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 Abstract – This work describes an evolutionary system to 
control the growth of a constructive neural network for 
autonomous navigation. A classifier system generates Takagi-
Sugeno fuzzy rules and controls the architecture of a 
constructive neural network. The performance of the mobile 
robot guides the evolutionary learning mechanism. 
Experiments show the efficiency of the classifier fuzzy system 
for analyzing if it is worth inserting a new neuron into the 
architecture. 
 
 Index Terms - constructive neural networks, classifier systems, 
robot navigation. 
 

I.  INTRODUCTION 

Autonomous navigations systems should be able to guide 
efficiently mobile robots to their goals without external 
assistance. Several works in the literature uses the 
computational intelligence approach to obtain robust and 
efficient systems [1, 2, 3]. In [4], innovative neuron models 
provide the navigation system the capacity for learning 
spatial concepts. Target seeking and obstacle avoidance 
behaviors are incrementally associated with specific features 
of objects (e.g. color) during the environmental interactions.  
 Constructive neural networks are systems that try to 
find automatically an optimal architecture for a specific 
problem starting from a minimal architecture [5, 6]. There are 
great prospects for applying constructive methods to the 
expansion control of neural networks architectures.  
 Evolutionary computational methods have been 
proposed as an efficient and robust alternative to the design 
of neural networks in this context [7, 8, 9]. 
 This work describes an evolutionary system that 
supervises the expansion of a class of a constructive neural 
network described in [10]. Although simulation results show 
its good efficiency for acquiring navigation ability through a 
classical reinforcement learning strategy, eventually the 
architecture suffers from an excessive expansion. The 
proposed classifier system generates Takagi-Sugeno fuzzy 
rules for controlling the architecture of that constructive 
neural network. The performance of the mobile robot guides 
the evolutionary mechanism. Experiments confirm the 
effectiveness of the classifier fuzzy system for finding a 
good balance between the costs of the insertion a new 
neuron versus the gain of navigation performance. 

 
 The remainder of this work is organized as follows. 
Section 2 describes briefly the constructive neural network 
The proposed evolutionary fuzzy system is described in 
Section 3. Section 4 shows simulation results considering 
different experiments. A brief discussion about the results 
and future work possibilities are presented in Section 5. 

