
A Protocol to Strengthen
Password-Based Authentication

Vazquez Sandoval Itzel, Stojkovski Borce, and Lenzini Gabriele ?

SnT/University of Luxembourg
{itzel.vazquezsandoval, borce.stojkovski, gabriele.lenzini}@uni.lu

Abstract. We discuss a password-based authentication protocol that
we argue to be robust against password-guessing and off-line dictionary
attacks. The core idea is to hash the passwords with a seed that comes
from an OTP device, making the resulting identity token unpredictable
for an adversary. We believe that the usability of this new protocol is the
same as that of password-based methods with OTP, but has the advan-
tage of not burdening users with having to choose strong passwords.

Keywords: Password-based Authentication, Cryptographic Protocols

1 Introduction

Password-based authentication is the most common mechanism for online au-
thentication. It relies on one factor: ‘something-you-know’, and requests that the
legitimate user proves knowledge of a username and a password. The whole se-
curity of the method rests, however, on the password, which must be kept secret
and be chosen strong i.e., unpredictable. Unfortunately, this is rarely happening.

Security research has extensively commented on the poor quality of people’s
choices regarding passwords (e.g., see [11, 2, 7, 10]). The problem is subtle. Ac-
cording to [9], people do have certain critical misunderstandings about what
makes a password strong and are unaware of the complete attack surface, but
their intuitions about what a secure password should look like are usually in line
with password-cracking approaches. Despite that, their passwords are commonly
short, built from predictable words and phrases which also tend to be seman-
tically related, and are also often reused across different accounts. Regrettably,
poor password management practices are also very common, which worsens the
situation.

Weak passwords are particularly problematic. Hackers can easily guess them
or they can steal password files, a common attack as recent news on the breaches
at Reddit1, Twitter2 and Yahoo!3 prove. Although login servers protectively

? Authors are supported by the projects: pEp Security SA / SnT “Protocols for Privacy
Security Analysis”; FNR-PRIDE “Security and Privacy for System Protection”.

1 https://www.bbc.com/news/technology-45040804
2 http://www.wired.co.uk/article/twitter-hack-breach-32-million-passwords
3 https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162022741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Vazquez Sandoval, Stojkovski, and Lenzini

store only the hash of the passwords, poorly chosen passwords are retrievable by
off-line dictionary attacks. Attacks on password files are generally a preparation
for further intrusions that take advantage of people’s reuse of passwords.

This discussion raises an obvious research question: if we accept that users
choose weak passwords, how can we guarantee that password-based authenti-
cation is secure i.e., that it works with unpredictable identity tokens and with
password files resilient to off-line dictionary attacks? And, if a solution exists,
how can it be achieved without imposing too much burden on users? The goal
of this short paper is to answer these questions, to propose a possible solution,
and to discuss its security.

1.1 Scope of the Work

There might be several different ways to approach the above research questions
and to find answers. Many researchers opt for supporting authentication without
passwords (e.g., see [8]); we are not interested in solutions of this kind since we
intend to remain within the context of password-based authentication.

There are also methods that use tokens as alternative passwords, like those
requesting freshly generated PINs. The security of such methods relies exclu-
sively upon the possession of a personal device. We briefly comment on them in
Section 4, mainly to compare their security with that of our solution, but using
PINs and similar codes is not the answer we seek for our question.

So, what type of strategies remain in our scope? We see here at least two
families of them. One includes techniques and resources that help users gener-
ate and memorize hard-to-guess passwords. They can be mnemonic strategies,
but they cannot be taught to everyone and, we believe, the practice does not
scale. Alternatively, they can be applications, such as the password vaults like
Schneier’s “Password Safe” or the compatible “Password Gorilla”. They gener-
ate strong passwords on behalf of the user and keep them safe in an encrypted
file on the user’s personal device, available on demand. The drawback is that the
vault’s access is password-secured, which introduces a circular problem as the
vault’s access can be vulnerable to dictionary attacks. Besides, we are unaware of
any research that brings evidence of a widespread adoption of password vaults,
although their recent integration in some browsers will increase their use.

A second family includes protocols that implement second-factor authenti-
cation, and the second factor is often “something-you-have”. Authentication is
still password-based, but the identity of who is submitting a correct username
and password is further verified by proving possession of a personal device (e.g.,
a token generator, a phone, an account). To this family belongs a multitude of
solutions (see for instance the Google 2-step verification4), but discussing each
and every different instance in this quite crowded family is beyond the ambition
of this paper. We can, however, observe one important fact: while the trustwor-
thiness of a user’s authentication is strengthened by the second factor, users can

4 https://www.google.com/landing/2step/



A Protocol to Strengthen Password-Based Authentication 3

still choose weak passwords and the leak of a password file remains a serious
issue.

