
Evolutionary Fuzzy System for Architecture Control in a
Constructive Neural Network

Rodrigo Calvo Mauricio Figueiredo Eric Aislan Antonelo

Department of Computer
Science and Statistics

Department of Computer
Science

School of Information
Science, Computer and
Electrical Engineering

University of São Paulo State University of Maringa Halmstad University

Sao Carlos - SP, Brazil
87020-900, Maringa – PR,

Brazil
Halmstad, Sweden

rcalvo@icmc.usp.br mauricio@din.uem.br d404eran@stud.hh.se

 Abstract – This work describes an evolutionary system to
control the growth of a constructive neural network for
autonomous navigation. A classifier system generates Takagi-
Sugeno fuzzy rules and controls the architecture of a
constructive neural network. The performance of the mobile
robot guides the evolutionary learning mechanism.
Experiments show the efficiency of the classifier fuzzy system
for analyzing if it is worth inserting a new neuron into the
architecture.

 Index Terms - constructive neural networks, classifier systems,
robot navigation.

I. INTRODUCTION

Autonomous navigations systems should be able to guide
efficiently mobile robots to their goals without external
assistance. Several works in the literature uses the
computational intelligence approach to obtain robust and
efficient systems [1, 2, 3]. In [4], innovative neuron models
provide the navigation system the capacity for learning
spatial concepts. Target seeking and obstacle avoidance
behaviors are incrementally associated with specific features
of objects (e.g. color) during the environmental interactions.
 Constructive neural networks are systems that try to
find automatically an optimal architecture for a specific
problem starting from a minimal architecture [5, 6]. There are
great prospects for applying constructive methods to the
expansion control of neural networks architectures.
 Evolutionary computational methods have been
proposed as an efficient and robust alternative to the design
of neural networks in this context [7, 8, 9].
 This work describes an evolutionary system that
supervises the expansion of a class of a constructive neural
network described in [10]. Although simulation results show
its good efficiency for acquiring navigation ability through a
classical reinforcement learning strategy, eventually the
architecture suffers from an excessive expansion. The
proposed classifier system generates Takagi-Sugeno fuzzy
rules for controlling the architecture of that constructive
neural network. The performance of the mobile robot guides
the evolutionary mechanism. Experiments confirm the
effectiveness of the classifier fuzzy system for finding a
good balance between the costs of the insertion a new
neuron versus the gain of navigation performance.

 The remainder of this work is organized as follows.
Section 2 describes briefly the constructive neural network
The proposed evolutionary fuzzy system is described in
Section 3. Section 4 shows simulation results considering
different experiments. A brief discussion about the results
and future work possibilities are presented in Section 5.