II. CONSTRUCTIVE NEURAL NETWORK 

 The constructive neural network is designed for 
application in autonomous tasks, specifically in autonomous 
navigation systems [10]. A classical reinforcement learning 
strategy underlies the acquisition of the navigation strategy. 
Learning proceeds continuously from the start. Initially the 
neural network presents a poor performance, causing 
collisions against obstacles. Slowly the neural network 
acquires efficient and general navigation abilities. In the next 
it is presented a short description of the autonomous 
navigation system. 
 The navigation system consists of three main neural 
modules connected to an output neuron. Two of them, 
Obstacle Avoidance (OA) and Target Seeking (TS) modules, 
generate innate behaviors. A coordination module (CM) 
establishes (after learning) suitable weights for the behaviors 
generated by OA and TS modules. The weighted behaviors 
are combined in the output neuron (Fig. 1). 
 The OA and TS modules are neural networks with a 
priori knowledge that models their respective behavior (they 
do not learn). They are innate neural networks. Even if they 
operate independently the robot is still able to accomplish 
specific tasks. 
 The OA module generates the obstacle avoidance 
behavior. The inputs stem from the obstacle sensors and the 
outputs correspond to the adjustments for the steering 
angle. If only the OA module guides the robot, it does not 
collide. Unfortunately, it does not reach targets. The TS 
module generates the target seeking behavior. It receives 
inputs from the sensors that indicate direction of the target. 
If the TS module guides the robot, it is able to reach targets. 
However, if there is an obstacle between the robot and the 
target a collision occurs. As these modules are innate and 
aiming at keeping the analogy with biological systems, both 
neural networks are configured according to an evolutionary 
approach [11]. 
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 If the navigation system consists of both innate 
modules operating simultaneously and without coordination, 
there will be many conflicting situations and the navigation 
performance will certainly be poor. The function of the 
coordination module is to coordinate the instinctive 
behaviors generated by OA and TS innate modules, 
respectively. 
 The coordination module consists of three neuro-fuzzy 
networks: the Obstacle Distance (OD), Target Direction (TA) 
and Target Distance (TD) networks. They are connected to 
different sensorial fields: Obstacle Distance, Target Direction 
(angle) and Target Distance, respectively (Fig. 1). The 
architectures of the neural networks consist of two layers of 
fuzzy neurons [12]. The first layer is  constructive (Fig. 2).  
 When a collision or a target capture events occur (at tc 
or ta iterations, respectively), the learning process is 
activated. Two main learning procedures succeed: a) weight 
adjustment and b) architecture expansion. Weight 
adjustments are based on the classical reinforcement 
learning strategy. After some learning events, the 
coordination module weights efficiently the innate modules, 
suitably balancing each behavior according to the actual 
environment situation.  
 The second learning procedure causes an insertion of a 
neuron into the architecture, specifically into the in the first 
layer of the networks (more details in [10]). For each instant 
tc a neuron is inserted in the OD network. In a similar way, for 
each instant ta a neuron is inserted in both TA and TD 
networks. Therefore, the architectures of the neural networks 
are changed always a learning interaction occurs. There are 
no criteria for evaluation of the expansion. Thus it is possible 
that eventually the architecture suffers from an excessive 
expansion. 
 As aforementioned, this work proposes an evolutionary 
system for controlling the undesirable growth of the OD, TA 
and TD networks. A classifier system generates takagi-
sugeno fuzzy rules to decide when it is worth inserting a new 
neuron into the architecture. It is a difficult trade-off 
decision, since it implies on one side a cost for insertion a 
new neuron and on the other one a gain in navigation 
performance. 
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Fig 1. Autonomous navigation system. 
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Fig 2. Architecture of constructive networks.  

III. FUZZY CLASSIFIER SYSTEM 

The Classifier System (CS) theory, paradigm proposed by 
Holland [13], is an evolutionary approach for generating 
adaptive inference mechanisms capable of operating in time-
varying conditions. A CS is a mechanism for evolutive 
creation and update of knowledge represented by rules, 
called classifiers. They are <condition> - <action> rules with 
if-then mechanism. Differently from expert systems, a CS is a 
generic learning mechanism that can be used in several 
situations. 
 In the next it is described a hybrid evolutionary system, 
a fuzzy classifier system, designed to control the 
constructive neural architectures of the coordination module. 

A. Architecture 
This work uses a CS for defining fuzzy rules that monitors 
the network architectures of the coordination module 
described in Section II. Such classifier system interacts with 
the constructive neural networks by means of sensors and 
actuators and is composed by four main components: 
population of rules, credits setting module, reproduction 
module and competition module (Fig. 3). The sensors and 
actuators detect the current state of constructive neural 
networks and change its architecture, respectively (notice in 
Fig. 3 that the environment is the constructive neural 
network). 
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Fig 3. Architecture of Classifier System. 

 The population of fuzzy rules represents the knowledge 
of the system and it evolves during the robot navigation. 
The competition module receives the states of the OA, TA 
and TD networks (see Section II) and proceeds three 
inferences considering the rule population. Using the 
conclusions, the competition module decides if it is 
necessary or not the insertion of a new neuron.  

 The fuzzy classifier system interacts with the 
environment only at learning events (in the particular case of 



this work, collision and target capture, at tc or ta iterations, 
respectively). At each target capture event, the performance 
of the coordination module (autonomous navigation system) 
is evaluated. If the navigation system performance decrease 
(considering the last two target capture events) then the 
population evolution is triggered.  

