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Abstract—The evolving complexity of adaptive systems impairs
our ability to deliver anomaly-free solutions. Fixing these systems
require a deep understanding on the reasons behind decisions
which led to faulty or suboptimal system states. Developers thus
need diagnosis support that trace system states to the previous
circumstances –targeted requirements, input context– that had
resulted in these decisions. However, the lack of efficient temporal
representation limits the tracing ability of current approaches. To
tackle this problem, we describe a novel temporal data model to
represent, store and query decisions as well as their relationship
with the knowledge (context, requirements, and actions). We
validate our approach through a use case based on the smart
grid at Luxembourg.

Keywords-adaptive systems, traceability, diagnosis, model-
driven engineering

I. INTRODUCTION

Adaptive systems have the capabilities of adjusting
their behavior to dynamic changes encountered in their
environments. To do so, they make adaptation decisions,
in the form of actions, based on high-level policies. These
adaptations are often relevant to achieving a goal or an
objective while satisfying a set of constraints [1]. One of
the successful approaches used to achieve this adaptability is
the closed control loop paradigm, in particular, the MAPE-K
loop [2]. It consists of monitoring the well-behaving of the
system with regards to a set of requirements, either functional
or non-functional. Once the system deviates from its normal
behavior, the control loop selects and executes a set of actions
(adaptation tactic) to remediate the system behavior.

Faced with growingly complex and large-scale software sys-
tems (e.g. smart grid systems), the presence of residual defects
becomes unavoidable [3]. As there might be many probable
causes behind an abnormal behavior, developers usually per-
form a set of diagnosis routines to narrow down the scope or
origin of the failure. This is achieved through the investigation
of requirements satisfaction and the decisions that led to this
particular system state, as well as their timing [4]. In this per-
spective, developers will set up a set of systematic questions to
understand why and how the system is behaving in such a way.

Bencomo et al., [4] argue that comprehensive explanation
about the system behavior contributes drastically to the
quality of the diagnosis, and eases the task of troubleshooting
the system behavior. To enable this, we believe that adaptive
software systems should be equipped with traceability
management facilities to link the decisions made to their

(i) circumstances, that is to say, the history of the
system states and the targeted requirements, and (ii) the
performed actions with their impact(s) on the system. In
particular, an adaptive system should keep a trace of the
relevant historical events. Additionally, it should be able to
trace the goals intended to be achieved by the system to
the adaptations and the decisions that have been made,
and vice versa. Finally, in order to enable developers to
interact with the system in a clear and understandable way,
appropriate abstraction to enable the navigation of the
traces and their history should also be provided.

Existing approaches [5]–[10] are accompanied by built-
in monitoring rules and do not allow to interact with the
underlying system in a simple way. Moreover, they do not
keep track of historical changes as well as causal relationships
linking requirements to their corresponding adaptations. Only
flat execution logs are stored. In this paper, we propose a
framework to structure and store the state and behavior of a
running adaptive system, together with a high-level API to
efficiently perform diagnosis routines. Our framework relies
on a temporal model-based solution that efficiently abstracts
decisions and their corresponding circumstances.

The rest of the paper is structured as follows. We first
describe a guidance example in Section II, based on the smart
grid system at Luxembourg. In Section III, we summarize
core concepts manipulated in adaptation processes and their
characteristics. Later, we describe the proposed data model in
Section IV. In Section V, we demonstrate the applicability of
our approach by applying it to the smart grid example. Before
concluding the paper in Section VII, we introduce some related
work in Section VI.

II. GUIDANCE EXAMPLE: SMART GRID

The National Institute of Standards and Technology
defines smart grids as “a modernized grid that enables [...]
control capabilities that will lead to a collection of new
functionalities and applications”. These capabilities can be
implemented using approaches developed by the community
of adaptive systems.

Hartmann et al., [11] describe the smart grid at Luxembourg
as a hierarchical system composed of three elements: central
system (CS), data concentrator (DC), and smart meters (SM).
SM regularly measure resource consumption (e.g., electricity)
and report them to the CS through the DC. A smart meter
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can also modify the maximal consumption or even cut off
the resource. In addition to storing the consumption data,
DC autonomously manage SM according to the configuration
sent by the CS.

