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ABSTRACT

We present AlloyInEcore, a tool for specifying metamodels with
their static semantics to facilitate automated, formal reasoning on
models. Software development projects require that software sys-
tems be specified in various models (e.g., requirements models,
architecture models, test models, and source code). It is crucial
to reason about those models to ensure the correct and complete
system specifications. AlloyInEcore allows the user to specify meta-
models with their static semantics, while, using the semantics, it
automatically detects inconsistent models, and completes partial
models. It has been evaluated on three industrial case studies in the
automotive domain (https://modelwriter.github.io/AlloyInEcore/).
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1 INTRODUCTION

Model Driven Engineering (MDE) is becoming a crucial practice in
industry due to the increasing complexity of software systems that
warrant better support for managing development artifacts [17].
In MDE, software is developed by successively transforming ab-
stract models to more concrete ones. Each model conforms to its
metamodel, an artefact usually created using Ecore [7], a de facto
industry standard for metamodeling and an example of implemen-
tation of the Meta-Object Facility (MOF) [11] which describes the
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means to create and manipulate models and metamodels. An im-
portant challenge in MDE is providing ability of automated, formal
reasoning on models, e.g., checking model consistency and com-
pleting partial models [13, 16].

We present a tool, AlloyInEcore, which allows specification of
metamodels with their static semantics and facilitates multiple
forms of automated, formal reasoning on models. AlloyInEcore is
targeted at environments that require integration and reasoning on
heterogeneous models. Such environments are often encountered
within the context of our research [18, 19] in collaboration with
Ford-Otosan [12]. The key idea behind AlloyInEcore is that the
static semantics of an Ecore metamodel can be specified within a
simple first-order logic of sets and relations to support reasoning
on models conforming to the metamodel.

Alloy [20] is a declarative modeling language based on first-order
relational logic. It has been explored by the MDE community for the
purpose of analyzing UML/OCL models [1, 6, 26]. Most of the exist-
ing tools and approaches use a transformation of UML/OCL models
to Alloy, which, however, does not support directly some important
concepts like multiple inheritance, generic types, and type param-
eters due to the fundamental differences between UML/OCL and
Alloy notations [6, 30]. In the case of dealing with various models
in different abstraction levels, it is required to enable the speci-
fication of such concepts, and herewith multiple forms of model
reasoning. To do so, AlloyInEcore provides the following major
features: (i) Alloy-like notation embedded into Ecore to specify the
static semantics of metamodels based on First-order Logic (FOL),
relational operators, and transitive closure; (ii) direct translation of
Ecore metamodels into the language of Kodkod [29], an efficient
SAT-based constraint solver for FOL with relational algebra. In this
way we avoid the problems related to the differences between Alloy
and Ecore. Our tool performs two major model reasoning tasks:
completing partial models and detecting inconsistent model parts.

2 RELATED WORK

Several formal analysis methods and specification languages have
been proposed relying on modern SAT-solvers, SMT solvers and
theorem provers (e.g., Formula [21] using Z3 SMT-solver [24],
Clafer [2] using Alloy along with Choco CSP solver [22], and Alloy
using KodKod [29] that relies on SAT solvers like Minisat [8]).

A number of MDE solutions and tools provide automated model
reasoning using existing formal analysis methods and specifica-
tion languages based on constraint logic programming (e.g., [4, 5]),
SAT-based model finders (e.g., [1, 6, 26, 27]), and SMT solvers
(e.g., [15, 25]). However, to the best of our knowledge, none of
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them provides a method that embeds FOL augmented with rela-
tional calculus into MOF/Ecore to specify the static metamodel
semantics with the support for partial models, composition, car-
dinality constraints, multiple inheritance, generic types, and type
parameters. For instance, Anastakis et al. [1] advocate to trans-
form UML/OCL specifications to Alloy for automated model rea-
soning. The proposed transformation does not support multiple
inheritance, generic types, and type parameters because of the dif-
ferences between UML/OCL and Alloy notations. Lightning [14] is
a tool-supported approach for defining some aspects of Domain-
Specific Languages (e.g. abstract syntax and semantics) entirely in
Alloy. In our approach, language designers can use AlloyInEcore to
specify the abstract syntax of a language as an Ecore metamodel
enriched with embedded Alloy-like statements. USE [23] is a tool
for analyzing models expressed in UML and OCL. Similarly to our
approach, USE translates models into relational logic and relies on
the Kodkod library.