Population of Rules: Each individual of the population is 
represented by <condition>-<action> rules, with if-then 
inference mechanism. Each rule can be described by a list of 
attributes, called chromosome. Each chromosome represents 
a fuzzy rule that composes the set of rules of the CS, and it is 
divided in three parts: fuzzy rule, fuzzy partition and 
consequent, as shown in Fig. 4. 
 The antecedent part of each fuzzy rule corresponds to 
the state of a specific network: amount of neurons in the 
neural network (Amt); growth rate of neural network (Rate); 
recognition efficiency of the input pattern (Dist); and 
frequency of low network output (under a level defined a 
priori) (Freq). 
 The universe of discourse for each input variable 
(related to each component that defines the state of a 
specific network) is divided in three linguistic values (Low, 
Medium and High). Such values are associated with 
membership functions, whose parameters are adjusted 
during the evolutionary process. The fuzzy system adopted 
is of type Takagi-Sugeno (the consequent part is a constant 
in [0,1]). 
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Fig 4. Structure of chromosome. 

Thus the chromosome part related to the fuzzy rule is 
composed of four components, equivalent to the number of 
input variables of the system. Each component represents an 
input variable in the following sequence: Amnt, Dist, Rate, 
Freq. The number value of each component indicates the 
respective linguistic value. The association between the 
linguistic values and the component values is defined as: 
Low (0), Medium (1) and High (2). Fig. 5 shows two examples 
of individuals considering only the fuzzy rule chromosome 
part. 
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Fig 5. Examples of fuzzy rule. 

In the chromosome fuzzy partition part, a linguistic value 
(general triangular membership function), respective to each 
input variable, is encoded in three components (Dij, Lij, Rij), 
where i indicates the linguistic value of the variable j, 0 = i = 
2 and 0 = j = 3. The components are parameters of the 
membership function of the linguistic value indicated in the 
fuzzy rule part. They assume real non-negative values that 

are related to the reference position on the universe of 
discourse. Consider that ijTOP  is the element of universe of 

discourse such that the membership function degree is 1, 
where j and i define an input variable and a linguistic value, 
respectively. Then, Dij is the distance between the ijTOP  

and jiTOP )1( −  (if i = 0, then D0j is the distance between 

0jTOP  and the inferior limit of the universe of discourse); Lij 

and Rij are the distances between ijTOP  and the minimum 

and maximum elements of the support set, respectively (Fig. 
6). Fig. 7 shows a chromosome for a general rule. 

Initially, the rules are built so that all possible 
combinations among antecedents occur. As the fuzzy 
system is composed of four input variables and each variable 
consists  of three linguistics values, the number of rules in 
the initial population is 34 = 81. The consequents of the rules 
are randomly generated within the interval [0,1]. 
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Fig. 6. Membership function encoding.  
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Fig. 7. Chromosome code for a general rule. 

Competition Module: For each tc iteration sensors detect the 
state of the OD and; at every ta, iteration the states of TD 
and TA neural networks. The competition module finds the 
winner rule, that is, the rule whose antecedent is most similar 
to the state. There is a winner rule for related to each neural 
network (in the case of a ta iteration). The similarity for each 
rule r, S(r) , is given by: 

S(r) = min(µi(x)),         (1) 
      i 
 

where: x is the respective state component. 

The consequent of the winner rule is compared with the 
specific threshold associated with the respective neural 
network (OD, TA or TD). If the consequent is lower than the 
threshold then there is no expansion in the respective 
architecture. Otherwise, the consequent is compared with the 
inverse of the neural network output at the current learning 
event iteration. If it is higher, then a new neuron is inserted. 
 In any case, the threshold is adjusted according to 
Equation 2:  
 

ThresholdNet = ThresholdNet + ξ(Cons – ThresholdNet), (2) 
 

where: { }TDTAOANET ,,∈ , Cons is the consequent value of 

the winner rule and ξ is a constant within interval [0,1]. 



B. Evolution 
The evolutionary process, responsible for evolving the 
population of rules, occurs at some target capture events. 
The evolutionary process takes place when it is verified a 
performance decreasing. The performance is defined 
according to the number of collisions that happens between 
two consecutive target captures. Thus, if the performance at 
a target capture iteration is better than the performance at the 
previous target capture iteration then a new population is 
generated. 