Among the different goals of DC, they have to minimize the
number of overloads on the network. In the remaining part of
the paper, we refer to this goal as the ”minimizing overload”
policy. They have two action points: either on the production
side or the consumption side. They can reduce or increase the
production by (dis)connecting production unit or the consump-
tion by modifying the maximum permitted consumption. We
called these actions: reduce production, increase production,
reduce amps limit and increase amps limit. However, as all
adaptive systems, smart grids are prone to failures [12]. Using
our approach, an engineer could diagnose the system, and
determine the adaptation process responsible for this failure.
For instance, considering some reports about regular power
cuts during the last couple of days, in a particular area, a
stakeholder may want to interrogate the system and determine
what past decision(s) have led to this suboptimal state. More
concretely, he will ask: did the system make any decisions
that could have impacted the customer consumption? If so,
what goal(s) the system was trying to reach and what were
the values used at the time the decision(s) was(were) made?

III. BACKGROUND: KNOWLEDGE

In this section, we abstract common concepts implied in
an adaptation process, that is, context, decisions, and their
circumstances. We refer to these concepts as the knowledge.

A. General concepts of adaptation process
IBM defines adaptive systems as “a computing environment

with the ability to manage itself and dynamically adapt to
change in accordance with business policies and objectives.
[These systems] can perform such activities based on situa-
tions they observe or sense in the IT environment [...]” [13].

Based on this definition, we can identify three principal
concepts involved in adaptation processes. The first concept
is actions. They are executed in order to perform a dynamic
adaptation through actuators. The second concept is business
policies and objectives, which is also referred to as the system
requirements in the domain of (self-)adaptive systems. The
last concept is the observed or sensed situation, also known as
the context. The following subsections provide more details
about these concepts.

B. Context
While several works [14]–[17] have been proposed to spec-

ify the defining characteristics of context data, in this section,
we list some of these characteristics in order to justify the
design choices of our Knowledge meta-model (cf. Section IV).

a) Volatility: Data can be either static or dynamic.
Static data, also called frozen, are data that will not be
modified, over time, after their creation [14]. For example,
the location of a machine, the first name or birth date of
a user can be identified as static data. Dynamic data are,
instead, subject to modification over time.
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Fig. 1. Excerpt of the knowledge metamodel

b) Temporality: In dynamic data, sometimes we may
be interested not only in storing the latest value, but also the
previous ones [14], [15], in order to analyze the data evolution
trend for example. We refer to these data as historical data.

c) Uncertainty: One of the recurrent problems facing
context-aware applications is the data uncertainty [16].
Uncertain data are not likely to represent the reality. They
contain a noise that makes it deviate from its original value.

d) Source: According to the literature, data sources are
grouped into two main categories, either sensed (measured)
data or computed (derived) data [14], [17]. We refine this
with an additional category called profiled. Profiled data may
be set either by a user (profiled by a human) or by an
external system (profiled by an external).

e) Connection: Context data entities are usually linked
using three kinds of connections: conceptual, computational,
and consistency [16]. The conceptual connection relates to
(direct) relationships between entities in the real world (e.g.
smart meter and concentrator). The computational connection
is set up when the state of an entity can be linked to another
one by a computation process (derived, predicted). Finally,
the consistency connection relates entities that should have
consistent values.

C. Requirement

Adaptation processes aim at modifying the system state
to reach an optimal one. All along this process, the system
should respect the system requirements established ahead.
Although in the literature, requirements are categorized as
functional or non-functional, in this paper we use a more
elaborate taxonomy introduced by Glinz [18], which classifies
requirements in four categories: functional, performance,
specific quality, and constraint.

D. Action

In adaptive systems, actions are defined as a process that,
given the context and requirements as input, adjusts the
system behavior. These modification may create new data
that correspond to an output context. In the remainder of
this paper, we refer to output context as impacted context,
or simply impact(s). Whereas requirements are used to add
preconditions to the actions, context information is used to
drive the modifications.



IV. MODELING THE KNOWLEDGE

In order to simplify the diagnosis of adaptive systems, in this
paper, we propose a novel metamodel that combines, what we
call, design elements and runtime elements. Design elements
abstract the different elements involved in knowledge infor-
mation to assist the specification of the adaptation process.
Runtime elements instead, represent the data collected by the
adaptation process during its execution. In order to maintain
the consistency between previous design elements and newly
created ones, instances of design elements (e.g., actions) can
be either added or removed. Modifying these elements would
consist in removing existing elements and creating new ones.
Design time elements are depicted in gray in the Figures 1–
4. Note that, in this paper, we do not address how runtime
information is collected.

For the sake of modularity, we split our metamodel into four
packages. First, we describe the Knowledge (core) package.
Then, we introduce in more details the other three packages
used by the knowledge package: Context, Requirement,
and Action. We assume that all the classes in the different
packages extend a TimedElement class. This class contains
three methods: startTime, endTime and modificationsTime.
The first two methods allow accessing the validity interval
of an object. The last method resolves all the timestamps at
which an element has been modified: its history.

