the identified distributions with the true values. However, the measurement data
may deviate considerably more from the model response. In this subsection, we present examples for linear
elasticity-linear hardening. Because the deviation between the curves used to generate the data and the
model response is so significant, we will not be able to compare the distributions with true values. Instead,
we will only investigate the posterior predictions. We have initially generated 30 measurements using the340

following curve:

σ(ϵ, a, ϵmax) = a
√
ϵ2max − (ϵmax − ϵ)2, (35)

where a = 50 GPa, 0 ≤ ϵ ≤ ϵmax and ϵmax = 0.0056. Similar as in the previous subsection, output and
input noise was generated using sωy = 0.01 GPa and sωϵ∗ = 5 × 10−5 (see Fig. 7 for the measurements).
The linear elastic-linear hardening model is used as the material description. This entails that we want to
identify Young’s modulus E, initial yield stress σy0 and hardening modulus H. The same prior distribution345

as in Eq. (30) is used for the Young’s modulus with Eprior = 100 GPa, sEprior
= 50 GPa. The prior for the

yield stress and the hardening modulus read:

π(σy0) ∝

exp
(
− (σy0−σy0prior)

2

2s2σy0prior

)
if σy0 ≥ 0

0 otherwise
, (36)

and

π(H) ∝

exp
(
− (H−Hprior)

2

2s2
Hprior

)
if H ≥ 0

0 otherwise
, (37)
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where σy0prior = 0.25 GPa, sσy0prior
= 0.025 GPa, Hprior = 30 GPa and sHprior

= 15 GPa. In case model
uncertainty is described by a random variable coming from a normal distribution with an input-dependent350

mean, the relation of Eq. (31) is used for the mean. Furthermore, the prior distributions of the covariance
function’s parameters for the Gaussian process are given in Eqs. (32) and (33) with λprior = 0.03 GPa,
sλprior

= 0.01 GPa, ψprior = 0.0028 and sψprior
= 9.3333 × 10−4. The lower limit for length scale parameter

ψ is set to 2.5× 10−5.
The posterior predictions are presented in Fig. 7. Two main issues can be observed. (1) By comparing355

Figs. 7(a) and 7(b), it can be noticed that including the error in the strain results in a wider prediction
interval. This is especially true for the initial part of the response in which the model response is only
governed by elasticity. This is due to the fact that the Young’s modulus is larger than the stiffness during
elastoplastic deformation (i.e. HE

H+E in Eq.(2)). (2) Considering model uncertainties furthermore results in
wide posterior prediction envelopes, which consequently include almost all measurement and verification360

points. Only for the case in which model uncertainty is represented by a random variable coming from a
normal distribution with constant parameters, two verification points are not present within the bounds. One
should note however, that in the cases in which model uncertainty is input-dependent, the model uncertainty
is so dominant that the two linear regimes in the model response (the elastic regime and the elastoplastic
regime) cannot be recognised anymore.365

It is also worth to mention that in case the difference between the constitutive model (here linear elasticity-
linear hardening) and the true response used to generate the measurements (here Eq. (35)) is large, the
influence of incorporating model uncertainty is larger than that of incorporating the error in the strain.
Incorporating the error in the strain, if model uncertainty is to be incorporated, can still have a positive
influence however, as we have presented for linear elasticity.370

In the examples in which linear elasticity were considered, we were able to compare not just the posterior
predictions with the measurement data, but also the marginal posteriors with the true values. In case of
linear elasticity-linear hardening, it is not possible to compare the marginal posteriors with the true values,
because the material model and the true response do not share any parameters. In the case of linear elasticity-
linear hardening therefore, we have introduced and will introduce verification points in order to compare the375

posterior predictions in more detail. In Fig. 7, we have shown verification points inside the domain of the
measured strains. Now, we will add verification data outside the strain domain and investigate the posterior
predictions for the verification points outside the initial strain domain.