Credit Setting Module: In this module, the rules receive 
credits according to their performance in the competition 
module. The value S(r) obtained by each rule through 
Equation 1 is sent to the credit setting module. The credit of 
the rth rule is Cr(t+1). After each generation, all credits are 
initialised, that is, Cr(t)=0. At each learning event, the credits 
are actualised according to Equation 3. Besides, this module 
also attributes credits to winner rules in the two last learning 
events occurrences. The attribution of credit to the winner 
rules in the last and the before the last learning events are 
given by Equations 4 and 5, respectively. 
 

Cr(t+1) = C r(t) + S(r)         (3) 
Cr(t+1) = C r(t) + ζCr(t)        (4) 
Cr(t+1) = C r(t) + δCr(t)        (5) 
 

where: t is any moment tc or ta, indistinguishably, ζ and δ are 
constants within the interval [0,1], such that δ 〈〈 ζ. 

Reproduction Module: 
This module is responsible for initiating the process of 
generating a new population. For individual selection, it 
adopted the tournament selection method. [14]. Traditional 
evolutionary operators are applied to selected individuals . 
 The crossover operator takes a pair (parents) of selected 
individuals and, after executing the recombination in one 
point, two new individuals are generated. This operator is 
activated according to a specific probability. After applying 
the crossover operator, each individual may be chosen for 
mutation. 
 Fig. 8 shows an example of the action of a crossover 
operator. The second and third linguistic values of the fourth 
variable (Freq) are affected by the operator. 
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Fig. 8. Effect of crossover operator. 

Fig. 9 shows two examples of the action of a mutation 
operator. The chromosomes that will suffer the action of the 
mutation operator are shown in Fig. 9(a). Only the three last 
components of the fuzzy partition part are considered (fourth 
fuzzy variable). This example shows the intervals (IM, IA, IB) 
where it is chosen values for the respective parameters (Dij, 
Lij, Rij) (Fig. 9(b)).  
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Fig. 9. Effect of mutation operator. 

 

 After the crossover and mutation operations, it is 
necessary to guarantee that every element of the universe of 
discourse presents a membership function degree different 
of zero for at least one of the linguistic values. Thus, it may 
be necessary to repair the membership functions. If repairing 
is necessary, the fuzzy membership function parameter (that 
the evolutionary operator has changed) is adjusted in a such 
way that the intersection between the support sets is equal 
to one discretization interval. 
 

IV. EXPERIMENTS AND RESULTS 

This section shows experiments that confirm the capabilities 
of the fuzzy classifier system for architecture control. To do 
that the autonomous navigation system operates in two 

 
(a) 

 
 
(b) 



modes: firstly, the fuzzy classifier system is enable, and 
secondly, it is disable. Then the performance in these two 
cases are compared.  
 Fig. 10 (a), (b) and (c) shows the environments (1, 2 and 
3, respectively) defined for evaluation. The rectangles 
represent obstacles, the cirles are target positions and the 
triangle is the robot. During simulation only one target is in 
the environment. After a capture, the target is eliminated and 
a new target is randomly positioned in the environment.  
 Other simulation parameters adopted for the fuzzy 
classifier systems are: 
 

• ξ = 0.5 , ζ = 0.1  and δ = 0.01 (Equations 2, 4 and 5, 
respectively); 

• k = 2 for the tournement selection method; 

• mutation and crossover rates are 0.08 and 0.65, 
respectively; 

• the threshold of each network is init ialized to zero. 

 In the beginning, the threshold favors the insertion of 
neurons. As collision and captures occur, there is a trend for 
stabilization of the threshold. 
 

   
               (a)   (b) 

 

 
(c) 

Fig. 10. Environments used for simulations: (a) Environment 1, (b) 
Environment 2; (c) Environment 3. 