A. Knowledge metamodel

In order to enable interactive diagnosis of adaptive systems,
we claim that traceability links between the decisions made
and their circumstances should be organized in a well-
structured representation. In what follows, we introduce the
knowledge metamodel. It describes how decisions are linked
to the goals and the context (input and impact). Figure 1
depicts this metamodel. We use ”Package::Class” notation
to refer to the provenance of a class, in case it belongs to
another package.

Knowledge is composed of a context, a set of requirements,
a set of strategies, and a set of decisions. A decision can
be seen as the output of the Analyze and Plan steps in the
MAPE-k loop. Decisions comprise target goals and trigger
the execution of one tactic or more. A decision has an
input context and an impacted context. The context impacted
by a decision (Decision.impacted) is a derived relationship
computed by aggregating the impacts of all actions belonging
to a decision (see Fig. 4). Likewise, the input relationship
is derived and can be computed similarly. In the smart grid
example, a decision can be formulated (in plain English)
as follows: since the district D is almost overloaded (input
context), we reduce the amps limit of greedy consumers using
the “reduce amps limit” action in order to reduce the load on
the cable of the district (impact) and satisfy the “minimizing
overload” policy (requirement).

As all the elements inherit from the TimedElement, we can
capture the time at which a given decision and its subsequent
actions were executed, and when their impact materialized,
i.e., measured. Thanks to this metamodel representation, we
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can apprehend the possible causes behind malicious behavior
by navigating from the context values to the decisions that
have impacted its value (Information.values.impact), then the
goals it was trying to reach (Decision.goals). In Section V, we
present an example of interactive diagnosis queries applied to
the smart grid use case.

B. Context metamodel

Context models structure context information acquired at
runtime. For example, in a smart-grid system, the context
model would contain information about smart-grid users (ad-
dress, names, etc.) resource consumption, etc.

An excerpt of the context model is depicted in Figure 2.
We propose to represent the context as a set of structures
(Context.structs) and global attributes (Context.globals). A
structure can be viewed as a C-structure with a set of properties
(Property): attributes (Attribute) or relationships (Relation). A
structure may contain other nested structures (Structure.inner).
Structures and properties have values. The connection feature
described in Section III-B is represented thanks to three
recursive relationships on the Property class: consistentWith,
computedUsing and influence. Additionally, each property has
a source (Source) and an uncertainty (Uncertainty). It is
up to the stakeholder to extend data with the appropriate
source: measured, computed, provided by a user, or by another
system (e.g., weather information coming from a public API).
Similarly, the uncertainty class can be extended to represent
the different kinds of uncertainties. Finally, a property can be
either historic or static.

C. Requirement metamodel

As different solutions to model system requirements exist
(e.g., KAOS [19] or i* [20]), in this metamodel, we abstract
their shared concepts. Our requirement model, depicted in
Figure 3, represents the requirement as a set of goals. Each
goal has a nature and a textual specification. The nature
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of the goals adheres to the four categories of requirements
presented in Section III-C. We may use one of the existing
requirements modeling languages (e.g., RELAX) to define the
semantics of the requirements. Since the requirement model
is composed solely of design elements, we may rely on
static analysis techniques to infer the requirement model from
existing specifications. The work of Egyed [21] is one solution
among others. This work is out of the scope of the paper and
envisaged for future work.

In our guidance example, the requirement model may con-
tain a balanced resource distribution requirement. It can be
split into different goals: (i) minimizing overloads, (ii) mini-
mizing lacks of production, (iii) minimizing production loss.

D. Action metamodel

Similar to the requirements metamodel, the actions
metamodel also abstracts main concepts shared among
existing solutions to describe adaptation processes and how
they are linked to the context. Figure 4 depicts an excerpt of
the action metamodel. We define a strategy as a set of tactics
(Strategy). A tactic contains a set of actions (Action). A tactic
is executed under a precondition represented as a temporal
query (TemporalQuery) and uses different data from the
context as input. In future work, we will investigate the use of
preconditions to schedule the executions order of the actions,
similarly to existing formalisms such as Stitch [22]. Finally,
actions have impacts on certain properties, represented by the
impacted reference.

The different executions are represented thanks to the
Execution class. Each execution has a status to track
its progress and links to the impacted context val-
ues(Execution.impactedValues). Similarly, input values are
represented thanks to the Execution.inputValues relationship.
An execution has start and end time. Not to confuse with the
startTime and endTime of the TimedElement class. Whilst the
former corresponds to the time range in which a value is valid,
the start and stop time in the class execution correspond to the
time range in which an action or a tactic was being executed.

