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Abstract—Co-array-based Direction of Arrival (DoA) estima-
tion using Sparse linear arrays (SLAs) has recently gained
considerable interest in array processing due to the attractive
capability of providing enhanced degrees of freedom. Although
a variety of estimators have been suggested in the literature for
co-array-based DoA estimation, none of them are statistically
efficient. This work introduces a novel Weighted Least Squares
(WLS) estimator for the co-array-based DoA estimation employ-
ing the covariance fitting method. Then, an optimal weighting
is given so that the asymptotic performance of the proposed
WLS estimator coincides with the Cramér-Rao Bound (CRB),
thereby ensuring statistical efficiency of resulting WLS estimator.
This implies that the proposed WLS estimator has significantly
better performance compared to existing methods in the liter-
ature. Numerical simulations are provided to corroborate the
asymptotic statistical efficiency and the improved performance
of the proposed estimator.

I. INTRODUCTION

It is widely known that ULAs are not capable of identifying
more sources than the number of physical elements in the
array [1], [2]. To transcend this limitation, exploitation of
Sparse Linear Arrays (SLAs) with particular geometries, such
as Minimum Redundancy Arrays (MRAs) [3], co-prime arrays
[4] and nested arrays [5] has been proposed. These arrays can
dramatically boost the degrees of freedom by employing the
difference co-array model such that significantly more sources
than the number of physical elements in the array can be
identified. This attractive feature has spurred further research
in co-array-based DoA estimation using SLAs in recent years.

Recently, a detailed study on co-array-based DoA estimation
through an analysis of the Cramér-Rao Bound (CRB) has been
conducted in [6]. The findings in [6] provide valuable insights
into the performance limits of co-array-based DoA estimation,
which are useful for benchmarking. Further, a number of DoA
estimators based on the co-array model have been proposed
in the literature. In [5], [7], [8], DoAs are estimated by
applying conventional subspace methods such as MUSIC, ES-
PRIT on an Augmented Sample Covariance Matrix (ASCM)
obtained from the original sample covariance matrix. There
are two different ways for constructing the ASCM, namely,
1) the direct augmentation approach [9]; 2) spatial smoothing
approach [5]. It is shown that applying MUSIC on both
leads to the same asymptotic Mean Square Error (MSE), but
the former is computationally efficient. Some sparsity-based
methods are also given in [10]–[12] by imposing sparsity
constraints on source profiles. Recently, the current authors
have also proposed the use of a Least Squares estimator [13].

However, performance of these proposed estimators does not
approach the CRB, leading them to be statistically inefficient.

In this paper, we propose a new Weighted Least Squared
(WLS) estimator for the co-array based DoA estimation us-
ing covariance fitting method. It is shown that by selecting
the weighting matrix optimally, the error covariance matrix
of DoA estimates coincides with the CRB, resulting in an
asymptotic statistically efficient estimator. Further, some sim-
ulation results are provided to compare the performance of the
proposed WLS estimator with the estimators proposed in the
literature.

Notation: Vectors and matrices are referred to by lower-
and upper-case bold-face, respectively. The superscripts ∗, T ,
H denote the conjugate, transpose and Hermitian (conjugate
transpose) operations, respectively. ‖a‖2 stands for the `2-
norm of A and a. [A]i,j and [a]i indicate the (i, j)th and ith

entry of A and a, respectively. Â and â denote the estimate
of A and a, respectively. (a1, a2, · · · , an) is an n-tuple with
elements of a1, a2, · · · , an. |A| represents the cardinality of
the set A. diag(a) is a diagonal matrix whose diagonal entries
are equal to the elements of a. The M ×M identity matrix
is denoted by IM . E{.} stands for the statistical expecta-
tion. ⊗ and � represent Kronecker and Khatri-Rao products,
respectively. Vec (A) =

[
aT1 aT2 · · · aTn

]T
denotes the

vectorization operation. A† and Π⊥A indicate the pseudoinverse
and the projection matrix onto the null space of the full column
rank matrix A, respectively.