Nevertheless, it is in this category that we find our main source of inspi-
ration. In particular, we look at protocols where the second factor is a One-
Time-Password (OTP) device. Such protocols are common, and the closest to
the password-based ones in terms of usability: in addition to the username and
password, they require the user to input also a nonce which will be submitted
simultaneously.

1.2 Previous Work and Contribution

To the best of our knowledge, the protocol that we describe here is novel, but
the motivation of the work is rooted in previous research of ours [4].

There, we studied a password-based authentication system first described
by Jewels and Rivest [5]. Its main goal is to make the stealing of a password
file tamper-evident. The system, called honeywords system, has a simple secu-
rity working principle: legitimate user-chosen passwords are stored together with
some decoy words, called honeywords, which are indistinguishable from the pass-
word (e.g., indistinguishable as “whitemoon” is from “redsun”). An adversary
who stole the password file and retrieved the words by an off-line dictionary
attack cannot do better than picking one word at random, revealing that the file
has been leaked if he tries to authenticate with a wrongly picked word.

In [4] we reviewed the protocol to make it tamper-evident when the Login
Server (LS)’s code is corrupted by the adversary. The resulting protocol seems to
suggest a completely new way to authenticate users, which also makes a password
file resilient to off-line dictionary attacks. We left for future work to look into the
matter; here we develop that idea into a novel password-based authentication
protocol.

We anticipate that our solution spares users from having to choose strong
passwords provided that they use an OTP device. But, differently from the com-
mon use of the device as a proof-of-possession, we use OTP’s numbers to generate
fresh identification tokens with high entropy, that depend on the password; they
are unpredictable (by an adversary) and not vulnerable to dictionary attacks.

2 An Enhanced Password-based Authentication

We assume two roles: the User (U) and a LS. We envision three different proto-
cols: registration, authentication, and update.

Assumptions We assume that U and LS communicate through a secure channel
e.g., implemented by a TLS protocol. We also assume that a pre-image resistant
hashing algorithm H, such as SHA-512, is applied to passwords and that LS
stores hashed passwords as usual. We omit obvious checks like verifying that
the username exists. As well, we assume that U holds an OTP device which
has been delivered securely, as it is usually the case. The device’s output, which



4 Vazquez Sandoval, Stojkovski, and Lenzini

changes every time the device is operated, is aligned with the output produced
by a corresponding OTP’s generator algorithm in the LS. OTP(n) is the number
produced by the device when used for the n-th time (equivalently, n times).

Registration U follows this protocol to register to a service and to set his
password w (see Figure 1). U operates the OTP device for the first time to
get a number, OTP(1) (1). The password is hashed using H and then rehashed,
this time using OTP(1) as a seed. The token obtained, hr1(H(w)) is sent to LS
together with U’s id, u (2). On reception, LS anticipates the next OTP number,
r2 = OTP(2) (by operating the device twice) and rehashes the identity token it
has received from U using that number (3,4). LS relies on a strategy that we
describe next and that does not require LS to know the password. The rehashed
token, once more hashed with H, is stored as u’s password (5). LS also stores r2
and the registration for U concludes (6). Note that here we have assumed that
the OTP generates a new number each time it is used. If instead the output of the
device depended on the current time, as some OTP systems work, the protocol
would have to be modified. This is not a dramatic change, but for space reasons
we omit that version.

u,w, OTP(·)
U

r, OTP(·)
LS

1 : r1 ← OTP(1)

2: u,

x︷ ︸︸ ︷
hr1(H(w))

3: r1, r2 ← OTP(1), OTP(2)

4:

x′︷ ︸︸ ︷
hr2(H(w))← rehash(x, r2/r1)

5: updatePwd(u,H(x′))

6: r ← r2

Fig. 1. Registration

The hashing is implemented by cryptographic exponentiation. For each user id
u, LS possesses gu, a generator of a multiplicative subgroup G of order q. Then,
u’s hashed password, H(w), is re-hashed using gru, where r ∈ {1, · · · , q − 1} is a
random number. Herein r is obtained by operating the OTP device. The value

submitted for authentication is g
r·H(w)
u , which we denote as hr(H(w)) to stress

that it is a hashing and to lighten the notation regarding u’s dependency. Using
this scheme LS can, for another r′ ∈ {1, · · · , q − 1}, calculate hr′(H(w)) from



A Protocol to Strengthen Password-Based Authentication 5

hr(H(w)) only by knowing r and r′ and not H(w). In fact:

hr′(H(w)) = gr
′·H(w)

u = g
r· r′r ·H(w)
u = (gr·H(w)

u )
r′
r = hr(H(w))

r′
r (1)

Such a feature is at the core of the authentication procedure.