Similarly to requirement models, it is possible to
automatically infer design elements of action models by
statically analyzing actions specification. Since acquiring
information about tactics and actions executions happens at

runtime, one way to achieve this is by intercepting calls to
actions executions and updating the appropriate action model
elements accordingly. This is out of the scope of this paper
and planned for future work.

In the next section, we describe how our approach can
be applied to the smart grid system. We show how one
can implement model manipulation operations involved in
diagnosis algorithms. Prior to this, we briefly introduce the
implementation of our approach on top of an existing frame-
work to store temporal models.

V. APPLICATION ON THE SMART GRID EXAMPLE

To validate our approach, we implemented a prototype pub-
licly available online 1. This implementation leverages the Gr-
eyCat framework2, more precisely the modeling plugin, which
allows the management and persistence of temporal models.

In what follows, we explain how a stakeholder, Morgan, can
apply our approach to a smart grid system in order to, first,
abstract adaptive system concepts, then, structure runtime
data, and finally, query the model for diagnosis purpose. The
corresponding object model is depicted in Figure 5. Due to
space limitation, we only present an excerpt of the knowledge
model. An elaborate version is accessible in the tool repository.

a) Abstracting the adaptive system: At design time (td),
either manually or using an automatic process, Morgan ab-
stracts the different tactics and actions available in the adapta-
tion process. Morgan would like to model one adaptation tactic
called “reduce amps limit”. It is composed of three actions:
sending a request to the smart meter (askReduce), checking if
the new limit corresponds to the desired one (checkNewLimit),
and notifying the user by e-mail (notifyUser). Morgan assumes
that the askReduce action impacts consumption data (csmpt).
This tactic is triggered upon a query (tempQ) that uses meter
(mt), consumption (csmpt) and customer (cust) data. The query
implements the “minimizing overload” goal: the system shall
minimize the number of overloaded cables. Figure 5 depicts
a flattened version of the temporal model representing these
elements. The tag at upper-left corner of every object illustrates
the creation timestamp. All the elements created at this stage
are tagged with td.

b) Adding runtime information: The adaptation process
checks if the current system state fulfills the requirements by
analyzing the context. To perform this, it executes the different
temporal queries, including tempQ. For some reasons, the
tempQ reveals that the current context does not respect the
“minimizing overload” goal. To adapt the smart grid system,
the adaptation process decides to start the execution of the
previously described tactic (exec1) at ts. As a result, a decision
element is added to the model along with a relationship to the
unsatisfied goal. In addition, this decision entails the planning
of a tactic execution, manifested in the creation of the
element exec1 and its subsequent actions (notifyU, chckLmt,
and askRdc). At ts, all the actions execution have an IDLE

1https://github.com/lmouline/LDAS
2https://github.com/datathings/greycat
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status and an expected start time. All the elements created at
this stage are tagged with the ts timestamp in Figure 5.

At ts+1, the planned tactic starts being executed by running
askRdc. The status of this action execution turns from IDLE
to RUNNING. Later, at ts+2, the execution of askRdc finishes
with a SUCCEED status and triggers the action execution
notifyU and chckLmt in parallel. The status of askRdc changes
to SUCCEED while the status of notifyU and chckLmt turns
to RUNNING. The first action execution successfully ends at
ts+3 while the second ends at ts+4. As all action executions
terminate with a SUCCEED status at ts+4, accordingly, the
final status of the tactic is set SUCCEED and the stop attribute
value is set to te.

c) Interactive diagnosis query: After receiving incident
reports concerning regular power cuts, and based on the afore-
mentioned knowledge model, Morgan would be able to query
the system’s states and investigate why such incidents have
occurred. As described in Section II, she/he will interactively
diagnose the system by interrogating the context, the decisions
made, and their circumstances.
/ / e x t r a c t i n g t h e d e c i s i o n s
D e c i s i o n [ ] impactedBy ( Value v ) {

D e c i s i o n [ ] respD
f o r ( Time t : v . m o d i f i c a t i o n T i m e s ( ) ) :

i f ( t >= v . s t a r t T i m e ( ) − 2 day )
Value resV = r e s o l v e ( v , t )

respD . add Al l ( from ( resV ) . n a v i g a t e ( Value . i m p a c t e d ) )
re turn respD
}

/ / e x t r a c t i n g t h e c i r c u m s t a n c e s o f t h e made d e c i s i o n s
Tuple<Value [ ] , Goal []> g e t C i r c u m s t a n c e ( D e c i s i o n d ) {

