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Abstract. In Dung’s abstract argumentation theory, an extension can be represented
by subsets of it in the sense that from each of these subsets, the extension can be
obtained again by iteratively applying the characteristic function. Such so-called
regular representations can be used to differentiate argumentation frameworks hav-
ing the same extensions. In this paper we provide a full characterization of relations
between seven different types of representation equivalence.
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1. Introduction

Dung’s theory of abstract argumentation [8] plays a central role in formal argumenta-
tion [3]. Many papers propose extensions of his theory, and some others study it from
sometimes surprisingly new angles. For example, Bauman et al. [4] study what is es-
sentially needed (in terms of sets, e.g. conflict-free sets, ranges of sets, etc.) for the re-
construction of all extensions, and Xu and Cayrol [13] introduce so-called initial sets
(minimal nonempty admissible sets) as a building block for defining semantics. In the
same spirit, we believe that the theory of representations developed in this paper brings
a surprisingly new perspective on the familiar theory of Dung’s abstract argumentation.

Consider three argumentation frameworks visualized below. F1 has two preferred
extensions {a,c} and {a,d,e}. F ′

1 is obtained from F1 by removing the grounded ex-
tension and the arguments attacked by the grounded extension, known as the Cut [1]. The
preferred extensions of F ′

1 are {c} and {d,e}. One way to understand the fundamental
concept of the Cut is that the grounded extension is a subset of all the complete exten-
sions, and therefore for some applications it can or must be ignored. For example, when
making a choice among a set of extensions of an argumentation framework, someone
may not consider argument a since it is in all extensions. Furthermore, since the status
of d is dependent on e, when someone makes a choice between extensions, he may not
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consider d. After dropping d, we obtain F ′′
1 . So, from the perspective of making a choice

between extensions, F1 is equivalent to F ′
1 and F ′′

1 .
We now rephrase the relation between the three frameworks in terms of represen-

tations. We call {d,e} and {e} regular representations of the extension {a,d,e} of F1,
where {e} is its minimal representation. From each of these representations {d,e} and
{e}, the extension {a,d,e} can be obtained by iteratively adding the defended arguments
to it until a fixed point is reached. In other words, the extension can be recovered by
iteratively applying Dung’s so-called characteristic function [8].

Representations reveal implicit information concerning defence and reinstatement in
forming extensions. In this paper after formalizing a theory of representations, we study
how they can be exploited to differentiate argumentation frameworks that have the same
extensions under a given semantics. This idea can be illustrated by the following exam-
ple. Under preferred semantics, F2 and F ′

2 have the same extension {a,d,c}. So, they
are of standard equivalence. However, the reasons for accepting arguments in these two
argumentation frameworks are not the same. For example, in F2, c is accepted because
both a and d are accepted, while in F ′

2, c is accepted because either a or d is accepted.
The minimal representation of {a,d,c} in F2 is {a,d}, while the minimal representa-
tions of {a,d,c} in F ′

2 are {a} and {d}.
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The layout of this paper is as follows. In Section 2, after introducing some basic no-
tions in Dung argumentation theory [8], we exploit the notions of defence and reinstate-
ment principle to define various types of representations. Then, in Section 3, we intro-
duce new types of equivalence relations between argumentation frameworks respectively
in terms of representation. Finally, in Section 4 we conclude the paper and discuss some
topics for further research.

2. Representations of extensions and argumentation frameworks

An argumentation framework (AF) is defined as F = (A,→), where A is a set of argu-
ments and →⊆ A×A is a set of attacks between arguments. We use a→ b to denote
that a attacks b. Given F = (A,→), B ⊆ A and a ∈ A, we say that B defends a iff all
arguments attacking a are attacked by some arguments in B, B is conflict-free iff there
exist no a,b∈ B such that a→ b, and admissible in F iff it is conflict-free and it defends
all its arguments. B is a complete extension of F iff it is admissible and it contains all the
arguments it defends. B is the grounded extension of F iff it is a minimal (w.r.t. subset
relation) complete extension of F . B is a preferred extension of F iff it is a maximal
(w.r.t. subset relation) complete extension of F . B is a stable extension of F iff it is
conflict-free and it attacks all the arguments of A\B. We use σ ∈ {co,gr,pr,st} to denote
one of these semantics.