II. CONSTRUCTIVE NEURAL NETWORK

 The constructive neural network is designed for
application in autonomous tasks, specifically in autonomous
navigation systems [10]. A classical reinforcement learning
strategy underlies the acquisition of the navigation strategy.
Learning proceeds continuously from the start. Initially the
neural network presents a poor performance, causing
collisions against obstacles. Slowly the neural network
acquires efficient and general navigation abilities. In the next
it is presented a short description of the autonomous
navigation system.
 The navigation system consists of three main neural
modules connected to an output neuron. Two of them,
Obstacle Avoidance (OA) and Target Seeking (TS) modules,
generate innate behaviors. A coordination module (CM)
establishes (after learning) suitable weights for the behaviors
generated by OA and TS modules. The weighted behaviors
are combined in the output neuron (Fig. 1).
 The OA and TS modules are neural networks with a
priori knowledge that models their respective behavior (they
do not learn). They are innate neural networks. Even if they
operate independently the robot is still able to accomplish
specific tasks.
 The OA module generates the obstacle avoidance
behavior. The inputs stem from the obstacle sensors and the
outputs correspond to the adjustments for the steering
angle. If only the OA module guides the robot, it does not
collide. Unfortunately, it does not reach targets. The TS
module generates the target seeking behavior. It receives
inputs from the sensors that indicate direction of the target.
If the TS module guides the robot, it is able to reach targets.
However, if there is an obstacle between the robot and the
target a collision occurs. As these modules are innate and
aiming at keeping the analogy with biological systems, both
neural networks are configured according to an evolutionary
approach [11].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162022985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 If the navigation system consists of both innate
modules operating simultaneously and without coordination,
there will be many conflicting situations and the navigation
performance will certainly be poor. The function of the
coordination module is to coordinate the instinctive
behaviors generated by OA and TS innate modules,
respectively.
 The coordination module consists of three neuro-fuzzy
networks: the Obstacle Distance (OD), Target Direction (TA)
and Target Distance (TD) networks. They are connected to
different sensorial fields: Obstacle Distance, Target Direction
(angle) and Target Distance, respectively (Fig. 1). The
architectures of the neural networks consist of two layers of
fuzzy neurons [12]. The first layer is constructive (Fig. 2).
 When a collision or a target capture events occur (at tc
or ta iterations, respectively), the learning process is
activated. Two main learning procedures succeed: a) weight
adjustment and b) architecture expansion. Weight
adjustments are based on the classical reinforcement
learning strategy. After some learning events, the
coordination module weights efficiently the innate modules,
suitably balancing each behavior according to the actual
environment situation.
 The second learning procedure causes an insertion of a
neuron into the architecture, specifically into the in the first
layer of the networks (more details in [10]). For each instant
tc a neuron is inserted in the OD network. In a similar way, for
each instant ta a neuron is inserted in both TA and TD
networks. Therefore, the architectures of the neural networks
are changed always a learning interaction occurs. There are
no criteria for evaluation of the expansion. Thus it is possible
that eventually the architecture suffers from an excessive
expansion.
 As aforementioned, this work proposes an evolutionary
system for controlling the undesirable growth of the OD, TA
and TD networks. A classifier system generates takagi-
sugeno fuzzy rules to decide when it is worth inserting a new
neuron into the architecture. It is a difficult trade-off
decision, since it implies on one side a cost for insertion a
new neuron and on the other one a gain in navigation
performance.

obstacle distance sensors

OA innate network

output neuron

YOD

ΣΣ

TS innate network

YTA YTD

TA OD TD

ccoooorrddeennaatt iioonn
mmoodduullee

target distance sensors target direction sensor

Fig 1. Autonomous navigation system.

first layer

second layer

sensorial field

m a x

A A A A

Fig 2. Architecture of constructive networks.

III. FUZZY CLASSIFIER SYSTEM

The Classifier System (CS) theory, paradigm proposed by
Holland [13], is an evolutionary approach for generating
adaptive inference mechanisms capable of operating in time-
varying conditions. A CS is a mechanism for evolutive
creation and update of knowledge represented by rules,
called classifiers. They are <condition> - <action> rules with
if-then mechanism. Differently from expert systems, a CS is a
generic learning mechanism that can be used in several
situations.
 In the next it is described a hybrid evolutionary system,
a fuzzy classifier system, designed to control the
constructive neural architectures of the coordination module.

A. Architecture
This work uses a CS for defining fuzzy rules that monitors
the network architectures of the coordination module
described in Section II. Such classifier system interacts with
the constructive neural networks by means of sensors and
actuators and is composed by four main components:
population of rules, credits setting module, reproduction
module and competition module (Fig. 3). The sensors and
actuators detect the current state of constructive neural
networks and change its architecture, respectively (notice in
Fig. 3 that the environment is the constructive neural
network).

 Classifier System

Reproduction

Neural Network

Actuadors Competi tion

Credits

Sensors

New Population

Population

Fig 3. Architecture of Classifier System.

 The population of fuzzy rules represents the knowledge
of the system and it evolves during the robot navigation.
The competition module receives the states of the OA, TA
and TD networks (see Section II) and proceeds three
inferences considering the rule population. Using the
conclusions, the competition module decides if it is
necessary or not the insertion of a new neuron.

 The fuzzy classifier system interacts with the
environment only at learning events (in the particular case of

this work, collision and target capture, at tc or ta iterations,
respectively). At each target capture event, the performance
of the coordination module (autonomous navigation system)
is evaluated. If the navigation system performance decrease
(considering the last two target capture events) then the
population evolution is triggered.