II. CO-ARRAY SYSTEM MODEL

We consider an SLA with M elements located at positions(
m1

λ
2 , m2

λ
2 , · · · ,mM

λ
2

)
with mi ∈M. HereM is an integer

set with cardinality |M| = M , and λ represents the wavelength
of the incoming signals. It is assumed K narrowband signals
with distinct DoAs θ =

[
θ1 θ2 · · · θK

]T
impinge on the

SLA from far field. Accordingly, the vector of signals received
by the SLA at time instance t can be modeled as

y(t) = A(θ)x(t) + n(t) ∈ CM×1, t = 1, · · · , N, (1)

where x(t) ∈ CK×1 denotes the vector of source sig-
nals, n(t) ∈ CM×1 is additive noise, and A(θ) =[
a (θ1) , a (θ2) , · · · a (θK)

]
∈ CM×K represents the

SLA steering matrix where

a(θi) =
[
ejπ sin θim1 ejπ sin θim2 · · · ejπ sin θimM

]T
, (2)
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is the SLA manifold vector for the ith signal. Further, the
following assumptions are made on source signals and noise:
A1 The noise vector follows a zero-mean circular com-

plex Gaussian distribution with the covariance matrix,
E{n(t)nH(t)} = σ2IM .

A2 The source signal vector is modeled as a zero-mean
circular complex Gaussian random vector with covari-
ance matrix E{x(t)xH(t)} = diag(p) where p =[
p1, p2, · · · pK

]T ∈ RK×1>0 (i. e., pl > 0, ∀l).
A3 Source signal and noise vectors are mutually independent.
A4 There is no temporal correlation between the snapshots,

i.e., E{n(t1)nH(t2)} = E{x(t1)xH(t2)} = 0 when t1 6=
t2 and 0 is an all zero matrix of appropriate dimensions.

Based on the above assumptions, the covariance matrix of the
received signals, i.e., R = E{y(t)yH(t)}, is given by

R = A(θ)diag(p)AH(θ) + σ2IM ∈ CM×M . (3)

Following [5]–[7], the difference co-array model of the SLA
is obtained by vectorizing the covariance matrix in (3), which
results in

r
.
= Vec(R) = (A∗(θ)�A(θ))p + σ2Vec(IM ),

= JAd(θ)p + σ2Jg ∈ CM
2×1, (4)

where Ad(θ) ∈ C(2D−1)×K corresponds to the steering
matrix of the difference co-array whose elements are located
at (−`D−1 λ2 , · · · , 0, · · · , `D−1

λ
2 ) with `i ∈ D = {|mp −

mq|
∣∣mp,mq ∈M} and D = |D|. Further, g ∈ {0, 1}(2D−1)×1

is a column vector with [g]i = δ[i − D], and the selection
matrix J is represented as follows

Definition 1. The binary matrix J ∈ {0, 1}M2×(2D−1) is
defined as [6]

J =
[
Vec(LTD−1) · · · Vec(L0) · · · Vec(LD−1),

]
, where

(5)

[Ln]p,q =

{
1, if mp −mq = `n,
0, otherwise, (6)

with 1 ≤ p, q ≤M and 0 ≤ n ≤ D − 1.

The difference co-array model in (4) can be perceived to
be the response of a virtual array whose steering matrix is
given by Ad(θ) to the parameter vector with signal powers p
in presence of the noise vector σ2Vec(IM ). This virtual array
includes a contiguous ULA segment around the origin with
the size of 2v − 1 where v is the largest integer such that
{0, 1, · · · , v − 1} ⊆ D. It has been shown in [4]–[6] that the
size of the contiguous ULA segment of the difference co-array
plays a crucial role in the number of identifiable sources such
that K distinct sources are identifiable if K ≤ v − 1. Hence,
in case the SLA is designed properly such that v > M , we
are able to identify more sources than the number of physical
elements in the SLA, exploiting the source signal covariance
matrix structure efficiently. An illustrative example of an SLA
and its co-array is provided in Fig. 1.
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Fig. 1. Array geometry of a co-prime array with 6 elements: (a) physical
array with M = {0, 2, 3, 4, 6, 9}; (b) difference co-array with D =
{0, 1, 2, 3, 4, 5, 6, 7, 9}.

III. CO-ARRAY BASED WLS ESTIMATOR

The problem under consideration is to estimate the unknown
parameters − DoAs, source signal powers and the noise
variance − in (4) using array observations, i.e., {y(t)}Nt=1. Of
these, DoAs are of primary interest and the other parameters
are of subordinate interest. However, the estimation of the
secondary parameters is essential for accurate DoA estimation.
Since estimation of σ2 and p is not the main aim here, a
consistent estimate of them suffices for our purpose. In what
follows, we first introduce a consistent estimate of the noise
variance and then formulate and present the WLS estimator
for DoAs and source signal powers.

