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ABSTRACT
Python has evolved to become the most popular language for
data science. It sports state-of-the-art libraries for analytics
and machine learning, like Sci-Kit Learn. However, Python
lacks the computational performance that a industrial system
requires for high frequency real time predictions.

Building upon a year long research project heavily based
on SciKit Learn (sklearn), we faced performance issues in
deploying to production. Replacing sklearn with a better
performing framework would require re-evaluating and tun-
ing hyperparameters from scratch. Instead we developed a
python embedding in a C++ based server application that
increased performance by up to 20x, achieving linear scala-
bility up to a point of convergence. Our implementation was
done for mainstream cost effective hardware, which means
we observed similar performance gains on small as well as
large systems, from a laptop to an Amazon EC2 instance to
a high-end server.
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1 INTRODUCTION
Machine learning techniques have seen widespread adoption
recently. So much so that even small companies without
specialized engineers have sought to integrate predictive
classifiers in their infrastructure. Python has emerged as
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one of the de facto platforms for machine learning, sporting
several state-of-the-art frameworks like Tensorflow, PyTorch,
Keras, Sci-Kit Learn, and others. Python allows for very fast
prototyping relative to other platforms, has simple syntax
and gradual learning curve, but it suffers from mediocre
execution performance.
Python’s lacking performance is due to multiple factors,

including overhead from being interpreted and dynamically
typed. Horizontal scaling via parallelism could improve per-
formance, however only multiprocessing can produce true
gains. For example, Python’s multi-threading suffers severe
performance penalties due to the global interpreter lock
(GIL) [2].

In this paper we describe a simple technique for delegating
time consuming preprocessing tasks to a C++ based compo-
nent, embedding python for the machine learning parts; this
scheme enables both high execution performance and fast
prototyping. Our architecture is modular and can be used as
is for a variety of models.

We have deployed this platform in programmatic display
advertising for ranking available ad campaigns based on user
attributes. When a user clicks a banner there is opportunity
to optimize the target url, called the landing page, based on
the user’s profile. The available time window is 200ms. The
list of potential campaigns is rapidly malleable, thus one
classifier per campaign is required, predicting the potential
for conversion given a user feature vector. These classifiers
where build using Sci-Kit Learn [14]. Our first exclusively
Python based prototype managed to predict on 100 models
per 200ms. Our proposed implementation design achieved
prediction on up to 500models per available hardware thread,
and almost linear scalability till up to a point for performance
convergence.

2 RELATEDWORK
Recently a lot of research is conducted on improving the per-
formance of predictive systems utilizing Machine Learning.
Such examples is binary inference optimization byNVIDIA [13];
it optimizes models built with a variety of frameworks and
converts them into binary executable engines. TensorRT is
such an optimizer [5, 12]. It performs fusion of either sequen-
tial layers, or layers sharing the same data input. However,
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such tools support a constrained set of features, which could
prove suboptimal in certain cases.

Tensorflow [1] is a well known deep learning framework.
Tensorflow Serving [1] is a production tool for optimally serv-
ing deep learning models. As with most other deep learning
tools, Tensorflow-Serving’s performance gains are depen-
dent on the availability of expensive state-of-the-art GPU
based hardware infrastructure. Such solutions are not always
affordable for small applications of predictive systems.
Several other projects have targeted optimized deploy-

ment of Machine Learning and Deep Learning applications
using distributed systems and parallelism Most of these solu-
tions have targeted high scale systems and offer competitive
performance at the cost of development and equipment cost.
Li et. al. propose a parameter server for distributing the load
and improving scalability [11].MXNet [3] is amulti-language
machine learning development library, which combines the
benefits of multiple established frameworks and is designed
for distributed deployment. MLbase [8] is a development
framework with simplified APIs. Finally Lee et.al. [10] pro-
pose STRANDS, a novel parallelization runtime for improved
distributed machine learning.

3 IMPLEMENTATION
The platform consists of 2 main components. The primary
C++ process and the Python workers. The primary process
includes the request server, a request buffer, the prediction
handlers, and the in-memory classifier database. The Python
workers are implemented via multiprocessing each with ac-
cess to the classifier database in inter-process sharedmemory.
Figure 1 depicts the overall design.

3.1 Request Server
We implemented a typical high performance REST server for
handling incoming requests. This server will accept multiple
simultaneous requests, filter for correctness, decompose into
fine grained tasks which are then placed on the request buffer.
It will also gather the predictions, package into a single JSON
structure which will be returned to the client.
A single request can be translated to a set of predictions

over N number of classifiers. Thus N tasks will be generated.
In the end the array of predictions will sorted on probability,
trimmed to a configurable length, converted into a JSON
array, and transmitted back to the client.