Population of Rules: Each individual of the population is
represented by <condition>-<action> rules, with if-then
inference mechanism. Each rule can be described by a list of
attributes, called chromosome. Each chromosome represents
a fuzzy rule that composes the set of rules of the CS, and it is
divided in three parts: fuzzy rule, fuzzy partition and
consequent, as shown in Fig. 4.
 The antecedent part of each fuzzy rule corresponds to
the state of a specific network: amount of neurons in the
neural network (Amt); growth rate of neural network (Rate);
recognition efficiency of the input pattern (Dist); and
frequency of low network output (under a level defined a
priori) (Freq).
 The universe of discourse for each input variable
(related to each component that defines the state of a
specific network) is divided in three linguistic values (Low,
Medium and High). Such values are associated with
membership functions, whose parameters are adjusted
during the evolutionary process. The fuzzy system adopted
is of type Takagi-Sugeno (the consequent part is a constant
in [0,1]).

A0 A0 A0 A1 A1 A1 A2 A2 A2 A3 A3 A3 Cons

Fuzzy Rule Fuzzy Partition

V0 V1

V2

V3

Consequent

Fig 4. Structure of chromosome.

Thus the chromosome part related to the fuzzy rule is
composed of four components, equivalent to the number of
input variables of the system. Each component represents an
input variable in the following sequence: Amnt, Dist, Rate,
Freq. The number value of each component indicates the
respective linguistic value. The association between the
linguistic values and the component values is defined as:
Low (0), Medium (1) and High (2). Fig. 5 shows two examples
of individuals considering only the fuzzy rule chromosome
part.

... L 1

Fuzzy Rule Fuzzy Partition

0 0

0

0

If Amnt is low and Dist is low and Rate is low and Freq is low then Limiar is L 1

... L 2 0 2

0

1

If Amnt is low and Dist is high and Rate is low and Freq is medi um then Limiar é L 2

Rule 1:

Rule 2:

Fig 5. Examples of fuzzy rule.

In the chromosome fuzzy partition part, a linguistic value
(general triangular membership function), respective to each
input variable, is encoded in three components (Dij, Lij, Rij),
where i indicates the linguistic value of the variable j, 0 = i =
2 and 0 = j = 3. The components are parameters of the
membership function of the linguistic value indicated in the
fuzzy rule part. They assume real non-negative values that

are related to the reference position on the universe of
discourse. Consider that ijTOP is the element of universe of

discourse such that the membership function degree is 1,
where j and i define an input variable and a linguistic value,
respectively. Then, Dij is the distance between the ijTOP

and jiTOP)1(− (if i = 0, then D0j is the distance between

0jTOP and the inferior limit of the universe of discourse); Lij

and Rij are the distances between ijTOP and the minimum

and maximum elements of the support set, respectively (Fig.
6). Fig. 7 shows a chromosome for a general rule.

Initially, the rules are built so that all possible
combinations among antecedents occur. As the fuzzy
system is composed of four input variables and each variable
consists of three linguistics values, the number of rules in
the initial population is 34 = 81. The consequents of the rules
are randomly generated within the interval [0,1].

L1j

R 0j

D 0j = 0
1

D1j D2j

R 1j

L2 j

Fig. 6. Membership function encoding.

Di0

Li0

Ri0

Di1

Li1

Ri1

Di2

Li2

Ri2

Di3

Li3

Ri3

Cons

Fuzzy Rule Fuzzy Partition

Ti0 Ti1 Ti2

Ti3

Fig. 7. Chromosome code for a general rule.

Competition Module: For each tc iteration sensors detect the
state of the OD and; at every ta, iteration the states of TD
and TA neural networks. The competition module finds the
winner rule, that is, the rule whose antecedent is most similar
to the state. There is a winner rule for related to each neural
network (in the case of a ta iteration). The similarity for each
rule r, S(r) , is given by:

S(r) = min(µi(x)), (1)
 i

where: x is the respective state component.