Let R̂ denote the sample covariance matrix, defined as

R̂ =
1

N

N∑
t=1

y(t)yH(t) ∈ CM×M , (7)

and r̂ = Vec(R̂) denote its vectorized form. In addition, let
R̂v be the augmented sample covariance matrix, which is
constructed as follows [9]

R̂v =
[
TvJ

†r̂ Tv−1J
†r̂ · · · T1J

†r̂
]
∈ Cv×v, (8)

where Ti is a selection matrix defined as

Ti =
[
0v×(i+D−v−1) Iv 0v×(D−i)

]
∈ {0, 1}v×(2D−1), (9)

Then, a consistent estimate of the noise variance is given
by

σ̂2 =
VecH(ÛnÛ

H
n )TJ†r̂

v −K
, (10)

where Ûn represents the eigenvectors of the augmented
sample covariance matrix R̂v corresponding to its v − K

smallest eigenvalues and T =
[
TT
v TT

v−1 · · · TT
1

]T ∈
Cv

2×(2D−1).
Now, to estimate source DoAs from (4), it is possible to

formulate the co-array-based LS estimates of θ, p as[
θ̂ls
p̂ls

]
= argmin

θ,p
‖r− JAd(θ)p− σ̂2Vec(IM )‖22. (11)

However, our investigations, presented in [13], indicate that the
LS estimates of DoAs do not show a significant performance
improvement in terms of MSE compared to the existing
algorithms. Thus it would be useful to introduce a weighting
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in the above criterion to achieve better performance. Hence,
we propose the following WLS estimator instead[

θ̂wls
p̂wls

]
= argmin

θ,p

∥∥∥W 1
2

(
r− JAd(θ)p− σ̂2Vec(IM )

)∥∥∥2
2
.

(12)

where W is a positive definite weighting matrix. The weight-
ing matrix W should be determined to minimize the MSE of
DoA estimates. Inserting (10) into (12) and performing certain
algebraic manipulations leads to the following estimates for
source signal powers and DoAs

p̂wls =
(
W

1
2JAd(θ)

)†
W

1
2 Q̂r̂. (13)

θ̂wls = argmin
θ
‖Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂‖22. (14)

where

Q̂
.
= IM2 − Vec(IM )VecH(ÛnÛ

H
n )TJ†

v −K
. (15)

If the weighting matrix is selected as follows

W =
(
Π⊥JAd(θ)

SΠ⊥JAd(θ)
+ JAd(θ)AH

d (θ)JT
)−1

, (16)

where

S =Q(RT ⊗R)QH + bbH , (17)

and b
.
= J†HTHVec

(
UnU

H
n

)
, then the asymptotic per-

formance of the proposed WLS estimator in (14) achieves
the CRB. The details of proof will be given in the journal
extension of this paper [14].

Remark 1. We note that the optimal weighting matrix given in
(16) depends on the true value of the parameters. However, in
practice, it can be replaced with a consistent estimate without
affecting the asymptotic performance of the WLS estimator
[15]–[18]. To this end, we can first use any other consistent
estimator like MUSIC or ESPRIT to obtain an initial estimate
of θ. Then, we compute a consistent estimate of the optimal
weighting matrix based on the initial estimate of θ. Finally,
we use the WLS estimator given in (14) to derive statistically
efficient estimates of DoAs.

IV. SIMULATION RESULTS

In this section, we provide some numerical results to show
the statistical efficiency of the proposed WLS estimator and to
compare its performance with those of the existing estimators
in the literature. Specifically, we compare the performance of
the WLS estimator proposed in this paper with that of co-
array-based MUSIC [5], [7] and co-array-based ESPRIT [8]
and illustrate the superior performance of the WLS estimator.