Authentication The protocol’s sequence of messages, for a general authenti-
cation round n, is shown in Figure 2. U submits a username u, and a token that
is the password w, hashed with H and rehashed with the current OTP(n) (2). LS
retrieves u’s token from the password file (3) and proceeds with authenticating
U. For this, it hashes the received token x, which must match the token y stored
in the file (4). If the check succeeds, LS uses the OTP to anticipate the next
number and calculates the next identity token of u (5,6) by using the rehashing
as described in equation (1) above; then LS updates the password file and r
(7,8); otherwise, the access is denied. U receives a response (9).

u,w, OTP(·)
U

r (= rn), OTP(·)
LS

1: rn ← OTP(n)

2: u,

x︷ ︸︸ ︷
hrn(H(w))

3 :

y︷ ︸︸ ︷
H(hrn(H(w)))← getPwd

(
u
)

5 : rn+1 ← OTP(n + 1)

6 :

x′︷ ︸︸ ︷
hrn+1(H(w)))← rehash(x, rn+1/r)

7 : updatePwd(u,H(x′))

8 : r ← rn+1

4: if y = H(x)4: if y = H(x)

9: resp

Fig. 2. The n-th (n > 1) run of the Authentication Protocol

Update The update protocol allows U to change the password. It combines
authentication and registration. We omit the full description for reasons of space.



6 Vazquez Sandoval, Stojkovski, and Lenzini

2.1 Security Analysis

We discuss the security of the protocol in reference to an adversary that either
(a) tries to guess U’s password, or (b) has eavesdropped U’s communication, or
(c) has stolen the password file and tries off-line dictionary attacks on it, or (d)
has stolen the OTP device and the password file (but not the password).

At the end of round n of the authentication, the value stored by LS is
H(hrn+1(H(w))), where H is the common hashing. Since we allow the user to
choose the password, we cannot exclude the possibility of w being weak and
thus of the intruder guessing it. However, without holding the OTP device the
intruder cannot generate the right identity token to get access, nor use LS as an
oracle to verify whether the guess is correct. This answers case (a).

Even if the intruder could observe the communication and retrieve one iden-
tity token hx(w) from any previous sessions of any protocol, he cannot reuse
that token: identity tokens are one-time valid. Neither can the intruder guess
the new token. If we work under CDH assumption, the knowledge of previous
identity tokens of the form hr(x) for some r, does not give any advantage to the
attacker even if he combines this knowledge with the password. To generate the
next identity token the adversary needs also the OTP number generated by the
device. This answers case (b).

Getting possession of the password file does not help the intruder either. First,
since the re-hashing is not directly applied to plain text words, but to H(w),
the values obtained by the re-hashing function seeded with the OTP number are
not retrievable by a dictionary attack. Second, he would need to calculate H’s
pre-image to extract from the password file the next u’s token, but this is not
possible since H is pre-image resistant. This answers case (c).

Finally, if the attacker were able to obtain the OTP and the password file,
but not the password, he still could not authenticate. Even in the very unrealistic
situation where the attacker knows g and the stored LS’s r, he cannot generate
any next u’s identity tokens because he would need H’s pre-image for that, i.e.,
hr(H(w)) which is hashed in the password file. Just for the sake of speculation,
we comment that there might exist one remote possibility for the attacker to be
able to launch an off-line dictionary attack: steal an OTP ready to be used for
the n + 1 time and get a password file that contains exactly H(hrn+1(H(w)).
But the intruder cannot know whether he finds himself in this lucky situation.

Aiming to formally prove our claims, we analyzed the protocols in Proverif
[1]; the results confirm that access to the system is granted only when there has
been a request from a user and the hash of the credentials submitted (user-id,
password and OTP number) corresponds to the value stored in the password file
owned by the LS. In this short paper we omit the part where we describe the
analysis and the code, but we plan to add it in an extended version of the paper.

3 Implementation

The most obvious way to implement the protocol’s main operation, exponentia-
tion, is by elliptic curve (EC) multiplication. To protect implementations against



A Protocol to Strengthen Password-Based Authentication 7

remote timing attacks [3], the time-cost of the multiplication is usually tc, a con-
stant that depends on the chosen curve c. Thus, the time-cost of our protocol’s
implementation is constant in tc. We do not have measures over our protocol per-
formances (we are currently implementing our solution in C# atop the Microsoft
.NET framework), but from previous experiences with more complex protocols
using exponentiation, as the one documented in [4], we expect the overhead on
the user and on the login server to be negligible.

In a practical implementation, we have to consider that a user can acciden-
tally burn some OTP numbers. This problem can be solved by the LS anticipat-
ing the next, let us say m, OTPs. Thus, LS has to store for each user a row of
values, disposing of the old ones when a valid token is presented.

4 Discussion, Related Work, and Future Work

Our protocol has two main advantages: (1) it releases users from the burden of
having to choose strong passwords at the price of handling an OTP device and
of minor changes in implementation of the authentication protocol; (2) it makes
it less interesting for adversaries to hack the password file, since they cannot use
it for further attacks neither in the same nor in other domains.