The consequent of the winner rule is compared with the
specific threshold associated with the respective neural
network (OD, TA or TD). If the consequent is lower than the
threshold then there is no expansion in the respective
architecture. Otherwise, the consequent is compared with the
inverse of the neural network output at the current learning
event iteration. If it is higher, then a new neuron is inserted.
 In any case, the threshold is adjusted according to
Equation 2:

ThresholdNet = ThresholdNet + ξ(Cons – ThresholdNet), (2)

where: { }TDTAOANET ,,∈ , Cons is the consequent value of

the winner rule and ξ is a constant within interval [0,1].

B. Evolution
The evolutionary process, responsible for evolving the
population of rules, occurs at some target capture events.
The evolutionary process takes place when it is verified a
performance decreasing. The performance is defined
according to the number of collisions that happens between
two consecutive target captures. Thus, if the performance at
a target capture iteration is better than the performance at the
previous target capture iteration then a new population is
generated.

Credit Setting Module: In this module, the rules receive
credits according to their performance in the competition
module. The value S(r) obtained by each rule through
Equation 1 is sent to the credit setting module. The credit of
the rth rule is Cr(t+1). After each generation, all credits are
initialised, that is, Cr(t)=0. At each learning event, the credits
are actualised according to Equation 3. Besides, this module
also attributes credits to winner rules in the two last learning
events occurrences. The attribution of credit to the winner
rules in the last and the before the last learning events are
given by Equations 4 and 5, respectively.

Cr(t+1) = C r(t) + S(r) (3)
Cr(t+1) = C r(t) + ζCr(t) (4)
Cr(t+1) = C r(t) + δCr(t) (5)

where: t is any moment tc or ta, indistinguishably, ζ and δ are
constants within the interval [0,1], such that δ 〈〈 ζ.

Reproduction Module:
This module is responsible for initiating the process of
generating a new population. For individual selection, it
adopted the tournament selection method. [14]. Traditional
evolutionary operators are applied to selected individuals .
 The crossover operator takes a pair (parents) of selected
individuals and, after executing the recombination in one
point, two new individuals are generated. This operator is
activated according to a specific probability. After applying
the crossover operator, each individual may be chosen for
mutation.
 Fig. 8 shows an example of the action of a crossover
operator. The second and third linguistic values of the fourth
variable (Freq) are affected by the operator.

 Child 1

L i2

Ri2

0.6

0.3

0.3

0.3

Li2

Ri2

0.3

0.2

0.4

0.5

Child 2

Parent 1

Li2

Ri2

0.6

0.3

0.3

0.3

Li2

Ri2

0.3

0.2

0.4

0.5

cut

Parent 2

D i2

. . .

Di2

. . .

D i2

. . .

Di2

. . .

L1j = 0,2 R1j = 0,4

R2j = 0,3L2j = 0,3

R0j = 0,4

D0j = 0 D1 j = 0,3 D2 j = 0,6

L1j = 0,2

R 0j = 0,4

D0j = 0
D1j = 0,3 D2j = 0,6

R1j = 0,4

L2j = 0,3 R 2j = 0,3

Fig. 8. Effect of crossover operator.

Fig. 9 shows two examples of the action of a mutation
operator. The chromosomes that will suffer the action of the
mutation operator are shown in Fig. 9(a). Only the three last
components of the fuzzy partition part are considered (fourth
fuzzy variable). This example shows the intervals (IM, IA, IB)
where it is chosen values for the respective parameters (Dij,
Lij, Rij) (Fig. 9(b)).

Di0

Li0

Ri0

Di1

Li1

Ri1

Di2

Li2

Ri2

0.3

0.2

0.4

0.5

Rule p

Ti0 Ti1 Ti2

1

Di0

Li0

Ri0

Di1

Li1

Ri1

Di2

Li2

Ri2

0.6

0.3

0.3

0.3

Rule q

Ti0 Ti1 Ti2

2

m

m a

a b

b

b

m

1

IM

I A IB

a

1

1

1
ba

m
IM

I A IB

Fig. 9. Effect of mutation operator.

 After the crossover and mutation operations, it is
necessary to guarantee that every element of the universe of
discourse presents a membership function degree different
of zero for at least one of the linguistic values. Thus, it may
be necessary to repair the membership functions. If repairing
is necessary, the fuzzy membership function parameter (that
the evolutionary operator has changed) is adjusted in a such
way that the intersection between the support sets is equal
to one discretization interval.