We say that an argumentation semantics satisfies the reinstatement principle iff for
every AF F = (A,→), for every extension E of F under this semantics, for every a ∈ A



it holds that if E defends a then a ∈ E. The characteristic function of F = (A,→) on
every subset B ⊆ A, denoted by fF (B), returns the set of arguments that B defends. We
use f ∗F (B) to denote the iterative application of the characteristic function on B infinitely.

For a semantics satisfying the reinstatement principle, instead of taking a set of ar-
guments B and calculating the arguments E defended by B, we take a set of arguments E
and consider all subsets of arguments B ⊆ E that defend E. In this paper, we call B a
regular representation of E of F . The maximal element of the set of representations of
an extension is the extension itself, because every extension represents itself. In this pa-
per, we are interested in particular in minimal representations. Note that every grounded
extension can be generated from an empty set. Meanwhile, under stable semantics, an
extension may have more than one representations. Given that an AF may have more
than one minimal representations, we unify them to define a unique one. The union of
all minimal representations of an extension is called the canonical representation of the
extension.

Definition 1 (Representations of an extension) Let F = (A,→) be an AF, and E be an
extension of F under a semantics σ satisfying the reinstatement principle.

A r-representation (or regular representation) of E in F is a subset B of E such that
f ∗F (B) is identical to E.

The s-representation (or standard representation or maximal representation) of E in
F is E itself.

A m-representation (or minimal representation) of E is a subset minimal r-
representation of E in F .

The c-representation (or canonical representation) of E is the union of all m-
representations of E in F .

Example 1 (Representations of an extension) In F2, E1 has two regular representa-
tions {a,d} and {a,d,c}. In F ′

2, E1 has four regular representations {a,d}, {a,d,c},
{a} and {d}, in which {a} and {d} are minimal representations, and {a,d} is the unique
canonical representation.

The following proposition shows that the canonical representation is a regular rep-
resentation.

Proposition 1 (Union of representations) The union of two regular representations of
an extension E of an AF F under a semantics σ is a regular representation of E.

Proof. Let B and B′ be two representations of E in F . It holds that f ∗F (B) = f ∗F (B′) = E.
According to Lemma 19 in Dung 1995 [8], fF is monotonic. Therefore, f ∗F (B∪B′) = E.

Since every argument in a grounded extension can be obtained by iteratively apply-
ing the characteristic function to an empty set, we have the following proposition.

Proposition 2 (Canonical representation) The canonical representation does not con-
tain any elements of the grounded extension.

In terms of Proposition 2, when considering canonical representation, it seems that
the arguments in the grounded extension and the arguments they attack can be sup-



pressed. The notion of Cut of an argumentation framework proposed by Baroni et al. [1]
can be used to capture the idea in this setting.

Definition 2 (Cut) Given an AF F = (A,→), the Cut of F , denoted as cut(F ), is the
AF obtained by suppressing the arguments in the grounded extension and those attacked
by them.

Based on the notion of Cut, according to Proposition 2, we have the following propo-
sition.

Proposition 3 (Canonical representation, Cut) Under a semantics satisfying the rein-
statement principle, the canonical representation of an extension of an AF F is a subset
of the canonical representation of a corresponding extension of cut(F ).

Example 2 (Canonical representation, Cut) As illustrated below, F ′
3 is the Cut of F3.

Under preferred or stable semantics, F3 has an extension {a,d,e}, F ′
3 has an extension

{d,e}. Both these two extensions have the same canonical representation {d,e}. Note
that the canonical representation of an extension of an AF might not be an extension of
the Cut of the AF. Consider again F1. Under preferred semantics, {e} is the canonical
representation of {a,d,e}. However, {e} is not an extension of the Cut of F ′

1.