Instead of 30 measurements, we now consider 20 measurements, polluted by noise coming from the
aforementioned noise distributions. All priors and their parameters remain the same, except that the co-380

variance function’s parameters for the Gaussian process are set to λprior = 0.026 GPa, sλprior
= 0.0087 GPa,

ψprior = 0.0018 and sψprior
= 0.0006. The lower limit for length scale parameter ψ is set to 2.5× 10−5.

The posterior predictions are shown in Fig. 8, together with the measurement and verification data. It
can be observed that all verification data are inside the posterior predictions’ bounds if model uncertainty
is described by a random variable coming from a normal distribution with constant parameters or by a385

Gaussian process. In case model uncertainty is described by a Gaussian process furthermore, the uncertainty
is substantially larger than if a random variable coming from a normal distribution with constant parameters
is used. This can be due to the fact that the Gaussian process assumes the measurements to be correlated,
and hence, the larger the distance from the measured data, less information is available and a larger spread
is observed. It can furthermore be observed that the smallest number of verification data is present inside390

the posterior prediction’s bounds if model uncertainty is represented by a normal distribution with an input-
dependent mean. It must be noted though, that if another relation for the mean would be selected, the
posterior predictions would differ.

7. Conclusions

In this contribution, we have formulated a Bayesian approach that considers the output error (the error395

in the stress), the input error (the error in the strain) and the uncertainty of the model in order to identify
parameters in elasticity and elastoplasticity from monotonically increasing uniaxial tensile tests. We have
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treated three types of model uncertainty: (1) a random variable coming from a normal distribution with
constant parameters, (2) a random variable coming from a normal distribution with an input-dependent
mean and (3) a Gaussian process with a stationary covariance function.400

We have applied the identification approach to linear elasticity and linear elasticity-linear hardening. The
measurement data were artificially generated, allowing us to compare the parameter distributions with the
true values for linear elasticity because the material models and the true responses, used to generate the
measurement data, shared parameters. For linear elasticity-linear hardening the difference between the true
response, used to generate the measurement data, and the material model response was so significant that405

no parameters were shared by the two. Consequently, we have only used posterior predictions to assess the
quality of the results.

The results for linear elasticity show that incorporating any of the three model uncertainty formulations
results in wider marginal posterior distributions of the Young’s modulus. Consequently, the chance that
the posterior distributions include the true value increases. Incorporating model uncertainty also results in410

wider posterior prediction intervals, which therefore contain more measurements.
If, in addition to model uncertainty, the error in the strain is also incorporated, the marginal posterior

(distribution) of the Young’s modulus becomes even wider. The exception is the case in which model
uncertainty is described by a Gaussian process (with a stationary covariance function). The posterior becomes
narrower in this case, but the evaluation of the posterior at the true value is nevertheless larger. In other415

words, the true value has a higher chance to be realised from the posterior.
Incorporating the error in the strain (input error), as well as model uncertainty, also results in wider

posterior prediction intervals, which are therefore more likely to contain the measurement data. If model
uncertainty is described by a Gaussian process however, the posterior prediction interval does not become
wider, but still contains more measurements than if the input error is not included.420

Our results generally show that incorporating both model uncertainty and the input error has a favourable
influence on the identified parameters and the posterior predictions, compared to only incorporating model
uncertainty or only incorporating the input error. If the difference between the true response (used to
generate the measurements) and the response of the material model increases however, the added value of
incorporating the input error as well reduces substantially.425
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Appendix A. Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) techniques are frequently employed numerical approaches to explore
posteriors [45, 47], when they are too complex to be analytically analysed. Below, the Monte Carlo method
and the adaptive Metropolis algorithm are discussed as means to explore the posterior PDF.