IV. EXPERIMENTS AND RESULTS

This section shows experiments that confirm the capabilities
of the fuzzy classifier system for architecture control. To do
that the autonomous navigation system operates in two

(a)

(b)

modes: firstly, the fuzzy classifier system is enable, and
secondly, it is disable. Then the performance in these two
cases are compared.
 Fig. 10 (a), (b) and (c) shows the environments (1, 2 and
3, respectively) defined for evaluation. The rectangles
represent obstacles, the cirles are target positions and the
triangle is the robot. During simulation only one target is in
the environment. After a capture, the target is eliminated and
a new target is randomly positioned in the environment.
 Other simulation parameters adopted for the fuzzy
classifier systems are:

• ξ = 0.5 , ζ = 0.1 and δ = 0.01 (Equations 2, 4 and 5,
respectively);

• k = 2 for the tournement selection method;

• mutation and crossover rates are 0.08 and 0.65,
respectively;

• the threshold of each network is init ialized to zero.

 In the beginning, the threshold favors the insertion of
neurons. As collision and captures occur, there is a trend for
stabilization of the threshold.

 (a) (b)

(c)

Fig. 10. Environments used for simulations: (a) Environment 1, (b)
Environment 2; (c) Environment 3.

 In the first experiment the fuzzy classifier system is
disable. In this case, at each collision or capture learning
events, a new neuron is always inserted in the OD network
or in the TA and TD networks, respectively. This can be
observed in Table 1. A total number of 15659 iterations are
necessary for the robot complete its tasks in the three
environments.

TABLE I
NUMBER OF NEURONS.

Environments Collisions Captures OD TD TA
1 13 15 13 15 15
2 6 10 19 25 25
3 0 15 19 40 25

 The graphic in Fig. 11(a) shows the changing of the
number of neurons (only for the OD neural network)
according to the number of collisions. Notice that they are

linearly proportional (in an analogue way, the number of
neurons increases linearly according to the number or target
captures, for both TD and TA networks). The knowledge
acquired while the robot is in the environment 1, is equally
suitable for navigation in the other ones, that is, the
navigation system learns a general navigation strategy (there
is no collision for navigation in environment 3) Fig. 11(b).

Fig. 11. (a) number of OD networks neurons x number of collisions;

(b) learning events x number of iteractions.

 The second experiment considers that the proposed
fuzzy classifier system is controlling the expansion of the
networks. The initial population is randomly generated (81
individuals).
 Observe in Table 2 that the number of neurons is lesser
than the number of collisions and captures. The simulation
for the three environments required 18552 iterations and the
evolutionary process is triggered 9 times. The values of
threshold for OD, TD and TA networks, after stabilization,
are 0.59, 0.609 and 0.609, respectively.

TABLE II
NUMBER OF NEURONS.

Environments Collisions Captures OD TD TA
1 9 15 8 5 5
2 1 10 8 5 5
3 2 15 8 5 5

 The graphic in Fig. 12(a) shows the relation between the
number of collisions versus the number of OD network
neurons. After the 8th collision, the architecture does not
change any more. Similarly to the first experiment, the
navigation system is capable to generalize the acquired
knowledge and guide the robot in environments 2 and 3
(only 2 collisions occur during navigation in the environment
3) Fig. 12(b).

Fig. 12. (a) number of OD networks neurons x number of collisions;
(b) learning events x number of iteractions.

 Fig. 13 illustrates the configuration of the membership
functions after the evolutionary process.

Fig 13. Linguistic membership functions for each of fuzzy variables:
Amnt, Dist, Rate, Freq (from left to right and from top to down).