F3 : a // b // c
��
//
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e
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Note that a minimal representation of an extension captures the minimal set of ar-
guments from which the extension can be obtained by iteratively applying the character-
istic function. However, for the arguments in a grounded extension, they cannot be re-
flected in the reinstatement structure. The following notion of direct representation may
fill this gap. Based on the notion of direct representation, minimal direct representation
and canonical direct representation are defined respectively as follows.

Definition 3 (Direct representation) Let B ⊆ E be a regular representation of E of F
under a semantics σ .

B is a d-representation (or direct representation) of E in F iff f ∗F (B) = fF (B).
A md-representation (or minimal direct representation) of E in F is a subset mini-

mal direct representation of E in F .
The cd-representation (or canonical direct representation) of E in F is the union of

all minimal direct representations of E in F .

Example 3 (Direct representation) Consider F3 again. With respect to extension
{a,d,e} of F3, {d,e} is both minimal representation and direct representation. There is
no difference between the minimal representation and direct representation in this case.
However, this does not hold in all cases. For instance, with respect to extension {a,c},
the minimal representation in both F4 and F ′

4 is an empty set. However, while the empty
set is a direct representation in F ′

4, it is not a direct representation in F4. Instead, the
direct representation of {a,c} in F4 is {a}.

F4 : a // b // c F ′
4 : a // b c



3. Representation equivalences among argumentation frameworks

We can compare two frameworks for each of the semantics and representations defined
in the previous section. In terms of the notions of various representations of extensions,
in this section, we define some new kinds of representation equivalence between argu-
mentation frameworks, and identify relations between standard equivalence and various
types of representation equivalence. Relations between strong equivalence and represen-
tation equivalence are not discussed in this paper, and will be presented in our future
work.1

We use X-repr(E,F ) where X ∈ {r,s,m,c,d,md,cd} to denote the set of X-
representations of E in F , and X-repr(F ,σ) = {X-repr(E,F ) | E ∈ σ(F )} to denote
the X-representation of F under semantics σ .

Definition 4 (Representation equivalence) Let X ∈ {r,s,m,c,d,md,cd}. F and F ′

are of X-representation equivalence w.r.t. σ , in symbols F ≡X
σ F ′ iff X-repr(F ,σ) =

X-repr(F ′,σ).

Theorem 1 Let X ,Y ∈ {r,s,m,c,d,md,cd}. We have F ≡X
σ F ′ implies F ≡Y

σ F ′ if and
only if there is a path from X to Y in Figure 1, where σ ∈{co,gr,pr,st}. More specifically,
we have:

i) If F ≡r
σ F ′, then F ≡s

σ F ′, but not vice versa.
ii) Under grounded semantics, it holds that if F ≡s

gr F ′ then F ≡m
gr F ′ and F ≡c

σ

F ′, but not vice versa. It does not hold that if F ≡m
σ F ′ or F ≡c

σ F ′ then
F ≡s

σ F ′, and vice versa.
iii) If F ≡d

σ F ′ then F ≡s
σ F ′, but not vice versa. It does not that if F ≡md

σ F ′ or
F ≡cd

σ F ′ then F ≡s
σ F ′, and vice versa.

iv) If F ≡r
σ F ′, then F ≡m

σ F ′, F ≡c
σ F ′, F ≡d

σ F ′, F ≡md
σ F ′ and F ≡cd

σ F ′

respectively, but not vice versa.
v) If F ≡m

σ F ′, then F ≡c
σ F ′, but not vice versa. It does not hold that if F ≡m

σ F ′

or F ≡c
σ F ′ then F ≡d

σ F ′, F ≡md
σ F ′ and F ≡cd

σ F ′ respectively, and vice
versa.

vi) If F ≡d
σ F ′ then F ≡md

σ F ′ and F ≡cd
σ F ′ respectively, but not vice versa.

vii) If F ≡md
σ F ′ then F ≡cd

σ F ′, but not vice versa.