Value [ ] r e s V a l u e s = from ( d ) . n a v i g a t e ( D e c i s i o n . i n p u t )
Goal [ ] r e s G o a l s = from ( d ) . n a v i g a t e ( D e c i s i o n . g o a l s )
re turn Tuple<>(r e s V a l u e s , r e s G o a l s )
}

Listing 1. Get the goals used by the adaptation process from executed actions

The first function, depicted in Listing 1, allows to navigate
from the currently measured values (vcur1) to the decision(s)
made. The for-loop and the if-condition are responsible for
resolving the measured data for the past two days. After

extracting the decisions leading to power cuts, Morgan carries
on with the diagnosis by accessing the circumstances of
this decision. The code to perform this task is depicted in
Listing 1, the second function (getCircumstances). Note that
the relationship Decision.input is the aggregation of Deci-
sion.excecute.inputValues.

VI. RELATED WORK

Many research efforts focusing on analyzing and monitoring
the behavior of self-adaptive software systems have been
carried out. In particular, some approaches suggest the use of
formal methods and languages for detecting abnormal behavior
and deciding reconciliation scenarios. Arcaini et al., [23]
proposed an approach for formal modeling, validation, and
verification of distributed self-adaptive systems by relying
on on the concept of multi-agent Abstract State Machines.
Another approach [24] specifies goals, requirement conditions,
and their satisfaction rate using probabilistic linear temporal
logic (PLTL). These assertions are further used to monitor
the system at runtime. When the satisfaction rate obtained
for high-level goals is weak, a cost-benefit trade-off analysis
is performed to select goals maximizing cost constraints.
FORMS [25] is a formal reference model for the specification
of distributed adaptive systems. It consists of a set of primitives
and the relationships of formally specified modeling elements
that correspond to the key concerns in the design of self-
adaptive systems and a set of relationships that guide their
composition. On the contrary to our approach, these solutions
perform only at runtime. They are not able to reconstruct exe-
cution traces at postmortem. Furthermore, given the temporal
properties of the underlying logic, these approaches are not
able to capture physical and continuous time. Our approach
can be seen as complementary to these approaches since it
exposes similar core concepts.

Another family of approaches is based on model-driven
techniques, namely the models@runtime paradigm. Ehlers et



al., [7] proposed a rule-based approach for performance
anomaly localization for adaptive systems. The monitoring
rules, specified in OCL (Object Constraint Language) reflect
the specified goals at the component level. They refer to
performance attributes, in particular, responsiveness anomaly
scores, that change their values during runtime. Compared to
our approach, this approach is applied only to performance
anomalies. Henrich et al., [6] suggested a model-based
approach for the specification of causal relations linking the
measured data and a component-based runtime prediction
model. The authors opted for flat structural representation to
store these links. Furthermore, they used aggregation functions
in the form of formal rules to gather this information. As
opposed to our approach, the proposed solution does not
handle tracing error-prone records back to the correspond-
ing circumstances. Moreover, it does not capture the history
of goals execution, which improves detecting performance
anomalies and determining the failure timing.

To the best of our knowledge, one close work of our work is
the approach proposed by Bencomo et al., [4]. They propose
to use requirements monitoring to enable the explanation
feature on adaptive systems. By extending a goal model with
a claim-refinement model, they define the characteristics of
the systems that will be monitored. According to the state
of these elements, they can trace back to a goal and explain
why the system has adapted his behavior. Their approach use
requirement monitoring techniques whereas we provide a data
model to structure runtime information and link them with
design information, for example, goals and requirements.

VII. CONCLUSION & FUTURE WORK

Adaptive systems are prone to faults given their evolving
complexity. To enable interactive diagnosis over these systems,
we proposed a temporal data model to abstract and store
knowledge elements. We also provided a high-level API to
specify and perform diagnosis algorithms. Thanks to this
structure, a stakeholder can abstract and store decisions made
by the adaptation process and link them to their circumstances
–targeted requirements and used context– as well as their
impacts. To demonstrate the applicability of our approach, we
applied it to a smart-grid case study. In future work, we plan
to evaluate the performance of our approach on a very large
data-set coming from the Luxembourg smart-grid.

Moreover, throughout this work, we assumed that designers
are able to link actions with their expected impacts at design
time. However, this is not always true. Some impacts cannot
be known in advance. In this perspective, in addition to the
future plans already mentioned throughout the paper, we will
investigate techniques to identify unknown impacts on the
context model, for instance, by studying the use of machine
learning techniques.
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