In all experiments, each simulated point has been computed
by 5000 Monte Carlo repetitions. In addition, it is assumed
that the sources are located at {−60◦ + 120◦(k − 1)/(K −
1)|k = 0, 1, · · · ,K − 1} in case K independent sources are
available. All sources have equal powers, i.e., p1 = p2 = · · · =
pK = p, and the SNR is defined as 10 log p

σ2 . Throughout this
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Fig. 2. RMSE in degree for θ2 versus SNR for a nested array with M = 6
elements and configuration given in (18), N = 500, and K = 7 > M .

section, we use a nested array with 6 physical elements and
the following geometry:

Mnested : {1, 2, 3, 4, 8, 12} , (18)

This SLA generates a difference co-array described as follows:

Dnested : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} , (19)

Fig. 2 depicts the Root-Mean-Squares-Error (RMSE) for θ2
in degree versus the number of snapshots with the following
setup. We consider a nested array with M = 6 elements
and configuration given in (18). The SNR is assumed to
be 3 dB and K = 7 > M . Fig. 2 shows that there is a
good agreement between the RMSE of the proposed WLS
estimator and the CRB for the both scenarios when almost
100 snapshots are available. This implies that the proposed
WLS estimator becomes statistically efficient even for finite
number of samples (e.g., 100 in the scenario of Fig 2). Further,
a considerable gap is observed between the performance of
co-array-based MUSIC (ESPRIT) and the CRB, arising from
their statistical inefficiency. When the number of snapshots is
less than 100, all estimators are confronted with significant
performance degradation. This happens because the sample
covariance matrix is unable to provide an accurate estimate
of R under such circumstances due to lack of snapshots.
However, the proposed WLS estimator has even superior
performance beside the existing estimators in this region.

Fig. 3 shows the RMSE for θ2 in degree versus SNR for
the same setup used for Fig. 2. The number of snapshots is
considered to be N = 500. It is seen that the RMSE of the
WLS estimator perfectly matches the CRB over the considered
SNR range, arising from its statistical efficiency. In addition, it
is observed that for K = 4 < M , similar to CRB, the RMSE
of WLS estimator approaches zero as SNR increases while
the RMSEs of co-array-based MUSIC and ESPRIT saturate
at the SNR around 5 dB. This means that while the WLS
estimator remains statistically efficient for the whole range
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Fig. 3. RMSE in degree for θ2 versus SNR for a nested array with M = 6 elements and configuration given in (18), N = 500, and: (a) K = 4 < M ; (b)
K = 7 > M .

of the SNR, co-array-based MUSIC and ESPRIT become
inefficient with the increase in SNR. When K = 7 < M , the
RMSE of the WLS estimator as well as CRB get saturated at
the SNR around 15 dB. The same happens to co-array-based
MUSIC and EPRIT at SNR around 10 dB. Nonetheless, there
is still a considerable gap between the performance of the WLS
estimator and co-array-based MUSIC and ESPRIT under this
condition.

V. CONCLUSION

In this paper, a novel WLS estimator for the co-array-based
DoA estimation is proposed. It is shown that the asymptotic
performance of the proposed WLS estimator approaches the
CRB when optimal weighting matrix is selected. This implies
that the proposed WLS estimator is asymptotically statistically
efficient. Simulation results illustrate the superior performance
of the proposed WLS estimator compared to co-array-based
MUSIC and ESPRIT in terms of estimation accuracy.

ACKNOWLEDGMENT

This work is supported by the National Research Fund,
Luxembourg under AFR grant for bilateral Ph.D. project
(Project Reference 11228830) on Compressive Sensing for
Ranging and Detection in Automotive Applications.

REFERENCES

[1] S. S. Haykin, J. Litva, , and T. J. Shepherd, Eds., Radar Array
Processing. Berlin, Germany: Springer-Verlag, 1993.

[2] P. Stoica and A. Nehorai, “Performance study of conditional and
unconditional direction-of-arrival estimation,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 38, no. 10, pp. 1783–
1795, Oct 1990.

[3] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on
Antennas and Propagation, vol. 16, no. 2, pp. 172–175, Mar 1968.

[4] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers
and arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp.
573–586, Feb 2011.

[5] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array
processing with enhanced degrees of freedom,” IEEE Transactions on
Signal Processing, vol. 58, no. 8, pp. 4167–4181, Aug 2010.

[6] C. L. Liu and P. Vaidyanathan, “Cramér-rao bounds for coprime and
other sparse arrays, which find more sources than sensors,” Digital
Signal Processing, vol. 61, pp. 43 – 61, 2017.

[7] M. Wang and A. Nehorai, “Coarrays, music, and the cram ér-rao bound,”
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