d //

��

md // cd

r
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))m // c

Figure 1. Representation equivalence

From Figure 1, we have the following observations. First, regular representation
equivalence is the most expressive, since it implies all other types of equivalence. Second,

1Note that when two argumentation frameworks are strongly equivalent, they might not be of representation
equivalence. For instance, under preferred semantics the two frameworks ({a,b},{a→ a,a→ b,b→ a}) and
({a,b},{a→ a,b→ a}) are strongly equivalent, but they are not of representation equivalence.



standard (representation) equivalence cannot distinguish many kinds of argumentation
frameworks, since it only implies minimal and canonical equivalence under grounded
semantics, and this is trivial. Third, the newly defined types of equivalence of argumenta-
tion frameworks provide a fine-grained comparison between argumentation frameworks,
capturing the hidden reinstatement structure of abstract argumentation semantics.

In the remainder of this section, we prove Theorem 1.
i) r-s. Given that F ≡r

σ F ′, r-repr(F , σ) = {r-repr(E,F ) | E ∈ σ(F )} =
r-repr(F ′, σ) = {r-repr(E,F ) | E ∈ σ(F ′)}. Assume that ∃E ∈ σ(F ) such that
E /∈ σ(F ′). Since E ∈ r-repr(E,F ) it holds that r-repr(F ,σ) 6= r-repr(F ′,σ). Con-
tradiction. So, it holds that F ≡s

σ F ′. Example 1 shows that when F ≡s
σ F ′, there exist

cases where F 6≡r
σ F ′.

ii) s-m, s-c (under grounded semantics). Since under grounded semantics, every AF
has the unique minimal representation that is an empty set, it is trivial that if F ≡s

gr F ′

then F ≡m
gr F ′. For other cases, see the following counter examples.

Example 4 (Relations between standard and m/c-repr. equiv.) On the one hand, re-
garding “if F ≡m

σ F ′ then F ≡s
σ F ′”, consider F5 and F ′

5. For σ ∈ {co,gr,pr,st},
m-repr(F5,σ) = m-repr(F ′

5,σ) = {{}}, and therefore F5 ≡m
σ F ′

5. However, since F5
has an extension {a,c} which is different from the extension {a} of F ′

5, F5 6≡s
σ F ′

5.
On the other hand, regarding “if F ≡s

σ F ′ then F ≡m
σ F ′”, under preferred se-

mantics, consider F2 and F ′
2. Since both F2 and F ′

2 have an extension {a,d,c},
F2 ≡s

pr F ′
2. However, since the minimal representation of F2 under preferred semantics

is {{{a,d}}}, which is different from the minimal representation {{{a},{d}}} of F ′
2

under preferred semantics, F2 6≡m
pr F ′

2.

F5 : a // b // coo F ′
5 : a

Under complete semantics, consider F6 and F ′
6. Since both F6 and F ′

6 have a
set of extensions {{},{b,d}}, F6 ≡s

co F ′
6. However, since the minimal representation

of F6 under complete semantics is {{{}},{{b}}}, which is different from the minimal
representation {{{}},{{d}}} of F ′

6 under complete semantics, F6 6≡m
co F ′

6. Similarly,
under stable semantics, we may use F6 and F ′

6 as a counter example.

F6 : a
��

// b //oo c // d F ′
6 : a

��
// d //oo c // b

iii) d-s. Since E ∈ drep(E,F ), similar to the proof of r-s, we may verify that F ≡d
σ

F ′ implies F ≡s
σ F ′.

iv) r-m, r-c, r-d, r-md, r-cd. First, we prove “if F ≡r
σ F ′, then F ≡m

σ F ′”. Given that
F ≡r

σ F ′, it holds that r-repr(F ,σ) = {r-repr(E,F ) | E ∈ σ(F )}= r-repr(F ′,σ) =
{r-repr(E ′,F ′) | E ′ ∈ σ(F ′)}. So, there is a one-to-one mapping between each el-
ement in r-repr(F ,σ) and each element in r-repr(F ′,σ). Since m-repr(E,F ) ⊆
r-repr(E,F ), if there exist E ∈ σ(F ) and E ′ ∈ σ(F ′) such that m-repr(E,F ) 6=
m-repr(E ′,F ′), then r-repr(F ,σ) 6= r-repr(F ′,σ). Contradiction. So, it holds that
F ≡m

σ F ′. Similarly, if F ≡r
σ F ′, we may verify that F ≡c

σ F ′, F ≡d
σ F ′, F ≡md

σ F ′

and F ≡cd
σ F ′ respectively.