3 TOOL OVERVIEW

AlloyInEcore is a generalization of our previous tool Tarski [9, 10],
which reasons on trace links in traceability models using config-
urable trace link semantics. Fig. 1 presents an overview of our tool.
In Step 1, the user specifies an Ecore metamodel and its static seman-
tics expressed in FOL augmented with the relational calculus [28]
embedded in Ecore. To do so, AlloyInEcore natively supports Alloy
in Ecore with a custom Eclipse editor.
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Figure 1: Tool Overview
Once the user specifies the metamodel and its semantics, Al-

loyInEcore allows creation of instance model(s) conforming to the
metamodel (Step 2). After the model is created, the tool proceeds
to Step 3 using automated model reasoning. In the following, we
elaborate each step using the theory of lists as a running example.

3.1 Specification of Metamodels and Semantics

As the first step, the user specifies a metamodel and its semantics in
our Alloy-like notation embedded into Ecore. The user can create
the metamodel using any graphical, textual, or tree-based Ecore
model editor including our AlloyInEcore editor. Fig. 2 gives the
theory of lists metamodel in the Ecore graphical editor.

The user uses our editor to specify the static semantics of the
metamodel (see Fig. 3). The keywords in blue and brown are in-
troduced by AlloyInEcore for specifying the metamodel semantics,
while the ones in red are the Ecore keywords for defining the meta-
model itself. Some of the AlloyInEcore keywords (e.g., ghost, model,
and nullable) were borrowed from JML [3].

Ferhat Erata, Arda Goknil, lvan Kurtev, and Bedir Tekinerdogan

[0..¥] vehicles EQ Object

T identifier : Elnt

3

1

5 Vehicle

T name : EString

[0..1] cdr

{Q NonEnginedVeh\clel [ E Enginedvehicle l

{ J 1 J

<<bind E>= V

[0.#] lists.

[0.1] car T

<<bind E>> EnginedVehicle <<bind E=> NonEnginedVehicle

<<bind E>> EnginedVehicle

[ Emais | [ Bsags | [ Bous | Vf EE
{ ] J 1 ] J
Figure 2: The Metamodel for the Theory of Lists

There are three abstract classes in Fig. 3: Object, List, and Vehicle.
The Object is an abstract class at the root of the class hierarchy.
The ghost keyword indicates that the identifier attribute will not
be considered in the model reasoning (Line 5). The cardinality
constraint in Line 8 specifies the lower and upper bounds on the
List instances. The abstract class List is composed of two properties:
the car mapping each List instance to an instance of another class
(e.g., a Vehicle instance) and the cdr pointing to another List instance.
The ? keyword constrains these properties to be partial functions
(Lines 9-10). To rule out cyclic lists, the acyclic keyword is used
in the cdr property (Line 10). The model keyword defines the eq
property as a relation to be inferred in the reasoning (Line 11).
Model properties are not mapped to Ecore features.

& TheoryOfLists.ecore 2 | & Memory.xmi ¥ Memory.xmi = B8

1import Ecore : 'http://www.eclipse.org/emf/2082/Ecore’;

3 package theoryoflists: tol= 'eu.modelwriter.examples.theoryoflists'{
4 public abstract class Object {

5 ghost attribute identifier : Integer;

-

}

& public abstract class List<E> extends Object {

a property car : E [7];

10 property cdr : List<E= [?] {acyclic};

11 model property eq : List<E> [*] ;

12

13 invariant: all a, b: List | a in b.eq iff (a.car = b.car

14 and a.cdr in b.cdr.eq and a.class = b.class);

invariant moStrayObjects: all v: Object - List | some v.~car;

}

public class one Nil<V> extends List<v> {
invariant : no Nil.car;
invariant : no Nil.cdr;
invariant : all 1: List - Nil | some l.cdr && some l.car
invariant : all 1: List | Nil in 1.*cdr;