Appendix A.1. Monte Carlo principle435

Consider that ns samples are drawn from a PDF of interest that we denote by πpost (for the case
mentioned above, πpost = π(x,xd|y)). Then, the following integral can be approximated by averaging the
values of function f(x) for the drawn ns samples.

f̂int =
1

ns

ns∑
i=1

f(xi) ≈
∫
Rnp

f(x)πpost(x)dx, (A.1)

where {xi}nsi is the finite set of samples drawn from πpost. From here onwards, we use hats on top of letters
and symbols to denote their numerical approximations. Using the Monte Carlo principle, posterior’s mean440
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x̂post, MAP point M̂AP and the component of the posterior’s covariance matrix at the jth row and lth

column can be approximated as follows [45]:

x̂post =
1

ns

ns∑
i=1

xi, (A.2)

M̂AP = argmax
xi;i=1,...,ns

π(xi), (A.3)

and

(ĉovpost)jl =
1

ns−1

ns∑
i=1

(
(xi)j − (x̂post)j

)(
(xi)l − (x̂post)l

)
, j = 1, 2, · · · , np, l = 1, 2, · · · , np. (A.4)

Appendix A.2. The adaptive Metropolis algorithm

The Metropolis-Hastings [45] method is a frequently employed Markov chain Monte Carlo (MCMC)445

approach. In case a symmetric proposal is used, the algorithm is commonly referred to as a Metropolis
algorithm.

The Metropolis algorithm explores the posterior PDF by a random walk in the parameter space x. We
consider sample xi and the evaluation of the PDF of interested at this sample πpost(xi). New sample xp is
then proposed by drawing from proposal distribution q(xp|xi). If the PDF of interest at the proposed sample450

(πpost(xp)) is larger than its value at the current sample (πpost(xi)), the proposed sample is always accepted
(this is correct if the proposal distribution in the Metropolis-Hastings algorithm is symmetric which is the
case in the Metropolis algorithm). If πpost(xp) < πpost(xi) however, the proposed sample may be accepted as
the new sample. This depends on ratio r in Algorithm 1. If the proposed sample is rejected, the old sample
is taken as the new sample. The algorithm is repeated for many samples and post-processing, in which the455

evolution of the statistical summaries is investigated, must point out if convergence is achieved.
The conventional Metropolis algorithm has the disadvantage that proposal distribution’s parameters

q(xp|xi) must be manually tuned. Consequently, an adaptive variant was introduced by Haario et al. [43] in
order to avoid this issue. The parameters of the proposal distribution are updated based on the knowledge
about the posterior, harvested from the previous samples. We update the proposal distribution once every460

1000 samples.
Often, a Gaussian distribution is used as a symmetric proposal distribution. In the adaptive Metropolis

algorithm, this reads as:

q(xp|xi) = N(xi, γ
2R), (A.5)

where γ2R denotes a covariance matrix of size np × np, with np as the number of unknown parameters and
hence, the number of dimensions of the posterior. γ must be selected initially and matrix R is updated465

based on the previous samples. We use the following initial value γ = 2.38√
np

, proposed by Gelman et al. [48].

Matrix R is established by storing all nK previous samples in matrix K of size nK×np. R is then computed
as follows:

R =
1

nK − 1
K̃
T
K̃, (A.6)

where K̃ = K−Kmean and Kmean reads:

Kmean =


kmean

kmean

...
kmean


nK×np

, (A.7)
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and kmean is a row matrix of length np which is determined as follows:470

kmean =
1

nK

[
nK∑
i=1

(K)i1
nK∑
i=1

(K)i2 · · ·
nK∑
i=1

(K)inp

]
. (A.8)

Algorithm 1 shows the Metropolis algorithm with the adaptive proposal (Eq. (A.5)).