V. CONCLUSION

This work describes a fuzzy classifier system for the growth
control of constructive network in autonomous navigation
systems. The navigation system is based on modular
hierarchical neural networks. There is a coordination network
that learns a generalised navigation strategy via a
reinforcement procedure. This network is of type
constructive network, that is, for every learning event
(collision or target capture) a neuron is always inserted into
the architecture, if the fuzzy classifier system is not present
[10].
 The proposed fuzzy classifier system generates rules of
Takagi-Sugeno type and controls the neural network
architectures. For comparison purposes, two experiments are
considered: E1 – the fuzzy classifier system controls the
expansion architecture and; E2 – the fuzzy classifier system
is not enable. Simulation results show an improvement
performance if the fuzzy classifier system is enable
(experiment E1): the number of neurons in the architecture is
extremely low, if compared with the case of experiment E2.
Although the number of iterations is smaller in the
experiment E2 than in the experiment E1, the navigation
system is able to capture all targets with good generalisation
(it is observed that, in E1, the number of collisions that occur
in the environment 1 is very higher than in the other different
environments). Furthermore, the number of collisions in E2 is
very higher than in the E1, that is, the fuzzy classifier system
also improves the navigation system performance.
 Future work includes: the extension of the fuzzy
classifier system aiming at eliminating neurons from the
network architectures (here the architecture only expands,
but do not shrink); to establish mechanism to reduce
membership function superposition and; to consider
coevolutionary techniques.

REFERENCES
[1] Crestani, P. R., Figueiredo, M., e Von Zuben, F. (2002) “A

hierarchical neuro-fuzzy approach to autonomous navigation”,
Proceedings of 2002 International Joint Conference on Neural
Networks, (cd-rom), Honolulu, USA.

[2] Colombetti, M., Dorigo, M. and Borghi, G. (1996) “Behavior
Analysis and Training – A Methodology for Behavior
Engineering,” IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics, vol. 26, (3), pp. 365-380.

[3] Cazangi, R. e Figueiredo, M. (2002) “Simultaneous emergence of
conflicting basic behaviors and their coordination in an
evolutionary autonomous navigation system”, Proceedings of
2002 IEEE Congress on Evolutionary Computation, (cd-rom),
Honolulu, EUA.

[4] Antonelo, E. A., Figueiredo M., Baerveldt, A. and Calvo, C.
(2005) “Intelligent Autonomous Navigation for Mobile Robots:
Spatial Concept Acquisition and Object Discrimination”. 6th IEEE
International Symposium on Computational Intelligence in
Robotics and Automation, Helsinki, Finland - unpublished.

[5] Eduardo, E. (2000) “Inteligência Computacional no Projeto
Automático de Redes Neurais Híbridas e Redes Neurofuzzy
Heterogêneas”. Dissertação de Mestrado, UNICAMP, Campinas,
SP.

[6] Fung, W. e Liu, Y. (2003) “Adaptive categorization of ART
networks in robot behavior learning using game-theoretic
formulation”, Neural Networks, Vol. 16, no 10, pp. 1403 a 1420,
dezembro.

[7] Chen, Z., Xiao, J., Cheng J. (1997) “PASS: A program for
automatic structure search,” in: Proceedings of the International
Conference on Neural Networks, vol. 1, 1997, pp. 308-311;

[8] Moriarty, D. E. and Miikkulainen, R. (1998) “Hierachical
evolution of neural networks,” in: Proceedings of the Conference
on Evolutionary Computation, pp. 428-433.

[9] Zhao, Q. (1997) “A co-evolutionary algorithm for neural network
learning,” in: Proceedings of the International Conference on
Neural Networks, vol. 1, p. 432-437.

[10] Calvo, R. e Figueiredo M. (2003) “Reinforcement learning for
hierarchical and modular neural network in autonomous robot
navigation”, Proceedings of 2003 International Joint Conference
on Neural Networks – IJCNN, Oregon, USA.

[11] Figueiredo, M. and Gomide, F. (1996) “Evolving neurofuzzy
networks for basic behaviors and a recategorization approach for
their coordination,” In: Genetic Algorithms and soft Computing
(Herrera, F, and Verdegay, J. (Eds)), pp 533-552, Springer Verlag,
USA.

[12] Gomide, F and Pedrycz W. (1998) “An Introduction to Fuzzy
Sets: Analysis and Design”. The MIT Press, Cambridge.

[13] Holland, J. H. (1975) “Adaptation in natural and artificial
systems”. The University of Michigan Press, Ann Arbor.

[14] Goldberg, D. E. (1989) Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley, Reading.