}

private class one Memory {
property some vehicles : Vehicle [*] {composes}
property some lists : List<? extends Vehicle= [*] {composes};

abstract class Vehicle extends Object {
attribute name : String;
invariant : all disj a, b: Vehicle | a.name != b.name;

invariant : one v: Vehicle | v.mame = "FORD F-150 XLT";

class Enginedvehicle extends Vehicle;
class NonEnginedVehicle extends Vehicle;

class TruckList extends List<EnginedVehicle=;
class CarList extends List<Enginedvehicles;
class Bicyclelist extends List<NonEnginedVehicle>;

43}

Figure 3: Example Metamodel Semantics in AlloyInEcore
Metamodel semantics is mainly given as invariants. For instance,
the invariant in Lines 13-14 ensures that two List instances are
equal (‘a in b.eq’ in Line 13) if and only if the head instances in the
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two lists are the same (’a.car = b.car’ in Line 13), the subsequent
List instances are equal (’a.cdr in b.cdr.eq’ in Line 14), and the List
instances are of the same type (‘a.class = b.class’ in Line 14). The
invariant in Line 16 guarantees that each Vehicle instance is in at
least one list (see the some keyword).

The Nil class represents the empty list (Line 19). The one keyword
makes the Nil class a singleton set, which means there can be only
one Nil instance in a model. A Nil instance has neither the car nor
the cdr property (Lines 20-21), while a Non-nil List instance has
both car and cdr (Line 22). A Nil instance is always a subsequent
list of any List instance (Line 23). The singleton class Memory holds
the Vehicle and List classes (see the composes keyword in Lines 27-
28). It is important to note that ‘List<? extends Vehicle>" represents
the List instances of any subclass of Vehicle (Line 28). Each Vehicle
instance has a unique name (Line 33) and there is always exactly one
Vehicle instance with the name "Ford F-150 XLT" (Line 34). There
are two types of vehicles: NonEnginedVehicle and EnginedVehicle
(Line 37-38). TruckList and CarList are lists of EnginedVehicles (Lines
40-41), while BicycleList is a list of NonEnginedVehicle (Line 42).

3.2 Specification of Models

The user can use any graphical, textual, or tree-based Ecore model
editor to specify models conforming to the metamodel (Step 2
in Fig. 1). Before creating any model, AlloyInEcore automatically
checks if the user can specify at least one valid model that con-
forms to the metamodel and its static semantics. The user may have
specified some contradicting invariants where it is not possible
to create a valid model. AlloyInEcore automatically identifies the
contradictions in the metamodel specification and notifies the user.

3.3 Automated Reasoning on Models

Model completion and consistency checking aim at deriving new
instances and relations in the given model, and determining model
parts violating the metamodel semantics, respectively. These two
activities are processed as a single reasoning activity because they
use the same reasoning machinery. The consistency checking can
be considered as part of model completion because a partial model
is completed only if it is consistent.

3.3.1 Checking Model Consistency. AlloyInEcore takes a model
and its metamodel as input, and automatically identifies, using
the static metamodel semantics, inconsistent model parts as output.
AlloyInEcore provides an explanation of the inconsistency by giving
all the instances and relations causing the inconsistency. Fig. 4 gives
three AlloyInEcore panes for an example inconsistent model of
the theory of lists. The first pane in Fig. 4 gives the inconsistent
model, while, in the second pane, AlloyInEcore highlights part of
the metamodel semantics causing the inconsistency. Although the
cdr property of the List class is given acyclic (see the highlighted
acyclic keyword in Line 10), the red colored cdr in TruckList$0 is
referring to the instance itself. The third pane in Fig. 4 gives the
first order relational logic formula that corresponds to the acyclic
keyword for further explanation of the inconsistency.

3.3.2  Completing Partial Models. If the given model is consistent,
AlloyInEcore automatically deduces new instances and relations in
the input model using the static metamodel semantics. The model
is completed only if it is consistent and not an exact model (i.e., a
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Figure 4: Example Inconsistent Model of the Theory of Lists
model where it is not possible to infer anything more). For instance,
the user removes the cyclic cdr relation in Fig. 4 to make the model
consistent, and then AlloyInEcore completes the model. Our tool
infers 14 different complete models for the partial model in Fig. 4.
Fig. 5 shows one of these inferred models.