Algorithm 1 The Metropolis algorithm with the adaptive proposal

1: select initial sample x0 ∈ Rnp and set γ = 2.38√
np

2: for i = 0, 1, 2, ..., ns − 1 do
3: draw xp ∈ Rnp from the proposal distribution q(xp|xi) in Eq. (A.5)

4: calculate the ratio r(xi,xp) = min
(
1,

πpost(xp)
πpost(xi)

)
5: draw u ∈ [0, 1] from uniform distribution
6: if r(xi,xp) ≥ u then
7: xi+1 = xp
8: else
9: xi+1 = xi

10: end if
11: per 1000 samples
12: update matrix K̃
13: end for

Appendix B. Posterior predictive distribution

One can predict new measurements, based on the current measurements using the posterior predictive
distribution. In the case in which no model uncertainties are considered, the posterior predictive distribution
of new measurement ynew, π(ynew|y, ϵ, ϵnew) results from the following integral [5]:475

π(ynew|y, ϵ, ϵnew) =
∫
Rnp

π(ynew|x, ϵnew)π(x|y, ϵ)dx, (B.1)

where ϵ =
[
ϵ1 · · · ϵnm

]T
denotes the vector of measured strains, at which stresses y are measured.

Furthermore, ϵnew denotes the new strain, for which we want to predict new stress ynew. The integral in
Eq. (B.1) can normally not be computed analytically [5]. In practise however, one can use the MCMC
approach to approximate Eq. (B.1). Since we have already sampled the posterior, we can straightforwardly
replace the ith sample in π(ynew|xi, ϵnew) and then draw sample ynewi from π(ynew|xi, ϵnew) [45]. Furthermore,480

the posterior mean response reads [5]:

ynew =

∫
R
ynewπ(ynew|y, ϵ, ϵnew)dynew. (B.2)

The integral given in Eq. (B.2) is in practise, again, approximated numerically using Monte Carlo integration.
More information about posterior predictive analyses can be found in [5].

In case of model uncertainty, the posterior predictive distribution reads:

π(ynew|y, ϵ, ϵnew) =
∫
Rnd

∫
Rnp

π(ynew|x,xd, ϵnew)π(x,xd|y, ϵ)dxdxd, (B.3)

where nd denotes the number of parameters of the model uncertainty formulation. Note that we have485

assumed that the measurement noise parameters are known.
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(a) Error in the stress only (b) Error in both the stress and the strain

(c) Normal distribution with constant parameters (d) Normal distribution with an input-dependent
mean

(e) Gaussian process

Figure 7: Linear elasticity-linear hardening: The measurements, the verification points, the posterior mean responses and
the posterior predictions. Note that for all cases in which model uncertainty is incorporated, the error in the strain is also
incorporated. One can see that considering model uncertainty results in more measurements to be present inside the bounds of
the posterior predictions. For the cases in which model uncertainty is input-dependent the model uncertainty is so dominant
that the two linear regimes in the model response (the elastic regime and the elastoplastic regime) cannot be recognised anymore.
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(a) Error in the stress only (b) Error in both the stress and the strain

(c) Normal distribution with constant parame-
ters

(d) Normal distribution with an input-
dependent mean

(e) Gaussian process

Figure 8: Linear elasticity-linear hardening: The measurements, the verification points, the posterior mean responses and
the posterior predictions. Note that for all cases in which model uncertainty is incorporated, the error in the strain is also
incorporated. One can see that considering model uncertainty results in more measurements to be located inside the bounds
of the posterior predictions. It can be observed that all verification data are inside the posterior predictions’ bounds if model
uncertainty is described by a random variable coming from a normal distribution with constant parameters or by a Gaussian
process. In case model uncertainty is described by a Gaussian process furthermore, the uncertainty is substantially larger
than if a random variable coming from a normal distribution with constant parameters is used. This can be due to the fact
that the Gaussian process assumes the measurements to be correlated, and hence, the larger the distance from the measured
data, less information is available and a larger spread is observed. It can furthermore be observed that the smallest number of
verification data is present inside the posterior prediction’s bounds if model uncertainty is represented by a normal distribution
with an input-dependent mean. It must be noted though, that if another relation for the mean would be selected, the posterior
predictions would differ.
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