3.2 Request Buffer
The request buffer acts as a bag of tasks for the Prediction
Handlers. Since the depth of the task tree is always 1, tasks
will not recursively generate other tasks, it made sense to
use a single centralized buffer instead of other techniques
like work dealing. It also simplified handling of the resulting

predictions. A single buffer allows for results to be stored in
the same data structures used for the initial task, which the
buffer can keep track of. Then once all tasks have completed,
the buffer can asynchronously notify the request handler to
produce the reply to the client.

3.3 Prediction Handlers and Python
Workers

Prediction handlers are software threads which act as an
interface between the C++ part and the Python Workers.
For each spawned handler, there is a corresponding Python
Worker. The prediction handler thread will block while a
worker is processing a task. Communication between the
two components is performed via Unix pipes. The data trans-
mitted include a classifier id and the feature vector.

The execution of the task consists of the following steps:

(1) Preprocessing of the feature vector. For example en-
coding categorical data into binary vectors

(2) Acquire the corresponding classifier, get it from the
buffer if already preloaded, or load it from disk

(3) Perform the prediction.
(4) Transmitted the result back to the prediction handler

via the same pipe.

Upon receiving a prediction result the Prediction Handler
will store it onto the original task’s structure and mark the
task as completed.
Python Workers can apply two different types of paral-

lelism to scale performance. They can apply the same input
feature vector to multiple classifiers (MISD), apply different
feature vectors to the same classifier (SIMD), or both simul-
taneously (MIMD) [4]. Our production deployed version of
the system is utilizing both strategies. The server is capable
of handling multiple requests at the same time, however all
requests are processed in sequence by a single pool of work-
ers. Thus the parallelism model per request is MISD, but due
to interleaved requests each worker is applying SIMD, which
overall equates to MIMD.

3.3.1 Custom OneHotEncoding. Our test data have been all
categorical. A common way to use such data is One Hot En-
coding [6, 15], which converts the feature vector into a binary
vector. For each feature F a binary vector VF is constructed
with length equal to the amount of potential values of that
feature. Thus each element corresponds to a single value.
This is done for all features. When encoding the index cor-
responding to the given value is set to 1 while everything
else is 0. The final feature vector is concatenation of those
vectors V :=

⋃
VFi .

The typical implementation of the above algorithm initial-
izes each vector VF with zeros, and uses the value itself as
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Figure 1: Predictor diagram

the index for the element set to one. This is very fast. How-
ever, when the pre-encoded value is a very large id – in the
hundreds of thousands or even millions – it can create very
sparse vectors with most elements never to be set to one.
A solution would be to compact the values to a zero-based
consecutive indexing. On the one hand, this would benefit
memory requirements and prediction accuracy. On the other
hand, such mapping would not be linear and would require a
lookup for encoding. Moreover, if a request includes a feature
value not observed during training, it would not be possible
to be encoded.

If a value has not been observed during training, it makes
sense that the model would not know how to handle it any-
way. It would be like facing a novel situation not experienced
during a training. Following that logic, our compacted map-
ping includes one extra column called other. All previously
unobserved values are encoded as other.

3.4 Continuous Classifier Training
The classifier database is an in-memory key-value storage.
The amount of available classifiers can be in the thousands
and potentially of multiple MB in size. To optimize memory
usage, the DB is complemented with a fixed size buffer for
preloaded classifiers. On insert into a full buffer, the LFU
replacement policy [9] is applied.
The database is comprised by 2 independent implemen-

tations, one in C++ and one in Python. However there is a
unified mechanism for inserting and removing entries, main-
taining the same keys.

The C++ entries include metadata used for preprocessing
the feature vectors. The Python entries include the classifier
itself and also the custom OneHotEncoder which has been
initialized for the observed feature values of each classifier.

To optimize production behavior an automated filesystem
monitor was also implemented to automatically detect per-
sisted classifiers that are added or removed. This is important
since the proposed system is coupled with a dynamic trainer
which continuously trains new classifiers from a stream of
live data. Figure 2 outlines the pipeline of the trainer.
Python workers are each a separate process, thus the

Python component of the classifier DB lies in interprocess
shared memory.

4 EVALUATION
We evaluated our implementation in isolation on a dedicated
server, in order to avoid interference. In all experiments, sec-
ondary parameters were set in such a way that wouldn’t
affect performance. For example the buffer size for preloaded
classifier was always large enough to fit all available classi-
fiers. The host system had 64 Hardware Threads of Intel®
Xeon® CPU E5-4650 v4 and 352GB of RAM.

For all experiments there is 1:1 mapping between Python
workers and Hardware threads; albeit placement of threads
and processes is left to the default OS scheduler. All perfor-
mance results are the median of 20 repetitions. Load distri-
bution plots present the actual results of the repetition with
the corresponding median execution time.



DIDL ’18, December 10–11, 2018, Rennes, France G. Varisteas et al.