@ TheoryOfLists.ecore & Memory.xmi & Memory.xmi 3 = B8
eq:.B TruckList $1 7\‘\_ }
cdr: 6 car: Enginedvehicleg2 | /="
cdr
CarList$0 TruckList$2 TN
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| T
l(dr T /
P
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car Enginedvehicle$l 7_,,/""‘ cdr
cdr
TruckList$0 TN
car: Enginedvehicle$2 _7_,'2‘"'
7
/
Jedr
/
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7
’,/cdr
Enginedvehicle 0
name: FORD F-150 XLT

Figure 5: Example Completed Model of the Theory of Lists
The dashed arrows and the white boxes represent the automati-

cally inferred relations and instances, respectively. AlloyInEcore au-
tomatically infers one Nil instance (see the one keyword in Line 19
in Fig 3) and one TruckList instance (see the invariant in Line 16
and the cardinality constraint in Line 8). It also infers the name for
EnginedVehicle$0 (see the invariant in Line 34) and the car relation
between TruckList$4 and EnginedVehicle$0 (see the invariant in Line
16). The inferred Nil instance is a subsequent list of the inferred
TruckList instance (see the invariant in Line 23). Each List instance
is equal to itself, while TruckList$3 is equal to TruckList$2 (see the
invariant in Lines 13-14).
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4 EVALUATION

Our goal was to assess, in an industrial context, the benefits of
using AlloyInEcore to facilitate automated model reasoning using
user-defined metamodel semantics. We selected three case studies
from the Electronically Controlled Air Suspension (ECAS) system
developed by Ford-Otosan [12]. Each case study is with an ECAS ar-
tifact conforming to a different metamodel (i.e., a requirements
specification, a data flow diagram and a SysML model).

Before conducting the case studies, the Ford-Otosan engineers
were given presentations illustrating the AlloyInEcore steps and a
tool demo. The engineers held various roles (e.g., senior software
and system engineers) with substantial development experience. For
each case study, we assisted the engineers in specifying metamodel
semantics in AlloyInEcore (the 1st, 2nd and 3rd columns in Table 1).
Table 1: Number of Classes, Properties, Invariants, Models
and Completed & Inconsistent Parts in the Case Studies

Meta- Pro-  Invar-
classes perties iants

Model  Comple. Inconsis.
Elements Elements Elements

#1 3 7 42 116 480 5
#2 5 8 6 51 114 1
#3 15 12 10 135 432 2

To evaluate the output, we had semi-structured interviews with
the engineers. All the completed model parts and the identified
inconsistencies were confirmed by the engineers to be correct (the
4th and 5th columns). The engineers considered the automated
reasoning on models to be highly valuable. The Alloy-like notation
embedded into Ecore was sufficient and easy for the engineers to
specify the metamodel semantics in the case studies. For the largest
model (the 3rd row), it took 126 secs to perform the reasoning.

5 IMPLEMENTATION & AVAILABILITY

AlloyInEcore has been implemented as an Eclipse plug-in. We use
Kodkod [29] to perform automated reasoning on models based
on the metamodel semantics. AlloyInEcore translates the input
metamodel and semantic specification into a first order relational
formula. It also translates the input model into a Universe and
Bounds in KodKod. Kodkod translates the formula and the bounds
into a Boolean satisfiability (SAT) problem to invoke an off-the-shelf
SAT solver. If the SAT solver finds a SAT solution to the problem,
Kodkod translates that SAT solution into a solution to the formula
from which AlloyInEcore derives the completed model.

AlloyInEcore is approximately 31K lines of Java code, exclud-
ing comments and third-party libraries. Additional details about
AlloyInEcore, including executable files and a screencast covering
motivations, are available on the tool’s website at:

https://modelwriter.github.io/AlloyInEcore/

6 CONCLUSION

We presented a tool that enables the specification of metamodel
semantics for automated model reasoning. The key characteristics
of our tool are (1) enabling the user to specify metamodels and
their semantics in a single environment, (2) identifying inconsistent
model parts, and (3) completing partial models. The tool has been
evaluated over three industrial case studies.
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