 In the first experiment the fuzzy classifier system is 
disable. In this case, at each collision or capture learning 
events, a new neuron is always inserted in the OD network 
or in the TA and TD networks, respectively. This can be 
observed in Table 1. A total number of 15659 iterations are 
necessary for the robot complete its tasks in the three 
environments. 
 

TABLE I 
NUMBER OF NEURONS. 

Environments Collisions Captures OD TD TA 
1 13 15 13 15 15 
2 6 10 19 25 25 
3 0 15 19 40 25 

 

 The graphic in Fig. 11(a) shows the changing of the 
number of neurons (only for the OD neural network) 
according to the number of collisions. Notice that they are 

linearly proportional (in an analogue way, the number of 
neurons increases linearly according to the number or target 
captures, for both TD and TA networks). The knowledge 
acquired while the robot is in the environment 1, is equally 
suitable for navigation in the other ones, that is, the 
navigation system learns a general navigation strategy (there 
is no collision for navigation in environment 3) Fig. 11(b). 

 
Fig. 11. (a) number of  OD networks neurons x number of collisions; 

(b) learning events x number of iteractions.  

 The second experiment considers that the proposed 
fuzzy classifier system is controlling the expansion of the 
networks. The initial population is randomly generated (81 
individuals). 
 Observe in Table 2 that the number of neurons is lesser 
than the number of collisions and captures. The simulation 
for the three environments required 18552 iterations and the 
evolutionary process is triggered 9 times. The values of 
threshold for OD, TD and TA networks, after stabilization, 
are 0.59, 0.609 and 0.609, respectively. 
 

TABLE II 
NUMBER OF NEURONS. 

Environments Collisions Captures OD TD TA 
1 9 15 8 5 5 
2 1 10 8 5 5 
3 2 15 8 5 5 

 

 The graphic in Fig. 12(a) shows the relation between the 
number of collisions versus the number of OD network 
neurons. After the 8th collision, the architecture does not 
change any more. Similarly to the first experiment, the 
navigation system is capable to generalize the acquired 
knowledge and guide the robot in environments 2 and 3 
(only 2 collisions occur during navigation in the environment 
3) Fig. 12(b). 

 

Fig. 12. (a) number of  OD networks neurons x number of collisions; 
(b) learning events x number of iteractions.  

 Fig. 13 illustrates the configuration of the membership 
functions after the evolutionary process. 



 

Fig 13. Linguistic membership functions for each of fuzzy variables: 
Amnt, Dist, Rate, Freq (from left to right and from top to down). 

V. CONCLUSION 

This work describes a fuzzy classifier system for the growth 
control of constructive network in autonomous navigation 
systems. The navigation system is based on modular 
hierarchical neural networks. There is a coordination network 
that learns a generalised navigation strategy via a 
reinforcement procedure. This network is of type 
constructive network, that is, for every learning event 
(collision or target capture) a neuron is always inserted into 
the architecture, if the fuzzy classifier system is not present 
[10].  
 The proposed fuzzy classifier system generates rules of 
Takagi-Sugeno type and controls the neural network 
architectures. For comparison purposes, two experiments are 
considered: E1 – the fuzzy classifier system controls the 
expansion architecture and; E2 – the fuzzy classifier system 
is not enable. Simulation results show an improvement 
performance if the fuzzy classifier system is enable 
(experiment E1): the number of neurons in the architecture is 
extremely low, if compared with the case of experiment E2. 
Although the number of iterations is smaller in the 
experiment E2 than in the experiment E1, the navigation 
system is able to capture all targets with good generalisation 
(it is observed that, in E1, the number of collisions that occur 
in the environment 1 is very higher than in the other different 
environments). Furthermore, the number of collisions in E2 is 
very higher than in the E1, that is, the fuzzy classifier system 
also improves the navigation system performance.  
 Future work includes: the extension of the fuzzy 
classifier system aiming at eliminating neurons from the 
network architectures (here the architecture only expands, 
but do not shrink); to establish mechanism to reduce 
membership function superposition and; to consider 
coevolutionary techniques.  
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