ConsumerManager

stream

thread

thread

DataManager

env

RedirectsConsumer

SalesConsumer

store

stream Data Files

TrainingManager

Train - LogisticRegression

Data postprocessing
- Sample: balance labels
- Clean: malformed records
- Split: Train, Test

Test - AUC

poll

store Trained
Models

Predictor

/pcvr/v1.0/

/pcvr/v1.0/predict/<int:campaign>

/pcvr/v1.0/predict/<int:campaign>/<int:count>

select
& load

 - ConsumerManager: Processes live streamed data
 - DataManager: Persists records into structured files
   - each file a complete data-set
 - TrainingManager: Train LogisticRegression models
   - one model per predicted feature value
 - Predictor: Predict sale probability per campaign
   - the predicted feature is the campaign id
   - input is the user profile
 

Custom OneHotEncoding
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4.1 Performance
The first experiment is a simple comparison of execution
time. We developed and tested 3 different implementations:
the initial solely Python based prototype, ii) a Python-based
multi-threaded version, iii) the C++-Python embedding with
multiprocessing.

Figure 3: Total execution time predicting on 2000 clas-
sifiers for 3 different implementations

Figure 3 shows the execution time required to predict on
various amount of classifiers for each version. Both Python

versions perform multiple times worse than the C++-Python
version.

It is interesting to note the steep of the each curve. For the
Python versions, the execution time increases exponentially
relative the size of the workload. Our proposed solution
scales much better, showing that the cost of switching to
Python is constant and independent.

4.2 Scalability
We evaluated the scalability of our solution by executing in
isolation the same workload while varying the amount of
Python Workers.
Figure 4 shows the execution time of predicting on 2000

classifiers. The input feature vector – the user’s profile – is
fixed. The execution time converges after 24 cores to 110ms;
this is the minimum execution time our platform achieved
on our test hardware. This time was achieved with multiple
amounts of Python Workers above 24.

The prediction tasks are independent, thus one would ex-
pect continuous speedup improvement. There are 3 suspects
for hindering the scalability of our implementation

• The centralized queue for task distribution is synchro-
nized with locks which might be creating a staircase
effect
We measured the time spent waiting on the lock for
each thread at all scales. The total time wait time was
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Figure 4: Execution time predicting on 2000 classifiers
over varying Python-Worker Count with 1:1 mapping
with Hardware Threads. Total time is measured exter-
nally by the client; Server time is measured within the
Python Worker

Figure 5: Median and Standard Deviation of number
of tasks per Python Worker

Figure 6: Distribution of tasks among 12 PythonWork-
ers with 1:1 mapping to Hardware Threads

consistently bellow 1ms. Hense the central queue is
not the reason

• The load distribution might not be uniform

Figure 7: Distribution of tasks among 64 PythonWork-
ers with 1:1 mapping to Hardware Threads

Indeed the variance of the distribution of Tasks among
workers gets very high at higher scales. Fig. 5 shows
the median amount of Tasks executed by each worker,
over the total amount of Python Workers; it also in-
cludes the standard deviation which at very high scales
is almost as much as the median.
Fig. 7 shows the exact number of Tasks executed by
each worker with 64 Python Workers. The distribu-
tion is quite divergent between workers. Fig. 6 shows
a much more uniform distribution when using only 12
workers. Since the task queue is centralized, several
workers might experience NUMA effects. The time re-
quired for a single prediction is around 1ms. Hence, the
non-uniform cache transfer latency can potentially be
significant relative to the tiny processing time between
attempts.

• The pre- and post- processing cost increases proportion-
ally to the scale
The amount of data structures allocated is independent
to the amount of workers. Furthermore, since each
worker executes one task at a time, the same amount
of post processing is performed independently of the
number of workers.

One point of improvement would be the work distribu-
tion mechanism. Non-negligible time is spent allocating new
tasks for each worker; packaging prediction tasks in batches
would improve performance by reducing dynamic alloca-
tions. Using batches workers could run uninterrupted for a
longer period of time. This scenario would indeed improve
performance overall; however, it would impose a hard limit
to the system’s capacity for handling concurrent requests.
An alternative solution is the work dealing scheme [7]

using a private task queue for each worker. This solution
would improve decentralization and load uniformity. How-
ever it would burden the busiest thread (the request handler
thread) extending the delay between pre-processing and task
execution.
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5 CONCLUSIONS
This work proposes a design which combines the speed of
C++ for the computationally expensive tasks, with the ease of
development of Python for the more experimental Machine
Learning tasks. It is a simple to implement solution with
widely known components and tools, that provides great
performance and scalability benefits.

The future work of this project is firstly extensive testing
in production environment with high traffic and fluctuating
picks. Moreover, we are testing novel scheduling paradigms
for the work distribution aspects to further improve scalabil-
ity and concurrency.
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