Concerning “not vice versa” part, let us first consider F3 and F ′
3. They are of min-

imal representation equivalence and of canonical representation equivalence, but are not



of regular representation equivalence. For direct representation equivalence, F7 and F ′
7

are of direct (respectively, minimal direct, canonical direct) representation equivalence,
but not of representation equivalence, since {b} and {d} are regular representations of
{b,d} in F7 and F ′

7 respectively, but they are not direct representations.

F7 : a
HH

// b //oo c // d
��

F ′
7 : a

HH
// d //oo c // b

��
f eoo f eoo

v) m-c. Since by definition, the canonical representation is the union of minimal
representations, the “not vice versa” can be exemplified by F2 and F ′

2.
A counter example for “if F ≡m

σ F ′ then F ≡d
σ F ′”: F5 and F ′

5 are of minimal
(canonical) representation equivalence, but not of direct (minimal direct, canonical di-
rect) representation equivalence. An example for “vice versa” part: F7 and F ′

7 are of
direct (minimal direct, canonical direct) representation equivalence, but not of minimal
(canonical) representation equivalence.

vi) The proof for d-md and d-cd is similar to that for r-m and r-c, omitted.
vii) md-cd. This relation is similar to the relation between minimal representation

equivalence and canonical representation equivalence. Regarding the “not vice versa”
part of this relation, consider F8 and F ′

8. They are canonical direct representation equiv-
alence, but not minimal direct representation equivalence.

F8 : a // b // c F ′
8 : a // b // c

d // e

99

d

88

4. Applications and future work

The theory of representations give a surprisingly new perspective on Dung’s abstract
semantics. This new perspective can be put to use in various ways.

Explainable AI. Representations can be used to provide explanations for the acceptance
of arguments. Generally speaking, explanations can be defined just like represen-
tations, but with respect to a single argument in an extension: an explanation of
argument a in extension E is a subset B of a representation of E such that a is con-
tained in the set obtained by iteratively applying the characteristic function to B.
Concerning the above example, in F2, we may say that {a} is an explanation of
accepting a, and {a,d} is an explanation of accepting c, etc. Some related work
regarding explanations has been proposed, e.g., the model of abduction in abstract
argumentation [6]. But, that model mainly deals with how changes to an AF may
act as hypothesis to explain the support of an observation.

Reason-based semantics. Furthermore, a reason-based semantics of abstract argumen-
tation can be defined by exploiting the hidden reinstatement structure captured
by variants of representations. Some preliminary work on this topic is introduced
in [12]. Different from [13], we do not define new Dung’s style semantics, but
define semantics that capture the reasons of acceptance of arguments.



Summarization. Moreover, the notion of representation can also be the basis for a sim-
ple kind of summarization based on the notion of representation equivalence. For
instance, F3 and F ′

3 are of canonical representation equivalence, F3 may be sum-
marized as F ′

3 in the sense that the reasons for accepting d and e are identical. The
notion of summarization of argumentation frameworks was originally proposed
in [2], where the summarization is formulated in terms of the notion of equiva-
lence between argumentation multipoles. Based on the new notion of representa-
tion equivalence proposed in this paper, it is expected to develop a new methodol-
ogy to formulate summarization.

Dynamics. The theory of representations may be used for the dynamics of argumenta-
tion [7,9], and for dialogical argumentation [10,11].

Strong equivalence. The equivalence relations between argumentation frameworks
must be further studied with respect to strong equivalence [4,5].
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