In proposing our solution we were resolved to keep the use of passwords,
which is still the mostly used method for authentication. In current commer-
cial applications, comparable solutions are, however, available. More and more
services request users to submit one-time PINs which are generated on (or sent
to) their personal devices. The PINs are submitted instead of the password.
Other services welcome innovative dongles, like the YubiKey5, multi-purpose se-
curity tokens that can store passwords, generate OTPs, and can play different
challenge-response protocols. A formal analysis of the security of such alterna-
tive solutions is future work, but, at least informally, it seems that their security
is equivalent to that of our protocol: they do not handle tokens that are vulner-
able to guess and off-line dictionary attacks. If there is a factor that can make a
difference, it is the usability aspect, since the ceremonies and the interfaces that
they implement for the authentication differ from one another. We leave for fu-
ture work to define research questions and to design experiments apt to measure
usable security aspects for such a diversified set of authentication procedures.

The closest theoretical work to ours, is that of Lamport [6]. In short, it
demands that, at the nth round, LS stores a (K − n)-time nested hash of the
password while the user authenticates by providing a token that is a (K−n−1)-
time nested hash of it. Here, K is a shared constant. Lamport’s protocol ensures
the same advantages (1) and (2) because LS stores a token whose pre-image, if
stolen, cannot be calculated. At the same time LS can efficiently perform the
authentication check. Lamport’s and our solution do probably differ at the level
of usability and performance, but we have not made any measurements yet.

5 https://www.yubico.com/



8 Vazquez Sandoval, Stojkovski, and Lenzini

Limitation We wrote this short paper primarily to share our idea and to open
a discussion on it. Since the intuition behind our solution originates from a
research we did while addressing another problem (see Section 1.2), we branched
from that work and started with the protocol design without having done first
an extensive comparison with the state-of-the-art. Thus, although the research
reported herein is original (i.e., not published elsewhere) our related work section
is limited to a few commercial protocols that use passwords or similar tokens;
it lacks consideration of other theoretical ideas that may be close to what we
have conceived. The only exception is the Lamport’s authentication protocol [6].
Published in 1981, the work has been suggested to us by a reviewer, to whom
we are grateful. An extensive comparative analysis of the two protocols in terms
of security, performance, and usability is also left for future work.

References

1. Blanchet, B., Smyth, B., Cheval, V.: ProVerif 1.96: Automatic Cryptographic Pro-
tocol Verifier, User Manual and Tutorial (2016)

2. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: Security and Privacy (SP), 2012 IEEE Symposium on. pp. 538–552.
IEEE (2012)

3. Brumley, B.B., Tuveri, N.: Remote Timing Attacks Are Still Practical. In: Proc. of
the 16th European Conference on Research in Computer Security (ESORICS’11).
pp. 355–371. Springer-Verlag (2011)

4. Genç, Z.A., Lenzini, G., Ryan, P.Y.A., Vázquez Sandoval, I.: A Security Analysis,
and a Fix, of a Code-Corrupted Honeywords System. In: Proc. of the 4th Int. Conf.
on Information Systems Security and Privacy (ICISSP 2018). pp. 83–95 (2018)

5. Juels, A., Rivest, R.L.: Honeywords: Making password-cracking detectable. In:
Proc. of the 2013 ACM SIGSAC Conf. on Computer & Communications Secu-
rity. pp. 145–160. ACM (2013)

6. Lamport, L.: Password Authentication with Insecure Communication. Communi-
cation of the ACM 24(11), 770–772 (1981)

7. Malone, D., Maher, K.: Investigating the Distribution of Password Choices. In:
Proc, of the 21st Int. Conf. on World Wide Web. pp. 301–310. WWW ’12, ACM,
New York, NY, USA (2012)

8. Stajano, F.: Pico: No More Passwords!! In: Proc. of the Security Protocols Work-
shop. LNCS, vol. 7114. Springer-Verlag (2011)

9. Ur, B., Bees, J., Segreti, S.M., Bauer, L., Christin, N., Cranor, L.F.: Do Users’
Perceptions of Password Security Match Reality? Proc. of the 2016 CHI Conf. on
Human Factors in Computing Systems (CHI’16) pp. 3748–3760 (2016)

10. Von Zezschwitz, E., De Luca, A., Hussmann, H.: Survival of the Shortest: A Ret-
rospective Analysis of Influencing Factors on Password Composition. In: Human-
Computer Interaction (INTERACT 2013). pp. 460–467. Springer-Verlag (2013)

11. Wash, R., Rader, E., Berman, R., Wellmer, Z.: Understanding Password Choices:
How Frequently Entered Passwords Are Re-used across Websites. In: Proc, of 12th
Symposium on Usable Privacy and Security (SOUPS 2016). pp. 175–188. USENIX
Association, Denver, CO (2016)


